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We present a sequential dual-simplex algorithm for the linear problem which has the same complexity as the algorithms of 
Balinski (3,4] and Goldfarb [8]: O(n 2 ) pivots, O(n 2 log n + nm) time. Our algorithm works with the (dual) strongly feasible 
trees and can handle rectangular systems quite naturally. 
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Balinski [3] introduced the signature method 
for the linear assignment problem which requires 
O(n 2 ) pivots and O(n 3 ) time. Goldfarb [8] intro­
duced a sequential version of the signature method 
and gave an efficient implementation for sparse 
graphs. Balinski [4] later gave a purely dual-sim­
plex algorithm having the same complexity as the 
signature method. The algorithm works with dual 
strongly feasible trees. 

Here we present a sequential dual-simplex al­
gorithm for the assignment problem that has the 
same complexity as the above algorithms. We 
solve a sequence of problems defined over the 
subgraphs of the original graph. Our algorithm 
works with dual strongly feasible trees and can 
handle rectangular systems quite naturally. 

1. Preliminaries 

We will view the assignment problem (AP) as 
an instance of the transshipment problem over a 
directed bipartite graph G' = (U, V, E), with node 
set N = Uu V, and edge set E. Each edge e EE, 
is directed from its tail t( e) E U to its head h ( e) 
E V, and has flow xe and unit cost we· For a 
graph G = (N, E), and disjoint sets X, Y c N, we 
let y(X) = { e EE: t(e) EX, h(e) EX}, G[X] = 

(X, y(X)) (the mode induced subgraph of G), and 
8(X, Y= {eEE: t(e)EX, h(e)E Y}, c5-(Y)= 
c5(YC, Y), c5+(Y) = c5(Y, r), where ye= N - Y. 
For v EN, d(v) = dr(v) is the degree of a node in 
the tree T. For a subgraph Hof G, N(H), and 
E(H) represent the node set and the edge set of 
H. We use + and - to denote set union and set 
difference, when it is convenient. 

We can cast AP as 

rnin{wx: Ax=b, x~O}, (1) 

where A is the node edge incidence matrix, and 
bu = - I, u E U, bu = + I, V E V. The dual LP is: 

max{ yb: Yh(e> - Y1(e> ~we• e EE}· (2) 

The dual simplex method for the transshipment 
problem starts with a dual feasible tree. If x 1 ~ 0, 
'v/ ET, then T is optimal. Otherwise the al­
gorithm chooses an / E T with x 1 < 0, as the 
leaving edge (cut-edge), and chooses a co-tree edge 
e E T1. = E - T as the entering (pivot) edge to 
satisfy the dual-feasibility via 

(3) 

where w1 = wiy) = w 1 - Yh(J)+Yt(J) is the reduced 
cost of the edge j, and Y is the component of 
T- f containing t(f ). Thus, the result of a pivot 
is the new tree T' = T + e - f. A pivot will in-
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crease flows on the edges c+(T, e) by () = -x1, 
decrease flows on c-(T, e) by 0, and increase the 
reduced cost of the edges in s+(Y) by e and 
decrease that of edges in s-( Y) by e. (Here C( T, e) 
denotes the fundamental cycle associated with tree 
T and co-tree edge e, while c+ ( T, e) denotes the 
edges in the cycle with the same orientation as e.) 

Given a tree rooted at node r, f E T is reverse 
(/ER) if f is directed toward r. Otherwise it is 
f01ward (! E F ). A primal feasible tree is a 
Strongly Feasible Tree (SFT) if x1 = 0, f ET= f 
ER. For a feasible tree T of the assignment 
problem rooted at a source node r, we have 

Lemma 1. The following are equivalent: 
(i) Tis SFT, 
(ii) fE R, f ET = x1= 0 and f E F, f ET 

= x1 = l, 
(iii) d(r)=l, d(u)=2, u=l=-r, uE U. D 

SFT's are introduced by Cunningham [6] and 
Barr, Glover and Klingman [5] and have been 
used by Akgtil [1 ], and many others, in polynomial 
primal simplex algorithms. 

Since a tree has one less edge than the number 
of nodes; there is a natural 1-1 correspondence 
between N(T) - r and E(T), i.e., between the 
non-root nodes and edges of the tree. When T is 
reoriented as a branching f with root r, the 
mapping is, say, g: N(T) - r - E(T), g( v) = 
(p(v), v), where p(v) is the parent of node v EN, 
v =I=- r, in f. Let L u N - r be set of leaf nodes of 
T, i.e., L = {VEN - r: d(v) = l}, i = {VE L: 
(v, r)EE(T)} and let Lu=Ln U. We will also 
view L as a set of edges via the map g. 

A dual feasible tree is a Dual Strongly Feasible 
Tree (DSFT) for AP [4] if 

(i) f ER- f = x1 ~ 0, 
(ii) f E F = xi;;;, l. 
Note that automatically we have f EL = x1 

= 1. At tree which is both a SFT and a DSFT is 
optimal, (with possibly different roots). Actually, 
a DSFT has much stronger properties. However, it 
does not seem possible to extend this definition to 
the general transshipment problem. Our definition 
is slightly different from that of Balinski: the roles 
of forward and reverse edges are interchanged and 
our tree is rooted at a sink node. 

Balinski [4] proved the following 
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Lemma 2. Let T be a DSFT ( rooted at a sink node 
r). Consider u E U, (hence g(u) ER), with d(u);::, 
3. Then 

(i) Xg(u) ~ -1, 
(ii) the selection of g( u) as the cut-edge main­

tains DSFT. D 

In other words, if we restrict the selection of 
cut edges to those f ET with f ER and d(t(/)) 
:;;, 3, we will maintain a DSFT. 

Balinski's dual simplex algorithm [4] works in 
stages. Let S = { u EU: d(u);;;, 3}. The algorithm 
for a stage (a signature step or a level), for s ES, 
can be described as: 

Algorithm Al (s). 
while d(s):;;, 3 do 
cut f = g( s ), and let e E T 1- be the pivot edge 
via (3) 
T-T+e-f 

s - t(e) 
end {while} 

In a stage, the algorithm starts with s ES and 
performs dual-simplex pivots until it reaches a 
node in Lu. Since Y's are monotonically increas­
ing, the number of pivots in a stage is bounded by 
I U - Lu I -When S = ~ or I Lu I = 1, T is optimal 
via (iii) of Lemma 1. Clearly the total number of 
pivots is bounded by "f.'j:U = !(n - l)(n - 2) and 
this bound is sharp [4]. 

2. The new algorithm 

We will solve a sequence of (perturbed) AP's 
over an increasing sequence of graphs G0 , 

G1, ... , Gn- Each Gk defines an AP: APk. Let 
V = { v1, v2 , ••. , vn} be an arbitrary ordering of 
sink nodes, r = v0 be a dummy sink node, and let 
G# =(U, V+r, E+ {(u, r): uE U}). When G' 
is a complete bipartite graph, then so is G#. We 
define Gk as Gk= G#[U + { v0 , v1, ... , vk} ]. Actu­
ally, APk is not strictly an assignment problem; 
since bu= - l, u E U, bv = l, j = l, ... ' k, br = n 

} 

- k. For artificial edges we set, w ur = K, for some 
large K, and set Yr= K, Yu= 0, u E U for AP0 . (It 
turns out that K can be set to 0.) Clearly G0 is a 
feasible tree for AP0 • Hence it is optimal, and an 
optimal solution of APn will give the required 
solution. 



Volume 7, Number 3 OPERATIONS RESEARCH LETTERS June 1988 

Let T/ be an optimal tree for APk. Then 
T/ - r will be a disjoint union of (primal) SFT's, 
together with n - k isolated source nodes. Letting 
v == vk+I• in addition to Gk, Gk+I contains the 
node g, and the edges 8(U, v). Given T/ and n, 
the dual vector y is extended to node v and a new 
edge is added to T/ to obtain T, a DSFT for 
Gk+I: 

and T= Tk* + (u, v). If d(u) = 2 then Tis opti­
mal. Otherwise, d(u) = 3, and all the reverse edges 
from r to u have flow value - 1. Even though a 
dual simplex algorithm can choose any one of 
these as a cut-edge, there is a unique cut-edge 
which maintains DSFT, namely g(u), the reverse 
edge whose tail is u. Solving APk+I starting with 
the above T will be referred to stage k + l. Our 
algorithm for solving APk+I is the following: 

Algorithm A2. 
while d(u) = 3 do 
cut f = g(u), and let e E T.1_ be the pivot edge 
via (3) 
T+--T+e-f 
u +-- t( e) 
end {while} 

Let T1 = T, and let /;, e; be the cut-edge and 
pivot edge respectively at iteration i of the current 
stage, with 7;+ 1 = T; + e; - J;. Letting y; be the 
component of T; - /; containing t(/;), since e; E 

8-(y;), and e; E y(Y;+ 1), it follows that ¥;+ 1 ::, Y;. 
Since each u E U - Lu can be the tail of a cut-edge 
during a stage, the number of pivots in a stage is 
bounded by IU-Lul· Thus, since IU-Lul =k 
-1 at the beginning of stage k, we have the upper 
bound on the total number of pivots: I::Z= 1k -1 = 
!-n(n - 1). Notice that, the increase in the number 
of pivots is due to the dummy sink mode. 

In some applications U and V may be of differ­
ent sizes: a rectangular system. Clearly the 
Hungarian algorithm can handle this case quite 
easily. However, in primal and dual simplex al­
gorithms, one needs to add enough dummy nodes 
( and artificial edges) in order to make the new 
problem feasible. Clearly, our algorithm does not 
need such a transformation. 

3. Implementation and time complexity 

In this section we will sketch the basic ideas for 
efficient implementation of the algorithm, i.e., in 
O(n 2 log n + nm) time. For this, it suffices to 
show that a stage can be implemented in 
O(n log n + m) time. 

We assume that graph is represented by a pair 
of adjacency lists: for u E U we have the list 
N+ ( u) ( of the edges that start at u) and for v E V, 
the list N-( v ). Clearly, both lists can be rep­
resented as one doubly linked list (see, e.g. [8]). To 
represent T we use 4 pointers: parent, first (child), 
left (sibling), right (sibling). Thus the children of a 
node are maintained as a doubly linked circular 
list [9]. 

As it is well known, the most costly part of the 
dual simplex algorithm is the selection of incom­
ing edges. At every pivot, given the set y;, we need 
to determine 

(3') 

As pointed out by Balinski [3,4], Goldfarb [8] and 
Akgiil [l ], to achieve this bound one needs to 
capitalize on the nested structure of cutsets y; 's, 
(similar to Hungarian and Dijkstra algorithms). 
Let us define 

{ 
Y1 , 

Z.= 
I Y;- y;_}, 

i = 1, 

i > 1, 

7;+ = T;- Y;= T- LJ Z1 . 
J=l 

For u E Un y;c, let 

s ( u) = min { »\ 0 : v E ¥;}, 

nb( u) = V if »\0 = s ( u). 

(5) 

(6) 

(7) 

(8) 

s(u) measures the smallest reduced cost of edges 
in 8(u, ¥;), while nb(u) keeps the index of one 
such edge (hence a candidate for a pivot edge). 
Given s(u), u EU n y;c, one can compute (3') by 
finding 

min{s(u): uE Un }7}. (9) 

Instead of computing and storing »\(/-1), where. 
/ is the dual vector associated with tree T;, we 
will compute and store »\(y), the reduced cost at 
the beginning of a stage. Letting a= I::~-:,\e1, at the 
i-th pivot, we need to compute ii\(y), 'life E 

8{}7, Z;). Since iii eC/-1) = iii e(y)- a, we com-
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pute and store w e(y ), in s( u )'s and set E; = 
min{s(u): u E Un Y;c} - o. Working with T/ 
now pays off, Z; is the subtree of T;:... 1 rooted at 
t(/;). In constant time we obtain 7;+, and in time 
linear in I Z; I we traverse Z;. We then examine 
edges in 8 ( Y;C, Z;) ( actually in s-( v ), v E Z;), and 
update s(u) and nb(u)'s. Note that any s(u) for 
u E Z; is discarded. Since each edge e E E will be 
examined at most once, only when h(e) E Z; for 
some i, the total work for the computation of s(u) 
and nb( u) is 0( m ). Evaluation of (9) will require 
0( n) time for each pivot. Hence, if one explicitly 
carries s(u)'s in an array; the total work for each 
stage will be O(n 2 + m). 

If one is willing to use binary heaps to carry 
s( u )'s, then the total work per stage will be 
O(n log n + m log n). However, using Fibonacci 
heaps [7], one can perform all these operations in 
0( n log n + m) time per stage. 

There remains the cost of reconstructing the 
new tree T/+ 1 at the end of a stage. If one is not 
careful, the construction of the new tree may 
require O(n 2 ) time because of the rerooting of the 
subtrees on Z; 's. The key to reduction of this 
bound to 0( n) is to perform a graph search, e.g., 
breadth first search on the surface graph with 
nodes Z 1, Z 2 , ... , Z;, 7;+, and edges e1, e2 , •.. , e;, 
and then reconstruct T/+ 1 using that information. 
Once the tree T/+ 1 is constructed, one can easily 
compute the new dual variables from scratch in 
O(n) time. 

4. Conclusion and remarks 

We have presented yet another algorithm with 
O(n 2 ) pivots and O(n 2 log n + nm) time complex­
ity: the same as with primal-dual [7], dual simplex 
[3,4,8], and primal-simplex [1]. The signature 
methods of Balinski and Goldfarb, strictly speak-
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ing, are not dual-simplex algorithms, for they may 
not recognize a feasible solution. Our algorithm 
provides a constant factor improvement over Ba!­
inski's [4], similar to Goldfarb's over the signature 
method. Assuming dual non-degeneracy, the be­
havior of our algorithm is completely determined 
by the ordering of the nodes in V, whereas in 
Balinski's [4] algorithm its behavior is determined 
by the order of the nodes input to Algorithm Al. 
It is important to note that the concept of a stage 
is essential, not only for proving the pivot bound, 
but also for obtaining the time bound. There are 
other pivot rules within the family DSFT which 
guarantee polynomial time. They are discussed in 
[2]. 

References 

[l) M. AkgUl, "A genuinenly polynomial primal simplex al­
gorithm for the assignment problems", SERC Report IEOR 
87-07, Bilkent University, 1987. 

[2) M. AkgUI, "Variations on a theme of Balinski: Signature 
methods for the linear assignment problem", SERC Report 
IEOR-8802, Bilkent University, 1988. 

[3] M. Balinski, "Signature method for the assignment prob­
lem", Operations Research 33, 527-536 (1985). Presented at 
Mathematical Programming Symposium, Bonn, 1982. 

[4) M. Balinski, "A competitive (dual) simplex method for the 
assignment problem", Mathematical Programming 34, 
125-141 (1986). 

[5] R. Barr, F. Glover and D. Klingman, "The alternating 
basis algorithm for assignment problem", Mathematical 
Programming 13, 1-3 (1977). 

[6] W. Cunningham, "A network simplex method", Mathe­
matical Programming 11, 105-116 (1976). 

[7) M. Fredman and R. Tarjan, "Fibonacci heaps and their 
uses in improved network optimization algorithms", Jour­
nal of ACM 34, 596-615 (1987). Also in Proc. 25-th FOCS 
(1984) 339-346. 

[8) D. Goldfarb, "Efficient dual simplex algorithms for the 
assignment problem", Mathematical Programming 37, 
187-203 (1985). 

[9] R. Tarjan, Data Structures and Network Algorithms, SIAM, 
Philadelphia, PA, 1983. 


	MX-M316NV_20190306_143319_Page_1_2R
	MX-M316NV_20190306_143319_Page_2_1L
	MX-M316NV_20190306_143319_Page_2_2R
	MX-M316NV_20190306_143319_Page_3_1L

