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ABSTRACT

R A D IA TIO N  FIELDS OF A C O M P LE X SOURCE IN 2-D  
CIR CU LAR  R A D O M E  W IT H  M ETAL G R ATING S

Slim Ouardani
M .S. in Electrical and Electronics Engineering 

Supervisors:
Prof. Dr. Ayhan Altıntaş 
Dr. Vladimir Yurchenko

August 1997

In this thesis, the transmission effect of ci two-dimensional circular radome with 
periodic metal gratings is analyzed. We started with the study of gratings con­
sisting of periodic arrays ol thin lossy strips surrounded by vacuum. Then we 
investigated the behavior ol such gratings if a dielectric hiyer is inserted between 
them. Complex line sources are considered to simulate directed beam fields used 
in practice. The fields on the interior and exterior sides of the radome are repre­
sented by modal cylindrical waves. Taking advantage of theoretical considerations 
recently published, we propose an approximate method and stress the numerical 
aspect. Data is obtained for the far field solutions and the directivity, and their 
dependences on different radome parameters. It appecirs that directivity varia­
tions with beam orientation are deci'eased considerably by a proper insertion of 
the dielectric layer.

Keywords : Dielectric radome, metal gratings, directivity.
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ÖZET

İKİ B O Y U TL U  M ETAL IZG AR ALI DAİRESEL R A D O M  
İÇİNDEKİ BİR K A R M A ŞIK  K A Y N A Ğ IN  IŞINIMI

Slim Oıiardani
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticileri:
Prof. Dr. Ayhan Altıntaş 
Dr. Vladimir Yurchenko

Ağustos 1997

Bu tezde, iki boyutlu, periodik metal ızgaralı dairesel rcidomlarm cilan geçirgenliği 
incelenmiştir. Öncelikle, ızgaraların periodik ve kayıplı olduğu ve çevrelerinde 
ayrıca yalıtkan olmadığı durum incelenmiş, daha sonra bu ızgaralm arasına 
yalıtkan tabaka konulması durumu çözülmüştür. Pratikte kullanılcin yönlü hüzme 
kaynağının benzetimi için karmaşık noktaya yerleştirilmiş kaynak modeli kul­
lanılmıştır. Çözüm için metal ızgara ve yalıtkan tabakadan oluşan radom ge­
ometrisinin içinde ve dışındaki alanlar silindirik dalgalar şeklinde yazılmıştır. 
Dciha sonra literatürdeki son katkılardan esinlenilerek yaklaşık ama nümerik 
olarak verimli bir yöntem uygulanmıştır. Işınım alanının değişik radom param- 
etleri ile değişimi hususunda veriler elde edilmiştir. Bu ve,rilere göre hüzme 
kazancının, hüzmenin yönüe göre değişmesi, metal ızgara arasına konulan ycilıtkan 
levha ile kontrol edilebilmektedir.

Anahtar Kelimeler : Yalıtkan radom, metal ızgaralar, işimin kazancı
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Chapter 1

INTRODUCTION

The transmission and reflection of the wave propagating through single and mul­
tiple dielectric layer systems is always an interesting subject of study which finds 
many applications. These systems have been studied since the early development 
of the wave liropagation, especially the electromagnetic waves. The layers can be 
planar, cylindrical or spherical, of non uniform thickness, open or closed in the 
form of shells.

Open layers may affect the propagation process by transmission through or 
guiding within them; closed layers may exhibit, in addition, phenomena at­
tributable to resonance, either inside the layers themselves or in the cavity en­
closed by the layers. One of the most important applications of the multiple 
dielectric layer systems is the Fabry-Parot interferometer, which has been used 
in the optical spectrum analyzer for a long time. When the dielectric layers are 
stacked in a periodic manner, a special class of laj^ered media which exhibits 
many interesting ¡phenomena has been found to be very useful. The examples are 
the Bragg reflector and various filters, such as frequency selective filters, which 
are capable of modifying the transmission within a certain range of frequency.

Theory of planarly layered media is a classical example which is found in 
textbooks, however that of cylindrically and spherically layered media was done
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not long ago[l]. The concentration was on the scattering of point sources by 
curved layers with special interest in the cylindrical and spherical structures.

The effect of a cylindrical dielectric layer on the penetration of electromagnetic 
waves hcis been extensively aniilyzed for the last few years, due to its potential 
applications such as in the study of the performance of a radar cuitenna enclosed 
by a radome. A radome is a dielectric shell which is used to protect the rcidar 
from rain, wind, sun, etc. In the presence of the radome, the radiation pattern 
of the radar antenna is distorted and a shift in the beam pointing angle of the 
radcir appears [2].In practice, a j)recise analysis of radome performance is diffi­
cult, and nearly imi^ossible, because the general shape of the radome layer does 
not lit into the frame suitable for e.xact analysis. One must therefore resort to 
some approximation methods. The basic principle of approximation is to find 
a canonical configuration to approximate the surface of the dielectric layer. In 
[2] a method of modal cylindrical wave spectrum, which is an extension of the 
plane wave spectrum surface integration technique [3], is applied to the analysis 
of a two-dimensional elliptic radome. In [4] analysis of two-dimensioiicxl circu- 
hir dielectric layer was performed to account for the curvature effect which was 
ignored in the previous studies, and correct slab transmission coefficient that 
improve local plane slab hypothesis was found. Proj^agation of Gaussian beam 
through dielectric plane layer [5] and circular cylindrical layer [6] was cinalyzed. 
Narrow beam has been employed as basis elements in the synthesis procedure, 
and each beam element has been propagated through the layer to the observer 
by non uniform complex ray asymptotics. In [7] equivalence partial angular har­
monic and ray-type Green’s functions were investigated focusing on the relation 
between periodic and non periodic Green’s functions for a closed (0 < < 2Tr)
and open (—oo < 6 <  oo) shell, respectively. Far field solutions for real and com­
plex line sources enclosed by a two-dimensional circular radome are obtained in 
[8]. Gylindrical functions are used to represent the incident field cind the scattered 
fields in the inner, middle, and outer regions. Boundary conditions are cipplied 
to the fields and analytical solutions to the problem is obtained.

Several types of boundary conditions have been developed for layered sheets 
to calculate the fields scattered or radiated by systems of thin layers. If the 
layers are modeled as infinitesimally thin structures described in terms of a set
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of boundary conditions, the computational problem becomes much less intense. 
Generalized impedance boundary conditions are derived for planar, magnetic 
dielectric slab grounded by a perfect electric conducting plane and for a magnetic 
dielectric coated perfect electric conducting cylinder [9]. Generalized resistive 
boundary conditions are also obl.ained for a planar, transparent dielectric slab. 
Other types of boundary conditions and the corresponding integrcil equations 
apply to penetrable sheets, and they are described as transmission boundary 
conditions. Curvature corrected boundary conditions for combined resistive and 
conductive sheets are described in [10]. In [11], attention was focused in the case 
of a layered sheet with different reflection properties characterizing its two faces. 
The boundary conditions involve only the tangential components of the fields and 
a set of the corresponding surface integral equations is provided for impenetrable 
and penetrable sheets. These boundary conditions can also reduce to the special 
case of sheets with identical reflection coefficients from both sides.

So far, a brief review of the problem of electromagnetic wave penetration 
through dielectric la.yer is given. In recent years the diffraction analysis of elec­
tromagnetic waves by dielectric gratings have been intensively investigated as 
well. Nowadays such structures are gaining widespread use as in frequency se­
lective filters, radomes and polarizers. In [12] the problem of scattering from a 
resistive grating is formulated in the spectral domain, where the convolution form 
of the integral equation for the scattered field reduces to a product form which 
can be solved by moment method techniques. Resistive boundary conditions are 
used with a constant surface resistance defined for the strips that are thin com­
pared to the attenuation length. The transmission and reflection coefficients of 
the array of strips are determined from the scattered fields. Later this approach 
was extended to multi-layered resistive strip gi'citings [13], and in [14] the study 
of gratings consisting of a periodic array of thin lossy strips with arbitrary cross 
section is provided.

In this study, the effect of a two-dimensional circular radome with metcil grat­
ings, on the propagation of electromagnetic fields radiated by a complex line 
source is investigated. The fields on the concave and convex sides of the radome 
are represented by modal cylindrical waves. Boundary conditions provided in
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[11] are used to derive the analytic solution of the problem. At first, the trans­
mission effect of circular gratings consisting of periodic arrays of lossy strips is 
considered. Two cases are described,high conductive (non-perfect metcvl) and 
high resistive (poor dielectric) thin strips. Finally the original problem is cuia- 
lyzed. Although we employed approximate boundary conditions to establish the 
field on the exterior side of the radome due to the source located on the interior 
side, the numerical data obtained justify strongly the validity of the method. 
Another important thing is that the method is effective for any number (>  1) 
of the strips with any angular width from 0 to ‘Ztt. This enables us to simulate 
different structures already studied in literature such as reflector antennas [15] 
and 2-D circular dielectric radome [8], and compare with the techniques used to 
solve for these geometries. The size of the matrix is determined l̂ y the radius 
of curvature and fairly large structures can be treated with guaranteed accuracy. 
Numerical results for the far fields and directivity of various structures are ob­
tained. Thickness variations are also included to give a better understanding of 
the models. Compcirisons are given to study the validity of the method.

The outline of this thesis is as follows: In chapter 2 we introduce the bcisic 
concept of the method and the formulation of the problem. Numerical results 
are presented in chapter 3. Main conclusions follow in chapter 4.

Throughout the analysis, a sinusoidally-varying time dependence e is as­
sumed and suppressed.
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ANALYSIS OF

TRANSMISSION THROUGH 

A RADOME WITH METAL 

GRATINGS

In this analysis, complex line source is considered to simulate directed beam fields. 
The primary wave fields are repr<;sented as expansion series of cylindrical waves, 
and then the effect of transmission through the radome is analyzed to evaluate 
the radiation fields. Formulation of the problem is carried out for tliin periodic 
metal gratings and then extended to the case of periodic metal-dielectric radome.
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2.1 Radiation Through a Circular Radome of 

a Thin Periodic Metal Grating

In Figure 2.1 a line source is placed at the comple.x position r̂ s which is given b,y

Tj =  Fo +  ib =  r'ox +  ib{cosfIx +  sinfly) (2.1)

where the parameter 6 is a measure of the source directivity, cuid the angle ¡1 
represents the direction of the becim.

P'igure 2.1: Geometry of the comj^lex line source

Depending on the polarization, we denote by U the Fb or IL  of the fields. 
The incident field due to the line source of amplitude C at the complex position 
fs is given by:

U‘" { r ,  = C f l i ' \ k „ \ f - r , n  (2.2)

where ko is the free space wave number and Hq{K t) is the Hankel function of the 
first kind. By the addition theorem for the Hankel function, we can write (2.2)
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as

where
"s ~  \¡7'q — 6  ̂ +  2ibl\^COsfi

_i^rQ-\-ihcosl3
Vs =  COS ( ------------------- )

(2.;3)

(2.4)

(2.5)

Figure 2.2: Geometiy of circular periodic metal gratings

Figure 2.2 shows a grating cojisisting of an array of circular thin metal strips 
surrounded by vacuum. The perfectly conducting strips have zero thickness and 
angular width 29ap· The array is ])eriodic with period (¡)q. To solve the problem of 
a complex line source rcidiating through periodic metal grating, the scattered field 
should satisfy the Helmholtz equation, the Neumann or Dirichlet type boundary
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condition on the strips, the continuity condition at the slots and the radiation 
condition at infinity. The scattered field can be expressed in integral Idrm by 
imposing the boundary condition as follows

/  JEir')Go(7-?}ch^,7-e
JM

M (2.6)

in El-polarization

dU‘ ‘̂̂ (î ) d
dn

(2.7)

in H-polarization

where h is the outer normal, Je ,h {t) are the unknown current densities, G o{f,r') 
is the 2-D Green’s function (i.e ^HQ^\k\f — 7''|)) and the contour M is taken as 
the surface of all the scatterers.

Equations (2.6) and (2.7) are widely known and can be solved numerically by 
the method of moments (MoM). Unfortunately MoM solutions lead to matrixes 
of great order N or increase the computation time due to massive numerical inte­
gration. In addition the problem often becomes ill-posed and does not guarantee 
convergence of the solution when N  oo. I'br these reasons, it is recommended 
to use other methods to calculate the radiated fields.

For our geometry the total field can be expressed as follows

¿/¿nc(-) ^  ^
( 2 .8 )

U"^(f) r >  a .

The scattered field satisfies the 2-D Helmholtz equation

(V^ +  =  0. (2.9)

Due to the axial symmetry of the problem it is expanded in series form as

rnJn{kor)U'"*’ r < a
C /-(f) =  ^

 ̂ U i(^\kor)F ruj)
( 2.10)

r > a .
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where r'n and are the unknown coefficients to be determined by the boundary 
conditions at 7’ =  a.

In region 1 (?’ < a) Bessel function is chosen to represent the standing wave 
nature of the scattered field, wherecis in region 2 (r > a) Hankel function is chosen 
to satisfy the radiation condition at infinity.

Hence, the total field in region 1 is given by

+  7’„./„(^^or)]e'"^ |7’,| < /■ < « (2.11)
n

and in region 2 cis
( 2 . 1 2 )

2.2 General Form of Boundary Conditions

The boundary conditions to be used are established in [11] for the analysis of 
imperfectly conducting layers. We do realize that the set of bounchiry conditions 
available are valid for lossy materials, nevertheless the method can be generalized 
to cpiite good conductors. Actually, the concept of perfectly conducting mate­
rial and of a perfectly conducting and infinitely thin screen is not always well 
understood [16]. For example, in the far infrared, gold is generally considered 
as infinitely conducting, however a very thin gold strip, like that found in tele­
scopes, can be melted by a laser beam. Thus for practical purposes if a metal is 
supposed to have the same permittivity and permeability of free space and a real 
conductivity <r(a model often used in the far infra red cuid microwave ranges), it 
is equivalent to a lossy dielectric with relative permittivity e,. =  1 +  fo/eoa^.From 
now on, we consider imperfectly conducting metals.

The boundary conditions we shall be using are given in the following form

<ETirJ)>=RTir,<j>)JT{r,<l>) (2.13)

< Hrir, </>) > =  ,ST(r, <f>)MTir, </>) (2.14)
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which relates the average tangential fields

1
< Erir, (/)) > =  -[E2T(r, (j)) +  E irir, (j))]

< H rir, Cj>) > =  ^[f/2r(r, +  / / it O·, <!>)]

(2.15)

(2.16)

to the currents defined by the field jumps

./x(r, cj>) = h X [ //27-(r, <i>) -  //ir (r , <!>)] (2.17)

Mr(r, (f)) = ~h X [E2T{r, (j)) -  Eirir, (j))] (2.18)

Here the subscript 1 or 2 denotes the fields in respective regions, and R j  and St 
have the interpretation of the electric resistivity and magnetic conductivity of the 
interface separating regions 1 and 2. They can be regcirded as phenomenological 
parameters which can be determined experimental^ through the measurement 
of the reflection and transmission coefficients, or evaluated analytically according 
to [11].

An alternative version of this set of boundary conditions is written as

h X [Hriir, <!>) -  HMr, <!>)] =  6 '(a  ct>)[E2T{r, c!>) + E M f  9̂ )1 (2.19)

-  n X [i?2T(r, (¡)) -  Errir, V))] - T]T{r, ^)[H2T{r, (j>) + HiT{r, (/))] (2.20)

where
^T{r,<l>) =  l/i2R.Tir,<j>)) 

7]T{r, (j)) = l / ( 2,SV(r,</>))

(2 .2 1 )

(2.22)

Obviously, the boundary conditions have to be imposed on the strips. In our 
geometry, these strips form a periodic open contour, thus it is necesscuy for Ît 
and T}T to have a periodic step function of (j) to account for the continuity of the 
total electric and magnetic fields at the slots (see P’igure 2.3).

In the case of E polarization, (2.23) and (2.24) will be relating ii'. and H,j, — 
in the following way

IU {r , <!>) -  I-h4r, <!>) =  b i r ,  <l>)[E2Ar, +  E’i.(r, <̂ )]|,.=„ (2.23)
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FTU c  <!>) -  E i.r ir , <j>) --= T^rir, <^)[//20(r, <p) +  //i0 (r, m -=a  (2.24)

with
A

0 ii>  e s
(2.2.5)

(2.26)
8 \i<t>e M

0 if e -5'.

Note that in the limit case A —> oo and —> 0 the boundary conditions reduce
to the Dirichlet boundary condition for only perfectly conducting material Ey —
E 2 —  0.

4t(<|)) ,T)t(<1))

A,5

zILl - 0u|, 
2

0ap IJL 
2

Figure 2..3; and r/T functions of (j)

2.3 Algebraic Solution of the Problem

To find the coefficients and it is convenient to write the functions and 
?;2’ ((/>) in their Fourier series expansion

inL(j) (2.27)

and

hr [4’) =  J2vTn^
inL(l) (2.28)
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where

and

iT„,(vr„) =  A , (6)
C\ Ogp 
 ̂00 if n =  0

^sin{nL0ap) if n ^  0
r __ 27T

“  0 0  ·

Recalling that a periodic function /  with period 2tt and another cj with period 
(j)o where divides 2% by an integer L are written as

./’ =  and g =  J2n

then their product p =  fg  can be expanded in a generalized Fourier series

P =  EnPne‘"^with Pn =  T,rn fn-rnLgm

Therefore the expansion of (2.23) and (2.24) can be performed easily and we are 
led to

T ^^0 Em T̂m̂ n—mL^n—mL '̂nUn T *■̂ 0 Em ItTnAn—’n̂ LlJn—mL —

Zn. ̂  g- ̂n "f" ^ 0  ^   ̂^Tm -  rn L ̂  n -  rn L ( 2 .2 9 )
m

tn^n  +  '^ m  VTm^n-mL''^n-mL ~  VT^n‘̂ 'n-mLDn-mL ~

. r/ /̂̂ 771 - mL^n- mL
^̂ 0 m

(2.30)

where

Vn =  4^Hkoa) y ; =  jP ik o a )
Zn =  Jn{hrs)e~ "̂·^^

and Zountrinsic impechince of free space .
Note that the derivatives are with respect to the argument. Keeping only 
Ntr =  '2N +  1 terms in the Fourier series(?i <  A )̂, we get ?·„ and tn by solv­
ing the system, and thus the fields in both regions.
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The boundary conditions we luwe been using so far, rewritten here for conve­
nience are

-î 2r/> ~ Hi,p =  I,t (F2z +  Fiz) (2.31)

E'2z — Fiz =  Vt {H2  ̂ +  Hi,j,). (2.32)

By setting 7]T =  0, 7  ̂ 0 we obtain the well known set of equations for a thin
dielectric resistive sheet (i.e a sheid of high conductivity and its resistivity is siricill 
compared to free space impedcuice)

//20 -  Hl(j> t̂ {F 2z +  Flz)

F 2Z — Fiz

(2.33)

(2..34)

With these two equations we Ccin solve for r„ and independently. The field of 
interest is the one at the far zoikj which includes We obtained the following 
equation in

XuVn -  XnVntn T N Aq ^  ̂^TnXn—mLin—rnL —
XuVn -  XuVn

Un m Vr,

where ?/„, and are as the ones used in (2.29) and (2.30).

(2.3.3)

2.4 Radiation Through A Radome of Periodic 

Metal-Dielectric Grating

Previously, we have considered the problem of thin periodic metal grating. The 
strips are modeled as infinitely thin structures described in terms of a set of 
boundary conditions relating the fields from the interior and exterior sides by the 
two coefficients Rj· cincl St (2.13 and 2.14) known as electric resistivity and mag­
netic conductivit}^ respectively. While treating thin structures, it is convenient to 
define real constant resistivities and conductivities for the strips, however for a 
hiyer of finite thickness, this assumption does not hold because these coefficients 
depend on the microscopic properties and thickness of the layer.
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For a dielectric/rna.gnetic liiyer characterized by niciterial parameters e:, p and 
thickness h, the respective values of Rt and St are

2 V e 2 W 6o/̂ o

.5V =  h / - c o t ( i , / 4 ^ W . )zu/ i 2 y cofiQ

which can be written as

where

Rt = ' -Z c o t  ik ’̂ )

i l  , ,h  
Si' =  -  — cot (k—) 

2 Z  2 ’

Z — Zq/\fCr 
k =  ko\/ ·̂

(2.36)

(2.37)

(2.38)

(2.39)

Surely the use of these values for the parameters Rt and St have practical 
advantages such as the choice of the metal strips characteristics and thickness. 
Also, we can now insert dielectric between the strips (see Figure 2.4). This 
will enable us to investigate the (effect of a circular dielectric ra.dome with metal 
grating, which is the aim of this thesis.

The formulation of the problem for such geometry is carried out exactly as 
that for thin metal gratings, except that Ît =  l/(2 i? i) and 7]t =  1/(25V) will 
have a different function of 4> from that of Figure 2.3. In this case t̂ Vt 
now a periodic function of <j) as shown in Figure 2.5

The Fourier series coefficients (̂ t„ ’s are given as

(A„, -  A , ) 2 ^  +  A , if?i =  0
T̂n = 4>o

i^rn if 0
(2.40)

and the coefficients as
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VT„
(Sm -  if n =  0

'PO

(¿m -- Ss)^sin{nLO,,,,) if n ^  0
(2.41)

Figure 2.4: Geometry of a circular radome with periodic metal gratings

^t ((|)) ,t| t ((()) 

A m. 6iii

As.6s

2 0ap IJL 
2

Figure 2.5: (fy and r\T functions of 0
(the plot is understood for either real or imaginary parts of the functions).



Chapter 3

NUMERICAL RESULTS AND 

DISCUSSION

As mentioned in the introduction, the aim of this study is to analyze the effect of 
cl metal-dielectric periodic radome on the transmission of electromagnetic fields 
radiated by a complex line source placed inside this structure. The subject is 
discussed in terms of normalized power at the far zone and the directivity, which 
represent two important parameters in design problems. The associated formula 
lor the normalized power pattern is given as

Norm — (3.1

For far field observation {kr 1) the total electric field can be reduced by 
replacing the Hankel function Hlp(kor) by its asymptotic expression. By doing 
this we obtain

Jko r

inKo V
(3.2)

16
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which is more convenient for numerical computations.

The directivity, which is the ratio of the maximum radiation intensity to the 
average radiation intensity, in terms of electric held intensity is given by

D = 2tt I æ;”*'“· p
(3.3)

Using Parseval’s Relation

^  L I •■̂’ (0  p =  I ]  I «/t· г^Jo -'Î0 i.
(3.4)

D can be expressed as

D =
LDnax 12

E„ I i,. P ' {■3.5}

In the formulation of the problem, it is stated that exact solutions are not 
available and are not obtained easily due to several reasons, so approximations 
have been used to establish the outer helds due to the source enclosed by the 
radorne. The basic cvpproximation employed is to model the radome as thin layer 
described by means of boundarj' conditions. The set of boundary conditions 
provided, relate the inner electric and magnetic helds to the outer ones through 
two coefficients evaluated by the structure and the material i^roperties of the the 
Iciyer representing the radome. This approach as alrecidy mentioned considers 
non perfect metals.

In our investigation, attention was focused on periodic metal gratings since 
they are strong scatterers compared to dielectrics, esjDecially when the dielectric 
thickness is half the wave length. Thus metal grating are of primary importance 
for the scattered helds. In this chapter, the numerical results for two different 
models of the radome are obtained. The first model is described by thin periodic
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metal gratings surrounded by vacuum, whereas the second model represents a 
dielectric radome with periodic inetal gratings. For the first model results are 
given at two levels. Due to high conductivity, resistive boundary conditions are 
used to obtain the results lor the far field patterns. This simplified boundary 
condition cissumes the continuity of the electric field through the metal strips. 
This is due mainly to the fact that the electric field is almost zero on the metal 
interface so it is considered to be equal at the two faces. This assumption has been 
widely used in scattering from r<isistive layers and the boundary conditions are 
often referred as transparency boundary conditions. Then the general boundary 
conditions are used to show the limitations of the former ones.

3.1 Radomes of Periodic Metal Gratings

In Figure (3.1), the normalized power at the far zone for a circular reflector 
antenna is obtained(only one strip). This result coincides exactly with the one 
obtained by solving the integral equations (IE) corresponding to such a geometry 
[17]. This is expected because our rigorous solution of the problem is in fact the 
scime as IE solutions. For a non PEC, in the case of E-pol the scattered field is 
expressed in integral form as

J J r( f)G if, P)dP -  - £ , r ( r )  + R T r i r ) (3.6)

where Jj is the unknown surface current and R is the effective resistance of the 
scatterer.

In our formulation the scattered field is written in series expansion with un­
known coefficients which are determined by imposing the boundary conditions 
and we were led to solve the following equation.

(3.7)
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which is equivalent to (3.6) exce])t that the scattered field is expressed in series 
expansion with separate variables, rather than the compact integral form.

Knowing that our results show good agreement with IE solutions lor the case 
of a reflector antenna, lurther numerical data for other geometries are obtained.

The normalized power for two circular opposite reflectors is shown in Figure 
(3.2). The reflectors have the same dimensions as the used to obtain Figure (3.1). 
The source has the same location and direction as well. A drop in the power is 
ob.served at (j) =  180°, compared to Figure (3.1).This behavior is understandable 
due to the presence of the second reflector at that position.

In Figures (3.3) through (3.6) the normalized power at the far zone for gratings 
consisting of a periodic array of two, three, four and five strips is obtained lor 
diffei’ent cingular widths when ka =  62.8 , ?'o =  0 , kb =  .5 (Beam Width= 
42°)and /3 =  0. The ratio of the strip resistivity to free space impedance is 
taken as 2Rq'fZo =  0.1%. The same results are obtained lor more resistive 
strips, 2Rt !Z o =  10% (Figures (3.7) to (3.10)). As observed in these figures, the 
distortion of the main beam increases with increasing number of strips which is 
mainly due to the contribution of each strij) to the scattered fields as expected. 
Increasing the angular width of the strips also increases beam distortion and 
causes a shift in the main beam direction. It is noticed thcit increasing the 
resistivity reduces the boresight error (the difference between the cipparent and 
the distorted beam direction). For strips with ‘IR jjZ o  = 0 .1 %  and ‘IR t/Zq — 
10%, the shift in the main beam direction occurs at an angular width of 2° whereas 
this behavior appears at an angular width of 3° for strips of higher resistivity 
{‘IR tIZq =  10%) and in general the patterns are quite similar for these two 
cases. This shows that good conductors have greater effect on the distortion of 
fields which is reasonable since they are stronger scatterers. Another point worth 
mentioning is that through all these figures, the power at (f> =  180° (opposite to 
the main beam direction) increases as the angular width increases.
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Figure 3.1: Normalized power at the far zone for a circular reflector antenna: 
2Rt ¡Z q =  5 X IQ— ka =  6.28,ro =  a/2,/9 =  0, âp =  30 degrees, kb =  0.5.

Figure 3.2: Normalized power at the far zone for 2 circular opposite 
2Rt IZo — h X 10“ ·̂ , ka =  6.28,ro =  a/2,/3 — 0,0ap =  30 degrees, kb — 0.5.
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Figure 3.3: Normalized power at the far zone for a grating consisting of two
resistive strips : ka =  62.8 , kb =  5 , /3 = 0° , 2RtIZq =  0.1% , (a) Oap =  0.'
(b) Oap =  r .

0°  ,



Chapter 3. NUMERICAL RESULTS AND DISCUSSION 22

Figure 3.4: Normalized power at the far zone for a grating consisting of three
resistive strips : ka = 62.8 , A:6 — 5 , /3 = 0° , 2RxfZo = 0.1% , (a) $ap = 0.5° ,
(b) Qap = r .
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Figure 3.5: Normalized power at the far zone for a grating consisting of four
resistive strips : ka =  62.8 , kb — 5 , /3 = 0° , 2/?x/Zo = 0.1% , (a) Gap — 0.5° ,
(b) Oap =  1° .
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Figure 3.6: Normalized jiower at the far zone for a grating consisting of five
resistive strips : ka = 62.8 , kb =- 5 , ¡3 — 0° , 2RtIZq = 0.1% , (a) Oap = 0.5° ,
(b) Oap =  1° .
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(a)

Figure 3.7; Normalized power at the far zone for a grating consisting of two
resistive strips : ka = 62.8 , =  5 , /9 = 0° , ‘¿RtIZq — 10% , (a) Oap — 0.5° ,
(b) =  1° , (c) 9ap = 1.5°.
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Figure 3.8: Normalized power at, the far zone for a grating consi,sting of three
resistive strips : ka = 62.8 , kh — h , /3 = 0° , ‘¿RtIZq — 10% , (a) 6ap — 0.5° ,
(b) Oap =  1° , (C) dap = 1.5°.



Chapter 3. NUMERICAL RESULTS AND DISCUSSION 27

Figure 3.9: Normalized i)ower at the far zone for a grating consisting of lour
resistive strips: ka =  62.8 , kb = 5 , ¡3 = 0° , 2R/f/Zo - 10% , (a) Oap — 0.5° , (b)
Oap = 1° , (C) 9ap =  1.5°.
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E'igure 3.10: Normalized power at the far zone for a grating consisting of five
resistive strips : ka = 62.8 , kb ~ 5 , /3 = 0° , 2RtIZq — 10% , (a) вар =  0.5° ,
(b )  вар =  1° , (C) вар = 1.5°.
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After analyzing the far-zone normalized power for different geometries, the 
directivity, which is a commonly used parameter to measure the overall ability of 
an antenna to direct radiated power, will be discussed. Figures (3.il),(3.12)and 
(3.13) present the variations of th<î overall directivity D with angular width for pe­
riodic gratings of various number of strips with different resistivities. As expected 
increasing the angular width deci'eases the directivity. However some weak reso- 
iicuit behavior which is related to the strip width values, around apj^roximately 
integer multiple of A/2, is observable. Throughout these three figures, the num­
ber of strips does not affect the directivity up to a critical angular width, related 
to the linear width of the strip d A/2(if d =  A/2 , 0ap =  1-4°, after which the 
difference becomes more observable. It is found that, at this width the boresight 
error starts to increase considerably. As observed in these figures that this crit­
ical angular width becomes wider as the resistivity of the strips increases. It is 
of 0.8° for materials of resistivity 2Rt IZq — 0.1% , 1.5° for 'IRj IZq - 1%, and 
2° for 2Rt /Zq =  10%. The directivity at these points is higher as the resistiv­
ity decreases. For good conductors (Fig 3.13), we see that the directivity drops 
shcirply just after zero width cirid then it keeps necirly constant vidue up to the 
critical width, while it decreases at a lower rate for more resistive materials.

We notice as well that gratings consisting of periodic arrays of two and four 
strips show very close behavior; however, for gratings of three and five strips the 
results differ from each other. Similarities appear for two and four strips due to 
the symmetric structure of the geometry. In addition the beam is directed to the 
strip and narrow enough that it does not affect the the strips at <j) =  ±90°.

The directivity variations versus the beam direction are presented in Figures 
(3.14) through (3.17) for gratings of two, three four and five strips when ka - 
62.8 , T'o — 0 , kb =  5 and Oap =  1°. The data are obtained lor two different 
resistivities of the strips {2Rt !Z q =  1% and 2Rt IZq =  10%). Again, we see that 
the directivity decreases with increasing resistivity which shows good agreement 
with the previous results.
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Figure 3.11: Directivity versus Angular Width of Strips {dap) '■ ha =  62.8 , kb =  3 
, ^ =  0° , 2Rt/Zo = 1 0 %.

Figure 3.12: Directivity versus Angular Width of Strips (Oap) : ka — 62.8 , kb 
,/3 = 0° ,  2Rt IZo =  1%.
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Figure 3.13: Directivity versus Angular Width of Strips (Oap) : ka =  62.8 , kb =  5 
=  2Rt IZo =  0.1 %.
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Figure 3.14: Directivity versus Beam Direction for a grating consisting of two
resistive strips : ka — 62.8 , kb = 5 , Oap =  1° , (a) 2RtIZq = 1% , (b)
2Rt !Zo =  10%.
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Figure 3.15: Directivity versus Beam Direction for a grating consisting of three
resistive strips : ka =  62.8 , kb = 5 , 9ap = 1° , (a) ‘2.Rt/Zq =  1% , (b)
2RtIZo =  10%.
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(a)

(b)

Figure 3.16: Directivity versus Beam Direction for a grating consisting oi four
resistive strips : ka = 62.8 , kb = b , Oap =  1° , (a) 2Rt/Zq — 1% , (b)
2Rt/Zo = 10%.
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F'igure 3.17: Directivity versus Beam Direction for a grating consisting of five
resistive strips : ka =  62.8 , = 5 , 6̂ap = 1° » (a) 2i?r/Zo = 1% , (b)
2RtIZo =  10%.
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3.2 Radomes of Periodic Metal-Dielectric Grat­

ing

The results we have discussed pniviously were obtained using the simplified ver­
sion of boundary conditions valid for thin dielectric layers. As stated in the 
beginning of this chapter, these boundary conditions have been widely employed 
in scattering problems for electrically resistive sheets. However, they become in­
applicable to magnetically conductive strips or sheets of non-zero thickness. In 
Figure (3.18) we have plotted again the far-zone normalized power for a circu­
lar reflector antenna with the same dimensions and parameters like in Figure 
(3.1). In this case we set S j =  S ^  oo. The patterns coincide with the one 
presented in Figure (3.1) when St is large compared to Fq =  l/'^o? but when we 
decrease the magnetic conductivity St ·, the results deviate from the initial one 
and we start loosing accuracy. Thus, the method of using transparency bound­
ary conditions is not valid anymore. To show the limitations of this method , we 
have obtained the directivity variations versus thickness for a circular dielectric 
radome when ka — 62.8 ro =  0 , kb =  5 and /9 =  0 using the simplified cind 
generalized boundary conditions. The periodicity of the directivity as a function 
of thickness is observed, with period A*e//2 as expected when the generalized 
boundary conditions are applied, whereas incorrect periodicity is obtained with 
simplified boundary conditions(see Figure 3.19). The values of the directivity 
calculated by the two methods are close to each other just for very small thick­
ness (<  0.2Xdiei) which proves that the simplified boundary conditions are valid 
only for thin electrically resistive sheets.

In Figures(3.20) to (3.23) the directivity versus thickness is obtained for a 
circular dielectric radome for diflerent source directivities using the generalized 
boundary conditions. For the validation of the results, we have checked the exact 
solution [8] for the same geometry with the same dimensions and parameters. 
As observed in these figures, our results show good agreement with the exact 
ones. The difference between the two solutions increases as the source directivity 
increases, but this appears only at the minimum values of the directivities, which 
is not very important since in design problems high directivity is desired.
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Further results for the directivity are obtained for a circular rnetal-dielectric 
radome with four metal strips when ka =  62.8,^?’o =  0 and kb — 5. Pdgure (3.24) 
shows the directivity variations with increasing dielectric thickness for three beam 
directions. The metal strips have angular width 20ap =  1° and relative resistivity 
2RtIZq =  1%. The dielectric is perfect with e)· =  4. It is seen that the directivity 
for the three orientations of the source converge to the same value which is close to 
the free space directivity when the thickness of the dielectric is an odd multiple 
of ^dieil2. This behavior is desirable for radome construction around a radar 
antenna.

In Figure (3.25) the directivity versus the angular width of the metal strips 
presented. It is observed that the variations are less sensitive to the width and the 
beam direction when perfect dielectric is used with narrow strips. To look for the 
limiting values of the strip width and the perfectness of the dielectric, directivity 
variations function of the beam direction are plotted in Figures (3.26) through 
(3.28) for radomes consisting of metal gratings in free space, lossy dielectric-metal 
and i:)erfect dielectric radomes.

As observed in these figures, the insertion of a dielectric layer between the 
metal strips decreases the directivity variations as compared with metal in vac­
uum. The directivity is nearly constant when perfect dielectric is used. However, 
this is not valid for all widths of the metal strips. When the cingular width in­
creases, the variations in the directivity become more considerable and tend the 
case of metal gratings surrounded free space.
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Figure 3.18; Normalized Power at the far zone for circular reflector antenna; 
2Rt/Zo =  5 X 10-^ , ka =  6.28 , ro =  a/2 , ^ =  0 , Oap -  30° , kb =  0.5.

Figure 3.19; Directivity versus 3'hickness for a circular dielectric radome ka
62.8,A.7’o ~  Ofkb — 5,6r 4 -t-
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Figure 3.20: Directivity versus I ’hickness for a circular dielectric raclorne ka 
62.8,ÂTo =  0,kb =  5,e',. =  4 +  ¿0.5.

Figure 3.21: Directivity versus 3'hickness for a circular dielectric radonie ka
62.8,A:ro = 0,kb = 10,e",. = 4 + ¿0.5.
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Figure 3.22: Directivity versus 3’hickness for a circular dielectric radorne ka 
62.8,A,To =  0,A;6 =  15,e; =  4 +  ¿0.5.

Figure 3.23: Directivity versus I'hickness for a circular dielectric radome ku
Q2.S,kro = 0,kb = 20,C = 4 + ¿0.5.
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Figure 3.24: Directivity versus Dielectric Thickness for a circular metal-clielectric 
raclome.

Figure 3.25: Directivity versus Angular Width of metal strips for a. circuhir metal-
dielectric radome.
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Figure 3.26: Directivity versus Beam Direction for a circular radoine: Oap 
O..5°;solicl;metal in free space;dashecl:metal-diel e,. - 4;dash dotted:metcd-diel e,. 
4 +  z0..5.

Figure 3.27: Directivity versus Beam Direction for a circular radome: Oap 
2°;solid:metal in free space;dashed:n:ietal-diel e,. =  4;dash dotted:metal-diel e,. 
4 +  i0..5.
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Figure 3.28: Directivity versus Beam Direction for a circular radome: 0ap 
5°;solid:metal in free space;dashed;metal-diel C — 4;dash dotted:metal-diel e',. 
4 +  iOJ).
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CONCLUSIONS

In this thesis, the problem of electromagnetic wa.ve penetration through a circular 
dielectric radome with gratings consisting of an array of periodic thin, lossy metal 
strips is considered. To the best of our knowledge, this is the first study made so 
far to solve such a problem with this approach.

The fields radiated by a complex line source are represented by modal cylin­
drical waves. Boundary conditions of a new generalized form, provided recently 
in the literature are used and manipulated according to our geometry to relate 
the outer fields to the inner ones and the analytic solution of the problem is 
obtained.

Results for the far zone fields and the directivity are calculated numerically for 
various structures as functions of the observation angle, the angular width of the 
metal strips and the beam orientation for metal gratings surrounded by vacuum. 
Also, presented are dependence of the directivity on the relative thickness of the 
dielectric layer for circular radomt! of metal-dielectric gratings, hdiicilly, directivity 
Vciriations with beam direction are presented, for the validation of the method 
results are genercited and compared with the aviiilable ones for simple geometries.

According to our numerical data, the distortion of the main beam increases

44



Chapter 4. CONCLUSIONS 45

and the directivity decreases with increasing number of strips and angular width 
in the case of metal gratings in free space. The directivity reveals a kind of 
resonant behavior as a function of the strip width d when the latter is about a 
multiple of the half wavelength in free ŝ Dace: cl nXf2. It appears also that it 
is much better to use higher resistive strips to decrease the boresight error when 
the strip width d < A/2.

The directivity shows considerable variations as a function of the beam direc­
tion. However, when a dielectric layer is inserted between the metal strips, the 
changes are much less observable especially for perfect dielectrics of half wave­
length thickness. Unfortunately this is not valid for any width of the metal strips, 
and we are restricted to narrow ones (cl <  A/2).
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