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ABSTRACT: We have developed a formalism for calculating the line scans of the 
scanning-tunneling microscopy from the realistic substrate and tip wave functions. 
The tip wave functions are calculated self-consistently by using a spherical jellium 
corresponding to a particular metal with various radii. This formalism provides a 
framework to analyze the experimental line scans, and to deduce information about 
the clean and adatom covered surfaces, and the radius and height of the tip, as well. 
We have found that the contribution of a tip wave function in tunneling current is 
strongly dependent OIL its symmetry. 

The pioneering work of Binnig et.al.[l] has intro- 

duced the Scanning Tunneling Microscopy (STM) tech- 

nique, which directly ensures the real-space determina- 

tion of the surface structure of a sample. Thus, the 

periodicity of the sample surface is not a requirement 

for the investigation. So far, it has been demonstrated 

that STM technique is able to detect the isolated steps, 

dislocations and even single vacancies or impurities at 

the surface. In one of the modes of operation in STM, 

the tip height is adjusted to keep the tunneling current 

constant at a fixed bias. The interpretation was that the 

tip retracts at the high charge density points, indicating 

the positions of the atoms at the surface. 

A formalism has been developed by Tersoff and 

Hamann[Z] using frozen wavefunctions of both elec- 

trodes in the Bardeen’s expression[3] for the tunneling 

current. They have assumed an idealized tip with con- 

stant density of states, and the decay of the charge den- 

sity to be purely exponential with exponents determined 

from the sample workfunction. The tunneling current 

was found to be proportional to the local density of 

states of the substrate at the Fermi level evaluated at 

the tip position, ~~(3, &). 

According to Tersoff and Hamann’s theory[2] the 

constant current contours observed with STM are ac- 

tually contours of constant p,(&&) of the sample at 

2 = (?, (3 where 7’ is the lateral position vector in the 

substrate surface, and f= (rs + h)f, TO being the radius 

of the tip (assumed to be spherical), and h is the tip- 

to-surface distance. In the earlier studies, one has gen- 

erated usually the contour plots from the line scans ob- 

tained from the constant current-constant voltage mode 

in STM, and has compared these with the calculated 

charge density plots. The surface charge densities have 
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been calculated by using various methods within the 

repeating slab geometry, and the Tersoff and Hamann’s 

theory has been applied with reasonable success. For 

example, in the recent experimental observations[4] on 

graphite, STM was able to resolve the two inequivalent 

atoms. This was a very significant observation since 

the only distinction between these two sites is caused 

by a weak interlayer coupling of the graphite planes. A 

correct identification of these different atomic sites in 

graphite has been achived recently by using the charge 

density calculations by Batra et u1.[5], and also by Sell- 

oni eb sI.[6]. 

It should be noted, however, that many fine struc- 

tures in the line sc*as- which are possibly of crucial 

importance- are lost in generating the contour plots. In 

this respect, the analysis of a line scan itself would reveal 

additional information about the surface, which is not 

so clear in the contour plots. It is, therefore, desirable 

to calculate a quantity starting from the wavefunctions 

of the sample and the tip, which can be compared with 

the STM line scans. In this study, we present a formal- 

ism for calculating the STM line scans. This is based 

on the direct use of the substrate wave functions, which 

can be obtained from the SCF-pseudopotential calcula- 

tions[7]. The extension to other forms of the wave func- 

tions, for example, the LCAO wave functions is stiaight - 

forward. Since the realistic tip wave functions can be 

obtained from the SCF- calculations of the spherical jel- 

lium metal, the effects of the symmetry of the tip wave 

functions on the tunneling current are also included. 

Slab wave functions are calculated with a reason- 

able accuracy within a region relevant to the tip-to- 

surface distance one usually gets in STM. Certainly 

these wave functions are more realistic than those expo- 

nentially decaying empirical forms with exponents ob- 

tained from the workfunction data. In general, the cal- 

culated slab wave functions have the form 

where a,, are the expansion coefficients for each band n, 

and & is the wave vector parallel to the surface. Vectors 

G’ are the S-dimensional reciprocal lattice vectors of the 

slab unit cell, which contain the vacuum region between 

two slabs. 2 is the 3-D position vector of the substrate. 

Since the structure of a tip is usually not known 

in STM, we simulate it with a spherical-jellium metal. 

Within this model, the wave functions of the tip are 

computed self-consistently as a function of the tip ra- 

dius. Jellium model has been applied to various sys- 

tems so far, including semi-infinite slabs representing a 

metal surface[3], slabs of finite thickness[Q], and small 

spheres representing metal clusters[lO,ll]. It was ob- 

served for the jellium ball that the electronic energy lev- 

els obey the shell structure and one gets new solutions 

for the energy eigenstates accordingly, as the radius of 

the sphere increases. The corresponding charge density 

when solved self-consistently for a given radius exhibit 

the usual FKedel oscillations and a tail representing the 

electrons spilling out of the sphere. Figure 1 schemati- 

cally shows the self-consistent solutions for two jellium 

spheres of different radii. The self-consistent potential 

V,,f is the sum of the Hartree and exchange-correlation 

terms[l2]. Jellium results show that the tails of the 

charge density, nt(rT for spheres of different radii do 

not change very much, whereas nt(r3 at r = 0 changes 

drastically as one increases the radius, rs, to include es- 

pecially a new s- or p-type level each time. The wave 

functions calculated numerically are then cast in an an- 

alytical form as linear combinations of Gaussian (GTO) 

or Slater (STO) type orbit&. This way not only the 

s-symmetry, but also different other symmetries for the 

tip functions can be investigated separately. The GTO’s 

we have considered are expressed as : 

for the s-, pz- and pz-type wave functions, respectively. 

The angular part for pv-type wave function is sin&in+. 

Similar expressions for the corresponding STO’s are : 

Figure 1. Schematic illustration of jellium results for 

effective potentials and the normalized densities of elec- 

tron states of two metal spheres with different radii 

(r& and ~0). The density of electron states at the inte- 

rior regions, especially at the center, are quite different, 

but the tails at the exterior region are very similar. 
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Here Q = & + 6 and the functions B,(Q) rue to be 

calculated once for all, and are given for different types 

of analytical tip wave functions as : 

The tunneling current is given by the first order 

perturbation theory as[2,3] 

I= c CC f(W1 - f(& + ev)] I MI, I2 ~(EI - En) 

where V is the applied bias voltage. Ma are the tunnel- 

ing matrix elements which can be written in Bardeen’s 

formalism as 

where S is a surface in the vacuum region sufficiently 

far from the tip and slab. This formalism assumes 

frozen wave functions Q,, and $1 representing the two 

electrodes whose separations are large enough to be 

treated independently. However, as shown by Tekman 

and Ciraci[lS], the frozen orbital approximation is not 

justified at small tip-to-surface distances. For the inte- 

gration surface S, we have chosen a spherical shell con- 

centric with the jellium ball shown in Fig.2. With this 

simple choice of surface geometry and the variables de- 

scribed in Fig. 2, the matrix elements MI, can be put 

into a compact analytical form in terms of a function 

L?,(Q), which is independent of the tip position : 

Slab - ‘*’ 

Figure 2. The geometry of the electrodes based on 
the analytical calculations. The tip is represented 
by a sphere of radius rs, and concentric with that is 
the surface of integration of spherical shape of radius 
7.0 < r < 7.0 + h. 

&I(Q) = 4* C CioC-Q’o’2 [hor2io(Qr) - QG(Qr)l 
I 

Bi(Q) = 4xX ci~e-“i”‘[(20i~r3-r-2)j~(Qr)+Qrjo(Qr)] 
i 

X 

for the s-type and pz, pl,v-type GTO’s, respectively. 

Similarly for the corresponding STO’s one obtains : 

Be(Q) = (8r)1/3ctOe-a0r Kw + lh(Qr) - QcidQrI 

Bl(Q) = (48r)‘/3ale-a1’[(alr - S)jl(Qr) + Qrjo(Qr)] 

r cos 00 
X 1 1 r sin 00 

where jl(Qr) sre the spherical Bessel functions. If one 

assumes a concentric hemispherical shell for the surface 

S in Fig.2, then the above results will be in terms of the 

spherical Hankel functions hj’)( Qr) instead. In spite of 

the fact that the radius of the surface of integration S, 

appears explicitly in the above equations, B,(Q)% are 

r-independent. To check this analytically as well, we 

have taken the limit of Tersoff and Hamann’s[2] in our 

formalism and obtained their result identically. 

Having obtained the above expressions the c&u- 

lations of line scans are straihtforward. For a given value 

of the tip-to-slab distance h, where 2 = (h + rc)i + 7’, 

one generates an I(?) versus T’curve C. For several fixed 

values of hi one repeats the same scan, and obtains a 

family of curves Ci of I(+‘) versus 7: An illustration of 

this is shown in Fig.3. For a constant value IO of the 

h 

Figure 3. Family of constant-height curves Ci(h;) 
displaying the current I(?), versus lateral position 7’ 
schematically. The projection of the interception of the 
constant IO plane with the surface composed of C’s is 
the corrugation h(F) of the slab surface at constant V 
and constant b. 
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current shown by the horizontal plane, one obtains the 

corrugation h(?) graphically. 

It should be noted that the jellium ball used in 

the present analysis has a discrete set of eigenstates. 

Whereas the continium of electronic levels of an actual 

tip leads to a state density D(E), which ought to am- 

plify the tunneling current. The tip wave functions, 

$, obtained from the jellium ball are good represen- 

tations for those participating in the actual tunneling 

event, except that they are normalized with respect to 

the volume of the idealized spherical tip. As a result the 

observed tunneling current has to differ from that cal- 

culated here by a constant multiplicative factor. How- 

ever, (dI/dh)v within the conventional tip-to-surface 

distance, h, is expected to be unaltered both in the- 

ory and in experiment. In view of the above arguments 

the calculated line scans can be compared safely with 

the experimental ones. From that comparison, the tip- 

to-surface distance can be estimated. Since the family 

of curves Ci is easily generated for various tip radii, the 

effect of the tip radius can also be revealed. Further- 
more, using single exponent ST0 to represent the va- 

lence orbitals of the tip atoms and simulating the atomic 

structure at the tip by small radius jellium balls, the ef- 

fect of the atomic structure of the tip (i.e. tips hawing 

one, two or more outermost atoms) on the STM images 

can be investigated within the formalism we developed. 

We found also the following significant effects of the tip 

wave function symmetry on the tunneling current: (i) 

Tips with pr- and pv-type wave functions are sensitive 

to the xy-corrugation only. They are less sensitive to 

the changes in the vertical direction. (ii) Tips with a pL 

-type wave function are less sensitive to xy-corrugation. 

Therefore, since the contributions to the tunneling cur- 

rent from different types of wavefunctions are not equal, 

in contrast to earlier proposal[2], the current is not nec- 

essarily just proportional to the total state density of te 

tip at the Fermi energy. Furthermore, each of these un- 

equal contributions is not directly proportional to the 

corresponding local density of states, either. Appar- 

ently, the symmetry of the tip wave function plays an 

important role in the interpretations of the experimen- 

tal data. 

It should also be noted that using the precalcu- 

lated functions &(Q), we can calculate not only the 

constant current-constant voltage mode, but also other 

quantities like the conductance (dI/dV)h, and the effect 

of the vertical motion of the tip on the current, (dI/dh)+ 

Since the wavefunctions for the adatom covered (mono- 

or multilayer coverage) metal and semiconductor sur- 

faces can be accurately calculated by using the SCF-slab 

calculations, the STM line scans for such systems can be 

investigated within the formalism presented here. In the 

matrix element MI,,, the type of the adatom is charac- 

terized by the Fourier transforms of the wave function 

a,(Q). Hence, the matrix elements MI,, and the line 

scans have to contain the information, wherefrom the 

signature of the adatom can be deduced. 
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