
Volume 7, Number 3 OPERATIONS RESEARCH LETIERS Ju"ne 198·8

A SEQUENTIAL DUAL SIMPLEX ALGORITHM FOR THE
LINEAR ASSIGNMENT PROBLEM

Mustafa AKGUL
Dept. of Industrial Engineering, Bilkent University, P.K 8, 06572, Maltepe, Ankara, Turkey

Received May 1987
Revised April 1988

We present a sequential dual-simplex algorithm for the linear problem which has the same complexity as the algorithms of
Balinski (3,4] and Goldfarb [8]: O(n 2) pivots, O(n 2 log n + nm) time. Our algorithm works with the (dual) strongly feasible
trees and can handle rectangular systems quite naturally.

linear assignment problem * dual-simplex * strongly feasible trees * polynomial algorithms

Balinski [3] introduced the signature method
for the linear assignment problem which requires
O(n 2) pivots and O(n 3) time. Goldfarb [8] intro­
duced a sequential version of the signature method
and gave an efficient implementation for sparse
graphs. Balinski [4] later gave a purely dual-sim­
plex algorithm having the same complexity as the
signature method. The algorithm works with dual
strongly feasible trees.

Here we present a sequential dual-simplex al­
gorithm for the assignment problem that has the
same complexity as the above algorithms. We
solve a sequence of problems defined over the
subgraphs of the original graph. Our algorithm
works with dual strongly feasible trees and can
handle rectangular systems quite naturally.

1. Preliminaries

We will view the assignment problem (AP) as
an instance of the transshipment problem over a
directed bipartite graph G' = (U, V, E), with node
set N = Uu V, and edge set E. Each edge e EE,
is directed from its tail t(e) E U to its head h (e)
E V, and has flow xe and unit cost we· For a
graph G = (N, E), and disjoint sets X, Y c N, we
let y(X) = { e EE: t(e) EX, h(e) EX}, G[X] =

(X, y(X)) (the mode induced subgraph of G), and
8(X, Y= {eEE: t(e)EX, h(e)E Y}, c5-(Y)=
c5(YC, Y), c5+(Y) = c5(Y, r), where ye= N - Y.
For v EN, d(v) = dr(v) is the degree of a node in
the tree T. For a subgraph Hof G, N(H), and
E(H) represent the node set and the edge set of
H. We use + and - to denote set union and set
difference, when it is convenient.

We can cast AP as

rnin{wx: Ax=b, x~O}, (1)

where A is the node edge incidence matrix, and
bu = - I, u E U, bu = + I, V E V. The dual LP is:

max{ yb: Yh(e> - Y1(e> ~we• e EE}· (2)

The dual simplex method for the transshipment
problem starts with a dual feasible tree. If x 1 ~ 0,
'v/ ET, then T is optimal. Otherwise the al­
gorithm chooses an / E T with x 1 < 0, as the
leaving edge (cut-edge), and chooses a co-tree edge
e E T1. = E - T as the entering (pivot) edge to
satisfy the dual-feasibility via

(3)

where w1 = wiy) = w 1 - Yh(J)+Yt(J) is the reduced
cost of the edge j, and Y is the component of
T- f containing t(f). Thus, the result of a pivot
is the new tree T' = T + e - f. A pivot will in-

0167-6377/88/$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland) 155

Volume 7, Number 3 OPERATIONS RESEARCH LETIERS June 1988

crease flows on the edges c+(T, e) by () = -x1,
decrease flows on c-(T, e) by 0, and increase the
reduced cost of the edges in s+(Y) by e and
decrease that of edges in s-(Y) by e. (Here C(T, e)
denotes the fundamental cycle associated with tree
T and co-tree edge e, while c+ (T, e) denotes the
edges in the cycle with the same orientation as e.)

Given a tree rooted at node r, f E T is reverse
(/ER) if f is directed toward r. Otherwise it is
f01ward (! E F). A primal feasible tree is a
Strongly Feasible Tree (SFT) if x1 = 0, f ET= f
ER. For a feasible tree T of the assignment
problem rooted at a source node r, we have

Lemma 1. The following are equivalent:
(i) Tis SFT,
(ii) fE R, f ET = x1= 0 and f E F, f ET

= x1 = l,
(iii) d(r)=l, d(u)=2, u=l=-r, uE U. D

SFT's are introduced by Cunningham [6] and
Barr, Glover and Klingman [5] and have been
used by Akgtil [1], and many others, in polynomial
primal simplex algorithms.

Since a tree has one less edge than the number
of nodes; there is a natural 1-1 correspondence
between N(T) - r and E(T), i.e., between the
non-root nodes and edges of the tree. When T is
reoriented as a branching f with root r, the
mapping is, say, g: N(T) - r - E(T), g(v) =
(p(v), v), where p(v) is the parent of node v EN,
v =I=- r, in f. Let L u N - r be set of leaf nodes of
T, i.e., L = {VEN - r: d(v) = l}, i = {VE L:
(v, r)EE(T)} and let Lu=Ln U. We will also
view L as a set of edges via the map g.

A dual feasible tree is a Dual Strongly Feasible
Tree (DSFT) for AP [4] if

(i) f ER- f = x1 ~ 0,
(ii) f E F = xi;;;, l.
Note that automatically we have f EL = x1

= 1. At tree which is both a SFT and a DSFT is
optimal, (with possibly different roots). Actually,
a DSFT has much stronger properties. However, it
does not seem possible to extend this definition to
the general transshipment problem. Our definition
is slightly different from that of Balinski: the roles
of forward and reverse edges are interchanged and
our tree is rooted at a sink node.

Balinski [4] proved the following

156

Lemma 2. Let T be a DSFT (rooted at a sink node
r). Consider u E U, (hence g(u) ER), with d(u);::,
3. Then

(i) Xg(u) ~ -1,
(ii) the selection of g(u) as the cut-edge main­

tains DSFT. D

In other words, if we restrict the selection of
cut edges to those f ET with f ER and d(t(/))
:;;, 3, we will maintain a DSFT.

Balinski's dual simplex algorithm [4] works in
stages. Let S = { u EU: d(u);;;, 3}. The algorithm
for a stage (a signature step or a level), for s ES,
can be described as:

Algorithm Al (s).
while d(s):;;, 3 do
cut f = g(s), and let e E T 1- be the pivot edge
via (3)
T-T+e-f

s - t(e)
end {while}

In a stage, the algorithm starts with s ES and
performs dual-simplex pivots until it reaches a
node in Lu. Since Y's are monotonically increas­
ing, the number of pivots in a stage is bounded by
I U - Lu I -When S = ~ or I Lu I = 1, T is optimal
via (iii) of Lemma 1. Clearly the total number of
pivots is bounded by "f.'j:U = !(n - l)(n - 2) and
this bound is sharp [4].

2. The new algorithm

We will solve a sequence of (perturbed) AP's
over an increasing sequence of graphs G0 ,

G1, ... , Gn- Each Gk defines an AP: APk. Let
V = { v1, v2 , ••. , vn} be an arbitrary ordering of
sink nodes, r = v0 be a dummy sink node, and let
G# =(U, V+r, E+ {(u, r): uE U}). When G'
is a complete bipartite graph, then so is G#. We
define Gk as Gk= G#[U + { v0 , v1, ... , vk}]. Actu­
ally, APk is not strictly an assignment problem;
since bu= - l, u E U, bv = l, j = l, ... ' k, br = n

}

- k. For artificial edges we set, w ur = K, for some
large K, and set Yr= K, Yu= 0, u E U for AP0 . (It
turns out that K can be set to 0.) Clearly G0 is a
feasible tree for AP0 • Hence it is optimal, and an
optimal solution of APn will give the required
solution.

Volume 7, Number 3 OPERATIONS RESEARCH LETTERS June 1988

Let T/ be an optimal tree for APk. Then
T/ - r will be a disjoint union of (primal) SFT's,
together with n - k isolated source nodes. Letting
v == vk+I• in addition to Gk, Gk+I contains the
node g, and the edges 8(U, v). Given T/ and n,
the dual vector y is extended to node v and a new
edge is added to T/ to obtain T, a DSFT for
Gk+I:

and T= Tk* + (u, v). If d(u) = 2 then Tis opti­
mal. Otherwise, d(u) = 3, and all the reverse edges
from r to u have flow value - 1. Even though a
dual simplex algorithm can choose any one of
these as a cut-edge, there is a unique cut-edge
which maintains DSFT, namely g(u), the reverse
edge whose tail is u. Solving APk+I starting with
the above T will be referred to stage k + l. Our
algorithm for solving APk+I is the following:

Algorithm A2.
while d(u) = 3 do
cut f = g(u), and let e E T.1_ be the pivot edge
via (3)
T+--T+e-f
u +-- t(e)
end {while}

Let T1 = T, and let /;, e; be the cut-edge and
pivot edge respectively at iteration i of the current
stage, with 7;+ 1 = T; + e; - J;. Letting y; be the
component of T; - /; containing t(/;), since e; E

8-(y;), and e; E y(Y;+ 1), it follows that ¥;+ 1 ::, Y;.
Since each u E U - Lu can be the tail of a cut-edge
during a stage, the number of pivots in a stage is
bounded by IU-Lul· Thus, since IU-Lul =k
-1 at the beginning of stage k, we have the upper
bound on the total number of pivots: I::Z= 1k -1 =
!-n(n - 1). Notice that, the increase in the number
of pivots is due to the dummy sink mode.

In some applications U and V may be of differ­
ent sizes: a rectangular system. Clearly the
Hungarian algorithm can handle this case quite
easily. However, in primal and dual simplex al­
gorithms, one needs to add enough dummy nodes
(and artificial edges) in order to make the new
problem feasible. Clearly, our algorithm does not
need such a transformation.

3. Implementation and time complexity

In this section we will sketch the basic ideas for
efficient implementation of the algorithm, i.e., in
O(n 2 log n + nm) time. For this, it suffices to
show that a stage can be implemented in
O(n log n + m) time.

We assume that graph is represented by a pair
of adjacency lists: for u E U we have the list
N+ (u) (of the edges that start at u) and for v E V,
the list N-(v). Clearly, both lists can be rep­
resented as one doubly linked list (see, e.g. [8]). To
represent T we use 4 pointers: parent, first (child),
left (sibling), right (sibling). Thus the children of a
node are maintained as a doubly linked circular
list [9].

As it is well known, the most costly part of the
dual simplex algorithm is the selection of incom­
ing edges. At every pivot, given the set y;, we need
to determine

(3')

As pointed out by Balinski [3,4], Goldfarb [8] and
Akgiil [l], to achieve this bound one needs to
capitalize on the nested structure of cutsets y; 's,
(similar to Hungarian and Dijkstra algorithms).
Let us define

{
Y1 ,

Z.=
I Y;- y;_},

i = 1,

i > 1,

7;+ = T;- Y;= T- LJ Z1 .
J=l

For u E Un y;c, let

s (u) = min { »\ 0 : v E ¥;},

nb(u) = V if »\0 = s (u).

(5)

(6)

(7)

(8)

s(u) measures the smallest reduced cost of edges
in 8(u, ¥;), while nb(u) keeps the index of one
such edge (hence a candidate for a pivot edge).
Given s(u), u EU n y;c, one can compute (3') by
finding

min{s(u): uE Un }7}. (9)

Instead of computing and storing »\(/-1), where.
/ is the dual vector associated with tree T;, we
will compute and store »\(y), the reduced cost at
the beginning of a stage. Letting a= I::~-:,\e1, at the
i-th pivot, we need to compute ii\(y), 'life E

8{}7, Z;). Since iii eC/-1) = iii e(y)- a, we com-

157

Volume 7, Number 3 OPERATIONS RESEARCH LETTERS June 1988

pute and store w e(y), in s(u)'s and set E; =
min{s(u): u E Un Y;c} - o. Working with T/
now pays off, Z; is the subtree of T;:... 1 rooted at
t(/;). In constant time we obtain 7;+, and in time
linear in I Z; I we traverse Z;. We then examine
edges in 8 (Y;C, Z;) (actually in s-(v), v E Z;), and
update s(u) and nb(u)'s. Note that any s(u) for
u E Z; is discarded. Since each edge e E E will be
examined at most once, only when h(e) E Z; for
some i, the total work for the computation of s(u)
and nb(u) is 0(m). Evaluation of (9) will require
0(n) time for each pivot. Hence, if one explicitly
carries s(u)'s in an array; the total work for each
stage will be O(n 2 + m).

If one is willing to use binary heaps to carry
s(u)'s, then the total work per stage will be
O(n log n + m log n). However, using Fibonacci
heaps [7], one can perform all these operations in
0(n log n + m) time per stage.

There remains the cost of reconstructing the
new tree T/+ 1 at the end of a stage. If one is not
careful, the construction of the new tree may
require O(n 2) time because of the rerooting of the
subtrees on Z; 's. The key to reduction of this
bound to 0(n) is to perform a graph search, e.g.,
breadth first search on the surface graph with
nodes Z 1, Z 2 , ... , Z;, 7;+, and edges e1, e2 , •.. , e;,
and then reconstruct T/+ 1 using that information.
Once the tree T/+ 1 is constructed, one can easily
compute the new dual variables from scratch in
O(n) time.

4. Conclusion and remarks

We have presented yet another algorithm with
O(n 2) pivots and O(n 2 log n + nm) time complex­
ity: the same as with primal-dual [7], dual simplex
[3,4,8], and primal-simplex [1]. The signature
methods of Balinski and Goldfarb, strictly speak-

158

ing, are not dual-simplex algorithms, for they may
not recognize a feasible solution. Our algorithm
provides a constant factor improvement over Ba!­
inski's [4], similar to Goldfarb's over the signature
method. Assuming dual non-degeneracy, the be­
havior of our algorithm is completely determined
by the ordering of the nodes in V, whereas in
Balinski's [4] algorithm its behavior is determined
by the order of the nodes input to Algorithm Al.
It is important to note that the concept of a stage
is essential, not only for proving the pivot bound,
but also for obtaining the time bound. There are
other pivot rules within the family DSFT which
guarantee polynomial time. They are discussed in
[2].

References

[l) M. AkgUl, "A genuinenly polynomial primal simplex al­
gorithm for the assignment problems", SERC Report IEOR
87-07, Bilkent University, 1987.

[2) M. AkgUI, "Variations on a theme of Balinski: Signature
methods for the linear assignment problem", SERC Report
IEOR-8802, Bilkent University, 1988.

[3] M. Balinski, "Signature method for the assignment prob­
lem", Operations Research 33, 527-536 (1985). Presented at
Mathematical Programming Symposium, Bonn, 1982.

[4) M. Balinski, "A competitive (dual) simplex method for the
assignment problem", Mathematical Programming 34,
125-141 (1986).

[5] R. Barr, F. Glover and D. Klingman, "The alternating
basis algorithm for assignment problem", Mathematical
Programming 13, 1-3 (1977).

[6] W. Cunningham, "A network simplex method", Mathe­
matical Programming 11, 105-116 (1976).

[7) M. Fredman and R. Tarjan, "Fibonacci heaps and their
uses in improved network optimization algorithms", Jour­
nal of ACM 34, 596-615 (1987). Also in Proc. 25-th FOCS
(1984) 339-346.

[8) D. Goldfarb, "Efficient dual simplex algorithms for the
assignment problem", Mathematical Programming 37,
187-203 (1985).

[9] R. Tarjan, Data Structures and Network Algorithms, SIAM,
Philadelphia, PA, 1983.

	MX-M316NV_20190306_143319_Page_1_2R
	MX-M316NV_20190306_143319_Page_2_1L
	MX-M316NV_20190306_143319_Page_2_2R
	MX-M316NV_20190306_143319_Page_3_1L

