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ABSTRACT

RADIATION FIELDS OF A COMPLEX SOURCE IN 2-D
CIRCULAR RADOME WITH METAL GRATINGS

Slim Ouardani
M.S. in Electrical and Electronics Engineering

Supervisors:
Prof. Dr. Ayhan Altintas
Dr. Vladimir Yurchenko

August 1997

In this thesis, the transmission effect of a two-dimensional circular radome with
periodic metal gratings is analyzed. ‘We started with the study of gratings con-
sisting of periodic arrays of thin lossy strips surrounded by vacuum. Then we
investigated the behavior of such gratings if a dielectric layer is inserted between
them. Complex line sources are considered to simulate directed beam fields used
in practice. The fields on the interior and exterior sides of the radome are repre-
sented by modal cylindrical waves. Taking advantage of theoretical considerations
recently published, we propose an approximate method and stress the numerical
aspect. Data is obtained for the far field solutions and the directivity, and their
dependences on different radome parameters. It appears that directivity varia-
tions with beam orientation are decreased considerably by a proper insertion of

the dielectric layer.

Keywords : Dielectric radome, metal gratings, directivity.
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OZET

IKI BOYUTLU METAL IZGARALI DAIRESEL RADOM
ICINDEKI BIR KARMASIK KAYNAGIN ISINIMI

Slim Ouardani
Elektrik ve Elektronik Miithendisligi B6liimii Yiiksek Lisans

Tez Yoneticileri:
Prof. Dr. Ayhan Altintas
Dr. Vladimir Yurchenko

Agustos 1997

Bu tezde, iki boyutlu, periodik metal 1zgaral: dairesel radomlarin alan gegirgenligi
incelenmigtir. Oncelikle, 1zgaralarin periodik ve kayiph oldugu ve cevrelerinde
ayrica yalitkan olmadigi durum incelenmis, daha sonra bu izgaralin arasina
yalitkan tabaka konulmasi durumu ¢oziillmistir. Pratikte kullanilan yonlii hiizzme
kaynaginin benzetimi i¢in karmagik noktaya yerlestirilmig kaynak modeli kul-
lanilmigtir. Gozim i¢in metal 1zgara ve yahtkan tabakadan olugan radom ge-
ometrisinin icinde ve digindaki alanlar silindirik dalgalar seklinde yazilmigtir.
Daha sonra literatiirdeki son katkilardan esinlenilerek yaklagik ama nimerik
olarak verimli bir yontem uygulanmigtir. Igimim alaninin degisik radom param-
etleri ile degisimi hususunda veriler elde edilmistir. Bu verilere gére hiizme
kazancinn, hiizmenin yonte gore degigmesi, metal 1zgara arasina konulan yalitkan

levha ile kontrol edilebilmektedir.

Anahtar Kelimeler : Yahtkan radom, metal 1zgaralar, 1simin kazanci
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Chapter 1

INTRODUCTION

The transmission and reflection of the wave propagating through single and mul-
tiple dielectric layer systems is always an interesting subject of study which finds
many applications. These systems have been studied since the early development
of the wave propagation, especially the electromagnetic waves. The layers can be
planar, cylindrical or spherical, of non uniform thickness, open or closed in the

form of shells.

Open layers may affect the propagation process by transmission through or
guiding within them; closed layers may exhibit, in addition, phenomena at-
tributable to resonance, either inside the layers themselves or in the cavity en-
closed by the layers. One of the most important applications of the multiple
dielectric layer systems is the Fabry-Parot interferometer. which has been used
in the optical spectrum analyzer for a long time. When the dielectric layers are
stacked in a periodic manner, a special class of layered media which exhibits
many interesting phenomena has been found to be very useful. The examples are
the Bragg reflector and various filters, such as frequency selective filters, which

are capable of modifying the transmission within a certain range of frequency.

Theory of planarly layered media is a classical example which is found in

textbooks, however that of cylindrically and spherically layered media was done

l
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not long ago[l]. The concentration was on the scattering of point sources by
curved layers with special interest in the cylindrical and spherical structures.

The effect of a cylindrical dielectric layer on the penetration of electromagnetic
waves has been extensively analyzed for the last few years, due to its potential
applications such as in the study of the performance of a radar antenna enclosed
by a radome. A radome is a dielectric shell which is used to protect the radar
from rain, wind, sun, etc. In the presence of the radome, the radiation pattern
of the radar antenna is distorted and a shift in the beam pointing angle of the
radar appears [2].In practice, a precise analysis of radome performance is diffi-
cult, and nearly impossible, because the general shape of the radome layer does
not fit into the frame suitable for exact analysis. One must therefore resort to
some approximation methods. The basic principle of approximation is to find
a canonical configuration to approximate the surface of the dielectric layer. In
[2] a method of modal cylindrical wave spectrum, which is an extension of the
plane wave spectrum surface integration technique [3], is applied to the analysis
of a two-dimensional elliptic radome. In [4] analysis of two-dimensional circu-
lar dielectric layer was performed to account for the curvature effect which was
ignored in the previous studies, and correct slab transmission coeflicient that
improve local plane slab hypothesis was found. Propagation of Gaussian beam
through dielectric plane layer [5] and circular cylindrical layer [6] was analyzed.
Narrow beam has been employed as basis elements in the synthesis procedure,
and each beam element has been propagated through the layer to the observer
by non uniform complex ray asymptotics. In [7] equivalence partial angular har-
monic and ray-type Green’s functions were investigated focusing on the relation
between periodic and non periodic Green’s functions for a closed (0 < 0 < 2)
and open (—oo < 8 < c0) shell, respectively. Far field solutions for real and com-
plex line sources enclosed by a two-dimensional circular radome are obtained in
[8]. Cylindrical functions are used to represent the incident field and the scattered
fields in the inner, middle, and outer regions. Boundary conditions are applied

to the fields and analytical solutions to the problem is obtained.

Several types of boundary conditions have been developed for layered sheets
to calculate the fields scattered or radiated by systems of thin layers. If the

layers are modeled as infinitesimally thin structures described in terms of a set
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of boundary conditions, the computational problem becomes much less intense.
Generalized impedance boundary conditions are derived for planar, magnetic
dielectric slab grounded by a perfect electric conducting plane and for a magnetic
dielectric coated perfect electric conducting cylinder [9]. Generalized resistive
boundary conditions are also obtained for a planar, transparent dielectric slab.
Other types of boundary conditions and the corresponding integral equations
apply to penetrable sheets, and they are described as transmission boundary
conditions. Curvature corrected boundary conditions for combined resistive and
conductive sheets are described in [10]. In [11], attention was focused in the case
of a layered sheet with different reflection properties characterizing its two faces.
The boundary conditions involve only the tangential components of the fields and
a set of the corresponding surface integral equations is provided for impenetrable
and penetrable sheets. These boundary conditions can also reduce to the special

case of sheets with identical reflection coefficients from both sides.

So far, a brief review of the problem of electromagnetic wave penetration
through dielectric layer is given. In recent years the diffraction analysis of elec-
tromagnetic waves by dielectric gratings have been intensively investigated as
well. Nowadays such structures are gaining widespread use as in frequency se-
lective filters, radomes and polarizers. In [12] the problem of scattering from a
resistive grating is formulated in the spectral domain, where the convolution form
of the integral equation for the scattered field reduces to a product form which
can be solved by moment method techniques. Resistive boundary conditions are
used with a constant surface resistance defined for the strips that are thin com-
pared to the attenuation length. The transmission and reflection coeflicients of
the array of strips are determined from the scattered fields. Later this approach
was extended to multi-layered resistive strip gratings [13], and in [14] the study
of gratings consisting of a periodic array of thin lossy strips with arbitrary cross

section is provided.

In this study, the effect of a two-dimensional circular radome with metal grat-
ings, on the propagation of electromagnetic fields radiated by a complex line
source is investigated. The fields on the concave and convex sides of the radome

are represented by modal cylindrical waves. Boundary conditions provided in
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[11] are used to derive the analytic solution of the problem. At first, the trans-
mission effect of circular gratings consisting of periodic arrays of lossy strips is
considered. Two cases are described,high conductive (non-perfect metal) and
high resistive (poor dielectric) thin strips. IFinally the original problem is ana-
lyzed. Although we employed approximate boundary conditions to establish the
field on the exterior side of the radome due to the source located on the interior
side, the numerical data obtained justify strongly the validity of the method.
Another important thing is that the method is effective for any number (> 1)
of the strips with any angular width from 0 to 2. This enables us to simulate
different structures already studied in literature such as reflector antennas [15]
and 2-D circular dielectric radome [8], and compare with the techniques used to
solve for these geometries. The size of the matrix is determined by the radius
of curvature and fairly large structures can be treated with guaranteed accuracy.
Numerical results for the far fields and directivity of various structures are ob-
tained. Thickness variations are also included to give a better understanding of

the models. Comparisons are given to study the validity of the method.

The outline of this thesis is as follows: In chapter 2 we introduce the basic
concept of the method and the formulation of the problem. Numerical results

are presented in chapter 3. Main conclusions follow in chapter 4.

Throughout the analysis, a sinusoidally-varying time dependence ¢ is as-

sumed and suppressed.



Chapter 2

ANALYSIS OF
TRANSMISSION THROUGH
A RADOME WITH METAL
GRATINGS

In this analysis, complex line source is considered to simulate directed beam fields.
The primary wave fields are represented as expansion series of cylindrical waves,
and then the effect of transmission through the radome is analyzed to evaluate
the radiation fields. Formulation of the problem is carried out for thin periodic

metal gratings and then extended to the case of periodic metal-dielectric radome.

ot
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2.1 Radiation Through a Circular Radome of

a Thin Periodic Metal Grating

In Figure 2.1 a line source is placed at the complex position 7y which is given by
s = 7o + 10 = ro& + ib(cospz + sinfy) (2.1)

where the parameter b i1s a measure of the source directivity, and the angle /3

represents the direction of the beam.

Line Source

f

Figure 2.1: Geometry of the complex line source

Depending on the polarization, we denote by U(7) the E, or H. of the fields.
The incident field due to the line source of amplitude C' at the complex position
s 1s given by:

Une(7) = CH (ko | 7 — 7, |) (2.2)
where ky is the free space wave number and H}(Kr) is the Hankel function of the

first kind. By the addition theorem for the Hankel function, we can write (2.2)
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Un(r,¢) = €Y Jnlkors ) H (kor)e™#=0) 1 > |r| (2.3)

where
rs = /1§ — b2 + 2ibrycosfs (2.4)
0, 003_1(7‘0 + ibco.sﬁ) (2.5)

"S

’ \ .

¢()

Figure 2.2: Geometry of circular periodic metal gratings

Figure 2.2 shows a grating consisting of an array of circular thin metal strips
surrounded by vacuum. The perfectly conducting strips have zero thickness and
angular width 26,,. The array is periodic with period ¢o. To solve the problem of
a complex line source radiating through periodic metal grating, the scattered field

should satisfy the Helmholtz equation, the Neumann or Dirichlet type boundary
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condition on the strips, the continuity condition at the slots and the radiation
condition at infinity. The scattered field can be expressed in integral form by

imposing the boundary condition as follows

_ U7, ) = g Je () Go(F,7)dr 7 € M (2.6)
in E-polarization

P Uinc - %) - S = ,
LU L O 7GR e M (2.7)

on on Ju

in H-polarization

where 71 is the outer normal, Jg g (7) are the unknown current densities, Go(7, 7’)
. : . . (1 - .
is the 2-D Green’s function (i.e ﬁH((, J(k|7 = 17])) and the contour M is taken as

the surface of all the scatterers.

Equations (2.6) and (2.7) are widely known and can be solved numerically by
the method of moments (MoM). Unfortunately MoM solutions lead to matrixes
of great order N or increase the computation time due to massive numerical inte-
gration. In addition the problem often becomes ill-posed and does not guarantee
convergence of the solution when N — oo. For these reasons, it is recommended

to use other methods to calculate the radiated fields.
For our geometry the total field can be expressed as follows

Uinc - + Us(F) »r <
UtOtF) — (T‘) ( ) a (28)
U*(F) r>a.
The scattered field satisfies the 2-D Helmholtz equation
(V:+ kU (F) = 0. (2.9)

Due to the axial symmetry of the problem it is expanded in series form as

rodn(kor)e™ < a
Ui =Y (Far) | (2.10)
n |t HY (kor)e™ r>a.
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where r, and ¢, are the unknown coefficients to be determined by the boundary

conditions at r = a.

In region 1 (r < a) Bessel function is chosen to represent the standing wave
nature of the scattered field, whereas in region 2 (r > «) Hankel function is chosen

to satisfy the radiation condition at infinity.
Hence, the total field in region 1 is given by

UPt(r Z[C(Jn (kors) H (kor)e™ ™ 4 v, ., (kor)]€™®, |rs] < r < a (2.11)

and in region 2 as

Ust(r, $) Zth V(kor)ei™® (2.12)

2.2 General Form of Boundary Conditions

The boundary conditions to be used are established in [11] for the analysis of
imperfectly conducting layers. We do realize that the set of boundary conditions
available are valid for lossy materials, nevertheless the method can be generalized
to quite good conductors. Actually, the concept of perfectly conducting mate-
rial and of a perfectly conducting and infinitely thin screen is not always well
understood [16]. For example, in the far infrared, gold is generally considered
as infinitely conducting, however a very thin gold strip, like that found in tele-
scopes, can be melted by a laser beam. Thus for practical purposes if a metal is
supposed to have the same permittivity and permeability of free space and a real
conductivity o(a model often used in the far infra red and microwave ranges), it
is equivalent to a lossy dielectric with relative permittivity e, = 1 + 10 /eow.From

now on, we consider imperfectly conducting metals.
The boundary conditions we shall be using are given in the following form
< Er(r,¢) >= Rr(r,$)Jr(r, ) (2.13)

< HT(T, ¢) >= ST(rv ¢)A/1T(7> ¢) (214)
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which relates the average tangential fields

1
< Er(r,¢) >= 5[Ear(r, ) + Eur(r, 9)] (2.15)
1 . o1
< Hr(r,¢) >= §[H'2T(7°, ¢) + Hir(r, ¢)] (2.16)
to the currents defined by the field jumps
JT("", ¢) =7 X [-[:[2'1'(71’ ¢) - -[_IIT(T" ¢)] (217)
./\4T(_7’, ¢) = -7l X [E-ZT(T, (]5) - EIT(T, ¢)] (2.18)

Here the subscript 1 or 2 denotes the fields in respective regions, and Ry and Sy
have the interpretation of the electric resistivity and magnetic conductivity of the
interface separating regions 1 and 2. They can be regarded as phenomenological
parameters which can be determined experimentally through the measurement
of the reflection and transmission coefficients, or evaluated analytically according

to [11].
An alternative version of this set of boundary conditions is written as
o X [Hor(r, ¢) — Hir(r, )] = &r(r, ¢)[E2r(r, ¢) + Evr(r, ¢)] (2.19)
— 1 x [Bar(r, @) — Exr(r, 8)] = na(r, ) [ Har(r,8) + Hrin(r,8)]  (2.20)

where

&r(r, ) = 1/(2Rz(r, ¢)) (2.21)
nr(r, ¢) = 1/(25¢(r, ¢)) (2.22)

Obviously, the boundary conditions have to be imposed on the strips. In our
geometry, these strips form a periodic open contour, thus it is necessary for £p
and nr to have a periodic step function of ¢ to account for the continuity of the

total electric and magnetic fields at the slots (see Figure 2.3).

In the case of E polarization, (2.23) and (2.24) will be relating E, and Hy =

& IE,
=50 in the following way

Hyg(r, @) ~ Hig(r, d) = E(r, §)[Bas(r, @) + Erz(ry @)llr=a  (2.23)
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By (7, ¢) = Eva(r, @) = nr(r, ¢)[Hap(r, ¢) + Hip(r, ¢)]lr=a (2.24)

with
A ifgeM ,
{r(¢) = (2.25)
0 ifgesS
§ iftpeM
nr(4) = (2.26)
0 ifpeds.

Note that in the limit case A — oo and 6 — 0 the boundary conditions reduce

to the Dirichlet boundary condition for only perfectly conducting material £, =
E2 =0.

Er(®) M T(9)

Ab

| I | l
X jﬂ. —enp e:\p j’.i do ¢
2

2

Figure 2.3: &7 and nr functions of ¢

2.3 Algebraic Solution of the Problem

To find the coefficients r,, and ¢, it is convenient to write the functions £r(¢) and

nr(¢) in their Fourier series expansion

Er(¢) = &p,e™? (2.27)

and

nr(d) = nr, ™ (2.28)

n
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2% ifn=20
where ., (n1,) = A, (6) °

Lsin(nlb,,) ifn#0
and L= ?T::

Recalling that a periodic function f with period 2r and another ¢ with period

do where ¢g divides 2m by an integer L are written as

in3~ &

f = Zn fn“imb and 9= Zn gn€ o7,

then their product p = f¢g can be expanded in a generalized Fourier series

P = Zn pnein(/)With Pn = Zm fn—ngm

Therefore the expansion of (2.23) and (2.24) can be performed easily and we are

led to
; 1 . . N / N " J S,
tnxn + ZZO Zm £Tmtn—len—-mL — Y, + "ZO Zm €Tm7 n—mLYn—mL =

znx;z + 12 Z &l Zn-mLTn-mL (2.29)

m

o 1 . . o . 1 . ! —
tnn + 20 Xom NMTntn-mLEh_mp — TnYn + iZo 2om N Tn-mLYp—mr =

Znln + 2—20- ; NTon Zn—m LTl (2.30)
where
2, = HV (koa) e = H N koa)
Y = JD (koa) yh, = JuV(koa)
2y = Jp(kry)e s
and Zp:intrinsic impedance of free space .

Note that the derivatives are with respect to the argument. Keeping only
N;; = 2N + 1 terms in the Fourier series(n < N), we get r, and ¢, by solv-

ing the system, and thus the fields in both regions.



Chapter 2. ANALYSIS OF TRANSMISSION THROUGH ... 13

The boundary conditions we have been using so far, rewritten here for conve-

nience are

HQ(b - }[lr,b = éT(E2:: + Elz) (331)
sz = Bre = nr(Hog + Hig). (2.32)

By setting n7 = 0,ér # 0 we obtain the well known set of equations for a thin
dielectric resistive sheet (i.e a sheet of high conductivity and its resistivity is small

compared to free space impedance)
Hop — Hyy = Er(Er: + Ey2) (2.33)

E,, = E,. (2.34)

With these two equations we can solve for 7, and ¢, independently. The field of

interest is the one at the far zone which includes t,. We obtained the following

equation in ¢,

' ' ' /
TpYn — TnlY .0 TpYn — Tnl,
n ", 7 | _Yn n .
j tn + 27'10 § :é.Tnan—mLtn—mL - “n (235)
Yn m Yn

o

where x,, ¥, ¢, y,, and z, are as the ones used in (2.29) and (2.30).

2.4 Radiation Through A Radome of Periodic

Metal-Dielectric Grating

Previously, we have considered the problem of thin periodic metal grating. The
strips are modeled as infinitely thin structures described in terms of a set of
boundary conditions relating the fields from the interior and exterior sides by the
two coefficients Ry and St (2.13 and 2.14) known as electric resistivity and mag-
netic conductivity respectively. While treating thin structures, it is convenient to
define real constant resistivities and conductivities for the strips, however for a
layer of finite thickness, this assumption does not hold because these coeflicients

depend on the microscopic properties and thickness of the layer.
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For a dielectric/magnetic layer characterized by material parameters ¢, p and

thickness h, the respective values of Rt and Sp are

Y I T
Ry = 2\/: cot { 2‘/eouol"°h) (2.36)

) 1
Sr= =[S cot (= |F-koh) (2.37)
2\ p 2\ eofo
which can be written as ) ;
2 h oo
RT = §Z cot (I»E) (336)
, 1 1 h .

where

Surely the use of these values for the parameters Ry and Sz have practical
advantages such as the choice of the metal strips characteristics and thickness.
Also, we can now insert dielectric between the strips (see Figure 2.4). This
will enable us to investigate the effect of a circular dielectric radome with metal

grating, which is the aim of this thesis.

The formulation of the problem for such geometry is carried out exactly as
that for thin metal gratings, except that &y = 1/(2R;) and nr = 1/(257) will
have a different function of ¢ fromn that of Figure 2.3. In this case &y and 5y are

now a periodic function of ¢ as shown in Figure 2.5
The Fourier series coefficients £r,’s are given as

A, —A)2%e 1 A, ifn =0
( 2% (2.40)

€r, = :
(A, — As)ﬁsin(n[/é'a,,) ifn#0

and the coefficients r,’s as
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(60 — 65)2%2 4 6, ifn=0
T, = 2 (2.41)
(6m = 85)-=sin(nL0,,) ifn #0
h Dielectric
Metal

Figure 2.4: Geometry of a circular radome with periodic metal gratings

ET(¢),n 1(9)
Am,dm
A S .88 .
| | | |
_¢ i ﬁ _eup eup _M ¢ U ¢
2 2

Figure 2.5: &7 and 57 functions of ¢
(the plot 1s understood for either real or imaginary parts of the functions).



Chapter 3

NUMERICAL RESULTS AND
DISCUSSION

As mentioned in the introduction, the aim of this study is to analyze the effect of
a metal-dielectric periodic radome on the transmission of electromagnetic fields
radiated by a complex line source placed inside this structure. The subject is
discussed in terms of normalized power at the far zone and the directivity, which
represent two important parameters in design problems. The associated formula

for the normalized power pattern is given as

| ERH o, ) P

Pnorm = ez (3.1
Mo = B (r,9) )

For far field observation (kr > 1) the total electric field can be reduced by
replacing the Hankel function H'Y(kor) by its asymptotic expression. By doing

this we obtain

Jtot 2 ehr ing 3.9
tot (. — — ntn i 3.9
2 (7 9 d>) Z.ﬂ'](() \//;: ;( I) ¢ ( )

16
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which is more convenient for numerical computations.

The directivity, which is the ratio of the maximum radiation intensity to the

average radiation intensity, in terms of electric field intensity is given by

2 I E;nzw: |2

NGO 33
Using Parseval’s Relation
S RECI S P (3.4)
0 Y7o P
D can be expressed as
D= —IZ%T:—LI; (3.5)

In the formulation of the problem, it is stated that exact solutions are not
available and are not obtained easily due to several reasons, so approximations
have been used to establish the outer fields due to the source enclosed by the
radome. The basic approximation employed is to model the radome as thin layer
described by means of boundary conditions. The set of boundary conditions
provided, relate the inner electric and magnetic fields to the outer ones through
two coeflicients evaluated by the structure and the material properties of the the
layer representing the radome. This approach as already mentioned considers

non perfect metals.

In our investigation, attention was focused on periodic metal gratings since
they are strong scatterers compared to dielectrics, especially when the dielectric
thickness is half the wave length. Thus metal grating are of primary importance
for the scattered fields. In this chapter, the numerical results for two different

models of the radome are obtained. The first model is described by thin periodic
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metal gratings surrounded by vacuum, whereas the second model represents a
dielectric radome with periodic metal gratings. For the first model results are
given at two levels. Due to high conductivity, resistive boundary conditions are
used to obtain the results for the far field patterns. This simplified boundary
condition assumes the continuity of the electric field through the metal strips.
This is due mainly to the fact that the electric field is almost zero on the metal
interface so it is considered to be equal at the two faces. This assumption has been
widely used in scattering from resistive layers and the boundary conditions are
often referred as transparency boundary conditions. Then the general boundary

conditions are used to show the limitations of the former ones.

3.1 Radomes of Periodic Metal Gratings

In Figure (3.1), the normalized power at the far zone for a circular reflector
antenna is obtained(only one strip). This result coincides exactly with the one
obtained by solving the integral equations (IE) corresponding to such a geometry
[17]. This is expected because our rigorous solution of the problem is in fact the

same as IE solutions. For a non PEC, in the case of E-pol the scattered field 1s

expressed in integral form as
/ Jo(AGF, 7 _E"(7) + Rip(F) (3.6)

where Jr 1s the unknown surface current and R is the effective resistance of the

scatterer.

In our formulation the scattered field is written in series expansion with un-
known coefficients which are determined by imposing the boundary conditions

and we were led to solve the following equation.

EP + 3 rHy(kor)e™ = RJIp(r)|r=a (3.7)
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which is equivalent to (3.6) except that the scattered field is expressed in series

expansion with separate variables, rather than the compact integral form.

Knowing that our results show good agreement with IE solutions for the case

of a reflector antenna, further numerical data for other geometries are obtained.

The normalized power for two circular opposite reflectors is shown in Figure
(3.2). The reflectors have the same dimensions as the used to obtain Figure (3.1).
The source has the same location and direction as well. A drop in the power is
observed at ¢ = 180°, compared to Figure (3.1).This behavior is understandable

due to the presence of the second reflector at that position.

In Figures (3.3) through (3.6) the normalized power at the far zone for gratings
consisting of a periodic array of two, three, four and five strips is obtained for
different angular widths when ka = 62.8 , 7o = 0, kb = 5 (Beam Width=
42°)and 8 = 0. The ratio of the strip resistivity to free space impedance is
taken as 2Rr/Zy = 0.1%. The same results are obtained for more resistive
strips, 2Ry /Zy = 10% (Figures (3.7) to (3.10)). As observed in these figures, the
distortion of the main beam increases with increasing number of strips which is
mainly due to the contribution of each strip to the scattered fields as expected.
Increasing the angular width of the strips also increases beam distortion and
causes a shift in the main beam direction. It is noticed that increasing the
resistivity reduces the boresight error (the difference between the apparent and
the distorted heam direction). For strips with 2Rr/Zy = 0.1% and 2Ry /Zy =
10%, the shift in the main beam direction occurs at an angular width of 2° whereas
this behavior appears at an angular width of 3° for strips of higher resistivity
(2Rr/Zy = 10%) and in general the patterns are quite similar for these two
cases. This shows that good conductors have greater effect on the distortion of
fields which is reasonable since they are stronger scatterers. Another point worth
mentioning is that through all these figures, the power at ¢ = 180° (opposite to

the main beam direction) increases as the angular width increases.
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Figure 3.1: Normalized power at the far zone for a circular reflector antenna:
2Ry [Zo =5 x 1075, ka = 6.28,r¢ = a/2, = 0,0,, = 30 degrees, kb = 0.5.
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Figure 3.2: Normalized power at the far zone for 2 circular opposite strips:
2Rr/Zy =5 x 107%, ka = 6.28,r0 = /2, = 0,0, = 30 degrees, kb = 0.5.
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Figure 3.3: Normalized power at the far zone for a grating consisting of two
resistive strips : ka = 62.8 , kb=5, 8 =10°,2Rr/Zo = 0.1% , (a) 0,, = 0.5°,
(b) 0,p = 1°.
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Figure 3.4: Normalized power al the far zone for a grating consisting of three
resistive strips : ka = 62.8 , kb=35,=10°,2Rr/Zy = 0.1% , (a) 0., = 0.5°,
(b) 04 = 1°.
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Figure 3.5: Normalized power at the far zone for a grating consisting of four
resistive strips : ka = 62.8 , kb =5, 8 =0°,2Rr/Zy = 0.1% , (a) b,, = 0.5°,
(b) 0., = 1°.
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Figure 3.6: Normalized power at the far zone for a grating consisting of five
resistive strips : ka = 62.8 , kb=5,3=0°,2Rr/Zy = 0.1% , (a) 8,, = 0.5°,
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Figure 3.7: Normalized power at the far zone for a grating consisting of two
resistive strips : ka = 62.8 , kb=5,3=0°, 2Rp/Zy = 10% , (a) 0,, = 0.5°,
(b) Oap = 1°, (c) 04p = 1.5°.
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Figure 3.8: Normalized power at the far zone for a grating consisting of three
resistive strips : ka = 62.8 , kb =5, =0°,2Ry/Zy = 10% , (a) b, = 0.5°,
(b) 0ap = 1°, (¢) 0,p = 1.5°.



Chapter 3. NUMERICAL RESULTS AND DISCUSSION

L
50

100 150 200 250
Angle , deg

)

350

50

100 150 200 260
Angle , deg

(b)

300

350

o

N
50

160 200 250
Angle , deg

()

100

300

L
350

Figure 3.9: Normalized power at the far zone for a grating consisting of four
resistive strips: ka = 62.8 , kb=5,8=0°,2Rr/Zy = 10% , (a) 0, = 0.5° , (b)

Bup = 1° , (c) Bop = 1.5°.
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After analyzing the far-zone normalized power for different geometries, the
directivity, which is a commonly used parameter to measure the overall ability of
an antenna to direct radiated power, will be discussed. Figures (3.11),(3.12)and
(3.13) present the variations of the overall directivity D with angular width for pe-
riodic gratings of various number of strips with different resistivities. As expected
increasing the angular width decreases the directivity. However some weak reso-
nant behavior which is related to the strip width values, around approximately
integer multiple of A\/2, is observable. Throughout these three figures, the num-
ber of strips does not affect the directivity up to a critical angular width, related
to the linear width of the strip d &~ A/2(if d = A/2 , 0,, = 1.4°, after which the
difference becomes more observable. It is found that, at this width the boresight
error starts to increase considerably. As observed in these figures that this crit-
ical angular width becomes wider as the resistivity of the strips increases. It is
of 0.8° for materials of resistivity 2Ry /Zy = 0.1% , 1.5° for 2Ry /Zy = 1%, and
2° for 2Ry /Zy = 10%. The directivity at these points is higher as the resistiv-
ity decreases. For good conductors (Fig 3.13), we see that the directivity drops
sharply just after zero width and then it keeps nearly constant value up to the

critical width, while it decreases at a lower rate for more resistive materials.

We notice as well that gratings consisting of periodic arrays of two and four
strips show very close behavior; however, for gratings of three and five strips the
results differ from each other. Similarities appear for two and four strips due to
the symmetric structure of the geometry. In addition the beam is directed to the
strip and narrow enough that it does not affect the the strips at ¢ = +£90°.

The directivity variations versus the beam direction are presented in Figures
(3.14) through (3.17) for gratings of two, three four and five strips when ka¢ =
62.8 , 70 = 0, kb = 5 and 0,, = 1°. The data are obtained for two different
resistivities of the strips (2Rr/Zo = 1% and 2Ry /Zy = 10%). Again, we see that
the directivity decreases with increasing resistivity which shows good agreement

with the previous results.
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Figure 3.14: Directivity versus Beam Direction for a grating consisting of two
resistive strips : ka = 628 , kb = 5, b4, = 1°, (a) 2Rp/Zp = 1% , (D)
2Ry /Zy = 10%.
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Figure 3.15: Directivity versus Beam Direction for a grating consisting of three
resistive strips : ka = 628 , kb =5, 0, = 1°, (a) 2R7/Zy = 1% , (b)
QRT/ZO = 10%
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Figure 3.16: Directivity versus Beam Direction for a grating consisting of four
resistive strips : ka = 62.8 , kb = 5, 0,, = 1°, (a) 2Rp/Zy = 1% , (b)
2Ry [ Zy = 10%.



Chapter 3. NUMERICAL RESULTS AND DISCUSSION 35

o)
T

Directivity

1 1 1 1 1 1
0 10 20 30 40 50 60 70
Beam Direction , deg
(a)

9.5

Directivity

A 1 1 1 1
0 10 20 30 40 50 60 70
Beam Direction , deg

(b)

Figure 3.17: Directivity versus Beam Direction for a grating consisting of five
resistive strips : ka = 62.8 , kb = 5, 6, = 1°, (a) 2Rr/Z0 = 1% , (b)
2R7[Zy = 10%.



Chapter 3. NUMERICAL RESULTS AND DISCUSSION 36

3.2 Radomes of Periodic Metal-Dielectric Grat-
ing

The results we have discussed previously were obtained using the simplified ver-
sion of boundary conditions valid for thin dielectric layers. As stated in the
beginning of this chapter, these boundary conditions have been widely employed
in scattering problems for electrically resistive sheets. However, they become in-
applicable to magnetically conductive strips or sheets of non-zero thickness. In
Figure (3.18) we have plotted again the far-zone normalized power for a circu-
lar reflector antenna with the same dimensions and parameters like in Figure
(3.1). In this case we set S = S # oo. The patterns coincide with the one
presented in Figure (3.1) when Sy is large compared to Yy = 1/Zp, but when we
decrease the magnetic conductivity Sz, the results deviate from the initial one
and we start loosing accuracy. Thus, the method of using transparency bound-
ary conditions is not valid anymore. To show the limitations of this method , we
have obtained the directivity variations versus thickness for a circular dielectric
radome when ke = 628 1o = 0, kb = 5 and # = 0 using the simplified and
generalized boundary conditions. The periodicity of the directivity as a function
of thickness is observed, with period Agei/2 as expected when the generalized
boundary conditions are applied, whereas incorrect periodicity is obtained with
simplified boundary conditions(see Figure 3.19). The values of the directivity
calculated by the two methods are close to each other just for very small thick-
ness (< 0.2Xg;) which proves that the simplified boundary conditions are valid

only for thin electrically resistive sheets.

In Figures(3.20) to (3.23) the directivity versus thickness is obtained for a
circular dielectric radome for different source directivities using the generalized
boundary conditions. For the validation of the results, we have checked the exact
solution [8] for the same geometry with the same dimensions and parameters.
As observed in these figures, our results show good agreement with the exact
ones. The difference between the two solutions increases as the source directivity
increases, but this appears only at the minimum values of the directivities, which

is not very important since in design problems high directivity is desired.
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Further results for the directivity are obtained for a circular metal-dielectric
radome with four metal strips when ka = 62.8,krg = 0 and kb = 5. Figure (3.24)
shows the directivity variations with increasing dielectric thickness for three beam
directions. The metal strips have angular width 26,, = 1° and relative resistivity
2Ry /Zo = 1%. The dielectric is perfect with €, = 4. It is seen that the directivity
for the three orientations of the source converge to the same value which is close to
the free space directivity when the thickness of the dielectric is an odd multiple

of Agiet/2. This behavior is desirable for radome construction around a radar

antenna.

In Figure (3.25) the directivity versus the angular width of the metal strips
presented. It is observed that the variations are less sensitive to the width and the
beam direction when perfect dielectric is used with narrow strips. To look for the
limiting values of the strip width and the perfectness of the dielectric, directivity
variations function of the beam direction are plotted in Figures (3.26) through
(3.28) for radomes consisting of metal gratings in free space, lossy dielectric-metal

and perfect dielectric radomes.

As observed in these figures, the insertion of a dielectric layer between the
metal strips decreases the directivity variations as compared with metal in vac-
uum. The directivity is nearly constant when perfect dielectric is used. However,
this is not valid for all widths of the metal strips. When the angular width in-
creases, the variations in the directivity become more considerable and tend the

case of metal gratings surrounded free space.
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Figure 3.18: Normalized Power at the far zone for circular reflector antenna:

2R7/Zy =5 x107% , ka=6.28 ,ry =a/2,f

=0, 0,,=30°, kb= 0.5.
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Figure 3.19: Directivity versus Thickness for a circular dielectric radome ka =

62.8,kro = 0,kb = 5,6, = 4 + 1.
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Figure 3.20: Directivity versus Thickness for a circular dielectric radome ka =
62.8,kro = 0,kb = 5,6, = 4 +10.5.
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Figure 3.21: Directivity versus Thickness for a circular dielectric radome ka =

62.8,kro = 0,kb = 10,é, = 4 + 0.5.
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Figure 3.22: Directivity versus Thickness for a circular dielectric radome ka =
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Figure 3.23: Directivity versus Thickness for a circular dielectric radome ka =
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Figure 3.24: Directivity versus Dielectric Thickness for a circular metal-dielectric

radome.
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Figure 3.25: Directivity versus Angular Width of metal strips for a circular metal-

dielectric radome.
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Figure 3.26: Directivity versus Beam Direction for a circular radome: 6,, =
0.5°;solid:metal in free space;dashed:metal-diel €, = 4;dash dotted:metal-diel ¢, =

4 410.5.
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Figure 3.27: Directivity versus Beam Direction for a circular radome: 6,, =
2°:solid:metal in free space;dashed:metal-diel €, = 4;dash dotted:metal-diel ¢, =
4 +10.5.
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Figure 3.28: Directivity versus Beam Direction for a circular radome: 6,, =
5°;solid:metal in free space;dashed:metal-diel €, = 4;dash dotted:metal-diel ¢, =

4 +:0.5.
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Chapter 4

CONCLUSIONS

In this thesis, the problem of electromagnetic wave penetration through a circular
dielectric radome with gratings consisting of an array of periodic thin, lossy metal
strips is considered. To the best of our knowledge, this is the first study made so

far to solve such a problem with this approach.

The fields radiated by a complex line source are represented by modal cylin-
drical waves. Boundary conditions of a new generalized form, provided recently
in the literature are used and manipulated according to our geometry to relate
the outer fields to the inner ones and the analytic solution of the problem is

obtained.

Results for the far zone fields and the directivity are calculated numerically for
various structures as functions of the observation angle, the angular width of the
metal strips and the beam orientation for metal gratings surrounded by vacuum.
Also, presented are dependence of the directivity on the relative thickness of the
dielectric layer for circular radome of metal-dielectric gratings. Finally, directivity
variations with beam direction are presented. For the validation of the method

results are generated and compared with the available ones for simple geometries.
According to our numerical data, the distortion of the main beam increases

44



Chapter 4. CONCLUSIONS 45

and the directivity decreases with increasing number of strips and angular width
in the case of metal gratings in free space. The directivity reveals a kind of
resonant behavior as a function of the strip width d when the latter is about a
multiple of the half wavelength in free space: d &~ nA/2. It appears also that it
is much better to use higher resistive strips to decrease the boresight error when
the strip width d < A/2.

The directivity shows considerable variations as a function of the beam direc-
tion. However, when a dielectric layer is inserted between the metal strips, the
changes are much less observable especially for perfect dielectrics of half wave-
length thickness. Unfortunately this is not valid for any width of the metal strips,

and we are restricted to narrow ones (d < A/2).
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