
S
A

T
a

b

a

A
R
R
A
A

K
D
M
D
H
F
S
M
M

1

i
d
d
a
t
i
s
e
a
g
u

d
f
H
t
u
s

0
h

The Journal of Systems and Software 86 (2013) 2520– 2541

Contents lists available at ScienceDirect

The Journal of Systems and Software

j our na l ho me p age: www.elsev ier .com/ locate / j ss

-IDE: A tool framework for optimizing deployment architecture of High Level
rchitecture based simulation systems

urgay Ç elika,∗, Bedir Tekinerdoganb

Department of Computer Engineering, Hacettepe University, Ankara, Turkey
Department of Computer Engineering, Bilkent University, Ankara, Turkey

 r t i c l e i n f o

rticle history:
eceived 30 June 2012
eceived in revised form 27 February 2013
ccepted 1 March 2013
vailable online 20 March 2013

eywords:
eployment model optimization
etamodel based tool development

a b s t r a c t

One of the important problems in High Level Architecture (HLA) based distributed simulation systems
is the allocation of the different simulation modules to the available physical resources. Usually, the
deployment of the simulation modules to the physical resources can be done in many different ways,
and each deployment alternative will have a different impact on the performance. Although different
algorithmic solutions have been provided to optimize the allocation with respect to the performance, the
problem has not been explicitly tackled from an architecture design perspective. Moreover, for optimizing
the deployment of the simulation system, tool support is largely missing. In this paper we propose a
method for automatically deriving deployment alternatives for HLA based distributed simulation systems.
istributed simulation
igh Level Architecture (HLA)
EDEP
oftware architecture
odel transformations
etamodeling

The method extends the IEEE Recommended Practice for High Level Architecture Federation Development
and Execution Process by providing an approach for optimizing the allocation at the design level. The
method is realized by the tool framework, S-IDE (Simulation-IDE) that we have developed to provide
an integrated development environment for deriving a feasible deployment alternative based on the
simulation system and the available physical resources at the design phase. The method and the tool
support have been validated using a case study for the development of a traffic simulation system.
. Introduction

Simulation systems are used to simulate real world concepts
n different domains such as manufacturing, performance analysis,
ecision support, virtual exercises and entertainment. There are
ifferent reasons for using simulation systems including analysis
nd testing, cost reduction in development, training, etc. Due to
he complexity of the simulated domain very often the simulation
s executed across multiple nodes and likewise several different
imulators are integrated within a single distributed simulation
nvironment. The reason for distributing the simulation is usu-
lly for reducing the execution time of the simulation, enabling
eographic distribution of simulation parts, and enabling large sim-
lations with a large number of users (Fujimoto, 1999).

Developing distributed simulation systems is not easy because
ifferent simulators might run on different platforms, adopt dif-
erent data types, use different communication mechanisms, etc.
ence, an important challenge in distributed simulation systems is
he integration, reusability and interoperability of the various sim-
lators. To reduce the effort for developing distributed simulations,
everal standard simulation infrastructures have been introduced

∗ Corresponding author. Tel.: +90 505 476 8307.
E-mail address: turgaycelik@gmail.com (T. Ç elik).

164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2013.03.013
© 2013 Elsevier Inc. All rights reserved.

including Distributed Interactive Simulation (DIS) (IEEE, 1998),
High Level Architecture (HLA) (Kuhl et al., 1999; IEEE, 2010a),
and Test and Training Enabling Architecture (TENA) (Noseworthy,
2008). Among these, HLA is an important IEEE and NATO standard
specifies a general purpose simulation architecture for realizing
interoperable and reusable distributed computer simulation sys-
tems (Kuhl et al., 1999; IEEE, 2010a).

One of the important problems in HLA based distributed simu-
lation systems is the allocation of the different simulation modules
to the available physical resources. Each deployment alternative
represents a different allocation of modules to physical resources
and this can be done in many different ways. Further, each deploy-
ment alternative will have a different impact on the performance.
This problem can be categorized as a task allocation problem that
has been widely addressed in the literature (Stone, 1977; Lo, 1988;
Pirim, 2006; Mehrabi et al., 2009). To solve the task allocation prob-
lem different algorithmic solutions have been proposed. Hereby,
the algorithms take as input several optimization parameters such
as execution cost, communication cost, memory requirement and
I/O cost. Based on these input parameters the task allocation algo-
rithms aim to derive feasible allocation of tasks to processors

(Stone, 1977; Lo, 1988). The evaluation of the deployment alter-
native is usually based on expert judgment and postponed to the
implementation phase. One cannot always rely on expert judgment
because finding experts that have both a broad and specialized

dx.doi.org/10.1016/j.jss.2013.03.013
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:turgaycelik@gmail.com
dx.doi.org/10.1016/j.jss.2013.03.013

 Systems and Software 86 (2013) 2520– 2541 2521

k
h
t
p
i
t
t
m
l
u

a
P
a
o
e
e
t

a
w
d
d
t
m
E
R
E
B
s
w
m
d
l
r
c
m
t

w
(
s
t
t
o
d
i
d
e
1
S

2

a
t
(
(

2

m
(

Centra l Infras tructure

Node

<<Infras tructure>>

Centra l RTI

Component (CRC)

Simula tion Node

1..* 0..1

 Federa te

<<Infras tructure>>

Loca l RTI Component

(LRC)

Simula tion Module

Ins tance
T. Ç elik, B. Tekinerdogan / The Journal of

nowledge on the corresponding domains is not easy. Further,
uman expert judgments can be feasible for small to medium sys-
ems but are inadequate for large and complex systems. Moreover,
ostponing the evaluation of the deployment alternative to the

mplementation phase, might lead to non-feasible implementa-
ions which may require unnecessary iteration of the design and
he related project lifecycle artifacts such as detailed design, imple-

entation, test artifacts, documentation, etc. On its turn this will
ead to delays in the project schedule and increased cost due to the
nnecessary rework of the lifecycle artifacts.

The need for early analysis and optimization of the deployment
lternatives has also been addressed by the IEEE Recommended
ractice for High Level Architecture Federation Development
nd Execution Process FEDEP (IEEE, 2003). FEDEP describes rec-
mmended tasks for evaluating alternative design options and
stimating the simulation performance in design phase but delib-
rately does not provide a detailed process and implementation for
he indicated tasks.

To cope with the above problems and address the needs as
ddressed by FEDEP, we propose a method and our tool frame-
ork S-IDE (Simulation-IDE) that supports the early analysis of
eployment alternatives and the automatic generation of the
eployment alternatives for HLA based distributed simulation sys-
ems. S-IDE tool framework consists of several tools based on

etamodels that we have developed including Federation Data
xchange Metamodel, Simulation Modules and Publish–Subscribe
elations Metamodel, Physical Resources Metamodel, Simulation
xecution Configuration Metamodel, and Deployment Metamodel.
ased on the design models developed with these tools, the neces-
ary parameter values for the task allocation algorithms are defined,
hich are then used for automatic generation of a feasible deploy-
ent alternative. In addition, the tool framework can be used for

esign level analysis including, the impact of adding new simu-
ations modules to the system, suitability of the selected physical
esources for the given simulation design, and the impact of the
hange of publish–subscribe relations. To illustrate the usage of the
ethod and S-IDE we have used a realistic case study concerning

he development of a traffic simulation.
The remainder of the paper is organized as follows. In Section 2

e provide the background on HLA and Model Driven Engineering
MDE). Section 3 defines the problem statement based on a case
tudy that will be used in subsequent sections. Section 4 presents
he method for evaluating alternative design options briefly. Sec-
ion 5 describes the metamodels that S-IDE tool framework is built
n. Section 6 presents the model transformations step by step for
eriving feasible deployment alternatives. Section 7 provides real-

zation of S-IDE tool framework and using S-IDE to derive a feasible
eployment alternative for the case study. Section 8 provides the
valuation of the tool. Section 9 provides the discussion. Section
0 describes the related work and finally we conclude the paper in
ection 11.

. Preliminaries

In this section we describe the background for understanding
nd supporting the approach that we present in this paper. In Sec-
ion 2.1 we present a brief definition of the High Level Architecture
HLA), followed by a short overview of Model-Driven Engineering
MDE) in Section 2.2.

.1. High Level Architecture (HLA)
As stated before, HLA is an IEEE standard that supports develop-
ent of reusable and interoperable distributed simulation systems

Kuhl et al., 1999; IEEE, 2010a,b,c). To support the development of
Fig. 1. Reference architecture for the high level architecture.

HLA compliant simulation systems, the “Federation Development
and Execution Process – FEDEP” has been defined as a part of HLA
standard (IEEE, 2003).

Based on a domain analysis to HLA standard we could derive
the reference architecture of HLA based simulation systems which
is shown in Fig. 1. A typical simulation system is deployed on a
number of Simulation Nodes. Each Simulation Node includes one or
more Federates which are processes that together form the sim-
ulation execution. Each member includes a number of Simulation
Module Instances and Local RTI Component (LRC). Simulation Mod-
ule Instances represent objects for simulating entities or events
in the simulation. RTI represents the runtime infrastructure that
realizes the HLA standard (IEEE, 2010a). LRC enables bi-directional
interaction between federates for data exchange and collaborative
execution of the simulation.

The simulation may also include an optional Central Infrastruc-
ture Node that contains Central RTI Component (CRC) which is
responsible for managing the simulation lifecycle, timing, synchro-
nization, and discovery concerns. Although this component is not
mandatory, as a convention, major RTI implementations provide
CRC definitions. In case CRC is missing, the services need to be sup-
ported by the LRCs. As such both the LRC and CRC provide similar
services. In Fig. 1 this is indicated through the stereotype «Infra-
structure».

The CRC and LRC implementations together provide services
for federation management, declaration management, object man-
agement, ownership management, time management, and data
distribution management (IEEE, 2010b).

The basic interaction model that is adopted in the HLA con-
forms to the Publish/Subscribe pattern (Eugster et al., 2003). In
the Publish/Subscribe pattern the producer and consumer appli-
cations (members) are decoupled. This increases the reusability
and interoperability, which are key concerns in simulation systems.
The Publish/Subscribe interaction is realized by the «Infrastructure»
components in the reference architecture in Fig. 1. Federates in
the simulation execution can publish and subscribe data exchange
model elements through the services provided by the «Infrastruc-
ture» components. HLA standard defines the Object Model Template
(OMT) that can be used to define different data exchange models
which are called Federate Object Model (FOM) and Simulation Object
Model (SOM) (IEEE, 2010c).

2.2. Model Driven Engineering (MDE)

In traditional, non-model-driven software development the link
between the code and higher level design models is not formal
but intentional. Required changes are usually addressed manually
using the given modeling language. Because of the manual adap-

tation the maintenance effort is not optimal and as such sooner or
later the design models become inconsistent with the code since
changes are, in practice, defined at the code level. One of the key
motivations for introducing model-driven engineering (MDE) is the

2522 T. Ç elik, B. Tekinerdogan / The Journal of Systems and Software 86 (2013) 2520– 2541

Source

Metamodel

Source

Model

conforms to

Transformation

Engine

Targe t

Metamodel

Targe t

Model

Transformation

Definition

reads writes

executes

re fe rs to re fe rs to

ansfor

n
l
a
a
m
i
a
b
e
s
f
c

t
m
a
f
T
m

(
(
r
e
e
a
m
T
d
M
X
t
a
G
a
c

Fig. 2. Model-tr

eed to reduce the maintenance effort and as such support evo-
ution (Frankel et al., 2004; Bezivin, 2005; Schmidt, 2006). MDE
ims to achieve this goal through defining models and metamodels
s first class abstractions, and providing automated support using
odel transformations. For a given change requirement the code

s not changed manually but automatically generated or regener-
ted, thereby substantially reducing maintenance effort. Further,
ecause of the formal links between the models and the code the
volution of artifacts in the model-driven development process is
ynchronized. The link between the code and models is formal. In
act, there are only models, and as such, ‘the documentation is the
ode’.

MDE requires model transformations to derive the target sys-
em from the model (semi)automatically. The general pattern for

odel transformations is shown in Fig. 2 (Bezivin, 2005; Czarnecki
nd Helsen, 2006). Here, Source Model is provided as input to Trans-
ormation Engine that generates Target Model by using predefined
ransformation Definition. Both models conform to their respective
etamodels.
We can distinguish between Model-to-Model transformations

M2M), Model-to-Text transformations (M2T), and Text-to-Model
T2M) transformations. In M2M the transformation definition
efers to metamodels of both the source and the target mod-
ls. Different M2M approaches have been proposed including, for
xample, the “Atlas Transformation Language (ATL)” (ATL, 2012)
nd “Query/View/Transformation (QVT)” (QVT, 2012) tools for
odel to model transformation (Gronback, 2009). In Model-to-

ext Transformation (M2T) the outcome is text such as code or
ocumentation and no target metamodel is used. Examples of
2T approaches are Java Emitter Templates (JET) (JET, 2012) and
Pand (XPand, 2012). In Text-to-Model (T2M), the transforma-

ion definition refers to metamodels of target models. Examples of

pproaches that can be used for T2M are XText (XText, 2012) and
rammar to Model Language (Gra2Mol) (Gra2Mol, 2012; Izquierdo
nd Molina, 2009) that enables model extraction from source
ode.

Car

Speed Camera Traffic Light

*

* *

Truck

*

Fig. 3. Logical view of
mation pattern.

In the context of model driven development, Model Driven
Architecture (MDA) is an MDE framework defined by the OMG
that separates the platform specific concerns from platform inde-
pendent concerns to improve the reusability, portability and
interoperability of software systems (Schmidt, 2006; Frankel et al.,
2004). To this end, MDA defines so-called Platform Independent
Models (PIMs) and Platform Specific Models (PSMs). The PIM is a
model that abstracts from any implementation technology or plat-
form. The PIM is transformed into one or more PSMs which include
the platform specific details. Finally the PSM is transformed to code
providing the implementation details. Obviously by separating the
platform specific concerns and providing mechanisms to compose
these concerns afterwards in the code MDA provides a clean separa-
tion of concerns and as such the systems are better reusable easier
to port to different platforms and have increased interoperability.

3. Problem statement

In this section we define the problem statement and illus-
trate our approach by using a concrete case study. First subsection
defines the case study, second subsection provides a sample sce-
nario build on the case study and finally third section defines the
problem by using the defined case study and the scenario.

3.1. Case study—a traffic simulation

The case study that we consider is the development of a traf-
fic simulation. The main objective of this simulation is to support
the analysis and optimization of various traffic flow parameters for
efficient movement of traffic and minimal traffic congestion prob-
lems. The logical view for the case study that depicts simulation
environment is given in Fig. 3.
The main participants of the simulation environment are cars,
trucks, drivers, speed cameras, traffic lights, lane closes and a
traffic analyzer. Other artifacts such as crossings, pedestrians,
fixed/mobile radars, on-ramps and weather conditions that affect

Driver

*

Traffic Analyzer

Network

Lane Close

*

1

 the case study.

T. Ç elik, B. Tekinerdogan / The Journal of Syste

Table 1
A sample scenario for the case study.

Simulation module Number

Car simulation 600
Truck simulation 80
Driver simulation 680
Speed camera simulation 5
Traffic light simulation 15

t
s
p
u
c

t
m
e
A
d
e
d
2
t
c
a
p
s
c
t
1
l
d

3

s
s
s
r

l
T
p
e
8
b
t
i

3

d
r
T
a
s

n
fi
n
a

Lane close simulation 4
Traffic analyzer simulation 1

he traffic flow are not included in the case study for the sake of
implicity. In the figure no particular number for the simulation
articipants is given, but ‘*’ is used to indicate zero or more sim-
lators. The specific number of simulators will be defined by the
oncrete scenario which will be explained in the next sub-section.

The defined simulation system case study includes cars and
rucks as vehicles. A vehicle model shall include properties such as

odel year, motor power, current driver id, etc. Drivers have differ-
nt physical and behavioral properties that affect the traffic flow.

 driver model shall include properties such as driver id, socio-
emographic factors (age, gender, driving experience in years,
tc.), driving style (dissociative, anxious, risky, angry, high-velocity,
istress-reduction, patient, and careful) (Taubman-Ben-Ari et al.,
004), and accident experience that indicates how many accidents
he driver already be involved in Chung and Wong (2010). Speed
ameras, traffic lights, and lane closes are participants that gener-
lly slow down the traffic flow. A speed camera model shall define
osition and speed limit value parameters. A traffic light model
hall define position and light state (red, yellow, or green). A lane
lose model shall define a start position, an end position, time slice
hat lane is closed and a lane index that indicates closed lane (like
st lane, 2nd lane). Traffic analyzer is a passive participant that col-

ects simulation data from other participants such as vehicles and
rivers to perform analysis.

.2. A sample scenario for the traffic simulation case study

After the definition of the simulation environment in the case
tudy section above, we can now define a sample simulation
cenario. A scenario includes the types and numbers of major
imulation entities according to the earlier defined simulation envi-
onment. Table 1 shows a sample scenario for the case study.

The ‘Simulation Module’ column of the table indicates the simu-
ation participants that together form the simulation of the system.
he ‘Number’ column defines the number of simulation partici-
ants of the simulation module type in the given scenario. For
xample, in the scenario as defined in Table 1 there are 600 cars and
0 trucks. As it can be observed for a given scenario the total num-
er of the required simulation modules might be quite large. For
he scenario given in Table 1 total number of simulation modules
s 1386.

.3. Defining the problem statement

After the simulation objectives and a sample scenario are
efined, we can start designing the simulation system. Using the
eference architecture as shown in Fig. 1 and the given scenario in
able 1, we can derive the deployment alternative. A deployment
lternative defines the mapping of the simulation modules in the
cenario to the nodes and federates.

For example, we can define a deployment alternative with four

odes in which all car simulation modules are deployed on the
rst node, all truck simulation modules are deployed on the second
ode, all driver simulation modules are deployed on the third node,
nd the rest of the simulation modules are deployed on the fourth
ms and Software 86 (2013) 2520– 2541 2523

node. This alternative actually follows the conceptual separation of
concerns in which a separate node is logically defined for each sim-
ulation module type. Further, the communication overhead among
same simulation module types such as cars, trucks, etc. are min-
imized because of being deployed on same node. Although this
alternative is easy to understand because of the logical separation
of concerns, it does not always pay-off. This is because separately
deployed simulation modules such as car, truck and driver mod-
ules may need to interact very frequently with each other for global
coordination.

A second example deployment alternative may contain only
three nodes. In this alternative car, truck and driver simulation
modules are all deployed on first node, the speed camera, traffic
light and lane close modules are deployed on second node while
traffic analyzer module is deployed on third node separately. This
alternative reduces the communication overhead among car, truck
and driver simulation modules by deploying all of them on the same
node, but on the other hand this deployment configuration may
cause resource (memory, processing power, etc.) suffering on this
node.

We can derive many more different deployment alternatives
which may differ with respect to the number of deployment
nodes, the mapping of simulation modules to the federates, etc.
Obviously, the number of deployment alternatives is very large and
each deployment alternative will perform different with respect
to different quality considerations such as logical separation for
understandability, optimizing communication overhead, enhanc-
ing utilization of physical resources, etc.

As stated before, the evaluation of the design and the perfor-
mance estimation is either deferred to the development phase or
performed based on expert judgment in the design phase. How-
ever, deferring these design tasks to the development phase might
lead to non-feasible implementations which may require unneces-
sary iteration of the design and the related project lifecycle artifacts
such as detailed design, implementation, test artifacts, documen-
tation, etc. On its turn this will lead to delays and higher cost in the
project. On the other hand, expert judgments are also limited if the
system gets too complex.

In the following section we will provide a tool framework
for designing the simulation environment and deriving feasible
deployment alternatives for HLA based simulation systems.

4. Method for deriving feasible deployment alternatives

In this section we provide the method for deriving and evalu-
ating feasible deployment alternatives briefly before defining the
design and the implementation of the S-IDE tool framework. The
method will be used in the design phase where the system is not
developed yet, and the code is not available.

The process flow of the method is represented as an activ-
ity diagram as shown in Fig. 4. Finding a feasible deployment
model may require several iterations of process steps. Further, the
final deployment model is actually built on several iterations of
the design, development, and integration/test activities defined in
FEDEP (IEEE, 2003). Hereby, the initial deployment model is pro-
totyped and tested in development and integration/test activities,
and the results are fed back to the designer until a satisfactory
alternative is derived. The process steps can be briefly explained
as follows:
1. Design Federation Data Exchange Model. This step defines an ini-
tial version of the Federation Data Exchange Model (FDEM)
that is necessary to enable data exchange among simulation
modules. Actually, a FDEM is an extended version of an HLA

2524 T. Ç elik, B. Tekinerdogan / The Journal of Syste

Design Simulation
Modules

Design Physical
Resources

Design Pub/Sub
Relations of

Simulation Modules

Design Simulation
Execution

Configuration

Generate Input
Parameters for

Allocation Algorithm

Find Feasible
Deployment(s)

Generate

Deployment

Model(s)

Design Federation
Data Exchange

Model

[feasible alternative(s)
found]

[a feasible
alternative not

found]

[feasible alternative not found
and

change of simulation
configuration not suitable]

Analyze Tool
Feedback

Evaluate Generated
Deployment Model(s)

[Generated

deployment models
are satisfactory]

[Generated

deployment models
are not satisfactory]

[Generated deployment models are not satisfactory
and change of simulation configuration not suitable]
Fig. 4. Method for deriving feasible deployment alternatives.

Federation Object Model (FOM) (IEEE, 2010c). Details of this
extension relation will be explained in Section 5.

2. Design Simulation Modules. This step includes the definition of
simulation modules that are artifacts of a simulation system
responsible for modeling each part of the system. In the given
example scenario as given in Table 1 simulation modules are,
for example, Car, Truck, Driver, Speed Camera, etc.

3. Design Pub/Sub Relations of Simulation Modules. This step defines
the publish/subscribe relations of simulation modules based on
the Federation Data Exchange Model which is defined in first
step of the process. For example, a Car object can be published
by Car Module and subscribed by SpeedCamera Module.

4. Design Physical Resources. Parallel to the above three steps, this
step defines the available nodes together with their processing
power and memory capacity, as well as the network con-
nections among the nodes. For example, one may decide to
adopt 4 nodes on which the simulation participants need to
be deployed. Further it could be decided that each node has
a memory capacity of 36,840 MB and contains two processing
units at the frequency of 3.0 MHz. Equally, the nodes could also
have different memory capacity and processing power.

5. Design Simulation Execution Configuration. This step defines the
run-time properties of the modules defined in the previous
steps. This includes the definition of the number of simulation

module instances, the definition of the update rate for module
instances for each publication (in the publish/subscribe defini-
tion), and the definition of the execution cost of each module
instance on each target node.
ms and Software 86 (2013) 2520– 2541

6. Generate Input Parameters for Allocation Algorithm. After the
steps above, both the static and run-time properties of the sim-
ulation participants, the simulation entities and the physical
resources are defined, this step derives the necessary parame-
ter values for the algorithms that define a feasible deployment
alternative.

7. Find Feasible Deployment Model(s). This activity takes the out-
puts of the previous activity as input parameters and executes
the algorithms to compute feasible deployment alternatives. If
a feasible deployment is found, this activity yields a table that
represents the mapping of tasks (module instances) to pro-
cessors (nodes). It is also possible to generate more than one
feasible deployment alternative and present the results to the
designer for deciding the deployment model.

8. Analyze Tool Feedback. If no feasible solution was found in the
previous step, detailed feedback is presented to the designer to
optimize the design model. The designer will first try to update
the simulation execution configuration. If a feasible deploy-
ment can still not be found then the designer can decide to
return to the beginning of the process to refine/update the
design.

9. Generate Deployment Model(s). The task-processor mapping
tables that are the output of the previous step will be used in
this step generate one or more deployment models.

10. Evaluate Generated Deployment Model(s). In this step, the
designer evaluates the generated deployment model by com-
paring it with: (1) other deployment models generated by the
selected CTAP algorithm (2) generated alternatives with other
CTAP algorithms (3) manually generated deployment models
with expert judgment. The S-IDE tool provides automatic analy-
sis and comparison features that enable evaluating deployment
models with respect to different quality factors. The generated
deployment models will be improved until they are consid-
ered to be satisfactory with respect to the defined goals of the
designer. Here a satisfying alternative defines an alternative
that meets the expected improvement rate of the commu-
nication and execution costs for the deployment model. If a
satisfactory solution is found, the feasible deployment alterna-
tive derivation process will end. Otherwise, the designer can
generate design diagnostic feedback report with the S-IDE tool
and analyses the provided feedback. The designer first tries
to find a satisfying deployment alternative by updating the
simulation execution configuration. If updating the simulation
execution configuration is not enough to achieve a satisfying
deployment alternative, the designer can decide to return to
the beginning of the process to refine/update the design.

5. Metamodels

In this section we will describe the metamodel for the models
that are defined in the method as shown in Fig. 4. The metamodel
is shown in Fig. 5. As it can be seen from the figure the metamodel
consists of five main parts including Federation Data Exchange, Sim-
ulation Modules and Publish/Subscribe Definitions, Physical Resources,
Simulation Execution Configuration and Deployment metamodels.
We explain each of these metamodels in the following subsection.

5.1. Federation data exchange metamodel

The Federation Data Exchange Metamodel is used to describe Fed-
eration Data Exchange Models in Step 1 of the method described

in Section 4. We have defined this metamodel by reusing and
extending the HLA OMT (IEEE, 2010c) standard which defines a
standard metamodel for deriving Federation Object Models (FOM)
and Simulation Object Models (SOM). The resulting Federation Data

T. Ç elik, B. Tekinerdogan / The Journal of Systems and Software 86 (2013) 2520– 2541 2525

iew o

E
a
t
o
S
s
o
O
o

t
(
u
f
r
F
a
t
e
t
a

Fig. 5. High level v

xchange Metamodel corresponds to the HLA OMT artifacts with
n addition of the average size attribute to array datatype. Later on,
his is necessary to allow the estimation of the size of an exchanged
bject during feasible deployment analysis at the design phase.
ince the resulted metamodel is quite large in size, we have only
hown the part of the metamodel that relates to the other parts of
ur metamodel in Fig. 5. As it is shown in the figure the element
bjectModelElement is the part that defines the connection with the
ther parts of our metamodel.

To represent simulation entities, HLA OMT specification defines
he three key elements of ObjectClasses, Interactions and DataTypes
not shown in the figure). ObjectClasses are used to define the sim-
lation entities. In our case, ObjectClasses are used to represent,
or example, Car, Truck, Speed Camera, etc. Interactions are used to
epresent the messaging semantics among simulation participants.
or example, messages like SpeedLimitViolation, TrafficLightChange
re examples of interactions. Finally, DataTypes represent types of

he attributes of ObjectClasses and parameters of Interactions. For
xample, the ObjectClass Car could have an attribute position of
ype Position2D, and the Interaction SpeedLimitViolation can have

 parameter carID of String type.
f the metamodels.

5.2. Modules and publish/subscribe relations metamodel

The Simulation Modules and Publish/Subscribe Relations Meta-
model is used to describe Simulation Modules and Simulation
Publish/Subscribe Models in steps 2 and 3 of the method described
in Section 4. We have defined a common metamodel that can be
used to define both the simulation modules and the composition
relations. Similar to the Discrete Event Virtual Simulation (DEVS)
specification (Zeigler, 2003) the metamodel defines atomic and
coupled models that form the simulation systems.

As shown in Fig. 5, ModuleDefinitionModel represents a module
definition model that defines modules and their Publish/Subscribe
relations. ModuleDefinitionModel contains elements of Atomic-
Module, CoupledModule and PubSubRelation. An AtomicModule
represents elementary simulation models while CoupledModule
represents more complex simulation models that may contain
other atomic or coupled modules. This containment relation is

shown as moduleContent reference in the metamodel. Module
is the abstract base class for AtomicModule and CoupledModule
definitions. PubSubRelation class in the metamodel defines a pub-
lish/subscribe relation between a simulation module Module and

2 f Syste

F
m

5

f
m

c
T
r
m
s
f
r
C
t

T
(
h
i
t
n
c
c

5

d
i
t
w
u
a
u
d
M

d
n
t
t
r
c
c
e
o
F
d
1
m
r
a
F
m
d
c
f
p

e
d
b

526 T. Ç elik, B. Tekinerdogan / The Journal o

ederation Data Exchange Model (FDEM) element ObjectModelEle-
ent.

.3. Physical resources metamodel

The Physical Resource Metamodel is used to represent the arti-
acts for modeling the available physical resources in Step 4 of the

ethod described in Section 4.
PhysicalResourceModel defines a physical resource model which

an have one or more Nodes that represent computation resources.
he powerFactor attribute defines the processing power of the node
elative to other nodes. A node can have one or more processors,
emory capacity, and one or more custom node properties. Proces-

or defines properties of a processing unit using the attributes name,
requency and coreCount. MemoryCapacity has a value attribute that
epresents the memory capacity of the node in terms of megabytes.
ustomNodeProperty can be used to define additional properties for
he node as name-value pairs (e.g. diskCapacity – 340 GB).

There can be one or more networks in a physical resource model.
he Network class is the abstract base class for LocalAreaNetwork
LAN) and WideAreaNetwork (WAN) classes. WideAreaNetwork class
as speedFactor attribute that defines the speed of the network

n comparison with a LAN. LANConnection represents the connec-
ion of a node to a LAN. Router represents routers for connecting
etworks with each other. LANRouterConnection class represents
onnection of a LAN to a router while the RouterNetworkConnection
lass represents connection of a router to a network.

.4. Simulation Execution Configuration Metamodel

The Simulation Execution Configuration Metamodel is used to
efine the artifacts to model the simulation execution configuration

n Step 5 of the method described in Section 4. SimulationExecu-
ionConfiguration class defines a simulation execution configuration
hich contains elements of Metadata, ModuleInstance, MultiMod-

leInstance, and Publication. Metadata defines name, version, creator,
nd creation date of a simulation execution configuration. Mod-
leInstance represents an instance of a simulation module that is
efined in the Simulation Modules and Publish/Subscribe Relations
etamodel.

Each module instance can have a different execution cost for
ifferent nodes. For this ModuleInstance includes the parameter
odeExecutionCostTable that defines the execution cost values for
he nodes on which the module instance can execute. Note that
he execution cost is dependent on the selected execution configu-
ation. For example, the execution cost of a SpeedCamera model
hanges according to existing Cars and Trucks in the execution
onfiguration. The execution cost is a scaled value that shows the
xecution cost of a Simulation Module Instance in comparison with
ther Simulation Module Instances in the execution configuration.
or example, the execution cost for each Car module instance is
efined using scaled value and defined as 7 over 20 for one node,
4 over 20 for another node, etc. The execution costs of simulation
odules are influenced by the processor’s powerFactor and memo-

yCapacity attributes. In a similar sense, the communication costs
mong simulation modules are influenced by the networks speed-
actor attribute. Since the execution and communication costs of
odule instances can only be exactly measured after the system is

eveloped (Lauterbach et al., 2008), during design time their values
an only be estimated. This estimation can be conducted by using,
or example, design phase complexity calculation methods such as
roposed by Podgorelec and Hericko (2007), or prototyping.
The attribute requiredMemory of ModuleInstance represents the
stimated memory amount that the module instance will require
uring execution. Similar to the execution cost, this parameter can
e estimated in the design phase. The attribute instanceCount of
ms and Software 86 (2013) 2520– 2541

MultiModuleInstance defines the number of instances in the exe-
cution configuration. This attribute is added because there may be
multiple instances of the same module in an execution configu-
ration. For example in a large scale traffic scenario, there can be
hundreds of Cars and it is not feasible to add one module instance
for each of them to the execution configuration separately.

The relation containedModuleInstances of ModuleInstance class
shows the module instances that a coupled module contains. The
relation relatedModule associates a ModuleInstance with a Module
that is defined in the activity Design Simulation Modules. ModuleIn-
stance can have zero or more Publications that represent the update
rate and the related element from FDEM. Each publication is associ-
ated with an object class attribute set or an interaction class defined
in FDEM.

The updateRate attribute shows how many times a module
instance will update a FDEM element in a second. For example,
we could decide to have 1000 Car module instances where each of
them publishes a Car object with update rate of 2 times per second.

5.5. Deployment Metamodel

The Deployment Metamodel is used to describe the deployment
model in Step 8 of the method described in Section 4. The deploy-
ment Metamodel contains Members and Nodes. Each Member is
deployed on one of the Nodes defined in Physical Resource Model.
One or more Module Instances can be deployed on a Member.

6. Model transformations

The method in Section 4 has been realized as a set of model trans-
formations. The model transformation chain is shown in Fig. 6. This
model transformation chain consists of the three basic transfor-
mations Models-to-CTAP-Params Transformations, CTAP Solver, and
TaskAlloc-to-Deployment Model Transformation. These transforma-
tions are generic and do not depend on the use of a particular
CTAP algorithm. We explain these transformations in the following
subsections.

6.1. Manual design of simulation models

The process starts with defining the federation data exchange
model, simulation modules and pub-sub relations models, physical
resources model, and simulation execution configuration model.
These are the outputs of the first five activities of the method
defined in Section 4. Each of the models conforms to their corre-
sponding metamodel, which were described in Section 5.

6.2. Models-to-CTAP parameters transformation

The simulation models are provided to the model trans-
formation Models-to-CTAP Params which generates inputs for
the “Capacitated Task Allocation Problem (CTAP)” (Pirim, 2006;
Mehrabi et al., 2009) algorithm. The CTAP is a refinement of the
task allocation problem (TAP) to which it adds constraints such
as memory capacity and processing power to the problem formu-
lation. The objective in the CTAP is to minimize the sum of total
execution cost and total communication cost among the simulation
module instances. Hereby, the memory capacity and the processing
power of each node should not be exceeded.

The metamodel for CTAP parameter specification is given in
Fig. 7. In fact, the required parameters of CTAP can be extracted

from the simulation design that has been defined in the previ-
ous activities. In Table 2 we describe each parameter and how it
is extracted from the design. These parameters are independent of
the various CTAP algorithm implementations. The transformation

T. Ç elik, B. Tekinerdogan / The Journal of Systems and Software 86 (2013) 2520– 2541 2527

MM22 ((MMEETTAAMMOODDEELL))

MM11 ((MMOODDEELL))

Federa tion

Data

Exchange

Metamodel

Simula tion

Module and

Pub/Sub

Rela tions

Metamodel

Phys ica l

Resources

Metamodel

Simula tion

Execution

Configura tion

Metamodel

Federa tion

Data

Exchange

Model

Simula tion

Modules

Model

Simula tion

Pub/Sub

Rela tions

Model

Simula tion

Execution

Configura tion

Model

Phys ica l

Resources

Model

Model

Metamodel

 Model

Transformation

LLEEGGEENNDD

Models -to-CTAP-

Params

Transformation

CTAP Solver

Parameter-

Spec

model flow

Conforms to

re fe rs

TaskAlloc-to-

Deployment

Model

Transformation

Task Alloca tion

Table (s)/

Fa ilure Feedback

Deployment

Model(s)

Deployment

Metamodel

Parameter-

Spec

Metamodel

Task

Alloca tion

Table

Metamodel

he me

M
f
b

6

a
a
u
m
a
u
p
S
r
i

Fig. 6. Model-transformation chain that realizes t

odels-to-CTAP-Params Transformations performs a generic trans-
ormation to extract these CTAP parameter values that can be used
y the selected CTAP algorithm implementations.

.3. CTAP solver

The input parameters that were generated in the previous step
re provided to the CTAP Solver which aims to find a task-processor
llocation. The CTAP Solver does not mandate the use of a partic-
lar CTAP algorithm implementation. We have provided a generic
echanism to enable the selection and adaptation of different CTAP

lgorithm implementations in the CTAP Solver. For this we have
sed the OSGI service registry capabilities of the Eclipse Equinox

latform (McAffer et al., 2010; OSGI, 2011; Equinox, 2012). The
-IDE tool defines a generic service interface plug-in that can be
ealized by various plug-ins to provide specific CTAP algorithm
mplementations. The CTAP Solver module queries the registered

Fig. 7. CTAP parameter spec

thod for deriving feasible deployment alternative.

CTAP algorithm implementations via OSGI service registry and as
such enables the user to select one of the registered alternative
algorithms. For detailed information on adding new CTAP algo-
rithm implementations we refer to the project web site (SIDE,
2012).

For our problem, we focus on optimizing the allocation of sim-
ulation module instances to nodes by considering execution cost,
memory requirement, communication cost, processing power, and
memory capacity parameters as defined in the simulation design.
Please note that we do not focus on a particular algorithm but
recommend using a practical one for the corresponding case. The
output of the CTAP Solver is Task Processor Allocation Table which
describes the mapping of tasks to processors. The metamodel for

Task Processor Allocation is given in Fig. 8.

For different simulation contexts the designer can choose dif-
ferent CTAP Solver implementations. To support the designer in
selecting the appropriate algorithm implementations, the S-IDE

ification metamodel.

2528 T. Ç elik, B. Tekinerdogan / The Journal of Syste

Table 2
Extracting CTAP parameters from the design.

CTAP parameter Extraction from design

T Set of m tasks. Tasks are extracted from module
instances defined in Simulation Execution
Configuration Model.

P Set of n non-identical processors. Processors are
extracted from nodes defined in Physical Resource
Model.

Mp Memory capacity of processor p. Memory capacity is
extracted from memoryCapacity attribute of each node
defined in Physical Resource Model.

Cp Processing power of processor p. Processing power is
extracted from powerFactor attribute of each node
defined in Physical Resource Model.

mi Amount of memory needed for task i. Amount of
required memory is extracted from requiredMemory
attribute of ModuleInstance defined in Simulation
Execution Configuration Model.

xip Processing power cost of executing task i on processor
p. Processing power cost is extracted from
nodeExecutionCostTable attribute of ModuleInstance
defined in Simulation Execution Configuration Model.

cij Communication cost cij if tasks i and j are assigned to
different processors calculated by using: Publications
defined in Simulation Execution Configuration Model,
Subscriptions defined in Publish/Subscribe Relations
Model, Object model elements defined in Federation
Data Exchange Model Communication cost between

t
t

a
a
e
m
a
i
m
S
C

6

p
f
C
n
S
t
i

•

•
•

(a

(b
two nodes is negligible if two tasks are assigned to the
same processor.

ool provides the objectives and characteristics of the algorithm
hat are defined by the algorithm developer.

The CTAP parameters can be prioritized if the selected CTAP
lgorithm supports such a prioritization. For example, the genetic
lgorithm based CTAP implementation that we have used for our
xperiments defines the same coefficients for execution and com-
unication costs, thus the parameter priorities are equal. However,

s stated before the S-IDE tool does not mandate a particular
mplementation of the algorithm, and if needed different imple-

entations might be selected that support the prioritization. The
-IDE tool asks the designer to define the priorities if the selected
TAP algorithm supports the prioritization of the parameters.

.4. Task allocation-to-deployment model transformation

Task Processor Allocation Table generated in previous step is
rovided as an input to Task Allocation-to-Deployment Model Trans-

ormation that generates the final deployment models. In case the
TAP Solver cannot find a feasible task to processor allocation alter-
ative or if the alternative is not satisfying, the designer can use the
-IDE Design Analysis Tool that provides a detailed design diagnos-
ic feedback. The design diagnostic feedback contains the following
nformation:

The communication costs among simulation module instances

ordered by size of transferred data per second.
The simulation data exchange model objects ordered by size.
The simulation module instances ordered by required amount of
memory.

Fig. 8. CTAP task processor a
ms and Software 86 (2013) 2520– 2541

• The physical resources ordered by capacity limits.

The designer can use this diagnostic feedback to analyze the sim-
ulation design, update the models, and restart the transformation
process again until a feasible and satisfying solution is found. In gen-
eral, distributed systems are optimized using design heuristics for
reducing either the cost parameter values such as bandwidth usage
and/or enhancing the capacities of the adopted physical resources
(Izosimov et al., 2005; White and Schmidt, 2010). Based on these
general design optimization heuristics as well as our own lessons
learned from real industrial HLA based distributed simulation sys-
tems (Ç elik et al., 2012) and OMG DDS based real time systems we
have defined the following categories of heuristic rules that can be
applied in the method to optimize the system if a feasible task to
processor allocation cannot be found:

1. Simulation Execution Configuration Optimizations.The designer
may first try to reduce update rates in the simulation exe-
cution configuration. For example, for the given traffic case
study, the designer may decide that trucks are slow vehicles
and their update rates in the simulation can be reduced from
2 updates/second to 1 updates/second.

2. Simulation Design Optimizations:
) If reducing the update rates in the simulation execution configu-

ration does not help finding a feasible solution, the designer can
re-organize the subscribed data sets and split the federation data
exchange model object structures. In many cases the subscriber
only requires a specific set of data class attributes (e.g. speed of
the object).

) The designer may check the reliability levels of the data exchange
model elements. In HLA, a FOM object can be shared among fed-
erates either with Reliable or Best Effort reliability levels. The
communication cost of sharing reliable data is higher than best
effort sharing. The reliability level of the FOM objects defined
Reliable could be reduced to Best Effort where possible to fur-
ther optimize the simulation design. For example in the traffic
simulation case study, the position of the vehicles is frequently
updated and can be defined as Best Effort. In such a case, the sub-
scribers shall use dead reckoning methods (Fujimoto, 1999) for
calculating the vehicle positions.

3. Physical Resources Model Enhancements:If all design level opti-
mizations described above are applied and it is still not possible
to find a feasible deployment alternative, the only alternative is
enhancing the physical resources.

The design diagnostic feedback is automatically generated if at
least one deployment alternative cannot be found. The designer
can also manually trigger design diagnostic process in S-IDE tool if
he/she is not satisfied with the quality of the generated deployment
models. In this case, the designer can follow the heuristics listed
above to improve simulation design until a satisfying deployment
alternative can be derived.
6.5. Implementation and verification of the transformation rules

In the above transformations we have basically applied
model-to-model transformations in which the transformation

llocation metamodel.

T. Ç elik, B. Tekinerdogan / The Journal of Syste

Phys ica l Resources

Des ign Tool

Federa tion Data

Exchange Model

Des ign Tool

Simula tion Modules and

Publish/Subscribe Rela tions

Des ign Tool

Simula tion Execution Configura tion

Des ign Tool

Deployment Model Genera tion Tool

Eclipse P la tform

EMF GEF

GMF

E
m

fa
ti

c

E
u

G
E

N
ia

r
T
t
o
b
p
E
i
m
t
(
f
m

d
t
m
u
m
u

7

p
t
w
t
o
T
i
2
G
i
t
g
c
g
E
f
2
t
E
l

t
t

and Publish/Subscribe Relations” metamodel given in Section 5.2
Fig. 9. Layered architecture of S-IDE environment.

ules refer to metamodels of the source and target models.
here are different approaches for implementing model-to-model
ransformations including direct manipulation, structure-driven,
perational, template-based, relational and graph transformation-
ased and hybrid approaches (Czarnecki and Helsen, 2006). We
referred to adopt the direct model manipulation with Eclipse
MF in which an internal model representation plus some API
s provided to manipulate the models. The advantage of direct

anipulation approach is that we could implement complex
ransformation rules using our adopted programming language
Java). Likewise we could more flexibly implement the complex
unctionality of the model transformations such as calculating com-

unication cost parameters.
Validating the implemented transformation rules can also be

one in different ways based on the selected model transforma-
ion approach (Büttner et al., 2011). Since we used direct model

anipulation approach we could verify the correctness of the rules
sing unit testing capabilities of the Java programming environ-
ent (JUnit, 2012). We have tested each model-transformation unit

sing different inputs.

. S-IDE tool framework

In this section we will present the S-IDE tool framework which
rovides an integrated development environment for supporting
he method as defined in Section 4 (SIDE, 2012). S-IDE tool frame-
ork is based on the metamodels as defined in Section 5 and

he model transformations as defined in Section 6. S-IDE is built
n the Eclipse platform and is implemented as a set of plug-ins.
he developed plug-ins are built on other Eclipse framework plug-
ns including Eclipse Modeling Framework (EMF) (Budinsky et al.,
003), Graphical Editing Framework (GEF) (Moore et al., 2004), and
raphical Modeling Framework (GMF) (Voelter et al., 2006). EMF

s a modeling framework and code generation facility that we use
o develop the metamodels. GEF is a framework that is used for
enerating rich graphical editors and views. GMF is a generative
omponent and runtime infrastructure that we use for developing
raphical editors for the developed metamodels. Further, we use
mfatic (Daly, 2004), which provides a text editor and a language
or editing EMF models. In addition we use EuGENia (Kolovos et al.,
010) GMF tool that provides mechanisms for abstracting away
he complexity of GMF and for easier development of GMF editors.
uGENia tool is a part of Epsilon project (Kolovos et al., 2006). The
ayered tool architecture of the S-IDE is given in Fig. 9.
In the following subsections we describe the top-level tool archi-
ecture (Section 7.1), show the application of S-IDE for designing
he simulation models for the selected case study (Section 7.2), and
ms and Software 86 (2013) 2520– 2541 2529

describe the generation of the deployment model for the case study
(Section 7.3).

7.1. Tool architecture

S-IDE consists of five different tools. The common perspective
of S-IDE tools is given in Fig. 10. The left pane includes the Model
Navigator that shows the available models and their elements. The
Model Editing Pane in the middle provides the main drawing area
for the simulation design. The Item Palette on the right provides
the objects and the connections that are used for creating a design
model. The items in this palette can be added to the Editing pane by
dragging and dropping. The Properties View at the bottom provides
an editing area for the attributes of the design model elements that
are selected from the Editing Pane or the Model Navigator.

7.2. Using S-IDE to design simulation models for the case study
and derive a feasible deployment

In this section we use the S-IDE to design the traffic case study
defined in Section 3.2 and we derive a feasible deployment model
for the case study. Rest of this section explains each step of using
S-IDE for the case study.

7.2.1. Designing traffic simulation federation data exchange
model

Figs. 11 and 12 together show Traffic Simulation Federation Data
Exchange Model (FDEM) that has been designed using the S-IDE
framework. Fig. 11 defines the object classes of data model while
Fig. 12 defines the interaction classes. Both figures also define the
necessary data types.

In Fig. 11, the HLAObjectRoot object class is defined as root class
for all other object classes in conformance with HLA OMT standard.
PhysicalEntity object class derives from the root class and defines
two basic properties – position and identification – of a physical
entity. Position attribute of PhysicalEntity is defined by Position2D
data type which provides location information in means of latitude
and longitude values. Car, Truck, TrafficLight, SpeedCamera and Driver
object classes are defined in a similar fashion with necessary data
type definitions such as DrivingStyleEnum enumerated value that
represents driving characteristics or TraficLightEnum that specifies
current light state, one of Red, Yellow, and Green values.

In Fig. 12, the HLAInteractionRoot interaction class is defined as
root class for all other interaction classes in conformance with HLA
OMT standard. Speed limit violations, traffic light violations and
accidents are defined as interactions. Fig. 12 also defines various
parameters such as violating vehicle id or vehicles/pedestrians that
are involved in the accident.

7.2.2. Designing traffic simulation modules and publish/subscribe
relations

Fig. 13 shows the design of traffic simulation modules and pub-
lish/subscribe relations in means of Traffic Simulation Federation
Data Exchange Model defined in previous step.

As shown in figure, CarModel, TruckModel, DriverModel, Traf-
ficLightModel, LaneCloseModel, and SpeedCameraModel simulation
modules defined in according to case study. TrafficAnalyzer
simulation module defined in the case study is refined and Driver-
Tracker, VehicleTracker, AccidentTracker, and RuleViolationTracker
sub-modules are defined as artifacts of TrafficAnalyzer module. This
decomposition makes the TrafficAnalyzer module a “coupled mod-
ule” that is composed of several “atomic modules” (see “Modules
for atomic and coupled module definitions).
Each module publishes the object and interaction classes that

they own modeling responsibility (e.g. CarModel publishes Car

2530 T. Ç elik, B. Tekinerdogan / The Journal of Systems and Software 86 (2013) 2520– 2541

erspec

o
s
u
T
d

7

w
I
a
N
s
n
n

7

a
E
c
H
f
i
f
e
h
e
s
A
F
u
j
M
e
fi
2

Fig. 10. General p

bject class and AccidentInteraction interaction class). Modules also
ubscribe to object and interaction classes to receive necessary
pdates of interested data. For example, DriverModel subscribes to
rafficLight and Vehicle object classes for modeling behavior of the
river.

.2.3. Designing physical resource model
Fig. 14 shows an example Physical Resource Model for the case,

hich has been designed using the Physical Resource Design Tool.
n the example, we have defined 4 nodes with different processors
nd memory capacities. As shown in the figure some nodes, like
ode-4, can have more than one processor. Although, the example

hows only one Local Area Network on which the nodes are con-
ected, the tool also enables the design of heterogeneous LAN/WAN
etworks.

.2.4. Designing traffic simulation execution configuration
The Module and Publish–Subscribe Relations Model (Fig. 13)

nd Physical Resource Model (Fig. 14) are used in the Simulation
xecution Configuration Design Tool to define the Simulation Exe-
ution Configuration. Part of the latter model is shown in Fig. 15.
ere we show an example simulation execution configuration

or the scenario as defined in Table 1. The simulation module
nstances are shown using rectangles. The number of instances
or the corresponding module is shown between brackets. For
xample, in the figure it is indicated that SpeedCameraModel
as 5 instances in accordance to the earlier scenario. Note, how-
ver, that in this model the scenario is further refined. More
pecifically, in Table 1 it is indicated that should be a Traffic
nalyzer module. In the Simulation Execution Configuration in
ig. 15, Traffic Analyzer module instance contains four sub mod-
le instances (AccidentTrackerModel, VehicleTrackerModel, etc.)
ust like it is defined in Module and Publish–Subscribe Relations
odel (Fig. 13). The instances also show the publication prop-

rties (published FDEM element and update rate) as shown in
gure. For example CarModelInstance publishes Car object class

 times/second.
tive of S-IDE tool.

7.3. Generating the deployment models for the case study

So far, the input models for generating feasible deployment
alternatives have been developed manually. Based on these mod-
els, feasible deployment alternatives are automatically generated.
The top-level algorithm that is used for the automatic generation
is shown in Fig. 16.

As stated in line 1, the algorithm GENER-
ATE FEASIBLE DEPLOYMENTS takes two input parameters: a
physical resource model and a simulation execution configuration
as defined, for example, in Figs. 14 and 15, respectively. Line 2
extracts processors from the physical resource model by call-
ing EXTRACT PROCESSORS in which a processor is created for
each node in the physical resource model. In Line 3, tasks are
extracted from the simulation execution configuration by call-
ing EXTRACT TASKS in which a task is created for each module
instance and execution cost among tasks is calculated. In Line 4,
the actual CTAP algorithm is executed by calling EXECUTE CTAP.
The result of this is stored in assignment tables that includes a
list of assignments of tasks to the processors. Likewise, each
member of assignment tables defines an abstract specification of
a feasible deployment alternative. In Line 5, the deployments are
actually generated by calling CREATE DEPLOYMENT MODELS with
the parameter assignment tables.

As shown in the pseudo code of Fig. 16 the CTAP algorithm
can generate multiple deployment alternatives. Two samples of
deployment alternatives that are generated by the CTAP algorithm
are shown in Figs. 17 and 18. The figures represent feasible deploy-
ment models for the case study as described in Table 1. As it can be
observed from the figures each deployment model includes 4 nodes
as it was given before in the physical resource definition model
in Fig. 14. Further, the execution configuration model as defined
in Fig. 15 has been deployed to the physical nodes to optimize
the values for the metrics execution cost, communication cost and

memory requirements (see Section 6.2). As it can be also observed
from the figures, the two deployment alternatives include differ-
ent number and types of deployed simulation module instances per
node.

T. Ç elik, B. Tekinerdogan / The Journal of Systems and Software 86 (2013) 2520– 2541 2531

xchan

8

i
f

8

a

o
b
a
o

Fig. 11. Federation data e

. Evaluation

In this section we evaluate the S-IDE tool and discuss the feasibil-
ty of the generated deployment model, and the time performance
or generating the deployment alternatives.

.1. Feasibility of the generated deployment model

For analyzing the feasibility of the generated deployment model
lternative we use two different approaches.

The first approach is an informal and practical approach based

n visual inspection of the generated deployment alternative
y an expert. This approach thus relies on the assumption that
n expert can provide logical reasoning about the feasibility
f the deployment alternative. Note that the generation of the
ge model – object classes.

alternative is done automatically and not performed by the expert.
An example reasoning of an expert could be based on the deploy-
ment alternative given in Fig. 17. A close analysis of this generated
deployment alternative shows that the total resource requirements
of simulation module instances do not exceed the capacity of the
corresponding nodes. Further, based on the adopted genetic algo-
rithm, it appears that simulation module instances that interact
frequently and which have high communication costs, are as much
as possible co-located on the same node. For example, the simula-
tion modules VehicleTracker, CarModel, TruckModel and DriverModel
appeared to have frequent interactions in the publish–subscribe

relations model (Fig. 13) and in the simulation execution configu-
ration (Fig. 15) we can observe that they have high update-rates.
Likewise, in Fig. 17 the adopted algorithm has co-located instances
of these modules as much as possible. The simulation instances that

2532 T. Ç elik, B. Tekinerdogan / The Journal of Syste

a
d

d

alternative (Fig. 19) is given in Table 3. The table shows the exe-
Fig. 12. Federation data exchange model – interaction classes.

re remaining and which would exceed the capacity of Node-1 are

eployed to other nodes in a similar manner.

The second, more formal approach for evaluating the generated
eployment alternative is to compare the generated alternative

Fig. 13. Module and publish/subscrib
ms and Software 86 (2013) 2520– 2541

with another deployment alternative (Aleti et al., 2009a; Malek
et al., 2012). The S-IDE tool provides a quality evaluation tool
that enables the comparison of two deployment models with
respect to given simulation execution configurations. The gener-
ated deployment model can be evaluated by comparing it with
other deployment models as it was described in Section 4, Step
10.

The comparison process provided in the S-IDE is generic and
can be applied in a similar way for the alternatives generated with
all the three approaches. We show the evaluation of the generated
deployment model (Fig. 17) with a manually generated deployment
model that is based on the first example expert judgment deploy-
ment model given in Section 3.3 (problem statement). We have
manually defined the deployment model for the expert judgment
deployment alternative in S-IDE environment (Fig. 19). As shown in
the figure, all car simulation modules are deployed on the first node,
all truck simulation modules are deployed on the second node, all
driver simulation modules are deployed on the third node, and the
rest of the simulation modules are deployed on the fourth node as
it was described in Section 3.3.

The comparison of the automatically generated deployment
model alternative (Fig. 17) with the expert judgment deployment
cution and communication cost comparisons for each simulation
module of the expert judgment deployment alternative and the
generated deployment model alternative. The left column includes

e definitions for the case study.

T. Ç elik, B. Tekinerdogan / The Journal of Systems and Software 86 (2013) 2520– 2541 2533

mode

t
e
e
t
c
a
o
C
n
t
i

1

T
C

Fig. 14. A sample physical resource

he modules of the deployment alternatives. The total number of
ach entity in the scenario is shown in parenthesis (e.g. TruckMod-
lInstance (×80) means that there are 80 TruckModuleInstances in
he scenario). The column Execution Cost defines the values for exe-
ution cost for the expert judgment and the generated alternative
s well as the improvement percentage of the generated alternative
ver the manual alternative. Similarly, the column Communication
ost defines the values for the communication cost for both alter-
ative models and the improvement percentage. The last row of the

able shows the total costs for each deployment alternative and the
mprovement percentages.

As shown in the table, the total execution cost is optimized by
3.63% in the particular case. It is interesting to see that for some of

able 3
omparing generated deployment model with manually developed deployment model w

Module Total execution cost

Expert Judg. Generated by S-IDE

DriverTrackerModelInstance (×1) 5.63 11.25

TruckModelInstance (×80) 400 393.13

SpeedCameraModelInstance (×5) 6.25 8.50

TrafficAnalyzerModelInstance (×1) 6.25 12.50

CarModelInstance (×600) 2400 2331.00

RuleViolationTrackerModelInstance (×1) 5.63 9.00

VehicleTrackerModelInstance (×1) 5.63 9.00

AccidentTrackerModelInstance (×1) 6.25 10.00

DriverModelInstance (×680) 4250 3317.50

LaneCloseModelInstance (×4) 7.50 10.50

TrafficLightModelInstance (×15) 18.75 30.50

Total costs 7111.88 6142.88
l for the case study with four nodes.

the simulation modules (e.g. DriverTrackerModelInstance, Traffic-
AnalyzerModelInstance, etc.) the execution costs seem to be better
in the expert judgment deployment alternative. This is because the
purpose of the deployment model optimization is to optimize the
total performance of the system. For the given case, the modules
with the total highest execution cost appeared to be the modules
DriverModuleInstances, CarModuleInstances, and TruckModuleIn-
stances with total cost of 4200, 2400 and 400 respectively. For these
modules total improvement of 21.94%, 2.88% and 1.72% have been

achieved. Although the total execution cost of the other module
instances seem to be worse, the impact of the improvement of
these three modules seem to define the total improvement in the
execution cost.

ith expert judgment.

Total communication cost (MB/second)

Improv. (%) Expert Judg. Generated by S-IDE Improv. (%)

−100.00 0.0 0.0 0.00
1.72 6.53 4.90 24.97

−36.00 0.08 0.06 23.79
−100.00 0.00 0.00 0.00

2.88 29.34 22.00 25.03
−60.00 0.00 0.00 0.00
−60.00 0.00 0.00 0.00
−60.00 0.00 0.00 0.00

21.94 0.11 0.08 25.59
−40.00 0.10 0.07 24.15
−62.67 0.18 0.13 25.13

13.63 36.34 27.25 25.02

2534 T. Ç elik, B. Tekinerdogan / The Journal of Systems and Software 86 (2013) 2520– 2541

n confi

t
m
f
d
t
T
c

Fig. 15. Simulation executio

The total communication cost is optimized by 25.02% for
his particular case. Again we can observe that the deployment

odel is optimized with respect to the total communication per-
ormance of the system. As shown in the table, to avoid the

uplication of the communication costs, some of the simula-
ion module instances such as DriverTrackerModelInstance and
rafficAnalyzerModelInstance are not charged any communication
osts. For example, the DriverTrackerModelInstance subscribes to

Fig. 16. Pseudo-code for generating fe
guration for the case study.

Driver object which is published by DriverModelInstance as given
in Fig. 13. The cost of this data exchange is only charged to
the publisher (DriverModelInstance) and is not charged to the
subscriber (DriverTrackerModelInstance). Since DriverTrackerMod-

elInstance does not publish any other object, no communication
cost is charged.

We have also carried out the same evaluation for the automati-
cally generated deployment alternative of Fig. 18. The improvement

asible deployment alternatives.

T. Ç elik, B. Tekinerdogan / The Journal of Systems and Software 86 (2013) 2520– 2541 2535

 feasi

o
d
c

d
o
r

Fig. 17. Sample of generated

f the total execution cost with respect to the deployment model
efined by the expert (Fig. 19) is 14.30%. The improvement of the
ommunication cost appeared to be 24.99%.
We have also compared the two automatically generated
eployment alternatives of Figs. 17 and 18. It appears that the sec-
nd alternative seems to have 0.78% lower execution cost with
espect to the first alternative. Further, the first alternative seems
ble deployment alternative.

to have 0.03% lower communication cost. Based on these results,
in this case one would slightly prefer the first alternative if opti-
mizing the communication cost is considered more important than

optimizing the execution cost. The second alternative would be
selected if execution cost is considered more important. The evalua-
tion of other deployment alternatives can be carried out in a similar
manner to find the feasible deployment alternative.

2536 T. Ç elik, B. Tekinerdogan / The Journal of Systems and Software 86 (2013) 2520– 2541

rated f

8

i
r
(
I
u

Fig. 18. Another sample of gene

.2. Deployment model generation performance

The performance of the deployment model generation process
s largely influenced by the performance of the selected CTAP algo-

ithm. For our particular case, the selected generation algorithm
Mehrabi et al., 2009) is implemented in Java and executed on an
ntel Core I-7 2.70 GHz 64-Bit computer with 4 GB of RAM. We have
sed the S-IDE tool to provide four different simulations of the
easible deployment alternative.

traffic simulation case study. The results of the simulations are
shown in Table 4. In addition to the traffic simulation we have
also defined four different simulations in the Electronic Warfare
(EW) domain (Adamy and David, 2006). Each simulation has been

separately defined and executed. Further we have measured the
time to generate the deployment alternative for each scenario.
We have tried to define simulations which are also realistic from
an industrial perspective. From our own industrial experiences in

T. Ç elik, B. Tekinerdogan / The Journal of Systems and Software 86 (2013) 2520– 2541 2537

ent de

t
4
u
w
t
v
1
i
i
s

o
t
o
h
t
i
i

T
G

Fig. 19. Expert judgm

he distributed simulation domain we can state that cases from
 to 12 nodes are realistic, whereby 12 nodes is usually rarely
sed. We have chosen the simulation examples from 4 to 12 nodes
hich are all realistic from an industrial perspective. Regarding

he number of simulation entities we have used simulations with
ery low number of entities (the lowest 17) to very high number
596 entities. Also in this case these examples are realistic in the

ndustrial setting. A medium size of a real scenario in this context
s typically a simulation including 4–6 nodes with around 1000
imulation entities.

From Table 4 we can further observe that the generation times
f deployment alternatives are acceptable for evaluation at design
ime. The execution time of the algorithm appears to be dependent
n the number of simulation entities and the number of nodes. The

igher the number of simulation entities the higher the generation
ime of the deployment alternative. Further, if the number of nodes
ncrease then finding a feasible deployment alternative will be eas-
er and this will result in a faster generation of the deployment

able 4
eneration time values for scenarios using an implementation of CTAP algorithm.

Simulation
no.

Simulation Number of
simulation en

1. Traffic simulation 17

2. Traffic simulation 81

3. Traffic simulation 1389

4. Traffic simulation 1389

5. EW simulation 17

6. EW simulation 81

7. EW simulation 141

8. EW simulation 1596
ployment alternative.

alternative. These observations count for both cases. However, for
the traffic case study the generation of the feasible deployment
alternatives took longer than for the EW simulations in the simu-
lations with large number of simulation entities. This is due to the
different communication patterns and execution cost characteris-
tics. In fact the traffic case study that we have described is even
more complex than in the EW domain with respect to communi-
cation patterns and execution cost characteristics.

As stated before, for the simulation we have used a particular
implementation of the CTAP algorithm. Of course different CTAP
algorithm implementations can lead to different generation times.
The CTAP algorithm implementation (Mehrabi et al., 2009) that we
have selected seems to perform reasonably for design time deploy-
ment alternative generation. A further analysis could be performed

to identify the best performing algorithm (e.g. Aleti et al., 2009a).
The approach that we have presented does not mandate a particular
implementation of the CTAP algorithm, and we consider the analy-
sis of the algorithm implementations beyond the scope of this work.

tities
Number of
nodes

Generation
time (s)

4 2
4 8
4 12,115

12 4273
4 50
4 182
5 325
6 360

2 f Syste

9

a
a
u
s
s
a
a
t

r
s
t
b
n
r
t
a
d
C
a

e
r
e
a
p
S
r
d
c
t

p
n
p
T
a
s
l
s

o
t
o
m
t
e
a
d
(
t
t
l
f
h
m
t
c
n
t
e
i
d

538 T. Ç elik, B. Tekinerdogan / The Journal o

. Discussion

In this work we have provided a tool framework for deriving
 feasible deployment alternative based on the simulation system
nd the available physical resources for HLA based distributed sim-
lations. The tool framework assists the designer to design the
imulation system and derive a feasible deployment model in early
ystem design phase. The necessity and practical value of deriving

 feasible deployment model in the design phase is based on the
lternative design evaluation related recommendations defined by
he IEEE standard FEDEP.

A valid question in this context is whether the adopted algo-
ithm in the tool framework leads to a solution and whether this
olution is optimal. We have designed the tool framework to enable
he utilization of different CTAP solver algorithms which have
een widely addressed in the literature. The tool framework does
ot mandate the usage of a particular algorithm but provides the
equired input parameters for these algorithms. The correctness of
hese algorithms has been discussed in the corresponding papers
nd based on this we can assume that a good feasible solution can be
erived. In addition, depending on the state of the system, different
TAP solver algorithms may be used to derive a feasible deployment
lternative.

As stated before in Section 6.3, the S-IDE tool can adopt differ-
nt CTAP Solver algorithm implementations through OSGI service
egistry. Since different simulation contexts might require differ-
nt CTAP Solver implementations, the selection of the appropriate
lgorithm implementation is left to the designer’s decision. To sup-
ort the designer in selecting the algorithm implementation, the
-IDE tool provides the objectives and characteristics of the algo-
ithm that are defined by the algorithm developer. If needed, the
esigner can use multiple different algorithm implementations and
ompare the simulation results with the S-IDE design evaluation
ools (see Section 8.1), to select the most appropriate one.

We have also defined general rules to improve the CTAP cost
arameter values to be able to find a feasible deployment alter-
ative with respect to the project requirements, if the original
arameters do not result in a feasible solution (see Section 6.4).
he S-IDE tool also provides design diagnostic tools that enable the
nalysis of the simulation design to detect potential bottlenecks
uch as big sized data exchange objects, high communication costs,
imited physical resources and high memory requirements of the
imulation modules.

Besides of the algorithmic performance, we also focus on the
rganization level performance gain. Existing practices usually base
he generation of the deployment model on the expert judgment
r defer the generation of the deployment model to the imple-
entation phase. Unfortunately, expert judgment is limited due

o the manual effort. We go one step further by integrating the
xisting CTAP solution techniques early in the system design, and
utomate the decision process to support the evaluation of the
esign alternatives by the experts. As stated before in Section 3
problem statement), deferring the definition of the deployment
o the development phase might lead to non-feasible implementa-
ions which will require iterating the design and the related project
ifecycle artifacts such as detailed design, implementation, test arti-
acts, documentation, etc. On its turn this will lead to delays and
igher cost in the project. This is also the reason why FEDEP recom-
ends evaluating the design alternatives in the early phases of

he development life cycle. At design time the values for execution
ost and memory requirements are estimated while the commu-
ication costs are calculated. Obviously, the better the estimation

he more feasible the derived deployment model will be. The
stimation of the values can be enhanced by analyzing existing sim-
lar models or by developing prototypes. Likewise, the identified
eployment model may be refined and optimized if more accurate
ms and Software 86 (2013) 2520– 2541

information is available in subsequent phases of the project life-
cycle. The approach itself can actually be used at any time during
the project life cycle and, if possible, even after the system has
been developed. In the latter case, the measured run-time param-
eter values can be used, instead of estimated values, to derive the
deployment model. The runtime parameter values can be collected
using HLA Management Object Model (MOM) services as defined
in IEEE (2010b).

The S-IDE tool framework can be used for design level anal-
ysis including, the impact of adding new simulations modules
to the system, suitability of the selected physical resources for
the given simulation design, and the impact of the change of
publish–subscribe relations. To perform such analyses, the designer
can define different alternative design models, generate deploy-
ment models, and compare quality of the generated deployment
models as defined in Section 8.1. As such, the designer can observe
the effect of design variations on the performance of each simula-
tion module and the overall system.

The primary goal of our analysis is to find feasible deploy-
ment alternatives given the simulation execution configurations,
which is based on user-defined scenarios. We have chosen for this
approach because in FEDEP also first scenarios are defined and
based on these the design models are derived. In fact the output
of the tool framework can be further detailed, by addressing, for
example, maximum number of simulation module instances that
can be deployed on the available physical resources, the upper
bound for the update rate of the simulation module instances, the
minimum processor frequency and/or memory capacity that is nec-
essary for the defined simulation module instances, etc. However,
these analysis would require executing the corresponding CTAP
Solver algorithm many times which would be less tractable and
as such less practical. This is because in the simulation domain that
we have focused on, the real life scenarios can contain thousands
of entities and up to dozens of nodes. Nevertheless, if needed the
designer can execute the deployment model generation tool several
times to find out the boundary values.

In this work the S-IDE tool framework is used for deriving fea-
sible deployment alternatives for HLA based simulation systems.
However, the tool framework can also be adapted for other archi-
tectures that adopt publish–subscribe model, such as OMG DDS
(OMG, 2006) or TENA (Noseworthy, 2008). In this case, the meta-
models and tools will be modified for the target architecture. For
example, the data exchange model may need to be changed due to
the particular data exchange models for the given infrastructure. In
our future research we will analyze this in more detail.

In the industrial context we have applied our approach to
derive feasible deployment alternatives for an Electronic Warfare
(EW) simulation. The EW simulation scenarios include around 4–8
nodes and about 1600 simulation entities. We have deliberately
not chosen this domain as a running example in this paper because
understanding the EW case study requires more effort than the
more conceptual domain of traffic simulation. Yet, the simulations
that we have selected for the traffic domain are at least as com-
plex as that of the EW simulation domain. In this respective, the
simulations that we have carried are realistic. The scalability and
output quality of the approach have been analyzed with respect
to the number and characteristics of simulation entities, the num-
ber of nodes and the adopted implementation of the algorithm in
Section 8.

10. Related work
In this paper we have provided a model-driven development
approach for generating and evaluating deployment alternatives
for HLA-based simulation systems. The adoption of model-driven

T. Ç elik, B. Tekinerdogan / The Journal of Systems and Software 86 (2013) 2520– 2541 2539

Table 5
Related metamodel based model-driven HLA tools in the literature.

Related work Description Supported
FEDEP steps

Adopted
metamodels

Model
transformations

Supports
generation of
deployment
alternatives

KAMA (Karagöz and
Demirörs, 2007)

Provides a mission space conceptual
modeling environment.

Step 1, Step 2 KAMA
metamodel

No No

BOM (Base Object Model)
(SISO, 2006)

Provides a simulation space conceptual
modeling environment.

Step 2 BOM
metamodel

No No

Federation Architecture
Metamodel-FAMM
(Topç u et al., 2008)

Provides a metamodel – federation
architecture metamodel (FAMM) – and
tool support for designing HLA federates
and federations.

Step 3 FAMM No No

FAMM based code
generation tool (Adak
et al., 2010)

Provides a code generation tool based on
the FAMM defined above. Generates
application code from FAMs (Federation
Architecture Model) that are instances of
FAMM.

Step 4 FAMM FAM to application
code generation
(Java)

No

HLA Object Model
Development Tool
(Ç etinkaya and
Oguztüzün, 2006)

Provides tool support for designing
Federation Object Models (FOM) and
Simulation Object Models (SOM) in
compliance with HLA OMT standard.

Step 3 HLA OMT No No

A visual tool to simplify the
building of distributed
simulations using HLA
(Parr, 2003)

This tool provides a design and automatic
code generation environment for HLA
based distributed simulations.

Step 3, Step 4 HLA OMT UML
metamodel

Simulation model
(PIM) > specialized
simulation model
(PSM) > application
code

No

An HLA-based tactical
environment application
framework (Ç elik et al.,
2012)

Provides tools for designing HLA
Federation Object Models (FOM) and
Simulation Object Models (SOM), defining
federates, matching FOM elements with
federates, automatic code generation for
FOM elements, a scalable and high
performance simulation engine that
enables execution of multiple simulation
module instances in one federate, test,
debugging and data record/replay tools.

Step 3, Step 4,
Step 5, Step 6,
Step 7

HLA OMT HLA OMT to
Programming
Language Classes
Code Generation
(Java)

No

Step

d
p
d
s

a
i
S
s
b
i
t
A
H
t
t
a
t
p
o
d
u
2
(
u
a
n
i
p
H

S-IDE tool framework Described in this paper.

evelopment approaches for simulations systems has also been
romoted by other authors. Early on, Tolk has indicated that model-
riven architecture needs to be applied to HLA for providing tool
upport and efficient development (Tolk, 2002).

To support model-driven development, various metamodels
nd approaches have been proposed in the literature for model-
ng HLA based simulations. The BOM (Base Object Model) Template
pecification (SISO, 2006) defines the semantics and the syntax for
pecifying aspects of the conceptual model of simulations that can
e used and reused in the design, development, and extension of

nteroperable simulations. A BOM includes an interface descrip-
ion (Object Model Definition) that is defined using the High Level
rchitecture Object Model Template (HLA OMT) (IEEE, 2010c). The
LA OMT constructs include object classes, interaction classes, and

heir attributes and parameters. In the literature different realiza-
ions of the HLA OMT have been proposed (Parr, 2003; Ç etinkaya
nd Oguztüzün, 2006). The Federation Data Exchange Metamodel
hat we have defined in this paper extends the HLA OMT for sup-
orting the derivation of feasible deployment alternatives. Based
n the conceptual models that are developed using the metamo-
els such as BOM, HLA based simulation systems can be designed
sing the UML (Fowler, 2003) or UML profiles (Guiffard et al.,
006; Ç elik, 2005). Topç u et al. (2008) adopt Live Sequence Charts
Brill et al., 2004) to model the behavior of HLA federates in sim-
lation systems. Each of these tools provide support for different
spects of HLA-based simulation development domain. However,

o adequate and explicit support has been provided for select-

ng and evaluating the deployment alternatives. In Table 5 we
rovide the list of these related metamodel-based model-driven
LA tool support approaches and provide a characterization for
 3 Defined in
Section 5

Defined in Section
8

Yes

each tool. The last row of the table includes the characterization
of the S-IDE tool. The different tool approaches are compared with
respect to the description, supported FEDEP steps, adopted metamo-
dels, adopted model transformations and support for generation of
deployment model alternatives fields. Supported FEDEP steps field
maps each work with the related FEDEP steps (IEEE, 2003) including
“Step-1 Define federation objectives”, “Step-2 Perform conceptual
analysis”, “Step-3 Design federation”, “Step-4 Develop federation”,
“Step-5 Plan, integrate, and test federation”, “Step-6 Execute fed-
eration and prepare outputs”, “Step-7 Analyze data and evaluate
results”.

In this paper we have defined an approach and tool framework
for optimizing deployment architectures of HLA based simulation
systems. Related to our work there are several other approaches in
other domains for optimizing deployment architectures. The gen-
eral motivation in these approaches is similar to our motivation
for defining a formal method for optimizing deployment archi-
tectures. In this context, Kugele et al. (2008) define an approach
for optimizing deployment model of embedded systems by using
non-functional requirement annotations. The authors focus on the
non-functional requirements for Computing Power, Memory, and
Power State. The computing power and memory requirements map
to our Processing Power and Memory Requirement parameters. The
Power State requirement is defined because of the limited power
supplies of embedded systems. Since our target environment is
not embedded systems, this requirement is not applicable to our

approach. Similar to our approach, Kugele et al. (2008) convert the
problem to an optimization problem. Hereby, the necessary inputs
of the optimization problem are extracted from non-functional
requirements while we extract the inputs from the simulation

2 f Syste

d
m
d
h

p
d
c
m
m
c
s
(

r
o
c
t
a
e
p
O
t
t
a
b
a
p
n

m
a
a
d
f
p
f
(
o
t
w
s
h

1

l
t
t
i
m
w
p
a
d
a
s
a
P
T
o
p
a
t

540 T. Ç elik, B. Tekinerdogan / The Journal o

esign model. Further, the authors adopt an integer linear program-
ing (ILP) approach for solving the optimization problem while we

o not mandate any approach but use a genetic algorithm based
euristic approach as a sample realization.

Zheng et al. (2007) define an approach to optimize the task
lacement and the signal to message mapping in a hard real-time
istributed environment. The method is applied to an automotive
ase study. The problem is expressed as an optimization problem to
inimize the sum of latencies by finding best (1) task-CPU assign-
ent, (2) signal-message packing, (3) task and message priorities

onsidering constraints on end-to-end signal latencies and message
ize. Zheng et al. (2007) used Mixed Integer Linear Programming
MILP) techniques and used CPLEX (IBM, 2010) as MILP solver.

Aleti et al. (2009a) discuss the adoption of constructive algo-
ithms instead of iterative evolutionary algorithms for deployment
ptimization of embedded systems. Constructive algorithms often
onverge quickly and produce diverse solutions when compared
o iterative algorithms (Blum and Roli, 2003). Aleti et al. (2009a)
dapt Pareto-Ant Colony Optimization (P-ACO) algorithm (Doerner
t al., 2004) to solve a multi-objective deployment optimization
roblem. The performance of P-ACO is compared with a Multi-
bjective Genetic Algorithm (MOGA) by using the Archeopterix

ool platform (Aleti et al., 2009b). The parameters for the optimiza-
ion problem are memory requirement, communication frequencies,
nd event sizes for components (tasks), memory capacity, network
andwidth, network delay for hosts (processors). Different from our
pproach, this problem definition does not define parameters for
rocessing power, but includes additional network bandwidth and
etwork delay parameters.

Malek et al. (2012) propose an extensible framework (Deploy-
ent improvement framework – DIF) for improving deployment

rchitecture of distributed systems. The authors propose a generic
pproach that can work with user defined Quality of Service (QoS)
imensions such as latency, security and availability. The proposed
ramework realizes four different multidimensional optimization
roblem solving techniques, and provides several novel heuristics
or improving the performance of these techniques. Malek et al.
2012) propose generic QoS dimensions while QoS dimensions in
ur problem are fixed (communication and execution costs). Further,
he authors mention that the largest scenarios they have worked
ith to date have involved hundreds of software components and

ystem services. Due to the nature of the simulation domain, we
ave to work with thousands of entities.

1. Conclusion

One of the important problems in HLA based distributed simu-
ation systems is the allocation of the different simulation modules
o the available physical resources. Usually, the deployment of
he simulation modules to the physical resources can be done
n many different ways. We have defined a method for auto-

atically deriving deployment alternatives. Obviously the method
ould not be feasible without adequate tool support. We have
rovided a tool framework, S-IDE (Simulation-IDE) that provides
n integrated development environment for deriving a feasible
eployment alternative based on the simulation system and the
vailable physical resources at the design phase. We have defined
everal tools in context of the tool framework including Feder-
tion Data Exchange Model Design Tool, Simulation Modules and
ublish–Subscribe Relations Design Tool, Physical Resources Design
ool, and Simulation Execution Configuration Design Tool. Based

n the design models developed with these tools, the necessary
arameter values for the CTAP algorithm have been defined for
utomatic generation of a feasible deployment alternative. To illus-
rate the usage of the S-IDE framework we have adopted a realistic
ms and Software 86 (2013) 2520– 2541

case study concerning the development of a traffic simulation. The
generation times of the deployment alternatives were acceptable
for evaluation at design time. We have used a relatively large case
study that could be easily supported in the tool, and we believe that
the tool can be used for even larger case studies without substantial
problems.

The tool framework builds on various metamodels that we have
defined, and which are used to support the automatic generation
of feasible deployment alternatives. In our future work we will
focus on further automation of the simulation development pro-
cess using the developed metamodels. In particular, we will focus
on automatic code generation for HLA using the metamodels. This
will include the generation of member templates and the mapping
of data exchange model elements defined in FDEM to the target
platform. Further, we aim to integrate behavioral modeling to con-
sider also dynamic aspects of HLA based simulation systems. We
will also work on adopting different optimization techniques in
the S-IDE framework. In this context, we think that adopting a con-
structive algorithm like P-ACO (Aleti et al., 2009a) and comparing
the results with our out-of-the-box Genetic Algorithm (Mehrabi
et al., 2009) will be interesting. Another interesting work would
be to define our specific QoS parameters and sample scenarios in
DIF (Malek et al., 2012) and use its output to generate deployment
model in S-IDE.

References

Adak, M., Topç u, O., Oguztüzün, H., 2010. Model-based code generation for HLA
federates. Software: Practice and Experience 40 (2), 149–175.

Adamy, David, L., 2006. Introduction to Electronic Warfare Modeling and Simulation.
Artech House Inc., Norwood MA, USA.

Aleti, A., Grunske, L., Meedeniya, I., Moser, I., 2009a. Let the ants deploy
your software—an ACO based deployment optimisation strategy. In: ASE’09
Proceedings of the 2009 IEEE/ACM International Conference on Automated Soft-
ware Engineering, pp. 505–509.

Aleti, A., Bjornander, S., Grunske, L., Meedeniya, I.,2009b. Acheopterix: An extendable
tool for architecture optimisation of AADL models. In: MOMPES’09. IEEE Digital
Libraries, pp. 61–71.

ATL, 2012. Eclipse Atlas Transformation Language Project. Eclipse Foundation
http://www.eclipse.org/atl/

Bezivin, J., 2005. On the unification power of models. Software and System Modeling
4, 171–188.

Blum, C., Roli, A., 2003. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys 35 (3), 268–308.

Brill, M., Damm, W., Klose, J., Westphal, B., Wittke, H., 2004. Live sequence charts:
an introduction to lines, arrows, and strange boxes in the context of formal
verification. Lecture Notes in Computer Science 3147, 374–399.

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Timothy, J.Grose, 2003. Eclipse
Modeling Framework. Addison-Wesley Professional, Boston, MA, USA.

Büttner, F., Cabot, J., Gogolla, M., 2011. On validation of ATL transformation rules
by transformation models. In: Stephan Weißleder, Levi Lúcio, Harald Cichos,
Frédéric Fondement (Eds.), Proceedings of the 8th International Workshop on
Model-Driven Engineering, Verification and Validation (MoDeVVa). ACM, New
York, NY, USA, Article 9, 8pp.

Chung, Y.S., Wong, J.T., 2010. Investigating driving styles and their connections to
speeding and accident experience. Journal of the Eastern Asia Society for Trans-
portation Studies, 8.

Czarnecki, K., Helsen, S., 2006. Feature-based survey of model transformation
approaches. IBM Systems Journal 45 (3), 621–645.

Ç ELIK, T., 2005. A Software Modeling Tool for the High Level Architecture, Master’s
Thesis, Hacettepe University Institute of Science.

Ç elik, T., Gökdoğan, F.G., Öztürk, K., Sarikaya, B., 2012. An HLA-based tacti-
cal environment application framework. The Journal of Defense Modeling
and Simulation: Applications, Methodology, Technology 23 (November),
doi:1548512912465993.

Ç etinkaya, D., Oguztüzün, H., 2006. A metamodel for the HLA object model. In:
Proceedings of the 20th European Conference on Modeling and Simulation
(ECMS), pp. 207–213.

Daly, C., 2004. Emfatic Language Reference. http://www.eclipse.org/gmt/epsilon/
doc/articles/emfatic/

Doerner, K., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C., 2004. Pareto Ant Colony
Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection.

Annals of Operations Research 131 (1–4), 79–99.

Equinox, 2012. Equinox OSGI Project. Eclipse Foundation http://www.eclipse.org/
equinox

Eugster, P.T.H., Felber, P.A., Guerraoui, R., Kermarrec, A., 2003. The many faces of
publish/subscribe. ACM Computing Surveys 35 (2), 114–131.

http://www.eclipse.org/atl/
http://www.eclipse.org/gmt/epsilon/doc/articles/emfatic/
http://www.eclipse.org/gmt/epsilon/doc/articles/emfatic/
http://www.eclipse.org/equinox
http://www.eclipse.org/equinox

 Syste

F

F

F

G

G

G

I

I

I

I

I

I

I

I

J

J
K

K

K

K

K

L

L

M

M

M

M

T. Ç elik, B. Tekinerdogan / The Journal of

owler, M., 2003. UML Distilled: A Brief Guide to the Standard Object Modeling
Language, 3rd ed. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

rankel, D.S., Parodi, J., Soley, R., 2004. The MDA Journal: Model Driven Architecture
Straight From The Masters. Meghan-Kiffer Press, Tampa, FL, USA.

ujimoto, R.M., 1999. Parallel and Distributed Simulation Systems, 1st ed. John Wiley
& Sons, Inc., New York, NY, USA.

ra2Mol, 2012. Grammar to Model Language Project. Modelum Research Team,
University of Murcia http://modelum.es/trac/gra2mol/

ronback, R.C., 2009. Eclipse Modeling Project: A Domain-specific Language Toolkit.
Addison-Wesley Professional, Upper Saddle River, NJ, USA.

uiffard, E., Kadi, D., Mochet, J., Mauget, R., 2006. CAPSULE: Application of the MDA
methodology to the simulation domain. In: Proceedings of 2006 European Sim-
ulation Interoperability Workshop (SIW).

BM, 2010. Modeling with IBM ILOG CPLEX CP Optimizer – Practical Scheduling
Examples. http://www-01.ibm.com/software/integration/optimization/cplex-
optimization-studio/

EEE, 1998. IEEE STD 1278.1A-1998 Standard for Distributed Interactive Simulation
– Application Protocols.

EEE, 2003. IEEE STD 1516.3-2003 Recommended Practice for HLA Federation Devel-
opment and Execution Process (FEDEP).

EEE, 2010a. IEEE STD 1516-2010 Standard for Modeling and Simulation (M&S) High
Level Architecture (HLA) – Framework and Rules.

EEE, 2010b. IEEE STD 1516.1-2010 Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA) – Federate Interface Specification.

EEE, 2010c. IEEE STD 1516.2-2010 Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA) – Object Model Template (OMT) Specification.

zosimov, V., Pop, P., Eles, P., Peng, Z., 2005. Design optimization of time- and
cost-constrained fault-tolerant distributed embedded systems. In: Design,
Automation and Test in Europe, 2005 Proceedings, vol. 2, 7–11 March, pp.
864–869.

zquierdo, J.L.C., Molina, J.G., 2009. A domain specific language for extracting mod-
els in software modernization. In: Proceedings of the 5th European Conference
on Model Driven Architecture – Foundations and Applications, ECMDA-FA’09.
Springer-Verlag, Berlin, Heidelberg, pp. 82–97.

ET, 2012. Eclipse Java Emitter Transformations Project. Eclipse Foundation http://
www.eclipse.org/modeling/m2t/?project=jet#jet

UNIT, 2012, JUnit Project Home Page, http://www.junit.org/
aragöz, A., Demirörs, O., 2007. Developing conceptual models of the mission space

(CMMS)—a metamodel based approach. In: Proceedings of 2007 Spring Simula-
tion Interoperability Workshop (SIW).

olovos, D.S., Paige, R.F., Polack, F.A.C., 2006. Eclipse Development Tools for Epsilon.
In: Eclipse Summit Europe, Eclipse Modeling Symposium.

olovos, D.S., Rose, L.M., Abid, S., Paige, R.F., Polack, F.A.C., Botterweck, G.,2010. Tam-
ing EMF and GMF using model transformation. In: Model Driven Engineering
Languages and Systems, Lecture Notes in Computer Science, vol. 6394, chapter
15. Springer, Berlin/Heidelberg, pp. 211–225.

ugele, S., Haberl, W., Tautschnig, M., Wechs, M., 2008. Optimizing automatic
deployment using non-functional requirement annotations. In: Leveraging
Applications of Formal Methods, Verification and Validation, Third International
Symposium, ISoLA.

uhl, F., Weatherly, R., Dahmann, J., 1999. Creating Computer Simulation Systems:
An Introduction to the High Level Architecture, 1st ed. Prentice Hall PTR, Upper
Saddle River, NJ, USA.

auterbach, C., Lin, Ming C., Dinesh, M., Borkman, S., Lafave, E., Bauer, M., 2008.
Accelerating line-of-sight computations in large OneSAF Terrains with dynamic
events. In: In Proceedings of the Interservice/Industry Training, Simulation, and
Education Conference (I/ITSEC).

o, V.M., 1988. Heuristic algorithms for task assignment in distributed systems. IEEE
Transactions on Computers 37 (11), 1384–1397.

alek, S., Medvidovic, N., Mikic-Rakic, M., 2012. An extensible framework for
improving a distributed software system’s deployment architecture. IEEE Trans-
actions on Software Engineering 38 (1), 73–100.

cAffer, J., Vanderlei, P., Archer, S., 2010. Osgi and Equinox: Creating Highly Modular
Java Systems., 1st ed. Addison-Wesley Professional, Upper Saddle River, NJ, USA.

ehrabi, A., Mehrabi, S., Mehrabi, A.D., 2009. An adaptive genetic algorithm for

multiprocessor task assignment problem with limited memory. In: Proceedings
of the World Congress on Engineering and Computer Science 2009, vol. II.

oore, W., Dean, D., Gerber, A., Wagenknecht, G., Vanderheyden, P., 2004. Eclipse
Development using the Graphical Editing Framework and the Eclipse Modeling
Framework. IBM Corp., Riverton, NJ, USA.
ms and Software 86 (2013) 2520– 2541 2541

Noseworthy, J.R., 2008. The Test and Training Enabling Architecture (TENA)
Supporting the Decentralized Development of Distributed Applications and
LVC Simulations. In: 2008 12th IEEE/ACM International Symposium on Dis-
tributed Simulation and Real-Time Applications, Vancouver, BC, Canada,
pp. 259–268.

Parr, S., 2003. A visual tool to simplify the building of distributed simulations using
HLA. Information & Security Journal 12 (2), 151–163.

Pirim, T., 2006. A hybrid metaheuristic algorithm for solving capacitated task allo-
cation problems as modified XQX problems. Ph.D. Dissertation. University of
Mississippi, MS, USA. Advisor(s) Bahram Alidaee, AAI3259418.

Podgorelec, V., Hericko, M., 2007. Estimating software complexity from UML models.
ACM SIGSOFT Software Engineering Notes 32 (2), 1–5.

OMG, 2006. Data Distribution Service for Real-time Systems Ver 1.2.
OSGI, 2011. OSGI Service Platform Core Specification Release 4, Version 4.3. OSGI

Alliance.
QVT, 2012. Eclipse Query/View/Transformations Project. Eclipse Foundation

http://www.eclipse.org/m2m/
Schmidt, D.C., 2006. Model-driven engineering. IEEE Computer 39 (2), 25–32.
SIDE, 2012. SIDE Tool Framework Project. Hacettepe University http://web.cs.

hacettepe.edu.tr/∼turgay/SIDE
SISO, 2006. Base Object Model (BOM) Template Specification, SISO-STD-003-2006.
Stone, H.S., 1977. Multiprocessor scheduling with the aid of network flow algo-

rithms. IEEE Transactions on Software Engineering 3 (1), 85–93.
Taubman-Ben-Ari, O., Mikulincer, M., Gillath, O., 2004. The multidimensional driving

style inventory—scale construct and validation. Accident Analysis and Preven-
tion 36 (3), 323–332.

Tolk, A., 2002. Avoiding another green elephant—a proposal for the next generation
HLA based on the model driven architecture. In: Proceedings of the 2002 Fall
Simulation Interoperability Workshop (SIW).

Topç u, O., Adak, M., Oguztüzün, H., 2008. A metamodel for federation architectures.
ACM Transactions on Modeling and Computer Simulation 18 (3), 1–29.

Voelter, M., Kolb, B., Efftinge, S., Haase, A., 2006. From Front End to Code—MDSD
in Practice. http://www.eclipse.org/articles/Article-FromFrontendToCode-
MDSDInPractice/article.html

Xpand, 2012. Eclipse XPand Project. Eclipse Foundation http://www.eclipse.org/
modeling/m2t/?project=xpand

Xtext, 2012. Eclipse XText Project. Eclipse Foundation http://www.eclipse.org/Xtext
Zeigler, B.P., 2003. DEVS today: recent advances in discrete event-based informa-

tion technology. In: 11th IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer Telecommunications Systems, MASCOTS,
pp. 148–161.

White, J., Schmidt, D.C.,2010. R&D challenges and emerging solutions for multicore
deployment/configuration optimization. In: Proceedings of the FSE/SDP work-
shop on Future of software engineering research (FoSER’10). ACM, New York,
NY, USA, pp. 407–410.

Zheng, W., Zhu, Q., Natale, M.Di, Vincentelli, A.S.,2007. Definition of task allocation
and priority assignment in hard real-time distributed systems. In: Proceedings
of the 28th IEEE International Real-time Systems Symposium (RTSS’07). IEEE
Computer Society, Washington, DC, USA, pp. 161–170.

Turgay Ç elik received his BS (2003), MSc (2005) and PhD (2013) degrees in Com-
puter Engineering from the Hacettepe University, Turkey. From 2003 to 2005 he
served as a research assistant in Hacettepe University. Currently, he is a Lead Soft-
ware Engineer in MilSOFT Inc. Turkey, where he has been working since 2005.
He has 10 years of professional experience in software engineering research and
software development. His research topics include distributed systems, infrastruc-
ture and middleware technologies, modeling and simulation, software architecture
modeling, model-driven software development, software design optimization, and
software performance profiling and optimization.

Bedir Tekinerdogan received his MSc degree in Computer Science in 1994, and
a PhD degree in Computer Science in 2000, both from the University of Twente,
The Netherlands. From September 2003 until September 2008 he served as an
assistant professor at University of Twente. Currently he is an assistant professor
at Bilkent University in Turkey where he is leading the Bilkent Software Engi-

neering Group. He has around 20 years of professional experience in software
engineering research and education. His key research topic is software architecture
design and related to this model-driven software development, software prod-
uct line engineering, global software development, and aspect-oriented software
development.

http://modelum.es/trac/gra2mol/
http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/
http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/
http://www.eclipse.org/modeling/m2t/?project=jet
http://www.eclipse.org/modeling/m2t/?project=jet
http://www.junit.org/
http://www.eclipse.org/m2m/
http://web.cs.hacettepe.edu.tr/~turgay/SIDE
http://web.cs.hacettepe.edu.tr/~turgay/SIDE
http://www.eclipse.org/articles/Article-FromFrontendToCode-MDSDInPractice/article.html
http://www.eclipse.org/articles/Article-FromFrontendToCode-MDSDInPractice/article.html
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/Xtext

	S-IDE: A tool framework for optimizing deployment architecture of High Level Architecture based simulation systems
	1 Introduction
	2 Preliminaries
	2.1 High Level Architecture (HLA)
	2.2 Model Driven Engineering (MDE)

	3 Problem statement
	3.1 Case study—a traffic simulation
	3.2 A sample scenario for the traffic simulation case study
	3.3 Defining the problem statement

	4 Method for deriving feasible deployment alternatives
	5 Metamodels
	5.1 Federation data exchange metamodel
	5.2 Modules and publish/subscribe relations metamodel
	5.3 Physical resources metamodel
	5.4 Simulation Execution Configuration Metamodel
	5.5 Deployment Metamodel

	6 Model transformations
	6.1 Manual design of simulation models
	6.2 Models-to-CTAP parameters transformation
	6.3 CTAP solver
	6.4 Task allocation-to-deployment model transformation
	6.5 Implementation and verification of the transformation rules

	7 S-IDE tool framework
	7.1 Tool architecture
	7.2 Using S-IDE to design simulation models for the case study and derive a feasible deployment
	7.2.1 Designing traffic simulation federation data exchange model
	7.2.2 Designing traffic simulation modules and publish/subscribe relations
	7.2.3 Designing physical resource model
	7.2.4 Designing traffic simulation execution configuration

	7.3 Generating the deployment models for the case study

	8 Evaluation
	8.1 Feasibility of the generated deployment model
	8.2 Deployment model generation performance

	9 Discussion
	10 Related work
	11 Conclusion
	References

