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Using the non-equilibrium Greens’ function formalism we calculate the spin currents in a one-
dimensional ring coupled to three leads and in the presence of perpendicular magnetic flux Φ and
Rashba spin–orbit coupling. A finite bias is applied between the input lead and the other two output
leads. We show that the spin–orbit coupling allows one to operate this system as a spin splitter, i.e. the
output leads deliver spin-polarized currents with different orientations. We find that the spin splitter
operation can be tuned at integer multiples of Φ/Φ0. Its efficiency depends not only on the value of
the Rashba coupling but also on the bias applied between the input and output leads. The selected spin
orientation of the output leads can be reversed by a slight change of their contact position. We discuss
as well the connection between the spin splitter operation and the spectral properties of the ring.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Some time ago Nitta et al. [1] theoretically predicted that by
varying the Rashba parameter α one could control the spin inter-
ference in a mesoscopic ring, because the spin–orbit interaction
induces different Aharonov–Casher (AC) phases to different spin
states. Following this idea Bergsten et al. [2] were able to measure
AC oscillations in quantum ring arrays as a function of α. A lot of
theoretical work has been done since, both for closed and open
rings [3–7]. It was soon realized that α could be tuned such that
the spin current of a given orientation is substantially suppressed
while the other one is preserved. Such a device is called a spin
filter [8–13]. Cohen et al. [14] calculated the conductance of molec-
ular rings in the presence of Zeeman splitting for various contact
geometries and suggested that such systems could also operate like
spin filters. Most of the results on spin filters were obtained within
the scattering approach to electronic transport, and therefore the
relevant quantity is the spin-polarized conductance/transmittance
of the ring at a given energy.

In a recent paper [15] we reported on the spin filter proper-
ties of a Rashba interferometer coupled to two leads and subjected
to a finite bias. Using the non-equilibrium Greens’ function for-
malism we calculated the spin and charge currents and discussed
their Aharonov–Bohm (AB) oscillations as a function of the mag-
netic field and Rashba strength. The main result of that work is
that the spin filter operation is effective at certain values of the
magnetic field that correspond to some degeneracy points in the
spectrum of the Rashba ring. Since the latter is accessible by ana-
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lytical or numerical calculations, one would guess on the optimal
parameters for the spin filtering.

The aim of this Letter is to complement our previous study by
similar calculations of the spin-polarized currents in a three-lead
Rashba ring. We focus mostly on the spin splitter properties of this
system which is relatively less investigated in the literature. The
idea of using the spin-dependent interference in order to operate
the Rashba rings as spin splitters appeared in the work of Földi
et al. [16] and states that with appropriate parameters the Rashba
interference in the ring splits an unpolarized input current from
lead α into spin-up and spin-down polarized components which
are collected at two output leads β and γ . However their results
were obtained in the absence of a magnetic field and without a
finite bias between the leads. Wang et al. [17] showed through the
multi-lead Landauer–Büttiker formula that the voltages on two of
the leads can be tuned such that the current in the third lead is
completely spin polarized. Also, Chi and Zheng [18] considered the
problem of spin filtering in a three-lead ring with an embedded
dot using a model Hamiltonian.

The non-equilibrium Green’s function formalism allows us to
analyze the splitter regime in the finite bias case. We find out that
the splitter regime can be achieved even in the presence of a per-
pendicular magnetic field and that the selected spin orientation of
the output leads can be reversed by a slight change of their con-
tact position. As in most other approaches we do not include the
effect of the electron–electron interaction which is argued to be a
reasonable approximation [3].

The rest of this Letter is organized as follows. In Section 2 we
briefly review the model Hamiltonian and the relevant equations,
Section 3 contains the numerical results and their discussion while
Section 4 is left to conclusions.
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2. Model and formalism

The non-interacting electrons moving in a quasi-one-di-
mensional ring are described by a discretized version of the Hamil-
tonian proposed by Meijer et al. [19]. In the equations below,
N denotes the number of sites in the ring which are indexed
by an angle ϕp = 2π p/N , with p = 1, . . . , N . In the absence of
Rashba coupling the eigenfunctions of the discretized ring are
easily shown to be |φl〉 = 1√

N

∑N
p=1 eilϕp |p〉, where the orbital

quantum number l = 0,±1, . . . ,±(N/2 − 1), N/2 (we take N even
without loss of generality). When the Rashba coupling α is in-
cluded one has to introduce a local spin frame characterized by
the tilt angle θl [3]. Let ψls be the eigenfunctions of the Rashba
Hamiltonian and s = ±1 the spin quantum number in the local
spin frame. Then one can show that |ψl+〉 and |ψl−〉 are given by:

|ψl+〉 =
( cos( θl

2 )|φl〉
sin(

θl
2 )|φl+1〉

)
, (1)

|ψl−〉 =
( − sin(

θl
2 )|φl〉

cos( θl
2 )|φl+1〉

)
, (2)

provided that θl is constructed such that the off-diagonal elements
of the Hamiltonian in the basis {ψls} vanish. Straightforward calcu-
lations lead to explicit forms for the tilt angle and for the eigen-
values Els associated to |ψls〉. By performing the limit N → ∞ we
recover the expressions derived in Ref. [3]:

El,± = h̄ω0

(
l − Φ

Φ0
+ 1

2
∓ 1

2 cos θl

)2

+ h̄ω0

4

(
1 − 1

cos2 θl

)
± h̄ωz

cos θl
. (3)

The spectral representation of the discrete rings’ Hamiltonian
then reads H R = ∑

l,s Els|ψls〉〈ψls|. Let us note that ψls(pσ) =
〈pσ |ψls〉 where p, p′ are sites along the ring and σ , σ ′ = ↑, ↓ are
spin orientations w.r.t. the z axis. In view of transport calcula-
tion one actually has to rewrite H R in the basis {p, σ }, using the
transformation matrix that relates the two bases (see the details in
Ref. [15]):

H R
p↑,p′↑ =

∑
l

φl(p)φ∗
l

(
p′)(El+ cos2 θl

2
+ El− sin2 θl

2

)
,

H R
p↑,p′↓ =

∑
l

cos
θl

2
sin

θl

2
φl(p)φ∗

l+1

(
p′)(El+ − El−),

H R
p↓,p′↓ =

∑
l

φl+1(p)φ∗
l+1

(
p′)(El+ sin2 θl

2
+ El− cos2 θl

2

)
,

H R
p↓,p′↑ = H R †

p′↑,p↓.

The spin flip processes are included in the off-diagonal parts
of H R with respect to the spin orientation: in the absence of the
Rashba coupling θl = 0 and both the Hamiltonian and Green func-
tions become block-diagonal. The latter can be computed using the
explicit form of the radial functions |φl〉:

g R
pσ ,p′σ ′(E) =

∑
l,s

ψls∗(pσ)ψls(p′σ ′)
E − Els + i0

. (4)

When the ring is coupled to one-dimensional semi-infinite
leads the total Hamiltonian reads as (tL is the hopping energy on
the leads):
H(t) =
∑
p,p′

∑
σ ,σ ′

H R
pσ ,p′σ ′ |pσ 〉〈p′σ ′|

+ tL

∑
ν

∑
nν ,σ

(|nνσ 〉〈nν + 1,σ | + h.c.
)

+ χ(t)
∑
ν

∑
σ

(
V ν |0νσ 〉〈pνσ | + h.c.

)
. (5)

The tunneling Hamiltonian above implies a pair of sites (0ν, pν),
where pν is the site of the ring where the lead is attached and 0ν

is the nearest site of the lead ν . We assume that the spin of the
incident electron does not change at the contacts. The steady-state
current entering the leads is calculated in a standard way within
the non-equilibrium Green function formalism. For completeness
and further discussion we give below their expressions:

Jα = e

h

2tL∫
−2tL

dE Tr
{
ΓαG RΓβ G A( fα − fβ)

+ ΓαG RΓγ G A( fα − fγ )
}
, (6)

Jβ = e

h

2tL∫
−2tL

dE Tr
{
Γβ G RΓαG A( fβ − fα)

+ Γβ G RΓγ G A( fβ − fγ )
}
, (7)

Jγ = e

h

2tL∫
−2tL

dE Tr
{
Γγ G RΓαG A( fγ − fα)

+ Γγ G RΓβ G A( fγ − fβ)
}
. (8)

The linewidths Γ are related to the density of states at the

endpoint of the lead ρ(E) =
√

4t2
L − E2/π (ν = α,β,γ ), i.e.

Γ ν
pσ ,p′σ ′ (E) = (V ν)2δppν δp′ pν ρ(E). In the above equations the trace

means a sum over both site indices and spin indices. One then
identifies the spin currents Jν,↑,↓ in each lead. Each lead is charac-
terized by its Fermi function and the bias applied between the two
leads is as usually given by the difference between their chemical
potentials. Let us stress that one can choose different biases be-
tween the input and output leads. However, for simplicity we take
μβ = μγ and the bias is then given by V = μα − μβ = μα − μγ .
We now introduce the efficiency of the spin splitter:

E↑,↓ = ( Jβ,↑ − Jβ,↓)( Jγ ,↓ − Jγ ,↑)

( Jβ,↑ + Jβ,↓)( Jγ ,↓ + Jγ ,↑)
. (9)

It is clear that when E↑,↓ = 1 the lead β carries only spin-up
current while the lead γ provides only spin-down current. The op-
posite situation is characterized by the efficiency E↓,↑ which is
defined in a similar way, by exchanging ↑,↓. Let us also recall
that in a two-lead geometry one has the filter efficiency defined
as F↑,↓ = J↑,↓/( J↑ + J↓). In the three-lead geometry one can still
define Fβ↑ and Fγ ↓ in order to describe the degree of spin polar-
ization in a given lead. We remark that a good spin filtering in one
of the leads does not guarantee a good splitter efficiency.

3. Numerical results

We shall present results for a ring of radius R = 80 nm de-
scribed by N = 80 sites. The hopping energy of the leads attached
to the ring is tL = h̄2/2m∗a2, where a is the discretization constant
of the ring and m∗ is electron effective mass in GaAs. We take
equal coupling to the leads V α = V β = V γ = τ = 0.5.

The location of the leads is conveniently described by the angle
between the three leads and the x axis as follows: for the input
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Fig. 1. (Color online.) The spectrum of a Rashba ring of radius R = 80 nm as a func-
tion of the magnetic flux (the Zeeman term is also included). The solid (red) lines
represent the eigenvalues El,+ and the dotted (blue) lines are the eigenvalues El,− .
We use α = 0.27 × 10−11 eV m.

lead α which is attached to the left side of the ring the angle
is fixed to π , while the output leads are located symmetrically
with respect to the x axis, the corresponding angle being denoted
by δ. In the numerical simulations below, δ > 0 for the lead β and
δ < 0 for the lead γ . We also introduce the dimensionless param-
eter Q R = (α/R)/h̄ω0 where h̄ω0 = h̄2/2m∗R2.

In Fig. 1 we show a part of the spectrum of the discon-
nected ring as a function of magnetic flux. The levels with positive
(negative) slope with respect to the magnetic flux correspond to
state propagating clockwise (counter clockwise) along the ring. The
levels of the ring located within the bias window exhibit sev-
eral crossings. A crossing between clockwise (CW) and counter
clockwise (CCW) propagating states with different spin orientation
whenever Φn = nΦ0/2 (being n an integer number). The states
with the same spin orientation in the local spin frame but prop-
agating in opposite directions also cross at two values of the flux
which are symmetrically located with respect to Φn . Let us men-
tion here that the levels are computed by taking into account the
Zeeman coupling.

In our previous work [15] we have shown that for a two-lead
ring good filtering of up or down spin orientation can be achieved
at the degeneracy points between clockwise and counter clockwise
propagating states corresponding to the same spin orientation in
the local spin frame of the ring. For symmetric coupling to the
leads the filter efficiency is maximum around half-integer multi-
ples of Φ/Φ0. We argued that the spin filtering appears when the
CW or CCW states interfere destructively. For asymmetric coupling
we found instead that the filter operation is effective around inte-
ger multiples of Φ/Φ0.

Let us see now what happens in the three-lead configuration.
The simulations were performed for α = 0.27 × 10−11 eV m and
δ = ±22.5◦ . The chemical potentials of the leads are set to μα =
11.5 meV and μβ = μγ = 10.5 meV which makes the spectral re-
gion displayed in Fig. 1 the relevant one for transport. Fig. 2(a)
reveals that at integer multiples of Φ/Φ0 the splitter efficiency
E↑,↓ peaks up to 64% and that the spin-up/-down polarization
of the lead β/γ reaches 90%. Away from these values the split-
ter operation is clearly ineffective as E↑,↓ is very small and even
vanishes at half-integer multiples of Φ/Φ0 (the output leads actu-
ally carry unpolarized currents since Fβ,↑ = Fγ ,↓ = 0.5).

We also show in Fig. 2(b) the spin currents in the output leads
over a range of one flux quanta (the currents are periodic func-
tions of flux). This figure helps us discern the mechanism leading
to the splitter regime. The maxima of the output currents are lo-
cated on different sides of the degeneracy points Φ/Φ0 = 0. At
this degeneracy point Jβ,↓ and Jγ ,↑ reach their minima simulta-
Fig. 2. (Color online.) (a) The splitter efficiency E↑,↓ as a function of the magnetic
flux (solid line) and the spin polarizations of the output leads Fβ,↑ (long-dashed
line) and Fγ ,↓ (dashed line). (b) The spin currents in the output leads: solid line –
Jβ,↑ , long-dashed line – Jβ,↓ , dashed line – Jγ ,↑ , dotted line – Jγ ,↓ . The angles de-
scribing the location of the output leads are δ = ±22.5◦ . (c) The spin currents in the
output leads for δ = ±27

◦
. We use the same type of lines as in (b). Other parame-

ters: α = 0.27 × 10−11 eV m, μα = 11.5 meV and μβ = μγ = 10.5 meV, τ = 0.5.

neously, while Jβ,↑ and Jγ ,↓ cross each other and have a much
higher value, though not the maximum one. The splitter efficiency
depends on how close is this value at the crossing point to the ab-
solute maxima and, more importantly, on the minimum value of
Jβ,↓ and Jγ ,↑ at the degeneracy point. As we shall see below, this
depends on the Rashba strength and also on the bias.

The fact that the currents with different spin orientations be-
come equal at integer multiples of Φ/Φ0 is clearly related to the
degeneracy points in the spectrum of the Rashba ring. The inter-
ference process is however far more complicated here than for the
spin filter, because now the spin wavefunctions interfere at differ-
ent locations (contact β and γ ). For example an electron travelling



190 V. Moldoveanu, B. Tanatar / Physics Letters A 375 (2010) 187–191
clockwise along the ring experience a first interference at the con-
tact with the lead β and then, if it does not escape to the lead,
a second interference at the contact with the lead γ is expected.
The nature of this interference (mostly destructive or mostly con-
structive) depends essentially on the contact sites, that is, on the
Aharonov–Bohm and Aharonov–Casher phases.

This sensitivity is illustrated in Fig. 2(c) showing the spin cur-
rents for the same parameters (ring radius, Rashba coupling and
bias) except for the angles of the leads which are chosen δ = ±27

◦
.

By comparing with Fig. 2(b) one notices that the spin orientations
selected by the output leads are interchanged; more precisely, at
Φ/Φ0 = 0 Jβ,↓ = Jγ ,↑ and exceed by far the other two compo-
nents which drop to a minimum. In this case the relevant split-
ter efficiency is E↓,↑ . Its behavior as a function of the magnetic
flux is quite similar to the one shown in Fig. 2(a), thus it is not
shown.

This change in the polarization of the spin currents filtered by
the output leads when the location of the latter is slightly changed
confirms that the splitter regime is a consequence of quantum in-
terference. This fact has also been reported for molecular rings by
Cohen et al. [14]. It is important to point out that in that case
the Zeeman coupling is more important than the Rashba coupling
which is very small. For our system the situation is just the oppo-
site: the Rashba coupling is crucial for the splitter operation.

This fact is revealed by Fig. 3(a) showing the dependence of
the splitter efficiency on the parameter Q R (which varies if the
Rashba strength α varies) for different values of the bias applied
between the input and the output leads. Let us discuss first the
case μα = 11.5 meV and μβ = μγ = 10.5 meV. The splitter ef-
ficiency corresponding to these parameters is the solid line dis-
played in Fig. 3(a). For small values of Q R the output currents are
not polarized and therefore the splitter efficiency is poor. As Q R

increases E↑,↓ gradually improves up to 65% at a value which cor-
responds to α = 0.27 and then slowly drops to zero.

In order to understand this behavior we looked at the spec-
trum of the ring as a function of Q R (see Fig. 3(b)). The horizontal
lines mark the chemical potentials of the leads defining the three
bias windows associated to the efficiencies shown in Fig. 3(a).
The spectrum corresponds to vanishing magnetic flux. At non-
vanishing Q R one notices the splitting of levels corresponding to
spin-up/-down clockwise and counter-clockwise propagating states.
In fact the traces in Fig. 3(b) are nothing but the ‘trajectories’ of
the upper and lower ‘corners’ of the rhomboids in Fig. 1. The lifting
of this degeneracy coincides with the onset of the splitter regime.
Of course, there is still a degeneracy between the spin-up CW
and spin-down CCW propagating states, as well as between the
spin-down CW propagating and spin-up CCW states. If we select
Φ/Φ0 = 1,2 . . . this degeneracy is also slightly lifted due to the
Zeeman term but it does not change the behavior of the splitter
efficiency.

One notices further that as Q R increases the branches of the
spectrum approach the edges of the bias window and eventually
pass above and below it which implies that the total current de-
creases. Although it would seem that this fact is behind the drop of
the splitter efficiency at larger values of α a more careful analysis
shows that this is not actually the case. If the chemical potential of
the input lead is increased such that the bias window covers two
sets of spin states it is clear from Fig. 3(a) (see the dashed-line
curve) that the splitter efficiency still drops even if there are al-
ways some levels within the bias window (i.e. the second and the
third branches in Fig. 3(b)). Moreover, the maximum value of E↑,↓
reduces considerably and its location does not coincide to the ones
from the previous cases.

This feature is very different from the situation encountered in
the spin filter case. For that system we found that the filter ef-
ficiency is quite robust with respect to the bias (see Fig. 7 from
Fig. 3. (Color online.) (a) The splitter efficiency E↑,↓ as a function of Q R for dif-
ferent values of the bias applied on the ring. Solid line – μα = 11.5 meV and
μβ = μγ = 10.5 meV, long-dashed line – μα = 9.5 meV μβ = μγ = 8.5 meV,
dashed line – μα = 11.5 meV, μβ = μγ = 8.5 meV. (b) A part of the spectrum
of the ring as a function of Q R in the absence of the magnetic flux. As Q R (i.e.
α increases) a degeneracy is lifted. As a consequence the spin currents in the out-
put leads can be discerned. The horizontal lines mark the chemical potentials of
the leads. (c) The spin currents in the output lead β at different values of the
bias. The spin-up currents are always larger that the spin-down currents which
also reach a minimum at a given value of Q R . Solid line – μα = 11.5 meV and
μβ = μγ = 10.5, long-dashed line – μα = 9.5 meV, μβ = μγ = 8.5 meV, dashed
line – μα = 11.5 meV, μβ = μγ = 8.5 meV.

Ref. [15]) because the destructive interference between spin-up
or spin-down states always happens around half-integer multiples
of Φ/Φ0.

The main point in the spin splitter regime is a that a good ef-
ficiency E↑,↓ requires small, ideally vanishing spin-down(-up) cur-
rent in the lead β (γ ). In Fig. 3(c) we show the currents Jβ,↑ and
Jβ,↓ for the same values of the bias considered in Fig. 3(a). The
solid-line curves correspond to the bias window that covers the
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two levels from the top of Fig. 3(b) while the long-dashed ones
are associated to a bias window covering the two lower curves
in Fig. 3(b). Finally the dashed curves correspond to a larger bias
that covers all the spectrum displayed in Fig. 3(a). In all cases
Jβ,↓ reaches a minimum which corresponds to a maximum split-
ter efficiency. When the bias window covers the lowest half of the
spectrum Jβ,↓ is higher than in the previous case while Jβ,↑ is
smaller. Otherwise stated, the splitting between the two currents
is diminished. As seen from Fig. 3(a), this implies a decrease of al-
most 30% in the splitter efficiency. Let us also point out that the
locations of the minima of Jβ,↓ do not coincide.

Now, when the bias window is extended the currents obviously
increase, because there are more levels located within it. But this
also means that the minimum value that can be achieved by J↓,β

increases so, by its very definition, the spin splitter efficiency de-
creases even more. As expected, its maximum value is located in-
between the maxima associated to the two cases discussed above.
This does not necessarily mean that a perfect efficiency is ex-
cluded, even for a large bias. The only key to this is to find suitable
parameters such that at integer multiples of Φ/Φ0 one of the spin
currents vanishes or admits very small values for consecutive pairs
of levels at the same value of Q R .

We find similar results for other values of the rings’ radius R ,
although the parameters for which the splitter efficiency is maxi-
mal are also different. It is important to stress that in the present
calculations the spectral properties of the ring are appropriately
taken into account, in the sense that the number of sites we use
to model the ring is such that the levels involved in transport
(typically the lowest ones) coincide with the one of the continu-
ous ring. We believe this to be an advantage over some simplified
models which include the Rashba coupling as a phase factor in
the hopping constant along the ring. Chi and Zheng [18] for ex-
ample considered the problem of spin filtering in a three lead ring
with an embedded dot (see also [20] for a study on rings with two
quantum dots).

4. Conclusions

The spin splitter properties of a mesoscopic ring with Rashba
spin–orbit coupling have been studied. The ring is coupled to one
input lead and two output leads. The spin currents are calculated
from the Meir–Weingreen formula and Keldysh formalism. We al-
low for a finite bias between the input and the output leads. We
have presented numerical simulations which show that the ring
can operate as a spin splitter if the perpendicular magnetic flux
is an integer multiple of flux quanta. The spin polarization of the
output leads can be reversed by a slight change of the location
of their contacts to the ring. The dependence of the splitter effi-
ciency on the Rashba coupling and on the applied bias is studied.
When compared to the spin filter operation analyzed in our pre-
vious work [15] we find that in the splitter case the interference
mechanism is more complex and therefore it is more difficult to
optimize its efficiency.
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