

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2015 Society for Industrial and Applied Mathematics
Vol. 37, No. 5, pp. S526–S543

ON VECTOR-KRONECKER PRODUCT MULTIPLICATION
WITH RECTANGULAR FACTORS∗

TUǦRUL DAYAR† AND M. CAN ORHAN†

Abstract. The infinitesimal generator matrix underlying a multidimensional Markov chain can
be represented compactly by using sums of Kronecker products of small rectangular matrices. For
such compact representations, analysis methods based on vector-Kronecker product multiplication
need to be employed. When the factors in the Kronecker product terms are relatively dense, vector-
Kronecker product multiplication can be performed efficiently by the shuffle algorithm. When the
factors are relatively sparse, it may be more efficient to obtain nonzero elements of the generator
matrix in Kronecker form on the fly and multiply them with corresponding elements of the vector.
This work proposes a modification to the shuffle algorithm that multiplies relevant elements of the
vector with submatrices of factors in which zero rows and columns are omitted. This approach avoids
unnecessary floating-point operations that evaluate to zero during the course of the multiplication
and possibly reduces the amount of memory used. Numerical experiments on a large number of
models indicate that in many cases the modified shuffle algorithm performs a smaller number of
floating-point operations than the shuffle algorithm and the algorithm that generates nonzeros on
the fly, sometimes with a minimum number of floating-point operations and as little of memory
possible.

Key words. Markov chain, Kronecker representation, vector-Kronecker product multiplication,
shuffle algorithm

AMS subject classifications. 60J27, 65F50, 15A72, 65F10, 65B99

DOI. 10.1137/140980326

1. Introduction. Markov chains (MCs) are state and transition based prob-
abilistic models widely used to analyze the behavior of systems arising in different
application areas. When they aid the modeling and analysis of systems composed
of interacting subsystems [31], a multidimensional state representation in which each
subsystem normally corresponds to a different dimension may be utilized. For a given
transition triggered by an event in this representation, the state of a subsystem may
either evolve independently or evolve in synchronization with other subsystems. With
this understanding, the reachable state space of a multidimensional MC is the set of
states which the system is able to reach by following the possible transitions that take
place due to different events. In many cases, the semantics of the system dictates that
the reachable state space of the MC model be a proper subset of its product state
space, that is, the Cartesian product of the subsystem state spaces.

The multidimensional state representation together with the Cartesian product
operator motivate the use of Kronecker products [33] of the smaller transition matri-
ces associated with subsystems in defining the larger infinitesimal generator matrix
underlying the MC. This approach enables the relatively easy specification of multi-
dimensional MCs and the compact representation of their generator matrices [16].
Since the generator matrix needs to be kept in compact form during analysis, an
efficient vector-Kronecker product multiplication algorithm based on shuffle algebra

∗Received by the editors August 1, 2014; accepted for publication (in revised form) June 15, 2015;
published electronically October 29, 2015.

http://www.siam.org/journals/sisc/37-5/98032.html
†Department of Computer Engineering, Bilkent University, TR-06800 Bilkent, Ankara, Turkey

(tugrul@cs.bilkent.edu.tr, morhan@cs.bilkent.edu.tr). The research of the second author was sup-
ported by the Scientific and Technological Research Council of Turkey.

S526

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sisc/37-5/98032.html
mailto:tugrul@cs.bilkent.edu.tr
mailto:morhan@cs.bilkent.edu.tr

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON VECTOR-KRONECKER PRODUCT MULTIPLICATION S527

[15] and known as the shuffle algorithm [28] has been devised and used. In this
algorithm, the multiplication of a vector with the Kronecker product is achieved by
multiplying the vector with as many matrices as the number of factors, say, H , in
the Kronecker product, where each of the H matrices is expressed as the Kronecker
product of (H − 1) identity matrices and a different factor whose order among the
identity matrices is that of the same factor in the original Kronecker product, hence
the term “shuffle”. Although this approach does not alleviate the problem of having
to store large state probability vectors during analysis, it is still more memory efficient
than conventional techniques that use sparse vector-matrix multiplication. Regarding
time complexity, the shuffle algorithm is slower unless the factors in the Kronecker
product become relatively dense.

In Kronecker based Markovian modeling formalisms such as stochastic automata
networks [28, 29], the set of rows and the set of columns are each equal to the product
state space, implying square factors in the Kronecker form. Consequently, the gener-
ator matrix can be expressed as a sum of Kronecker products of subsystem transition
matrices, and vector-Kronecker product multiplication algorithms [6, 13, 20, 21] are
implemented using an auxiliary flag vector as long as the product state space to indi-
cate the reachability of states and avoid unnecessary floating-point operations (flops)
with unreachable states. Clearly these approaches pose considerable inefficiency due
to indexing and addressing during analysis when the reachable state space is signifi-
cantly smaller than the product state space.

Compact storage of the generator matrix underlying an MC with unreachable
states and efficient implementation of analysis methods using Kronecker operations
require the reachable state space to be represented as a union of Cartesian products of
subsets of subsystem state spaces [16], as has been done, for instance, in hierarchical
Markovian models [7]. Consequently, the generator matrix can be expressed as a block
matrix in which the sets of rows and columns corresponding to each diagonal block
are the same, each set equal to a particular partition of the reachable state space, and
each block is a sum of Kronecker products of subsystem transition submatrices. The
off-diagonal blocks of this matrix need not be square, and hence the shuffle algorithm
is implemented for rectangular factors in this case [16]. The hierarchical represen-
tation of the generator matrix with the shuffle algorithm for rectangular factors has
been successfully used in block iterative methods [9], preconditioned projection meth-
ods [11], and multilevel methods [10, 12] for analyzing many different problems. Any
improvement in the shuffle algorithm for rectangular factors will translate to an im-
provement in analysis methods for multidimensional MCs in Kronecker form. It is
evident that all square factors is just a special case of rectangular factors; hence, the
algorithms considered here are for the general case.

Vector-Kronecker product multiplication algorithms that are of a different nature
have been proposed in [13]. In the algorithms therein, nonzero elements of the gener-
ator matrix are obtained on the fly and multiplied with the corresponding elements of
the vector. These algorithms are devised for square factors, but they can be extended
to handle rectangular factors without much difficulty. Pot-RwCl is the most efficient
among the algorithms in [13] since it fully exploits common nonzero factors forming
the nonzero elements of the sparse matrix corresponding to each Kronecker product
term. Due to this, Pot-RwCl becomes more efficient than the shuffle algorithm when
the factors in the Kronecker product terms are relatively sparse.

In this work, we aim at improving the efficiency of the shuffle algorithm for rect-
angular factors. To this end, we consider Kronecker based MCs with given Cartesian
product partitionings of their reachable state spaces [16, 17]. We implement the shuffle

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S528 TUǦRUL DAYAR AND M. CAN ORHAN

algorithm in such a way that zero rows and columns in factors of Kronecker product
terms are omitted during multiplication. This enables us to avoid flops that evaluate
to zero during the course of the multiplication and to possibly reduce the amount
of memory used. The shuffle algorithm, the Pot-RwCl algorithm, and the modified
shuffle algorithm are compared analytically for their flop and memory requirements.
Although the modification on the shuffle algorithm may seem simple, it is not intuitive
(since zero rows and columns are not stored in sparse matrices anyway), but as we
shall see through numerical experiments, it turns out to be quite effective in many
cases. At the end, we are able to identify those implementations of vector-Kronecker
product multiplication that should be preferred over others.

Note that we treat the Kronecker product factors as purely algebraic quantities
and do not use their stochastic properties. Therefore, the proposed modification
on the shuffle algorithm is not limited to the context of MCs. Moreover, the idea of
avoiding some flops by omitting zero rows and columns in factors of Kronecker product
terms is not limited to the improvement on the shuffle algorithm. A potential use of
the proposed approach is in the semi-tensor product operation that was introduced
recently to generalize matrix multiplication [14]. The semi-tensor product of two
matrices is defined as the multiplication of Kronecker products of identity matrices
and these factors. It should be possible to devise an algorithm based on shuffle algebra
to multiply a vector with a semi-tensor product of matrices without computing the
semi-tensor product of the matrices. When this is the case, unnecessary flops can be
avoided by omitting zero rows and columns in the factors during the course of the
multiplication.

Throughout the paper, calligraphic uppercase letters are used for sets. | · |, ×,
and ⊗ respectively stand for the number of elements in a set, the Cartesian product
operator, and the Kronecker product operator. All vectors are row vectors and are
represented with boldface lowercase letters with the exception that e and er respec-
tively represent a column vector of ones and the rth column of the identity matrix
with their lengths being determined from the contexts in which they are used. We
start indices from 0, by which it is possible to represent an empty (sub)system. An
exception is state vectors, whose components are state variables indicated by sub-
scripts starting from 1. Ir and diag(a) denote the identity matrix of order r and the
diagonal matrix with the entries of vector a along its diagonal, respectively. a(x) is
the value of vector a at state x and a(X) is the subvector of a associated with the
states in X . A(x, y) is the value of matrix A corresponding to element (x, y) and
A(X ,Y) is the submatrix of A associated with row states in X and column states in
Y. nnz(A) denotes the number of nonzeros in A. Finally, R and Z≥0 denote the sets
of reals and nonnegative integers, respectively.

The next section provides background information regarding the Kronecker repre-
sentation of multidimensional MCs without unreachable states. It provides the shuffle
and Pot-RwCl algorithms for rectangular factors and elaborates on how they work
using a small example. The third section introduces the proposed modification on
the shuffle algorithm. The merit of this approach is shown on the same small ex-
ample with the help of a lemma. The fourth section discusses implementation issues
associated with shuffle, Pot-RwCl, and modified shuffle algorithms. The fifth section
presents numerical results on a number of benchmark models and comments on them.
The final section concludes the paper.

2. Background. The Kronecker (or tensor) product [15, 33] of two (rectangular)
matrices A and B with A = [A(xA, yA)] is

A⊗B = [A(xA, yA)B] .

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON VECTOR-KRONECKER PRODUCT MULTIPLICATION S529

Or more formally, given A ∈ R
rA×cA and B ∈ R

rB×cB , A⊗B yields the (rectangular)
matrix C ∈ R

rArB×cAcB whose entries satisfy

C(xC , yC) = A(xA, yA)B(xB , yB)

with xC = xArB + xB and yC = yAcB + yB

for

(xA, yA) ∈ {0, . . . , rA − 1} × {0, . . . , cA − 1} ,
(xB , yB) ∈ {0, . . . , rB − 1} × {0, . . . , cB − 1} .

The Kronecker product is associative and defined for more than two matrices.
Now, let us consider a Markovian system with H interacting subsystems, where

Sh denotes the state space of subsystem h = 1, . . . , H . Without loss of generality, let
us assume that subsystem state spaces are defined on consecutive nonnegative integers
starting from 0. Otherwise, we can always enumerate subsystem state spaces so that
they satisfy this assumption. We denote the reachable state space of the system by
S ⊆ ×H

h=1Sh, where ×H
h=1Sh is the product state space. Many times when implement-

ing an algorithm, one needs to have a mapping from the multidimensional reachable
state space to the one-dimensional reachable state space, and vice versa, since vec-
tors are one-dimensional and suitable elements of them need to be accessed. In our
case, we do have such a mapping. Therefore, multidimensional and one-dimensional
representations of states will be used interchangeably. Having said this, we define the
Cartesian product partitioning of S as in [17].

Definition 2.1. Let S(i) = ×H
h=1S

(i)
h , where S(i)h is set of consecutive integers

for i = 1, . . . , J . Then S(1), . . . ,S(J) is a Cartesian product partitioning of S if
S = ∪Ji=1S(i) and S(i) ∩ S(j) = ∅ for i �= j and i, j = 1, . . . , J .

The infinitesimal generator matrix Q underlying the MC can be perceived as a
block matrix induced by the Cartesian product partitioning of S. Then Q is a (J×J)
block matrix as in

Q =

⎡
⎢⎣

Q(1,1) . . . Q(1,J)

...
. . .

...

Q(J,1) . . . Q(J,J)

⎤
⎥⎦ .

Block (i, j) of Q for i, j = 1, . . . , J can be written as

Q(i,j) =

{ ∑
t∈T (i,j) Q

(i,j)
t +Q

(i)
D if i = j,∑

t∈T (i,j) Q
(i,j)
t otherwise,

where

Q
(i,j)
t = αt

H⊗
h=1

Q
(i,j)
t,h , Q

(i)
D = −

J∑
j=1

∑
t∈T (i,j)

diag(Q
(i,j)
t e),

αt is the rate associated with transition t, T (i,j) is the set of transitions in block (i, j),

and Q
(i,j)
t,h is the submatrix of the transition matrix Qt,h whose row and column state

spaces are S(i)h and S(j)h , respectively. The advantage of partitioning the reachable
state space is the elimination of unreachable states from the set of rows and columns of
the generator matrix. Hence, unnecessary flops due to unreachable states are avoided.
In passing to the shuffle algorithm, we also note that the rate of a Kronecker product
term, αt, can be eliminated by scaling one factor in the term with that rate.

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S530 TUǦRUL DAYAR AND M. CAN ORHAN

2.1. Shuffle algorithm. In numerical methods used for analyzing Kronecker
based MCs, vectors are multiplied with Kronecker product terms. Now, let Xh ∈
R

rh×ch for h = 1, . . . , H be the rectangular factors in a given Kronecker product
term. Then the shuffle algorithm is based on the identity

H⊗
h=1

Xh =

H∏
h=1

(I∏h−1
f=1 rf

⊗Xh ⊗ I∏H
f=h+1 cf

),

which is due to compatibility of the Kronecker product with matrix multiplication
[20]. Besides, I∏h−1

f=1 rf
⊗ Xh ⊗ I∏H

f=h+1 cf
is an identity matrix if Xh = Irh . Hence,

the left-multiplication of p ∈ R
1×

∏H
h=1 rh with X =

⊗H
h=1 Xh can be accomplished as

in Algorithm 1. Note that this results in an output vector whose length ranges from
c1

∏H
h=2 rh to

∏H
h=1 ch during the course of the multiplication.

Input: Vector: p
Rectangular Kronecker product factors: X1, . . . , XH

Output: Vector: q = p
⊗H

h=1 Xh:
1: function Shuffle(p, X1, . . . , XH ,q)
2: Copy p to q;
3: ileft = 1; iright =

∏H
h=2 rh; rH+1 = 1;

4: for all h = 1 to H do
5: if Xh �= Irh then
6: basei = 0; basej = 0;
7: for all il = 0, . . . , ileft − 1 do
8: for all ir = 0, . . . , iright − 1 do
9: indexi = basei + ir;

10: for all row = 0, . . . , rh − 1 do
11: z(row) = q(indexi); indexi = indexi + iright;
12: end for
13: z′ = zXh;
14: indexj = basej + ir;
15: for all col = 0, . . . , ch − 1 do
16: q′(indexj) = z′(col); indexj = indexj + iright;
17: end for
18: end for
19: basei = basei + rhiright; basej = basej + chiright;
20: end for
21: Copy q′ to q
22: end if
23: ileft = ileftch; iright = iright/rh+1;
24: end for
25: end function

Algorithm 1. Shuffle algorithm for rectangular factors.

Now, observe that the only flops executed in Algorithm 1 are in line 13, where the
temporary vector z is multiplied with the nonidentity matrix Xh. For a fixed value of
h, this line is executed

∏h−1
f=1 cf

∏H
f=h+1 rf times, and the cost of vector multiplication

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON VECTOR-KRONECKER PRODUCT MULTIPLICATION S531

with
⊗H

h=1 Xh using the shuffle algorithm amounts to

(2.1) 2
∑
h∈H

nnz(Xh)

h−1∏
f=1

cf

H∏
f=h+1

rf

flops, where

H = {h ∈ {1, . . . , H} | Xh �= Irh}.

When |H| = 1, we have that rh = ch = nnz(Xh) for h /∈ H and h = 1, . . . , H , and
therefore, the number of flops executed by the shuffle algorithm is 2nnz(X)

Algorithm 1 requires four vectors: q, q′, z, and z′ in addition to the input vector.
The vectors q and q′ are the floating-point vectors storing the intermediate results;
hence, each of them needs to be as long as maxh∈H(

∏h
f=1 cf

∏H
f=h+1 rf). When the

input vector needs to be multiplied with sums of Kronecker product terms, the output
vector cannot be used to keep intermediate results. The floating-point vectors z and
z′ need to be at least as long as maxh(rh) and maxh(ch), respectively.

The next example is given to show how vector-Kronecker product multiplication
works in the presence of rectangular factors when Algorithm 1 is used.

Example 2.2. Consider the multiplication of the vector

p = [a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17]

with the Kronecker product term X = X1 ⊗X2 ⊗X3, where

X1 =

⎡
⎣ 3

2

⎤
⎦
3×2

, X2 =

⎡
⎣ 2

⎤
⎦
3×2

, and X3 =

[
5
1 3

]
2×3

.

In Algorithm 1, the outer loop in line 4 is executed three times for h = 1, 2, 3. At
the beginning of the algorithm, p is copied to q and q′ = q(X1 ⊗ I6) is computed for
h = 1. In this turn, nnz(X1) = 2, ileft = 1, and iright = 6. Therefore, the middle
loop in line 7 and the inner loop in line 8 are executed once and six times, respectively.
Then q(X1 ⊗ I6) is computed as

q′ = [3a0+2a6 3a1+2a7 3a2+2a8 3a3+2a9 3a4+2a10 3a5+2a11 0 0 0 0 0 0]

in 24 flops and q′ is copied to q at the end of the first turn. In the second turn,
q′ = q(I2 ⊗X2⊗ I2) is computed for h = 2. In this turn, nnz(X2) = 1, ileft = 2, and
iright = 2. Therefore, the middle loop and the inner loop are each executed twice.
Then q(I2 ⊗X2 ⊗ I2) is computed as

q′ = [0 0 6a2 + 4a8 6a3 + 4a9 0 0 0 0]

in 8 flops and q′ is copied to q at the end of the second turn. In the last turn,
q′ = q(I4 ⊗ X3) is computed for h = 3. In this turn, nnz(X3) = 3, ileft = 4, and
iright = 1. Therefore, the middle loop and the inner loop are executed four times and
once, respectively. Then q(I4 ⊗X3) is computed as

q′ = [0 0 0 0 30a2 + 6a3 + 20a8 + 4a9 18a3 + 12a9 0 0 0 0 0 0]

in 24 flops, and q′ is copied back to q at the end of the last turn. Hence, Algorithm
1’s computation of q = pX takes altogether 56 flops.

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S532 TUǦRUL DAYAR AND M. CAN ORHAN

2.2. Pot-RwCl algorithm. A second approach for computing p
⊗H

h=1 Xh is
to generate nonzero elements of the Kronecker product term and multiply them with
corresponding elements of the vector. A nonzero element of the Kronecker product
term is obtained as a result of the multiplication of H nonzeros each coming from a
different factor. The Pot-RwCl algorithm proposed in [13] exploits common multipli-
ers of nonzero elements of Kronecker product terms so that multiplications with the
same values are avoided. Hence, p

⊗H
h=1 Xh can be computed recursively by calling

Algorithm 2 with the initial parameters h = 1, i = 0, j = 0, and v = 1.

Input: Vector: p
Rectangular Kronecker product factors: X1, . . . , XH

Subsystem: h
Row index obtained from submatrices 1, . . . , h− 1: i
Column index obtained from submatrices 1, . . . , h− 1: j
Nonzero obtained from submatrices 1, . . . , h− 1: v

Output: Vector: q such that q(J ′) = q(J ′) + p(I ′) (v
⊗H

f=h Xf), where

I ′ = {i, . . . , i+
∏H

f=h rf − 1} and J ′ = {j, . . . , j +
∏H

f=h cf − 1}
1: function Pot-RwCl(p, X1, . . . , XH , h, i, j, v,q)
2: for all (ih, jh) such that Xh(ih, jh) > 0 do
3: i′ ← i+ ih

∏
f=h+1 rf ; j

′ ← j + jh
∏

f=h+1 cf ;
4: if Xh �= Irh then
5: v′ ← v Xh(ih, jh);
6: end if
7: if h < H then
8: Pot-RwCl(p, X1, . . . , XH , h+ 1, i′, j′, v′,q)
9: else

10: q(j′) = q(j′) + p(i′) v′;
11: end if
12: end for
13: end function

Algorithm 2. Pot-RwCl algorithm for rectangular factors.

Observe that the only flops executed in Algorithm 2 are in lines 5 and 10. In
line 5, multiplication of nonzeros from subsystems 1 through h are performed. For a
fixed value of h, the function is called

∏h−1
f=1 nnz(Xf) times. Hence, the number of

flops executed in line 5 is
∏h

f=1 nnz(Xf) if Xh �= Irh . On the other hand, line 10
is executed for each nonzero element of the Kronecker product of factors. Therefore,
the cost of vector-Kronecker product multiplication using the Pot-RwCl algorithm
amounts to

(2.2)
∑
h∈H

h∏
f=1

nnz(Xf) + 2 nnz(X)

flops. Since Algorithm 2 does not have any intermediate vector computations, it does
not require any additional floating-point vectors.

Next, we demonstrate how Pot-RwCl works using our running example.
Example 2.2 (continued). The matrix X = X1 ⊗ X2 ⊗ X3 includes six nonzero

elements which can be written as

X(2, 4) = X1(0, 0)X2(1, 1)X3(0, 1), X(3, 4) = X1(0, 0)X2(1, 1)X3(1, 1),

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON VECTOR-KRONECKER PRODUCT MULTIPLICATION S533

X(3, 5) = X1(0, 0)X2(1, 1)X3(1, 2), X(8, 4) = X1(1, 0)X2(1, 1)X3(0, 1),

X(9, 4) = X1(1, 0)X2(1, 1)X3(1, 1), X(9, 5) = X1(1, 0)X2(1, 1)X3(1, 2),

where X1(0, 0) = 3, X1(1, 0) = 2, X2(1, 1) = 2, X3(0, 1) = 5, X3(1, 1) = 1, and
X3(1, 2) = 3. Initially the function is called for the values h = 1, i = 0, j = 0, and
v = 1. Since X1 includes two nonzeros, the loop in line 2 is executed twice. In the
first turn, the function in line 8 is called for the values h = 2, i′ = 0, j′ = 0, and
v′ = 3. Then the loop in line 2 is executed once for the single nonzero element of X2

and the function in line 8 is called for the values h = 3, i′ = 2, j′ = 3, and v′ = 6.
Since X3 includes three nonzero elements, the loop in line 2 is executed three times.
In these turns, X(2, 4) = 30, X(3, 4) = 6, and X(3, 5) = 18 are obtained and q is
computed as

q = [0 0 0 0 30a2 + 6a3 18a3 0 0 0 0 0 0]

in 11 flops. The second turn of the loop in line 2 of the function is executed for
X1(1, 0) and the function in line 8 is called for the values h = 2, i′ = 6, j′ = 0, and
v′ = 2. Then the loop in line 2 is executed once for the single nonzero element of X2

and the function in line 8 is called for the values h = 3, i′ = 8, j′ = 3, and v′ = 4.
Then X(8, 4) = 20, X(9, 4) = 4, and X(9, 5) = 12 are obtained and q is computed as

q = [0 0 0 0 30a2 + 6a3 + 20a8 + 4a9 18a3 + 12a9 0 0 0 0 0 0]

in 22 flops.
The next section introduces the proposed modification on the shuffle algorithm

and analyzes its merit through a lemma.

3. Modified shuffle algorithm. In the shuffle algorithm, the number of flops
executed due to a given factor does not depend on the nonzero structure of the other
factors in the Kronecker product. However, when other factors include zero rows
or columns, some vector elements end up being computed even though they would
evaluate to zero at the end. A speculative example is the multiplication of a vector
with a Kronecker product term including a zero factor. The shuffle algorithm executes
possibly a large number of flops even though the result vector evaluates to zero at the
end.

In this section, we present the proposed modification to the shuffle algorithm so
that only relevant elements of the vector are multiplied with the nonzeros of factors
and unnecessary flops are avoided. The following lemma provides the identity on
which the modification is based.

Lemma 3.1. Let P(u,U) ∈ {0, 1}u×|U| be the matrix given elementwise as

P(u,U)(i, j)

{
1 if j = f (U)(i) and i ∈ U ,
0 otherwise,

where u is a finite positive integer, U ⊆ {0, . . . , u− 1} is a nonempty set, and

f (U)(i) = |{j ∈ U | j < i}| for i ∈ U .

Besides, let Xh ∈ R
rh×ch , Rh ⊆ {0, . . . , rh − 1} and Ch ⊆ {0, . . . , ch − 1} denote the

sets of rows and columns that include at least one nonzero in Xh for h = 1, . . . , H.
Then

(3.1)
H⊗

h=1

Xh =
H⊗

h=1

P(rh,Rh)

H⊗
h=1

X̂h

H⊗
h=1

PT
(ch,Ch)

,

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S534 TUǦRUL DAYAR AND M. CAN ORHAN

where

X̂h = PT
(rh,Rh)

Xh P(ch,Ch) for h = 1, . . . , H.

Proof. Observe that P̄(u,U) = P(u,U)P
T
(u,U) is a (u× u) diagonal matrix such that

P̄(u,U)(i, j)

{
1 if i = j and i ∈ U
0 otherwise

for i, j ∈ {0, . . . , u− 1}.

Then

Xh = P̄(rh,Rh) Xh and Xh = Xh P̄(ch,Ch)

hold for h = 1, . . . , H , from which it follows that

H⊗
h=1

Xh =

H⊗
h=1

P̄(rh,Rh) Xh P̄(ch,Ch)

=

H⊗
h=1

P(rh,Rh) P
T
(rh,Rh)

Xh P(ch,Ch) P
T
(ch,Ch)

=
H⊗

h=1

P(rh,Rh) X̂h PT
(ch,Ch)

=

H⊗
h=1

P(rh,Rh)

H⊗
h=1

X̂h

H⊗
h=1

PT
(ch,Ch)

by the compatibility of Kronecker product with matrix multiplication.
The modified shuffle algorithm is based on the next corollary.
Corollary 3.2. Let q = p

⊗H
h=1 Xh, and let X̂h, Rh, and Ch be defined as in

Lemma 3.1 for h = 1, . . . , H. Then

q(×H
h=1Ch) = p(×H

h=1Rh)
H⊗

h=1

X̂h.

Proof. Using (3.1), q = p
⊗H

h=1 Xh can be written as

q = p

H⊗
h=1

P(rh,Rh)

H⊗
h=1

X̂h

H⊗
h=1

PT
(ch,Ch)

.

Then the result follows from

p(×H
h=1Rh) = p

H⊗
h=1

P(rh,Rh), q(×H
h=1Ch) = q

H⊗
h=1

P(ch,Ch),

and PT
(ch,Ch)

P(ch,Ch) = I|Ch| for h = 1, . . . , H .

In Algorithm 3, flops are executed only while multiplying the vector p̂ with
⊗H

h=1X̂h. Hence, the cost of vector-Kronecker product multiplication using the mod-
ified shuffle algorithm amounts to

(3.2) 2
∑
h∈H

nnz(Xh)

h−1∏
f=1

|Cf |
H∏

f=h+1

|Rf |

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON VECTOR-KRONECKER PRODUCT MULTIPLICATION S535

Input: Vector: p
Rectangular Kronecker product factors: X1, . . . , XH

Output: Vector: q = p
⊗H

h=1 Xh:
1: function ModifiedShuffle(p, X1, . . . , XH ,q)
2: for all h = 1 to H do
3: Rh = ∅; Ch = ∅;
4: for all (ih, jh) such that Xh(ih, jh) > 0 do
5: Rh ←Rh ∪ {ih}; Ch ← Ch ∪ {jh};
6: end for
7: Copy Xh(Rh, Ch) to X̂h;
8: end for
9: Copy p(×H

h=1Rh) to p̂;

10: Shuffle(p̂, X̂1, . . . , X̂H , q̂)
11: Copy q̂ to q(×H

h=1Ch);
12: end function

Algorithm 3. Modified shuffle algorithm for rectangular factors.

flops since nnz(X̂h) = nnz(Xh) for h = 1, . . . , H . Note that the cost of Algorithm
3 in (3.2) never exceeds the cost of Algorithm 1 in (2.1) and is bounded above by
(2 |H| nnz(X)) flops since |Rh| ≤ nnz(Xh) and |Ch| ≤ nnz(Xh) for h = 1, . . . , H .

Regarding memory requirements, each of the vectors q and q′ in Algorithm 3
needs to be as long as maxh∈H(

∏h
f=1 |Cf |

∏H
f=h+1 |Rh|), whereas the floating-point

vectors z and z′ need to be at least as long as maxh(|Rh|) and maxh(|Ch|), respectively.
We use our running example to show how the modified shuffle algorithm works.

Example 2.2 (continued). The sets of rows and columns of the factors X1, X2, and
X3 including at least one nonzero value are given by Algorithm 3 as

R1 = {0, 1}, C1 = {0}, R2 = {1}, C2 = {1}, R3 = {0, 1}, and C3 = {1, 2}.

Then

×3
h=1Rh = {(0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1)}, ×3

h=1 Ch = {(0, 1, 1), (0, 1, 2)},

P(r1,R1) =

⎡
⎣ 1

1

⎤
⎦
3×2

, P(c1,C1) =

[
1
]
2×1

, P(r2,R2) =

⎡
⎣ 1

⎤
⎦
3×1

,

P(c2,C2) =

[
1

]
2×1

, P(r3,R3) = I2, P(c3,C3) =

⎡
⎣ 1

1

⎤
⎦
3×2

,

3⊗
h=1

P(rh,Rh) = [e2 e3 e8 e9]18×4 , and

3⊗
h=1

P(ch,Ch) = [e4 e5]12×2 .

Hence,

p̂ = p
3⊗

h=1

P(rh,Rh) = p(×3
h=1Rh)

= [a2 a3 a8 a9].

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S536 TUǦRUL DAYAR AND M. CAN ORHAN

Then q̂ = p̂ ⊗H
h=1 X̂h is computed using the shuffle algorithm, where

X̂1 =

[
3
2

]
, X̂2 =

[
2
]
, and X̂3 =

[
5
1 3

]
.

In Algorithm 1, the outer loop in line 4 is executed three times for h = 1, 2, 3. At the
beginning of the algorithm, p̂ is copied to q and q′ = q (X̂1 ⊗ I2) is computed for
h = 1. In this turn, nnz(X̂1) = 2, ileft = 1, and iright = 2. Therefore, the middle
loop in line 7 and the inner loop in line 8 are executed once and twice, respectively.
Then q (X̂1 ⊗ I2) is computed as

q′ = [3a2 + 2a8 3a3 + 2a9]

in 8 flops and q′ is copied to q at the end of the first turn. In the second turn,
q′ = q (I1 ⊗ X̂2 ⊗ I2) is computed for h = 2. In this turn, nnz(X̂2) = 1, ileft = 1,
and iright = 2. Therefore, the middle loop and the inner loop are executed once and

twice, respectively. Then q (I1 ⊗ X̂2 ⊗ I2) is computed as

q′ = [6a2 + 4a8 6a3 + 4a9]

in 4 flops and q′ is copied to q at the end of the second turn. In the last turn,
q′ = q (I1 ⊗ X̂3) is computed for h = 3. In this turn, nnz(X3) = 3, ileft = 1, and
iright = 1. Therefore, the middle loop and the inner loop are each executed once.

Then q (I1 ⊗ X̂3) is computed as

q′ = [30a2 + 6a3 + 20a8 + 4a9 18a3 + 12a9]

in 6 flops, and q′ is copied to q̂ at the end of the last turn. Then the elements of q̂
are copied back to q(×3

h=1Ch), that is,

q = [0 0 0 0 30a2 + 6a3 + 20a8 + 4a9 18a3 + 12a9 0 0 0 0 0 0]

by the equation

q̂ = q
3⊗

h=1

P(ch,Ch) = q(×3
h=1Ch).

Hence, Algorithm 3’s computation of q = pX̂ takes altogether 18 flops. This number
is smaller than the 56 flops and 22 flops that the shuffle and Pot-RwCl algorithms,
respectively, take.

We remark that the proposed improvement will also be useful when the factors
are relatively dense as long as some of them include zero rows or columns. In the next
section, we discuss implementation issues associated with the shuffle, Pot-RwCl, and
modified shuffle algorithms.

4. Implementation issues. We considered two benchmarks in this paper. The
first one is the implementation of the shuffle algorithm in the Nsolve package of the
Abstract Petri Net Notation toolbox [2, 4]. The pseudocode of the Nsolve implemen-
tation of the loop in line 4 of Algorithm 1 is given in [7]. Identity matrices are not
stored as discussed in [7] and the multiplication is not performed for identity factors.
In addition, we modified the implementation so that each matrix that is a multiple of
an identity matrix is not stored either. In this implementation, each nonzero of the

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON VECTOR-KRONECKER PRODUCT MULTIPLICATION S537

factor Xh is multiplied with the elements of the input vector and added to the ap-
propriate elements of the output vector so that the vectors z and z′ are not used and
stored in the multiplication. Since we consider models with more than one Kronecker
product term, the intermediate results cannot be stored in the output vector. The
number of auxiliary vectors needed to store the intermediate results depends on the
maximum of the number of nonidentity factors across all Kronecker product terms.
If this number is one, then there is no intermediate result, and therefore no auxiliary
vector is required. If the maximum number of nonidentity factors across all terms is
two, then the allocation of one auxiliary vector is sufficient. Otherwise, two auxiliary
vectors need to be allocated to store the intermediate results. However, it should be
noted that at least two auxiliary vectors each of length maxi |S(i)| are required in nu-
merical solvers. This is the case for all algorithms discussed in this paper when they
are used as kernels in numerical solvers. In the Nsolve implementation of the shuffle
algorithm, the elements of the output vector are multiplied by the rate αt associated
with the Kronecker product term and added to the output vector after the multipli-
cation of the input vector with the Kronecker product term. The cost of multiplying
the output vector with αt becomes excessive, especially when the factors are sparse.
In order to avoid this cost, we multiplied αt with the nonzero elements of the first
nonidentity factor and stored the modified factor. If all factors are identity matrices,
the term rate is kept separately and the multiplication is obtained by multiplying the
rate with the input vector.

As the second benchmark, we implemented the Pot-RwCl algorithm for rectangu-
lar factors. The pseudocode of the algorithm given in [13] for square factors includes
H nested loops, but therein it is also stated that a recursive implementation is re-
quired since H is model dependent. In order to make a fair comparison between the
algorithms, we provided a nonrecursive implementation with dynamically allocated
arrays of size H as suggested in [13]. In the Pot-RwCl algorithm, row and column
indices of the nonzero elements of Kronecker product terms need to be computed.
Hence, its indexing and addressing overhead is larger than that of the shuffle algo-
rithm. However, Pot-RwCl uses the cache more efficiently since nonzero elements of
the Kronecker product of the factors are obtained consecutively and the correspond-
ing elements of the input and output vectors tend to be closer to each other. In the
shuffle algorithm, the cache is not accessed as efficiently as nonzero generation that
takes place in the Pot-RwCl algoritm when the value of index h is large. Further-
more, as stated in subsection 2.2, Pot-RwCl does not require any intermediate vector
computation, implying it does not require any additional floating-point vectors (ex-
cept the two auxiliary vectors each of length maxi |S(i)| when it is used as a kernel in
numerical solvers). To cut down on indexing overhead in the implementation of line
8 in Algorithm 2, the input vector is multiplied with the common nonzero element
when the remaining factors to be processed are identity matrices even if h < H .

In the implementation of the modified shuffle algorithm, we removed zero rows
and columns of the nonidentity matrices and allocated two integer vectors to store the
mapping between the row and column indices of the factor and the modified factor.
This modification may avoid unnecessary flops only if the Kronecker product term
includes more than one nonidentity factor. In addition, choosing elements of the input
and output vectors yields indexing and addressing overhead in many cases. Therefore,
we removed zero rows and columns of nonidentity factors in a Kronecker product term
only if their counts are more than one. A naive implementation is to copy appropriate
elements of the input vector to a temporary vector, multiply this temporary vector
with the Kronecker product of the submatrices, and add the resulting vector to the

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S538 TUǦRUL DAYAR AND M. CAN ORHAN

output vector. Instead, we modified the shuffle algorithm implementation so that
appropriate elements of the input vector are chosen in the first turn of the outer loop
in line 4 of Algorithm 1. Similarly, the elements of the resulting vector are added to the
appropriate elements of the output vector in the last turn of the outer loop in line 4 of
Algorithm 1. A recursive implementation seemed to be convenient in choosing relevant
elements of input and output vectors. However, in order to enable a fair comparison
between the algorithms, we implemented Algorithm 3 without recursion using arrays
of size H as it is done for Pot-RwCl. We preferred the same implementation even for
the multiplication of the vector with Kronecker product terms in which no rows and
columns are removed from the factors. Implementations of the three algorithms as
discussed here are available at [18].

5. Numerical results. We performed numerical experiments on an Intel Core2
Duo 2.4 GHz processor with 4 GB of main memory. We considered 15 Kronecker
based MCs with given Cartesian product partitionings of their reachable state spaces.
Six of the MCs correspond to systems of stochastic chemical kinetics that are models
of a gene expression [32], a toggle switch [22], an exclusive switch [26], a metabolite
synthesis with one enzyme [30], a metabolite synthesis with two enzymes [30], and
a repressilator [25]. One of the MCs is a queueing network model of a call center
having five subsystems; it is a parallel service system known as the N-model under the
threshold routing control policy proposed in [5]. Further information regarding these
seven models may be obtained from [3, 19]. The remaining eight MCs are models of
the Courier protocol introduced in [34], the multiserver multiqueue (MSMQ) models
discussed in [1], models of manufacturing systems having Kanban control [27], and
a model of token based scheduling in a queueing network called qh realcontrol [11].
These were used as benchmark problems before [8, 9, 10, 11].

Table 1 provides the properties associated with the Kronecker representation of
the generator matrices of the MC models. The first column gives the name of the
model, the second column gives the number of subsystems in the corresponding sys-
tem, the third column gives the number of reachable state space partitions, the fourth
column gives the number of Kronecker product terms in the representation, the fifth
column gives the average number of nonzeros per row in the factors, the sixth col-
umn gives the maximum partition size of the reachable state space partitioning, the
seventh column gives the number of reachable states, and the last column gives the
number of nonzero off-diagonal elements in Q underlying the respective MC. Note
that for practical reasons, in almost all cases the diagonal of Q is stored explicitly
in Kronecker based MCs; hence, for a fairer memorywise comparison, we also do not
account for that in the flat representation. Otherwise, the number of nonzeros in Q
for each model may be found by summing the value in the last two columns of Table 1.
The values of nonzeros in Q is immaterial for this work; hence, we do not provide the
real parameters of the corresponding models.

We considered models of different sizes. The reachable state space sizes of the
models range from about 350,000 to about 3,000,000. All models except gene ex-
pression have at least three factors in their Kronecker products. The models coming
from stochastic chemical physics, kanban medium, and kanban large do not have any
unreachable states. Recall that all square factors is just a special case of rectangular
factors, and by experimenting with these models we show that indeed there are savings
that may be realized in the all square factors case as well. The maximum number of
Kronecker product terms over all blocks of the generator matrix is 1,100 and appears
in the N-model. It is also the N-model which has the largest number of partitions of

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON VECTOR-KRONECKER PRODUCT MULTIPLICATION S539

Table 1

Model properties

Model H prt term dens maxi |S(i)| |S| nnz(Qoff)
gene expression 2 1 4 1.00 1,002,001 1,002,001 4,003,000
toggle switch 3 1 8 0.87 1,085,764 1,085,764 5,418,400
exclusive switch 3 1 10 0.82 910,803 910,803 4,242,700
met. syn. one enz. 3 1 7 1.00 1,191,016 1,191,016 8,236,200
met. syn. two enz. 4 1 9 1.00 1,679,616 1,679,616 14,560,560
repressilator 4 1 12 0.90 1,191,016 1,191,016 8,764,080
N-model 5 204 1,100 0.96 39,601 489,930 2,334,358
courier large 4 10 80 0.91 117,000 419,400 2,281,620
courier huge 4 13 109 0.91 468,000 1,632,600 9,732,330
msmq medium 5 15 100 0.98 26,136 358,560 2,135,160
msmq large 5 35 250 0.99 107,653 2,945,880 19,894,875
kanban medium 4 1 7 0.95 527,076 527,076 3,001,405
kanban large 4 1 7 0.96 1,742,400 1,742,400 10,183,360
kanban fail 4 8 68 0.93 291,600 2,302,911 14,313,663
qh realcontrol 3 9 45 0.99 48,048 399,476 1,871,004

its reachable state space with 204 partitions. The average number of nonzeros per
row in the nonidentity factors of Kronecker product terms of the models ranges from
0.82 (exclusive switch) to 1.00 (gene expression, metabolite synthesis with one and
two enzymes). Hence, Kronecker product factors of the models are relatively sparse
for the shuffle algorithm to be efficient. If we were to compute the generator matri-
ces corresponding to the models, we would be having nnz(Qoff) nonzeros in their
off-diagonal parts and we would be performing 2nnz(Qoff) flops when we multiply
a vector of length |S| with Qoff . Note that 2nnz(Qoff) flops is therefore a lower
bound for the case of relatively sparse Kronecker product factors, and we should be
happy to see flop counts that are close to 2nnz(Qoff) with vector-Kronecker product
multiplication algorithms.

Results of numerical experiments with the models in Table 1 are reported in
Table 2. For each model, we considered implementations of the three vector-Kronecker
product algorithms as discussed in section 4. In the second column of the table, S,
P, and MS respectively denote the shuffle, the Pot-RwCl, and the modified shuffle al-
gorithms. Column nnz provides the total number of nonzeros in the explicitly stored
matrices. Column expl provides the number of explicitly stored matrices. Column
mexpl provides the maximum of the number of explicitly stored matrices in the Kro-
necker product terms. Column E[expl] provides the expected number of explicitly
stored matrices. Column subm is the number of matrices in which at least one row
or one column is removed. The last three columns pertain to the performance of
vector-Kronecker product multiplication. Column aux provides the total length of
additional floating-point vectors used during multiplication. This number is deter-
mined by mexpl as discussed in section 4. Column flops provides the number of
flops executed in the multiplication of a vector with the off-diagonal part of Q in
Kronecker form. The number of flops is the sum of the costs discussed in sections 2
and 3 over the Kronecker product terms in the blocks. The last column gives the time
of the multiplication of a vector with the off-diagonal part of Q in Kronecker form in
milliseconds of CPU time averaged over 10,000 such multiplications. We remark that
the time it takes to set the Kronecker representation of the infinitesimal generator
matrix is negligible. The bold figures in the last three columns of Table 2 indicate
the minimum values in those columns for the particular model.

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S540 TUǦRUL DAYAR AND M. CAN ORHAN

Table 2

Numerical results

Model Alg. nnz expl mexpl E[expl] subm aux flops Time
gene expression S 5,000 5 2 1.25 0 1,002,001 10,010,000 60

P 5,000 5 2 1.25 0 0 10,010,000 38
MS 4,000 4 1 1.00 2 0 8,006,000 32

toggle switch S 4,172 14 2 1.75 0 1,085,764 23,853,464 133
P 4,172 14 2 1.75 0 0 15,173,600 101
MS 2,080 4 1 0.50 12 0 10,836,800 62

exclusive switch S 5,508 18 2 1.80 0 910,803 23,040,616 111
P 5,508 18 2 1.80 0 0 12,427,800 111
MS 2,200 4 1 0.40 16 0 8,485,400 74

met. syn. one enz. S 1,051 10 2 1.43 0 1,191,016 23,618,072 126
P 1,051 10 2 1.43 0 0 20,034,316 71
MS 946 9 2 1.29 5 1,191,016 21,147,000 83

met. syn. two enz. S 492 14 2 1.56 0 1,679,616 45,909,504 323
P 492 14 2 1.56 0 0 34,114,642 116
MS 422 12 2 1.33 8 1,679,616 38,646,720 146

repressilator S 660 21 2 1.75 0 1,191,016 38,764,200 321
P 660 21 2 1.75 0 0 23,382,112 135
MS 312 6 1 0.50 18 0 17,528,160 77

N-model S 30,614 682 2 0.62 0 39,601 6,437,428 14
P 30,614 682 2 0.62 0 0 5,199,918 12
MS 26,104 594 1 0.54 88 0 4,668,716 10

courier large S 1,930 118 2 1.48 0 468,000 8,035,980 24
P 1,930 118 2 1.48 0 0 5,293,496 14
MS 1,517 57 1 0.71 76 0 4,563,240 12

courier huge S 4,540 162 2 1.49 0 1,404,000 38,095,740 241
P 4,540 162 2 1.49 0 0 23,025,542 103
MS 4,291 98 2 0.90 106 468,000 20,073,660 80

msmq medium S 985 125 2 1.25 0 47,916 5,193,936 9
P 985 125 2 1.25 0 0 4,852,280 13
MS 745 85 1 0.85 50 0 4,270,320 11

msmq large S 3,535 325 2 1.30 0 199,927 49,927,654 109
P 3,535 325 2 1.30 0 0 45,177,891 130
MS 3,115 265 2 1.06 150 107,653 42,097,454 111

kanban medium S 370 10 2 1.43 0 527,076 9,104,040 55
P 370 10 2 1.43 0 0 6,996,185 24
MS 130 4 1 0.57 6 0 6,002,810 20

kanban large S 406 10 2 1.43 0 1,742,400 30,666,240 231
P 406 10 2 1.43 0 0 23,610,383 85
MS 148 4 1 0.57 6 0 20,366,720 72

kanban fail S 2,916 108 2 1.59 0 364,500 50,222,268 186
P 2,916 108 2 1.59 0 0 35,183,125 175
MS 2,895 93 2 1.37 80 291,600 38,558,718 182

qh realcontrol S 2,331 63 2 1.40 0 70,070 5,199,112 12
P 2,331 63 2 1.40 0 0 4,618,858 15
MS 2,331 63 2 1.40 32 48,048 4,866,972 15

For each model, number of flops in vector-Kronecker product multiplication de-
creases when the shuffle algorithm is modified. There are two reasons for this de-
crease. First, unnecessary flops in the loop in line 4, for some fixed h, in Algorithm
1 are avoided. Second, some factors become multiples of identity matrices once the
removal of zero rows and columns take place, and the loop in line 4 of Algorithm 1 is
avoided for such factors. The improvement in number of flops is smallest at 6% for
qh realcontrol, the only model where the number of explicitly stored matrices does not
decrease after the modification. In the other models, the improvement in the number
of flops ranges from 10% (metabolite syntesis with one enzyme) to 63% (exclusive
switch) with an average of 31% over 15 models. In all models but six (metabo-
lite syntesis with one and two enzymes, courier huge, msmq large, kanban fail, and
qh realcontrol), the modified shuffle algorithm performs 2nnz(Qoff) flops, which is
the lower bound. We remark that in each of these nine models, there is no term with

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON VECTOR-KRONECKER PRODUCT MULTIPLICATION S541

more than one explicitly stored matrix (see the values in column mexpl). Moreover,
in courier huge and msmq large, modified shuffle yields the minimum number of flops
among the three algorithms. Hence, modified shuffle is a winner in terms of number
of flops in 11 models. In the nine models where modified shuffle performs 2nnz(Qoff)
flops, it also does not require additional memory. Besides, the modification also de-
creases the memory allocated for auxiliary vectors over that of shuffle in some other
models such as courier huge, msmq large, kanban fail, and qh realcontrol. As ex-
pected, the number of flops executed by the Pot-RwCl algorithm is not more than
that of the shuffle algorithm since the factors of Kronecker product terms in all models
are relatively sparse. Pot-RwCl yields a smaller number of flops than modified shuffle
only in four models (metabolite synthesis with one and two enzymes, kanban fail, and
qh realcontrol). It is the value of E[expl], which is relatively larger than 1, that causes
modified shuffle to suffer in these four models. The number of flops for Pot-RwCl and
shuffle are the same in gene expression. The equality is due to the choice of integer
model parameters. For N-model and msmq large, the difference in number of flops
between Pot-RwCl and modified shuffle is not larger than 10%. In the other models,
modified shuffle yields improvements in number of flops ranging from 12% to 36% over
Pot-RwCl. Note that it is not feasible to use Pot-RwCl in models having relatively
denser factors for which shuffle starts becoming quite efficient. Therefore, the results
on these 15 models are in some sense indicative of the best Pot-RwCl can do.

The improvement in the number of flops obtained with modified shuffle in (3.2)
can be predetermined by comparing it with (2.1) and (2.2). This is also true for
the improvement in memory, if there is any. But, the improvement in time depends
on the particular factors in the Kronecker product terms. Besides the number of
flops, the time that the algorithms take also depends on the overhead of indexing
and addressing as well as the access pattern to the input and output vectors. Time
per flop (i.e., Time/flops) seems to be a good measure to understand the overhead
and cache usage of algorithms. Time per flop of shuffle and Pot-RwCl are almost the
same for the N-model. Shuffle is better than Pot-RwCl in time per flop for exclusive
switch, msmq medium, msms large, kanban fail, and qh realcontrol. Shuffle takes
smaller time than Pot-RwCl for msmq medium, msms large, and qh realcontrol. In
the other models, Pot-RwCl is timewise better than shuffle. This indicates that the
cost due to indexing, addressing, and access pattern is smaller than the gain obtained
from the decrease in the number of flops. On the other hand, time per flop of modified
shuffle is larger than that of shuffle in exclusive switch, msmq medium, msms large,
kanban fail, and qh realcontrol. Except exclusive switch, the decrease in the number
of flops does not compensate for the overhead in the implementation. In other models,
modified shuffle yields an improvement of up to 76% (repressilator) in time over shuffle.
Time per flops of modified shuffle and Pot-RwCl are close to each other since these
algorithms are implemented in a similar manner as discussed in section 4. Modified
shuffle has overhead due to the mapping between rows and columns of the original
and modified factors. However, it requires a smaller number of index operations in
some models. The effect of these together seems to cancel, and the difference between
time per flop values of Pot-RwCl and modified shuffle ends up being relatively small,
generally in favor of modified shuffle.

6. Conclusion. This work shows how performance of vector-Kronecker product
multiplication with rectangular factors can be improved when the factors are relatively
sparse. The proposed approach is based on modifying the shuffle algorithm to avoid
floating-point operations that evaluate to zero during the course of multiplication

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

S542 TUǦRUL DAYAR AND M. CAN ORHAN

by omitting zero rows and columns in the factors of Kronecker products. In many
cases, this modified algorithm requires a smaller number of flops (and sometimes the
minimum that is possible) compared to the traditional shuffle algorithm and another
algorithm that generates nonzeros of the Kronecker product matrix on the fly. In
addition, the modification is likely to decrease the memory requirement over that of
the shuffle algorithm, in some cases to the extent that no additional memory is needed.

Acknowledgment. We thank the anonymous referees for their constructive
reports that led to an improved manuscript.

REFERENCES

[1] M. Ajmone Marsan, S. Donatelli, and F. Neri, GSPN models of Markovian multiserver
multiqueue system, Perform. Eval., 11 (1990), pp. 227–240.

[2] APNN-Toolbox. http://www4.cs.uni-dortmund.de/APNN-TOOLBOX (2004).
[3] H. Baumann, T. Dayar, M. C. Orhan, and W. Sandmann, On the numerical solution of

Kronecker-based infinite level-dependent QBD processes, Perform. Eval., 70 (2013), pp. 663–
681.

[4] F. Bause, P. Buchholz, and P. Kemper, A toolbox for functional and quantitative analysis of
DEDS, in Quantitative Evaluation of Computing and Communication Systems, R. Puigjaner,
N. N. Savino, and B. Serra, eds., Lecture Notes in Comput. Sci. 1469, Springer-Verlag, New
York, 1998, pp. 356–359.

[5] S. L. Bell and R. J. Williams, Dynamic scheduling of a parallel server system in heavy traf-
fic with complete resource pooling: asymptotic optimality of a threshold policy, Ann. Appl.
Probab., 11 (2001), pp. 608–649.

[6] A. Benoit, B. Plateau, and W. J. Stewart, Memory-efficient Kronecker algorithms with
applications to the modeling of parallel systems, Future Generation Comput. Syst., 22 (2006)
pp. 838–847.

[7] P. Buchholz, A class of hierarchical queueing networks and their analysis, Queueing Syst., 15
(1994), pp. 59–80.

[8] P. Buchholz, Adaptive decomposition and approximation for the analysis of stochastic Petri
nets, Perform. Eval., 56 (2004), pp. 23–52.

[9] P. Buchholz and T. Dayar, Block SOR for Kronecker structured Markovian representations,
Linear Algebra Appl., 386 (2004), pp. 83–109.

[10] P. Buchholz and T. Dayar, Comparison of multilevel methods for Kronecker-based Markovian
representations, Computing, 73 (2004), pp. 349–371.

[11] P. Buchholz and T. Dayar, Block SOR preconditioned projection methods for Kronecker
structured Markovian representations, SIAM J. Sci. Comput., 26 (2005), pp. 1289–1313.

[12] P. Buchholz and T. Dayar, On the convergence of a class of multilevel methods for large,
sparse Markov chains, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 1025–1049.

[13] P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper, Complexity of memory-efficient
Kronecker operations with applications to the solution of Markov models, INFORMS J. Com-
put., 12 (2000), pp. 203–222.

[14] D. Cheng, H. Qi, and Y. Zhao, An Introduction to Semi-tensor Product of Matrices and Its
Applications, World Scientific, Singapore, 2012.

[15] M. Davio, Kronecker products and shuffle algebra, IEEE Trans. Comput., C-30 (1981), pp. 116–
125.

[16] T. Dayar, Analyzing Markov Chains Using Kronecker Products: Theory and Applications,
Springer, New York, 2012.

[17] T. Dayar and M. C. Orhan, Cartesian Product Partitioning of Multi-Dimensional
Reachable State Spaces, Technical report BU-CE-1303, Department of Com-
puter Engineering, Bilkent University, Ankara, Turkey, 2013; available online from
http://www.cs.bilkent.edu.tr/tech-reports/2013/BU-CE-1303.pdf .

[18] T. Dayar and M. C. Orhan, Vector–Kronecker Product Multiplication software,
http://www.cs.bilkent.edu.tr/∼tugrul/software.html (2015).

[19] T. Dayar, W. Sandmann, D. Spieler, and V. Wolf, Infinite level-dependent QBD processes
and matrix analytic solutions for stochastic chemical kinetics, Adv. Appl. Probab., 43 (2011),
pp. 1005–1026.

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www4.cs.uni-dortmund.de/APNN-TOOLBOX
http://www.cs.bilkent.edu.tr/tech-reports/2013/BU-CE-1303.pdf
http://www.cs.bilkent.edu.tr/~tugrul/software.html

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ON VECTOR-KRONECKER PRODUCT MULTIPLICATION S543

[20] P. Fernandes, B. Plateau, and W. J. Stewart, Efficient descriptor-vector multiplications
in stochastic automata networks, J. ACM, 45 (1998), pp. 381–414.

[21] P. Fernandes, B. Plateau, and W. J. Stewart, Optimizing tensor product computations in
stochastic automata networks, RAIRO Rech. Opér., 32 (1998), pp. 325–351.

[22] T. S. Gardner, C. R. Cantor, and J. J. Collins, Construction of a genetic toggle switch in
Escherichia coli, Nature, 403 (2000), pp. 339–342.

[23] I. Gurvich, M. Armony, and A. Mandelbaum, Service-level differentiation in call centers
with fully flexible servers, Management Sci., 54 (2008), pp. 279–294.

[24] M. Harchol-Balter, Performance Modeling and Design of Computer Systems, Cambridge
University Press, New York, 2013.

[25] A. Loinger and O. Biham, Stochastic simulations of the repressilator circuit, Phys. Rev. E,
76 (2007), 051917.

[26] A. Loinger, A. Lipshtat, N. Q. Balaban, and O. Biham, Stochastic simulations of genetic
switch systems, Phys. Rev. E, 75 (2007), 021904.

[27] D. Mitra and I. Mitrani, Analysis of a Kanban discipline for cell coordination in production
lines, II: Stochastic demands, Oper. Res., 39 (1991), pp. 807–823.

[28] B. Plateau, On the stochastic structure of parallelism and synchronization models for dis-
tributed algorithms, Perform. Eval. Rev., 13 (1985), pp. 147–154.

[29] B. Plateau and J.-M. Fourneau, A methodology for solving Markov models of parallel sys-
tems, J. Parallel Distrib. Comput., 12 (1991), pp. 370–387.

[30] P. L. Sjöberg, P. Lötstedt, and J. Elf, Fokker-Planck approximation of the master equation
in molecular biolog, Comput. Vis. Sci., 12 (2009), pp. 37–50.

[31] W. J. Stewart, Introduction to the Numerical Solution of Markov Chains, Princeton University
Press, Princeton, NJ, 1994.

[32] M. Thattai and A. van Oudenaarden, Intrinsic noise in gene regulatory networks, Proc.
Natl. Acad. Sci., 98 (2001), pp. 8614–8619.

[33] C. F. Van Loan, The ubiquitous Kronecker product, J. Comput. Appl. Math., 123 (2000),
pp. 85–100.

[34] C. M. Woodside and Y. Li, Performance Petri net analysis of communications protocol soft-
ware by delay equivalent aggregation, in Proceedings of the 4th International Workshop on
Petri Nets and Performance Models, IEEE Computer Society Press, Los Alamitos, CA, 1991,
pp. 64–73.

D
ow

nl
oa

de
d

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

