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November, 2005



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Ahmet Enis Çetin(Supervisor)
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ABSTRACT

SIGNAL AND IMAGE PROCESSING ALGORITHMS
FOR AGRICULTURAL APPLICATIONS

Berkan Dülek

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ahmet Enis Çetin

November, 2005

Medical studies indicate that acrylamide causes cancer in animals and certain

doses of acrylamide are toxic to the nervous system of both animals and humans.

Acrylamide is produced in carbohydrate foods prepared at high temperatures

such as fried potatoes. For this reason, it is crucial for human health to quanti-

tatively measure the amount of acrylamide formed as a result of prolonged cook-

ing at high temperatures. In this thesis, a correlation is demonstrated between

measured acrylamide concentrations and NABY (Normalized Area of Brownish

Yellow regions) values estimated from surface color properties of fried potato im-

ages using a modified form of the k-means algorithm. Same method is used to

estimate acrylamide levels of roasted coffee beans. The proposed method seems

to be a promising approach for the estimation of acrylamide levels and can find

applications in industrial systems.

The quality and price of hazelnuts are mainly determined by the ratio of shell

weight to kernel weight. Due to a number of physiological and physical disorders,

hazelnuts may grow without fully developed kernels. We previously proposed a

prototype system which detects empty hazelnuts by dropping them onto a steel

plate and processing the acoustic signal generated when kernels hit the plate. In

that study, feature vectors describing time and frequency nature of the impact

sound were extracted from the acoustic signal and classified using Support Vector

Machines. In the second part of this thesis, a feature domain post-processing

method based on vector median/mean filtering is shown to further increase these

classification results.

Keywords: Acrylamide, fried potatoes, coffee, k-means, image analysis, color, seg-

mentation, median/mean filtering, hazelnuts, acoustics, classification, aflatoxin.
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ÖZET

TARIMSAL UYGULAMALAR İÇİN SİNYAL VE İMGE
İŞLEME ALGORİTMALARI

Berkan Dülek

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Ahmet Enis Çetin

Kasım, 2005

Tıbbi araştırmalar akrilamidin hayvanlarda kansere neden olduğunu ve belirli

dozlarının hayvan ve insan sinir sistemleri üzerinde toksik etkisinin bulunduğunu

göstermiştir. Patates kızartması gibi yüksek sıcaklıklarda hazırlanan karbon-

hidratlı besinlerde akrilamide rastlanılmaktadır. Dolayısıyla besinlerin yüksek

sıcaklıklarda uzun süreli pişirilmesi sonucunda oluşan akrilamid miktarının ni-

cel olarak ölçülebilmesi insan sağlığı açısından büyük önem taşımaktadır. Bu

tezde, k-ortalama algoritmasına dayanan bir yöntem geliştirilerek deneysel olarak

ölçülmüş akrilamid konsantrasyonları ile patates kızartması ve kahve imgelerinin

yüzeysel renk analizinden tahmin edilen NABY (Kahverengimsi Sarı Bölgelerin

Standartlaştırılmış Alanı) değerleri arasında bir ilintinin varlığı gösterilmektedir.

Önerilen yöntem akrilamid seviyelerinin sağlıklı tahmini için umut verici bir

yaklaşım olarak gözükmekte ve endüstriyel alanda uygulanabilirliği bulunmak-

tadır. Paketleme hatlarına kameralar yerleştirilerek patates kızartmalarına ait

imgeler gerçek-zamanda analiz edilebilir ve yüksek NABY değerlerine sahip olan-

lar ayrıştırılabilir.

Fındıkların kalite ve fiyatlarının belirlenmesinde temel unsur çekirdek

ağırlığının çekirdek içi ağırlığa oranıdır. Susuzluk, besleyici öğelerin azlığı

ve kurtlanma gibi fizyolojik ve fiziksel sebeplerle fındıkların içi tam olarak

gelişemeyebilir. Dolayısıyla boş ve dolu fındıkların güvenilir bir şekilde otomatik

olarak ayrıştırılabilmesi büyük önem taşımaktadır. Önceki bir çalışmamızda

fındıkları çelik bir plakanın üzerine atıp çarpma esnasında ortaya çıkan akustik

sinyali işleyerek boş fındıkları bulan bir sistem önermiştik. Çarpma sesinin za-

man ve frekans bölgesine ait özelliklerini açıklayan öznitelik vektörleri çıkarılmış

ve Destek Vektör Makineleri kullanılarak sınıflandırma yapılmıştı. Bu tezin
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ikinci kısmında, vektör ortanca/ortalama temelli süzmeye dayanan bir öznitelik

bölgesi art-işleme yöntemi tasarlanarak fındıklara ait ayrıştırma sonuçlarının

arttığı gösterilmektedir.

Anahtar sözcükler : Akrilamid, patates kızartması, kahve, k-ortalama, imge ana-

lizi, renk, bölütleme, ortanca/ortalama süzgeci, fındık, akustik, sınıflandırma,

aflatoksin.
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Çetin for his instructive comments and constant support throughout this study.

I would like to express my special thanks to Prof. Dr. Özgür Ulusoy and

Asst. Prof. Dr. Uğur Güdükbay for showing keen interest to the subject matter

and accepting to read and review the thesis.

I would also like to thank Assoc. Prof. Dr. Vural Gökmen and

Asst. Prof. Dr. Selim Aksoy for many helpful suggestions and discussions.

vi



Contents

1 Introduction 1

1.1 Image Analysis for Acrylamide Formation . . . . . . . . . . . . . 1

1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Detection of Empty Hazelnuts using Impact Acoustics . . . . . . . 4

1.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . 6

2 Modified K-means based Classification 7

2.1 K-means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Major Drawbacks of the K-means Algorithm . . . . . . . . 10

2.1.1.1 Information Criterion Scoring for Estimation of

the Optimal Number of Clusters . . . . . . . . . 10

2.1.2 Computational Complexity of the Algorithm . . . . . . . . 12

vii



CONTENTS viii

2.1.3 Improvement of the Algorithm . . . . . . . . . . . . . . . . 12

2.1.3.1 Simulated Annealing . . . . . . . . . . . . . . . . 13

2.1.3.2 Fuzzy K-means . . . . . . . . . . . . . . . . . . . 14

2.2 Our K-means based Classification Algorithm . . . . . . . . . . . . 14

2.2.1 Properties of the Method and Examples . . . . . . . . . . 17

2.2.2 Performance Comparison . . . . . . . . . . . . . . . . . . . 23

3 Image Analysis of Potato Chips 28

3.1 Modeling Acrylamide Formation using Image Analysis . . . . . . 29

3.2 Acrylamide Analysis using CIE a∗ Parameter . . . . . . . . . . . 30

3.2.1 Color Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Color Differences and CIE L∗a∗b∗ Color Space . . . . . . . 32

3.2.3 Conversion from CIE XYZ to CIE L∗a∗b∗ . . . . . . . . . . 33

3.2.4 Practical Issues . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . 34

3.3 K-means Clustering based Segmentation for Acrylamide Analysis

in Potato Chip Images . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Selected Features . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Classification Results . . . . . . . . . . . . . . . . . . . . . 40

4 Image Analysis of Coffee Beans 42

5 Post-processing for Hazelnut Classification 47



CONTENTS ix

5.1 Experimental Setup and Dataset . . . . . . . . . . . . . . . . . . 48

5.2 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1.1 Time Domain Signal Modeling . . . . . . . . . . 49

5.2.1.2 Short Time Variances in Frames of Data . . . . . 50

5.2.1.3 Extrema in Short Time Windows . . . . . . . . . 51

5.2.1.4 Frequency Domain Processing . . . . . . . . . . . 51

5.2.1.5 Line Spectral Frequencies . . . . . . . . . . . . . 52

5.3 Mean and Median Filtering Based Post-Processing . . . . . . . . . 53

5.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . 55

5.4 Support Vector Machine Classifier . . . . . . . . . . . . . . . . . . 55

5.5 Classification and Comparison of Results . . . . . . . . . . . . . . 57

6 Conclusions 59

Bibliography 63



List of Figures

1.1 Relation of acrylamide concentration to CIE a∗ parameter . . . . 4

1.2 Experimental apparatus for collecting acoustic emissions . . . . . 5

2.1 Effect of initial point selection on the performance of k-means al-

gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Effect of increasing k on our modified k-means algorithm . . . . . 19

2.3 Effect of increasing T1 on our modified k-means algorithm . . . . 20

2.4 Effect of brute force searching on our modified k-means algorithm 21

2.5 Effect of different brute force searching methods on our modified

k-means algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Performance comparison on Lithuanian dataset . . . . . . . . . . 25

2.7 Performance comparison on banana-shaped dataset-1 . . . . . . . 26

2.8 Performance comparison on banana-shaped dataset-2 . . . . . . . 27

3.1 (a) Original fried potato chip image with selected regions, and

(b) Result of our segmentation algorithm . . . . . . . . . . . . . . 30

3.2 Images of potato chips used for acrylamide analysis . . . . . . . . 34

x



LIST OF FIGURES xi

3.3 Relation of acrylamide concentration to estimated CIE a∗ parameter 36

3.4 Potato regions used in feature distribution and autocovariance es-

timation plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Distribution of acrylamide features in normalized RGB space . . . 38

3.6 Row-wise unbiased autocovariance estimates from normalized red

pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Change of acrylamide level and NABY value in potato chips during

frying at 170 ◦C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 Correlation between acrylamide level and NABY value in potato

chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Coffee images used for acrylamide analysis . . . . . . . . . . . . . 43

4.2 Frequency response of the low-pass filter . . . . . . . . . . . . . . 44

4.3 (a) Original coffee image and (b) Segmented coffee image . . . . . 44

4.4 Change of acrylamide level and NABY value in coffee images . . . 45

5.1 Typical impact sound signals from an empty hazelnut and a full

hazelnut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Average variances from short time windows . . . . . . . . . . . . 50

5.3 Frequency spectra magnitudes of empty and full hazelnuts . . . . 51

5.4 Effect of filtering on training set . . . . . . . . . . . . . . . . . . . 56



List of Tables

2.1 Effect of increasing k on classification performance . . . . . . . . . 19

2.2 Effect of increasing T1 on classification performance . . . . . . . . 20

2.3 Effect of brute force searching on the representation of training set 21

2.4 Effect of other brute force searching methods on the representation

of training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Performance comparison of our modified k-means algorithm with

other well-known classifiers . . . . . . . . . . . . . . . . . . . . . 23

3.1 Measured acrylamide concentration, measured and estimated CIE

a∗ values for potato chips . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Measured acrylamide concentration and estimated NABY value

for potato chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Low-pass filter coefficients . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Measured acrylamide concentration and estimated NABY value

for coffee roasted at 150 ◦C . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Measured acrylamide concentration and estimated NABY value

for coffee roasted at 200 ◦C . . . . . . . . . . . . . . . . . . . . . . 46

xii



LIST OF TABLES xiii

4.4 Measured acrylamide concentration and estimated NABY value

for coffee roasted at 225 ◦C . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Classification results obtained for banana shaped classes . . . . . 55

5.2 Classification results with/without post-processing . . . . . . . . . 58



Chapter 1

Introduction

With the development of fast and reliable computer technologies, digital signal

and image processing algorithms have found vast application areas such as au-

tomation, defense, agriculture, health and robotics. In this thesis, we focus on

two specific agricultural applications and propose algorithms based on signal and

image processing techniques. The first application is the estimation of acrylamide

levels in fried potato chips and roasted coffee beans using digital color images.

The second is the detection of empty hazelnuts from fully developed nuts using

impact acoustics. Following sections explain the motivations behind these in-

triguing applications, summarize the previous work and conclude with an outline

of the organization of this thesis.

1.1 Image Analysis for Acrylamide Formation

1.1.1 Motivation

Acrylamide is a chemical that is used to make polyacrilamide materials. Poly-

acrylamide is used in the treatment of drinking-water and waste water to remove

particles and other impurities. It is also used to make glues, paper and cosmetics.

Polyacrylamide materials contain very small amounts of acrylamide. Acrylamide

1



CHAPTER 1. INTRODUCTION 2

is also used in the construction of dam foundations and tunnels, and appears to

be produced in some foods prepared at high temperatures such as fried potatoes.

The levels of acrylamide found in some foods are much higher than the levels rec-

ommended for drinking-water, or levels expected to occur as a result of contact

between food and food packing (from paper) or use of cosmetics. The highest

levels found so far are in starchy foods (potato and cereal products).1

Acrylamide formation was found to occur during the browning process by

Maillard reaction of reducing sugars with asparagine at temperatures above

120 ◦C [1, 2, 3, 4]. Colored products are also formed in foods during heating

as a result of Maillard reaction [5, 6, 7]. These brown polymers have significant

effect on the quality of food, because color is an important food attribute and a

key factor in consumer acceptance. Mechanism of the formation of brown color

is not fully understood yet [8].

The problem with acrylamide is that it is known to cause cancer in animals.

Also, certain doses of acrylamide are toxic to the nervous system of both animals

and humans. For this reason, it is crucial for human health to quantitatively

measure the amount of acrylamide formed as a result of prolonged cooking at high

temperatures. If a correlation is demonstrated between acrylamide concentration

and surface color properties of thermally processed food images, a machine vision

based system can be designed to remove those products having high levels of

acrylamide from a packaging line by means of a surface image analysis.

1.1.2 Related Work

Since color can easily be measured, it may be used as an indicator of Maillard

reaction products like acrylamide. Color of foods is usually measured in L∗a∗b∗

units which is an international standard for color measurements, adopted by the

Commission Internationale d’Eclairage (CIE) in 1976. L∗ is the luminance or

lightness component (black to white), and parameters a∗ (from green to red) and

1More information about acrylamide is available on http://www.who.int/foodsafety/
publications/chem/acrylamide faqs/en/index.html
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b∗ (from blue to yellow) are the two chromatic components [9]. Amrein et al. re-

ported a significant correlation between the L∗ values and the acrylamide content

during baking at 180 ◦C [10]. Surdyk et al. also reported a highly significant cor-

relation between color and acrylamide content in bread crust during baking [11].

Pedrechi et al. reported that L∗ and b∗ values did not show considerable changes

as those shown by a∗ during frying of potato chips [6]. A linear correlation was

found between the acrylamide concentration and the color of potato chips repre-

sented by the redness component a* at temperatures of 120, 150 and 180 ◦C for

up to 5 minutes of frying. However, the effect of prolonged frying on acrylamide

concentration and color was not mentioned by these researchers. Taubert et al.

investigated the relation between the level of surface browning and acrylamide

concentration of French fries with linear regression. They reported that there

could be a close correlation for small-surface material being fried [12]. A some-

what less close correlation was observed for intermediate-surface material, while

no correlation was observed for large-surface material.

Although these findings suggest that surface color may be correlated with

acrylamide concentration in thermally processed foods, the measurement of sur-

face image and its color properties need to be investigated in more detail to

establish a useful correlation. As illustrated in Figure 1.1, the amount of mea-

sured acrylamide increases rapidly at the onset of frying, reaching an apparent

maximum concentration of 10963 ng/g. However, the acrylamide concentration

in potato chips decreases exponentially as the time passes. These results suggest

that acrylamide forms as an intermediate product during Maillard reaction and

its concentration begins to decrease as the rate of degradation exceeds the rate of

formation during heating. Although the rapid increase is conveniently modeled

by CIE a∗ parameter, the exponential fall is not captured. The study also shows

that CIE L∗ and b∗ values decrease exponentially during frying at 170 ◦C and

they keep decreasing as the frying proceeds.
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Figure 1.1: Change of acrylamide concentration and CIE redness parameter a∗

in potato chips during frying at 170 ◦C

1.2 Detection of Empty Hazelnuts using Impact

Acoustics

1.2.1 Motivation

The quality and price of hazelnuts is mainly determined by the ratio of shell

weight to kernel weight. Due to physiological disorders such as plant stress,

dehydration and lack of nutrients, hazelnuts may grow without fully developed

kernels. Physical disorders such as insect infestation also prevent hazelnuts to

develop into a healthy form by intervening the maturation process. It is usually

the case that empty hazelnuts and nuts with undeveloped kernels contain a cancer

causing material, called aflatoxin. Currently, pneumatic devices are employed to

segregate between empty and full hazelnuts. However, these devices suffer from
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Figure 1.2: Schematic of experimental apparatus for collecting acoustic emissions
from hazelnuts

high classification error rates. Therefore, it becomes a necessity both industrially

and in terms of food safety to provide a reliable separation between these two

types of product in an autonomous manner.

1.2.2 Related Work

Previously, a high-throughput (20-40 nuts/second), low-cost acoustical prototype

system was developed to separate pistachio nuts with closed shells from those

with cracked shells in real time [13, 14, 15]. A similar system was proposed to

detect empty hazelnuts by dropping them onto a steel plate and processing the

acoustic signal generated when the kernel hits the plate [16]. An air valve can

be used to separate detected empty hazelnuts from the process stream. The

schematic diagram of the system is shown in Figure 1.2. The proposed system

works reliably in a food processing environment with little maintenance or skill

required to operate. In addition, signal processing part can be carried out in an

ordinary PC with 44kHz sound sampling capability.
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1.3 Organization of the Thesis

Chapter 2 develops a modified version of the well-known k-means clustering al-

gorithm [17, 18] so that it can be used effectively in any supervised classification

framework. A performance analysis is carried out to compare the results with

some other state-of-the-art classification techniques such as Gaussian Mixture

Modeling, Support Vector Machines, Back-Propagation Neural Networks and K-

Nearest Neighbors [19].

In Chapter 3 and 4, the proposed method is applied to estimate acrylamide

levels in digital color images of fried potato chips and roasted coffee beans, re-

spectively. The relation between CIE a∗ values and acrylamide levels of potato

chips is investigated and it is observed that it is hard to define specific regions

in the range of a∗ values that point to acrylamide formation. A new method

based on the segmentation of fried potato images into three regions is devised.

Normalized-RGB color values are used as features for the segmentation of acry-

lamide contaminated areas in digital images. The changes of acrylamide levels

and estimated values are tabulated and shown to follow almost the same trend.

We also demonstrate that autocovariance estimates can be incorporated as addi-

tional statistical features into the feature set of fried potato images.

In Chapter 5, a feature domain post-processing method is developed to in-

crease performance in the separation of empty hazelnuts from fully developed

nuts by impact acoustics. The idea is inspired from the well-known median filter-

ing approach. In addition to median filtering based post-processing, the results

of an averaging filter are also examined.

The last chapter concludes the thesis with an elaborate summary of the results

obtained in the previous chapters.



Chapter 2

Modified K-means based

Classification

In this chapter, we provide a modification for the k-means algorithm which makes

it more suitable for classifying data in a supervised manner within a training-

followed-by-testing framework. K-means clustering algorithm [17, 18] is chosen

because of its simplicity, high performance and fast implementation properties.

In the following sections, we present a summary of the k-means clustering al-

gorithm, our contribution to this algorithm, application of our method to some

popular classification datasets and performance comparison with other widely

used classification methods. The proposed method is generic in the sense that it

can be applied to any classification dataset without much modification.

2.1 K-means Clustering

K-means clustering is one of the simplest unsupervised learning algorithms that

is adopted to many problem domains as a result of its simple computation and

accelerated convergence. It is also called Vector Quantization (VQ) in digital

waveform coding literature [20]. It is a very popular method listed under the class

of iterative optimization procedures. Given a dataset, this procedure provides an

7



CHAPTER 2. MODIFIED K-MEANS BASED CLASSIFICATION 8

easy and simple way to partition the observation vectors in the dataset into k

mutually exclusive clusters. It is computationally efficient and gives good results

if the clusters are compact, hyperspherical in shape and well-separated in feature

space. The main idea in k-means is to arrange the partitions in such a way that

objects belonging to a certain cluster are as close to each other as possible and

as far from the objects in other clusters as possible. Each object in the dataset

is identified with the index of the cluster to which it belongs and the centroid for

each cluster is the point to which the sum of distances from all objects in that

cluster is minimized.

Fixing the number of clusters a priori, the algorithm starts with the selection

of k initial cluster centroids inside the space spanned by the observation vectors.

The wise thing to do at this point is to select these initial points in such a way that

they are separated as much as possible from each other inside the cloud of data

points. At the next step, all points in the dataset are assigned to their nearest

cluster centers with respect to a predefined distance measure. After all the points

are processed, k new cluster centroids are calculated using the cluster bindings

obtained in the previous step. Then a new iteration is initiated by reassigning

points to their nearest cluster centroids resulting from the last iteration. Each

iteration consists of these two consecutive steps of cluster assignment and centroid

calculation. With this iterative approach, k centroids change their location step

by step until no more changes are possible as illustrated in Figure 2.1(a). This

results in the minimization of a criterion function, in this case the sum of point-

to-centroid distances, summed over all k clusters. Depending on the kind of data

being clustered, an educated selection can be made among a number of distance

measures such as Minkowski, Euclidean, city-block and cosine distances.

Suppose that a dataset of n patterns is partitioned into k clusters D1, . . . , Dk

at any stage during the iterative procedure. Let ni be the number of samples

assigned to Di and let mi be the mean of those samples:

mi =
1

ni

∑
x∈Di

x
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(a) Good Initialization (b) Bad Initialization

Figure 2.1: Effect of initial point selection on the performance of k-means al-
gorithm. Here the same dataset is partitioned into five clusters; (a) yields the
desired clustering while (b) gets trapped in a local minimum.

(Adapted from Selim Aksoy, Bilkent University)

Then, the minimization criterion function is defined as:

Je =
k∑

i=1

∑
x∈Di

‖x−mi‖2

and for a given cluster Di, the mean vector mi (centroid) is the best representative

of the samples in Di.

The algorithm is composed of the following steps:

1. Select an initial set of k cluster centroids.

2. Generate a new partition by assigning each pattern to its closest cluster

centroid.

3. When all patterns are assigned, recalculate the positions of the k centroids.

4. Repeat steps 2 and 3 until either a local minimum of the criterion function

is found or a predefined number of iterations is exceeded.
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2.1.1 Major Drawbacks of the K-means Algorithm

This iterative procedure is guaranteed to converge but it does not necessarily find

the most optimal configuration, corresponding to the global criterion function

minimum (See Figure 2.1(b)). It is possible for the algorithm to reach a local

minimum, where reassigning any one point to a new cluster would increase the

total sum of point-to-centroid distances, but where a better solution does exist.

To overcome this drawback, initial cluster centroids are often chosen by picking up

k random points uniformly distributed from the range of the data or by randomly

selecting k points from the data and running the algorithm several times. Another

problem may occur when the set of observation vectors (patterns) closest to a

cluster centroid is empty and as a result, this cluster center cannot be updated.

One possible solution is to create a new cluster consisting of the one point furthest

from its centroid and remove the empty cluster.

The distance measures mentioned in the previous paragraphs implicitly assign

more weighting to features with large ranges than those with small ranges. This is

likely to cause some trouble whenever there is a considerable amount of difference

in the range of the data along different axes in a multidimensional space. A

popular solution is to apply feature normalization (such as linear scaling to unit

variance or unit range) so that features will have approximately the same effect

in the distance computation. Selection of the optimal number of clusters for any

given dataset also presents another difficulty. A simple way to overcome this

problem is to run the clustering algorithm with several values of k and choose

the one that best conforms to the requirements of the current situation. But one

thing to be remembered is that increasing the value of k too much usually brings

the risk of overfitting the dataset as a side effect.

2.1.1.1 Information Criterion Scoring for Estimation of the Optimal

Number of Clusters

As mentioned earlier, it is not usually apparent to choose which value of k from

the context of the problem. For this reason, a number of algorithms have been
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proposed in the literature to determine k automatically.

An information criterion function is composed of two main parts. The first

part expresses the goodness of fit by the selected model. The second part is a

penalty term for model complexity. Proposed models corresponding to different

values of k are evaluated using this criterion function and the one producing the

best score is selected.

Statistically, k-means is considered as a special case of Expectation-

Maximization algorithm used in Gaussian Mixture Modeling. In k-means, equal

mixture probabilities and identical spherical covariance matrices are assumed for

all clusters. By assigning each sample point xj to its closest centroid ukj
obtained

from k-means, the classification likelihood can be calculated as a measure of the

goodness of fit as follows:

P (xj|M, σ2) =
1√

(2π)dσ2d
exp

(
−‖xj − ukj

‖2

2σ2

)

and the likelihood of the entire dataset D = {xj} becomes:

P (D|M, σ2) =
∏

j

P (xj|M, σ2)

where kj is the cluster to which xj is assigned, M is the tested model and d is the

dimension (number of features). The maximum likelihood estimate (MLE) for

variance, under identical spherical Gaussian assumption, is computed as follows:

σ̂2 =
1

Nd

N∑
j=1

‖xj − ukj
‖2

where N is the total number of sample points from all clusters.

Based on this observation, the following model criteria can be used to estimate

the optimal number of clusters:

Akaike Information Criterion [21],

AIC(M) = −log P (D|M, σ2) + (kd + 1)
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Bayesian Information Criterion [22],

BIC(M) = −log P (D|M, σ2) +
(kd + 1)

2
log N

Integrated Classification Likelihood [23],

ICL(M) = −log P (D|M, σ2)+
(kd + 1)

2
log N+

N∑
i=1

log

(
i +

k + 2

2

)
−

k∑
i=1

Ni∑
j=1

log (j+
3

2
)

where Ni is the number of sample points in cluster i, such that
∑

i Ni = N

Among these methods, AIC generally overestimates the number of clusters.

On the other hand, BIC returns the true number of clusters under the assumption

that the dataset is infinitely large. ICL tries to increase the performance of BIC

by taking into account the internal membership of sample points to corresponding

clusters.

2.1.2 Computational Complexity of the Algorithm

The computational complexity of the algorithm is O(ndkT ) where n is the number

of patterns, d is the number of features, k is the desired number of clusters, and

T is the number of iterations. In practice, the number of iterations is generally

much less than the number of patterns.

2.1.3 Improvement of the Algorithm

The set of instructions explained in the beginning of Section 2.1 is defined as

‘batch’ updates in the literature. The values obtained at the end of this proce-

dure can be accepted as the answer, or they can be used as starting points for

more exact computations. In practice, classical k-means is often followed by an

additional phase which is called ‘online’ updates. The distinction is that batch

updates are applied to all points in the dataset at once during a single iteration.
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However, online updates take over from the point where batch updates left and

each point is individually reassigned if doing so will further reduce the value of

the criterion function. Cluster centroids are recomputed after each reassignment.

This is repeated for all points in the dataset which completes a single iteration

for the second phase.

Following the introduction of basic k-means algorithm in the literature, many

contributions have been proposed to improve its performance. Among these, we

can mention two of them here:

2.1.3.1 Simulated Annealing

Simulated annealing gives a system the ability to escape from unfavorable local

minima to which it might have been initialized [24, 25]. The simulated annealing

method when applied to k-means algorithm is repeatedly executed in the following

manner:

1. An initial partitioning of the given dataset is obtained by running the

k-means algorithm until convergence.

2. The formed clustering is slightly modified to find a potentially better one.

3. If the resulting partitioning decreases the cost function, it is accepted; if

the cost function is increased, it is accepted with some probability.

The modification mentioned in Step 2 involves the merging of two clusters

and splitting of a cluster so that the total number of clusters remains the same.

The selection of which clusters should be merged and which one should be split

is made randomly, but there is a higher probability for a large cluster to be split

and two closer clusters to be merged.

The probability with which a poor modification is accepted depends on a

system parameter, called ‘temperature’. The algorithm starts with an initial

temperature of T0 and it drops as the algorithm proceeds. Lower temperatures
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result in higher rejection probabilities for unfavorable modifications. This proce-

dure is continued repeatedly until the total number of acceptances and rejections

exceeds a certain predetermined value or the system attains an acceptable value

for the cost function.

2.1.3.2 Fuzzy K-means

While classical k-means procedure assumes that each sample point can be as-

signed to exactly one cluster, fuzzy k-means approach relaxes this condition and

allows for each sample to have some graded or ‘fuzzy’ membership to a clus-

ter [26, 27]. After deciding on the initial guesses for cluster centroids, the mem-

bership probabilities and cluster centroids are updated iteratively. The criterion

function minimized during each iteration consists of the sum of distances from any

given data point to a cluster center weighted by the data membership probability

of that data point.

2.2 Our K-means based Classification Algo-

rithm

In this section, we suggest a classification method based on the classical k-means

algorithm. We demonstrate the efficiency of our method through several examples

and provide figures to better explore its properties. Although this approach can

be generalized for multi-class problems with arbitrary dimensionality1, we select

two-dimensional datasets with two-classes for easy visualization and illustrative

purposes. We conclude this section with a performance evaluation of our method

with some other state-of-the-art classification algorithms on three specifically

selected datasets.

Like most of the supervised classification algorithms, our method is composed

1The following chapter on the application of our method for acrylamide concentration esti-
mation carries these ideas into such a more complicated setting.
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of two stages: a) training, and b) testing. Below, we explain the steps of each

stage in detail.

Training Stage

Given a dataset with m classes in d dimensions, we first partition the whole

dataset, irrespective of their class memberships, into k distinct clusters by running

the classical k-means algorithm until convergence. It may be necessary to run

the program a few times more with different initial centroids in order to prevent

it from getting stuck in a local minimum. Optimal number of clusters can also be

determined using information criterion techniques discussed in Section 2.1.1.1.

It is also greatly advantageous to normalize the features of the given dataset

beforehand to unit variance or unit range whenever certain distance metrics such

as Euclidean, Minkowski and Manhattan are used in the k-means algorithm.

Let

- C1, C2, . . . , Cm denote the m classes present in the dataset,

- D1, D2, . . . , Dk denote the k clusters obtained as a result of running k-means

successfully on the whole dataset,

- nij be the number of class i samples assigned to cluster j, and

- mij be the centroid location for class i inside cluster j.

Then, mij is calculated as follows:

mij =
1

nij

∑
x∈Ci
x∈Dj

x for all i = 1, . . . ,m and j = 1, . . . , k

So we obtain, at most, k new centroid locations for each of the m classes. But

usually not all the centroid locations are of important value in terms of their

contribution to classification performance. For this reason, in our search for the

representative vectors for each class of data, we define two threshold parameters

to decide which mij values are appropriate for our purpose.
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T1: Let nj be the number of samples belong to cluster j, obtained from classical

k-means. This condition demands that

nij

nj

> T1

where T1 is a threshold.

Initial clusters are usually occupied by the sample points of more than one

class near the boundaries. For this reason, it is necessary to check if a reasonable

ratio is exceeded before starting to compute the representative vector for a certain

class inside a cluster. Otherwise, a class centroid would be generated although

the vicinity of that centroid is mainly occupied by the members of other classes.

T2: Sometimes a cluster with too few elements may become generated and it may

not be desirable to compute class centroids inside that cluster. This condition

imposes nj > T2 and assures that such situations are handled in advance.

However, there may be conditions where our precautions explained in the

previous paragraphs become too restrictive leading to loss of valuable class cen-

troids. Since these thresholds are imposed globally for all clusters of the dataset,

they can easily fail to perform desirably in the local scales of the dataset. Defin-

ing different thresholds for each cluster separately is not a handy solution and

violates the automatic behavior of our method. Therefore, in order to make up

what is possibly lost during thresholding stage we propose a brute force searching

algorithm. All the class centroids discarded by user-selected thresholds are kept

internally. Next, they are repeatedly introduced to the dataset under certain

arrangements to see if they help to increase the classification accuracy. At each

step, the arrangement that provides the highest contribution is selected. This it-

erative procedure is continued until no improvement is obtained by adding extra

centroids to the dataset.

Below is a list of some of the arrangements we used in our experiments. At

each iteration,

single centroid that provides the highest improvement on the overall classifi-

cation accuracy is introduced,
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m centroids (one from each class and all at once) that provide the highest

improvement on the overall classification accuracy are introduced,

single or m centroids or any number of centroids in between whichever pro-

vides the highest improvement on the overall classification accuracy is in-

troduced,

m closest centroids that provide the highest improvement on the overall clas-

sification accuracy is introduced.

It is also possible to force that additional centroids must increase the classi-

fication accuracy for each class in order to be included. But this may not be a

feasible idea for datasets with large number of classes.

Test Stage

Using the algorithm outlined above in successive steps, we arrive at a number of

representative vectors for each class. After applying feature normalization to the

test set with the same parameters obtained in the training set, samples in the test

set are ready to be classified as belonging to one of m classes. The classification is

done by assigning the label of the class centroid that is closest to the test sample.

2.2.1 Properties of the Method and Examples

This section aims to give some insight into the properties related to parameter

selection in our method. The advantages and disadvantages due to a particular

choice of parameter values are discussed in the previous section. So, here we

can directly pass to the specific examples. These examples are given for a 2-

dimensional, 2-class dataset of 2000 objects, known as Lithuanian classes in the

literature.

Figure 2.2 demonstrates the effect of increasing the number of initial clusters.

As parameter k is increased from 10 to 20, we see that more class centroids are

generated in the vicinity of the boundary between two classes. Enabling brute
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force searching with single centroid option allows one additional cluster center to

be included for k = 20 case while none is included for k = 10 case. The results

indicate a slight rise in the classification performance as shown in Table 2.1.

To analyze the effect of increasing T1, we select a high value of initial clusters,

k = 15. So, it is more likely that some class centroids will be discarded for greater

values of T1. This turns out to be a useful choice as depicted in Figure 2.3.

While searching for additional class centroids that better describe the dataset,

T1 = 0.5 case finds a better partitioning of the sample space resulting in a higher

classification accuracy as shown in Table 2.2.

Previously it was mentioned that brute force searching could provide a remedy

for accidentally lost class centroids via thresholding. Figure 2.4 demonstrates

this idea. By adding only two centroids at each iteration, this example run of

the program incorporates 4 additional pairs of cluster centroids that provides a

better representation of the data in training set as shown in Table 2.3. ‘2 closest

centroids’ and ‘single or 2 centroids’ options listed in the previous section are also

investigated in Figure 2.5 and Table 2.4. Combined with a suitable selection of

thresholds they also help to construct a better model of the dataset. 3 pairs of

closest centroids are added as shown in Figure 2.5(b), and a single and a pair of

centroids are added as shown in Figure 2.5(d).
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Table 2.1: Effect of increasing k on classification performance

Classification Rate
k = 10, T1 = 0.3, T2 = 20 92.1
k = 20, T1 = 0.3, T2 = 20 92.5
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(a) Effect of small k (k = 10, T1 = 0.3)
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(b) Effect of large k (k = 20, T1 = 0.3)

Figure 2.2: Effect of increasing k on the performance of our modified k-means
algorithm. (b) shows that more cluster centers can be obtained in the vicinity of
the boundary between two classes.
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Table 2.2: Effect of increasing T1 on classification performance

Classification Rate
(after brute force)

k = 15, T1 = 0.3, T2 = 20 92.3
k = 15, T1 = 0.5, T2 = 20 93.8
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(a) Before brute force (k = 15, T1 = 0.3)
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(b) Before brute force (k = 15, T1 = 0.5)
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(c) After brute force (k = 15, T1 = 0.3)
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(d) After brute force (k = 15, T1 = 0.5)

Figure 2.3: Effect of increasing T1 on the performance of our modified k-means al-
gorithm. Increasing T1 results in ignoring more centroids formed near the bound-
ary at the first stage of our algorithm (b). In some cases this may lead to a better
partitioning when brute force searching of the second stage is applied (d).
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Table 2.3: Effect of brute force searching on the representation of training set

Classification Rate in Training Set
k = 20, T1 = 0.8, T2 = 30

before brute force 92.3
after brute force 93.8
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(b) After brute force searching

Figure 2.4: Effect of brute force searching on the performance of our modified
k-means algorithm. (b) depicts that a more accurate model can be constructed
with intentionally selecting additional cluster centers that increase classification
rate in the training set.
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Table 2.4: Effect of other brute force searching methods on the representation of
training set

Classification Rate in Training Set
k = 25, T2 = 30

before brute force after brute force
‘2 closest’ case T1 = 0.6 91.2 93.8
‘single or 2’ case T1 = 0.8 93.7 94.4

−2 0 2 4 6 8 10 12 14
−15

−10

−5

0

5

10

15

(a) 2 closest case - before brute force
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(b) 2 closest case - after brute force
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(c) single or 2 case - before brute force
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(d) single or 2 case - after brute force

Figure 2.5: Effect of different brute force searching methods on the performance
of our modified k-means algorithm. In (b), two class centroids which are at
minimum distance to each other are selected at every iteration of the brute force
approach. In (d), selection is based on picking either one or two (i.e., one from
each class) class centroids that increase the success rate most.
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Table 2.5: Performance comparison of our modified k-means algorithm with other
well-known classifiers

Success Rate
Classifiers Lithuanian Banana Set 1 Banana Set 2
our method 93.6 98.5 93.4
gaussian mixture modeling 94.0 98.4 94.4
support vector machines 93.5 98.2 93.1
back-propagation neural network 93.5 97.9 92.9
k-nearest neighbor 93.1 98.0 92.1
quadratic bayes normal 87.5 84.5 83.6

2.2.2 Performance Comparison

In this section, we compare the performance of our method with five other state-

of-the-art classification algorithms. Two different datasets are provided for per-

formance analysis. They are divided randomly into two equal halves: one forming

the training set and the other forming the test set.

First one is a dataset of 2000 samples. The data is uniformly distributed along

two sausages and is superimposed by a normal distribution with unit standard

deviation in all directions. It is a 2-dimensional, 2-class dataset which is usually

referred as Lithuanian dataset in the literature. Second dataset is the same size

of the first one and contains samples with a banana shaped distribution. The

data is uniformly distributed along the bananas and is again superimposed by

a normal distribution with unit standard deviation in all directions. A third

dataset is generated from the second one by increasing the standard deviation of

the superimposed normal distribution to 1.5. Hence, more outliers are generated

which will cause higher classification error rates.

Misclassified sample points, classification boundaries and details of the classi-

fiers used are explained for all three datasets in Figures 2.6, 2.7 and 2.8, respec-

tively. Success rates are given in Table 2.5. We observe that our classifier out-

performs all except gaussian mixture modeling based classifier for two datasets.
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In this part, libraries of LIBSVM are used for SVM classification [28]. It en-

ables the automatic selection of optimal parameters by employing 10-fold cross

validation and an exhaustive search on the parameter space. PRTools is used

to optimize parameters, obtain classification errors and draw plots for k-nearest

neighbor, back-propagation neural network and quadratic bayes normal classi-

fiers [29]. All the code for classifiers and plots is written under Matlab 7.0 [30].
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Figure 2.6: Performance comparison of our modified k-means algorithm with
some state-of-the-art classifiers on Lithuanian dataset with 2 classes: (a) Our
method (k = 10, T1 = 0.5, T2 = 20), (b) Gaussian Mixture Models using
arbitrary covariance matrices, (c) SVM using radial basis function, (d) Back-
propagation Neural Network with 5 units using 1 hidden layer, (e) K-Nearest
Neighbors (k = 5), and (f) Quadratic Bayes Normal Classifier on PCA reduced
space.
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Figure 2.7: Performance comparison of our modified k-means algorithm
with some state-of-the-art classifiers on banana-shaped dataset with 2 classes
(randomnessfactor = 1): (a) Our method with minimum distance based brute
forcing (k = 25, T1 = 0.6, T2 = 30), (b) Gaussian Mixture Models using
arbitrary covariance matrices, (c) SVM using radial basis function, (d) Back-
propagation Neural Network with 5 units using 1 hidden layer, (e) K-Nearest
Neighbors (k = 5), and (f) Quadratic Bayes Normal Classifier on PCA reduced
space.
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Figure 2.8: Performance comparison of our modified k-means algorithm
with some state-of-the-art classifiers on banana-shaped dataset with 2 classes
(randomnessfactor = 1.5): (a) Our method with minimum distance based brute
forcing (k = 20, T1 = 0.8, T2 = 30), (b) Gaussian Mixture Models using
arbitrary covariance matrices, (c) SVM using radial basis function, (d) Back-
propagation Neural Network with 5 units using 1 hidden layer, (e) K-Nearest
Neighbors (k = 5), and (f) Quadratic Bayes Normal Classifier on PCA reduced
space.



Chapter 3

Image Analysis of Potato Chips

for Acrylamide Formation

This chapter begins with a discussion on how to model acrylamide formation using

digital images. It shows that the information contained in CIE a∗ parameter is

not sufficient for this purpose. The chapter continues with an implementation

of our algorithm developed in Chapter 2 to estimate acrylamide levels in digital

color images of fried potato chips. Normalized-RGB color values are selected as

features for the segmentation of acrylamide contaminated areas in digital images.

It is experimentally observed that the acrylamide levels in a fried potato chip can

be estimated by determining the ratio of brownish yellow regions (obtained via our

segmentation algorithm) to the total area of the chip image. We define this ratio

as Normalized Area of the Brownish Yellow region (NABY) and linearly correlate

it with the acrylamide levels of fried potatoes. The changes of acrylamide levels

and NABY values are observed to follow almost the same trend during frying at

170 ◦C, which indicates a significant correlation between these two variables. We

also demonstrate that autocovariance estimates can be incorporated as additional

statistical features into the feature set because they provide a satisfactory level

of discrimination.

28
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3.1 Modeling Acrylamide Formation using Im-

age Analysis

As explained in the Introduction part, CIE L∗a∗b∗ parameters used to measure

non-homogenous surface color are not reliable predictors of acrylamide concen-

tration in potato chips because the acrylamide concentrations are observed to be

lower in darker regions of the potato images. Instead of seeking a linear correla-

tion between CIE L∗a∗b∗ parameters and measured acrylamide concentrations, it

may be advantageous to define a specific range of colors for acrylamide estimation.

Figure 1.1 shows that potato chips undergo certain color transitions as the

frying proceeds. The initial pale soft yellow color of potato first turns to bright

yellow, then to brownish yellow during 8 to 10 minutes of frying at 170 ◦C. After

10 minutes, browning in the surface becomes clearer reaching to a dark brown at

the end of frying for 60 minutes. During the frying process, statistical texture

and color properties of the digital photo image continuously change and different

image regions appear in the given image.

Digital and analog cameras have built-in white-balancing systems modifying

actual color values, therefore pixel values in an image captured by a camera of a

machine vision system or a consumer camera may not correspond to true colors

of imaged objects. In addition, CCD or CMOS imaging sensors of some cameras

may not be calibrated during production. Nevertheless, after the frying process,

one can clearly visualize three different regions (or equivalently three different

kinds of pixels) in a fried potato chip image as shown in Figure 3.1(a): a) bright

yellow (Region-1), b) brownish yellow (Region-2), and c) dark brown (Region-3).

It is experimentally observed that Region-2 has a high probability of containing

acrylamide. This provides us with the possibility of estimating acrylamide levels

in a fried potato chip by determining the ratio of brownish yellow regions to the

total area of the chip image. An automatic image analysis technique can segment

pixels of a fried potato image into three sets and determine their area-wise ratios

as shown in Figure 3.1(b). This idea is implemented successfully in the following

section using normalized-RGB pixel values.



CHAPTER 3. IMAGE ANALYSIS OF POTATO CHIPS 30

(a) (b)

Figure 3.1: (a) Original fried potato chip image with selected regions, and (b) Re-
sult of our segmentation algorithm described in Section 2.2

3.2 Acrylamide Analysis using CIE a∗ Parame-

ter

In this section, we demonstrate our analysis to define a specific range of colors

for acrylamide estimation in CIE L∗a∗b∗ color space. In this study, we focus on

CIE a∗ parameter because previous work showed that L∗ and b∗ values did not

show considerable changes as those shown by a∗ during frying of potato chips [6].

3.2.1 Color Spaces

Long before the anatomical discovery of three color receptors (cones) in the human

eye, it was proposed that color can be mathematically specified in terms of three

variables and different colors can be obtained by mixing them in proper amounts.

From then onwards, the idea has been studied extensively under the title of

trichromacy and a number of important concepts have been introduced. Before

moving to CIE standards, we briefly explain these concepts.
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The sensation of color in human beings can be modeled as the projection of

the visible region of electromagnetic spectrum onto the space spanned by three

sensitivity functions. The properties of these functions are determined by the

response of three types of cones present in the eye. Each cone is either sensi-

tive to short, medium or long wavelengths such that the spectral sensitivities of

these cones are linearly independent. To capture this sort of behavior, two im-

portant concepts are introduced: (a) Color Primaries, and (b) Color Matching

Functions (CMF).

Color primaries are three colorimetrically independent light sources where

each source is a collection of the visible electromagnetic spectra. Independence

guarantees that the color of any primary cannot be visually matched by a linear

combination of the remaining two primaries. These primaries are used to obtain

a nonsingular linear transformation of the sensitivities of the three cones in the

eye, defined as a CMF [31]. This, in turn, allows us to the represent the color

of a visible spectrum in terms of tristimulus values (obtained via a color match-

ing transformation) instead of actual cone sensitivity values. In order to prevent

any confusion, it is necessary to specify with respect to which CMF the tris-

timulus values are computed. CIE, International Commission on Illumination,

developed a number of standards to serve this purpose.

After careful studies on human color perception, two equivalent sets of CMFs

are first defined by the CIE in 1931: (1) CIE Red-Green-Blue (RGB), and (2) CIE

XYZ. They are based on direct measurements of the human eye. The three

monochromatic primaries used in the first set are at wavelengths of 700 nm (red),

546.1 nm (green) and 435.8 nm (blue). The second set of CMFs is obtained by

a linear transformation of the CIE RGB CMFs and the following relation exists

between the tristimulus values in CIE XYZ and CIE RGB spaces.




X

Y

Z


 =




0.488718 0.310680 0.200602

0.176204 0.812985 0.0108109

0.000000 0.0102048 0.989795







r

g

b




where r = R2.2, g = G2.2, b = B2.2 and RGB values are scaled to unit
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range [0.0, 1.0]. The output values are also in the unit range.

CIE xy chromaticity space is derived from X,Y,Z tristimulus values in the CIE

XYZ space according to the equations below:

x = X
X+Y +Z

y = Y
X+Y +Z

z = Z
X+Y +Z

3.2.2 Color Differences and CIE L∗a∗b∗ Color Space

Perceptual uniformity is an important property for a variety of industrial ap-

plications. It requires that equal perceived color differences should correspond

to equal Euclidean distances in the tristimulus color space. However, the color

spaces we mentioned so far are perceptually nonuniform. For this reason, spe-

cial emphasis was given to develop a device-independent, perceptually uniform

representation of all the colors visible to the human eye. The concept of Just No-

ticeable Difference (JND) was introduced to quantify small color changes and a

distance metric based on MacAdam ellipse was used. MacAdam ellipse defines a

region on a chromaticity diagram such that all colors which are indistinguishable

to the average human eye from the color at the center of the ellipse are grouped

together.

In an attempt to linearize the perceptibility of color differences, CIE recom-

mended L∗a∗b∗ color space in 1976. In L∗a∗b∗ space, L∗ represents the luminance

of the color and ranges in the interval [0, 100], 0 indicating black and 100 indicat-

ing white. As a∗ changes from negative values to positive values, the position of

the color moves from green to red. Similarly, b represents the position of the color

between blue and yellow, negative values yielding blue and positive values yield-

ing yellow. A reference illumination parameter, called whitepoint is also used to

provide a crude approximation for eye’s adaptation to white color under different

lighting conditions.
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3.2.3 Conversion from CIE XYZ to CIE L∗a∗b∗

CIE L∗a∗b∗ space is defined with the following nonlinear transformation from CIE

XYZ tristimulus color space:

L∗ = 116f
(

Y
Yn

)
− 16

a∗ = 500
(
f

(
X
Xn

)
− f

(
Y
Yn

))

b∗ = 200
(
f

(
Y
Yn

)
− f

(
Z
Zn

))

where

f(x) =

{
x1/3 x > 0.008856

7.787x + 16
116

x ≤ 0.008856

and Xn, Yn, Zn are the tristimuli of the white stimulus. Under this transformation,

a JND corresponds to an Euclidean distance of 2.3.

3.2.4 Practical Issues

An RGB image is described with red, green and blue pixel values but these values

are not standardized and do not have precise definitions. RGB is not an absolute,

device-independent color space like CIE XY Z or L∗a∗b∗, and a direct conversion

formulae between RGB and L∗a∗b∗ spaces have no meaning. Therefore, an RGB

image may look considerably different from one monitor to another.

To overcome this effect, a standard has been adopted recently by major manu-

facturers to characterize the behavior of an average CRT monitor.1 All non-CRT

hardware, such as LCD screens, digital cameras and printers are also built with

additional circuitry or software to obey this standard. For this reason, it is in

general safe to assume that an image file with 8 bits per channel is in sRGB space

and a meaningful conversion can be defined between sRGB and L∗a∗b∗ spaces.

sRGB values are first transformed into CIE XY Z space as follows:

1More information on sRGB is available at http://www.w3.org/Graphics/Color/sRGB
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


X

Y

Z


 =




0.412424 0.357579 0.180464

0.212656 0.715158 0.0721856

0.0193324 0.119193 0.950444







r

g

b




where

r =

{
R/12.92 R ≤ 0.04045

((R + 0.055)/1.055)2.4 R > 0.04045

g =

{
G/12.92 G ≤ 0.04045

((G + 0.055)/1.055)2.4 G > 0.04045

r =

{
B/12.92 B ≤ 0.04045

((B + 0.055)/1.055)2.4 B > 0.04045

Input RGB values are scaled to unit range. Output XYZ values are also in

unit range [0.0, 1.0]. CIE XY Z values are then nonlinearly mapped into CIE

L∗a∗b∗ space using the same method discussed above. D65 daylight illumination

is used as reference white in these calculations. A more rigorous discussion about

conversion operations can be found in the following references [32, 33, 34].

3.2.5 Results and Discussion

Gokmen et al. measured CIE a∗ values for potato chips shown in Figure 3.2 using a

Minolta CM-3600d model spectrophotometer. Potato chips were fried at 170 ◦C

with sampling at 1, 3, 5, 8, 10, 15, 30 and 60 minutes. The results are shown in

Figure 3.2: Potato chip images used for acrylamide analysis aligned according to
frying time
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Table 3.1: Measured acrylamide concentration, measured and estimated CIE a∗

values for potato chips

t, min AA, ng/g Measured CIE a∗ Estimated CIE a∗

1 582 1.96 5.013
3 2554 5.35 8.6375
5 9519 11.73 20.6559
8 10963 12.47 22.6269
10 10500 12.78 23.0435
15 8198 12.92 27.7742
30 5119 13.86 30.6953
60 4987 13.55 30.9508

Table 3.1. From these results, it is not possible to define a specific range of CIE

a∗ values for acrylamide estimation because a∗ values are very close to each other

for brownish yellow and dark brown colored potatoes.

We estimate average CIE a∗ values from RGB images of fried potato chips

following the formulation described in the previous sections. Using Matlab 7.0

built-in functions for color conversions (makecform,applycform), potato chip im-

ages (See Figure 3.2) are transformed from RGB into CIE L∗a∗b∗ color space. An

average CIE a∗ value is calculated for each potato chip image by taking the mean

of all extracted a∗ values. As shown in Figure 3.3 and Table 3.1, high acrylamide

concentrations are observed for intermediate values of a∗ parameter. Lower val-

ues of a∗ indicate a decrease in measured acrylamide concentration. However,

higher values of a∗ do not indicate such a clear decrease and defining a specific

range responsible for acrylamide formation from estimated CIE a∗ values is not

possible, either. Hence, we turn our attention to a new set of features explained

in the following section.
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Figure 3.3: Change of acrylamide concentration and estimated CIE redness pa-
rameter a∗ in potato chips during frying at 170 ◦C

3.3 K-means Clustering based Segmentation for

Acrylamide Analysis in Potato Chip Images

As mentioned in Chapter 3.1, the segmentation of fried potato images into three

regions can provide us the necessary information to estimate acrylamide levels.

Several state-of-the-art image segmentation and pattern classification algorithms

are available in the literature each having its own advantages and disadvantages.

For a complete discussion of these algorithms, the reader may refer to any of the

following references [35, 36, 37, 19, 38].

In this section, we analyze digital color images of fried potatoes to estimate

acrylamide levels using the method developed in the previous chapter. We show

that acrylamide levels in a fried potato image can be estimated by determining

the ratio of brownish yellow regions to the total area of a given potato chip,

abbreviated as NABY. Three different regions corresponding to bright yellow,
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brownish yellow and dark brown are extracted using our k-means based classi-

fier and their corresponding area-wise ratio is calculated using the segmentation

results obtained from the classifier.

3.3.1 Selected Features

A typical image captured by a digital camera consists of an array of vectors called

pixels. Each pixel x[n,m] has red, green and blue color values:

x[n,m] =




xr(n,m)

xg(n,m)

xb(n,m)




where xr(n,m), xg(n,m) and xb(n,m) are the values of red, green and blue com-

ponents of the (n,m)th pixel x[n,m], respectively. In digital images, xr, xg and xb

color components are represented in 8 bits, i.e., they are allowed to take integer

values between 0 and 255(= 28−1) [37]. Digital and analog cameras have built-in

white balancing systems modifying actual color values, therefore pixel values in

an image captured by a camera of a machine vision system or a consumer camera

may not correspond to true colors of imaged objects. In addition, CCD or CMOS

imaging sensors of some cameras may not be calibrated during production. To

reduce such variations due to lighting conditions and white-balancing scheme of

digital cameras, normalized image pixel color values are used as features for our

classification system.

Figure 3.5 plots the distribution of the normalized color values obtained from

the regions shown in Figure 3.4. From this figure, we deduce that a set of features

containing only normalized color values can be enough to provide a reasonable

separation of the dataset using our k-means based classifier. They are computed

as follows:
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xr(n, m) =
xr(n,m)

xr(n,m) + xg(n,m) + xb(n,m)

xg(n,m) =
xg(n,m)

xr(n,m) + xg(n,m) + xb(n,m)

xb(n,m) =
xb(n,m)

xr(n, m) + xg(n,m) + xb(n,m)

(a) Bright Yellow (b) Brownish Yellow (c) Dark Brown

Figure 3.4: Potato regions used in feature distribution and autocovariance esti-
mation plots (a) Region 1, (b) Region 2, and (c) Region 3
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Figure 3.5: Distribution of the features used for acrylamide level estimation in
normalized RGB space.
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Figure 3.6: Row-wise unbiased autocovariance estimates from normalized red
pixels

In this study, we also demonstrate another set of useful features that can

further increase the classification accuracy of our system by incorporating sta-

tistical properties of three different colored regions. Unbiased estimates of the

autocovariance values for bright yellow, brownish yellow and dark brown regions

are obtained in windows of size (N × M) horizontally and vertically, using the

following formulas:

cH,i(k) =
1

NM

N−1∑
n=0

M−k−1∑
m=0

(
xi(n,m)− 1

M

M−1∑

l=0

xi(n, l)

)

×
(

xi(n,m + k)− 1

M

M−1∑

l=0

xi(n, l)

)

cV,i(k) =
1

NM

M−1∑
m=0

N−k−1∑
n=0

(
xi(n,m)− 1

N

N−1∑

l=0

xi(l, m)

)

×
(

xi(n + k, m)− 1

N

N−1∑

l=0

xi(l,m)

)

where i = r, g, b ; k = 0, 1, 2, . . . ; N and M are the row and column number of

pixels over which estimation is carried out. Figure 3.6 plots the corresponding
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Table 3.2: Measured acrylamide concentration and estimated NABY value for
potato chips

t,min AA,ng/g NABY
0 0 0
1 582 0.0485
3 2554 0.2249
5 9519 0.9147
8 10963 0.9503
10 10500 0.9209
15 8198 0.7574
30 5119 0.5539
60 4987 0.4136

autocovariance values estimated from the red pixels of (50 × 50) regions shown

in Figure 3.4. The first two autocovariance values, cH,r(0) and cH,r(1) are very

different from each other in Region 1, Region 2 and Region 3. Hence, they can

be included into our feature vector as additional elements and provide a better

segmentation of the potato images for acrylamide analysis.

3.3.2 Classification Results

The proposed acrylamide estimation method was implemented using Matlab pro-

gramming environment and tested on a set of images containing potato chips fried

at 170 ◦C with sampling at 1, 3, 5, 8, 10, 15, 30 and 60 minutes (See Figure 3.2).

Prior to feature extraction and segmentation, potato chip images are convolved

with a [5× 5] median filter to remove oil sparks. A morphological erosion opera-

tion is applied at the boundaries of potato chips to remove shadowing effects.

As illustrated in Figure 3.7 and Table 3.2, changes of acrylamide levels and

NABY values follow approximately the same trend during the frying of potato

chips at 170 ◦C. The results indicate a linear regression coefficient as high as

0.9868. The correlation between measured acrylamide levels and NABY values

is demonstrated in Figure 3.8.
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Figure 3.7: Change of acrylamide level and NABY value in potato chips during
frying at 170 ◦C.

Figure 3.8: Correlation between acrylamide level and NABY value in potato chips
fried at 170 ◦C.



Chapter 4

Image Analysis of Coffee Beans

for Acrylamide Formation

Coffee is a highly consumed beverage in many countries. Significant levels of acry-

lamide can be present in coffee due to roasting of coffee beans during manufac-

turing process. The effect of various roasting conditions on acrylamide formation

and color changes was analyzed by the following researchers [39, 40, 41, 42].

Motivated with the results obtained from potato chip images, same sort of

analysis is carried out on a set of green coffee images. These images correspond

to the same coffee samples previously studied by Gokmen et al. [39]. Coffee

samples are roasted at 150, 200 and 225◦C with sampling at 5, 10, 15, 20 and 30

minutes (See Figure 4.1). Gokmen et al. reported that the amount of acrylamide

measured increased rapidly at the onset of roasting, reaching an apparent max-

imum, and then decreasing exponentially as the rate of degradation exceeded

the rate of formation at 200 and 225 ◦C. However, the amount of acrylamide

measured continued to increase during roasting at 150 ◦C.

Gokmen et al. also showed that dark colored coffee may contain much lower

amounts of acrylamide than light colored coffee. This is consistent with the results

of Chapter 3 in the sense that acrylamide concentration decreases at the later

stages of cooking. Using these observations, pixels of coffee images are classified

42
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Table 4.1: Low-pass filter coefficients

h[0] h[1] h[2] h[3] h[4] h[5] h[6] h[7] h[8] h[9] h[10]
0.0378 0.0141 -0.0035 -0.0294 -0.0488 -0.0437 -0.0030 0.0694 0.1538 0.2215 0.2473
h[11] h[12] h[13] h[14] h[15] h[16] h[17] h[18] h[19] h[20] −
0.2215 0.1538 0.0694 -0.0030 -0.0437 -0.0488 -0.0294 -0.0035 0.0141 0.0378 -

into 4 regions. First 3 regions are the same as the ones proposed in the previous

chapter. A fourth region is added to distinguish dark colored coffee grains from

discontinuity parts between the boundaries of the coffee grains. NABY values

are again calculated using only first 3 regions. Prior to feature extraction, coffee

images are also convolved with a 21-tap low-pass FIR filter to further reduce

boundary effects. The filter is designed with a cut-off frequency of π/4 using the

Remez routine in Matlab [30] (See Table 4.1 and Figure 4.2). Results are shown

in Tables 4.2, 4.3 and 4.4, and Figures 4.3 and 4.4.

These results indicate that NABY value can be an approximate predictor of

acrylamide level for roasted coffee beans. However, it should also be noted that

experimentation with a large database of roasted coffee images is necessary to

establish more accurate relations.

Figure 4.1: Coffee images used for acrylamide analysis aligned according to tem-
perature (vertically) and frying time (horizontally)
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Figure 4.2: Frequency response of the low-pass filter used in pre-processing

(a) (b)

Figure 4.3: (a) Original coffee image roasted at 200 ◦C for 15 minutes, and (b) Seg-
mented coffee image
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(a)

(b)

(c)

Figure 4.4: Change of acrylamide level and NABY value in coffee during roasting
at (a) 150, (b) 200 and (c) 225 ◦C.
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Table 4.2: Measured acrylamide concentration and estimated NABY value for
coffee roasted at 150 ◦C

t,min AA,ng/g NABY
5 8 0.0134
10 18 0.0292
15 57 0.1422
20 85 0.4930
30 305 0.9780

Table 4.3: Measured acrylamide concentration and estimated NABY value for
coffee roasted at 200 ◦C

t,min AA,ng/g NABY
5 13 0.0584
10 300 0.9225
15 155 0.6890
30 15 0.1075

Table 4.4: Measured acrylamide concentration and estimated NABY value for
coffee roasted at 225 ◦C

t,min AA,ng/g NABY
5 208 0.4892
10 150 0.6326
15 38 0.1886
20 23 0.0147
30 12 0.0001



Chapter 5

A Feature Domain

Post-processing Method to

Increase Performance for

Hazelnut Classification

In this chapter, a feature domain post-processing method is developed to increase

performance in the separation of empty hazelnuts from fully developed nuts by

impact acoustics. The use of signal processing techniques for the detection of

empty hazelnuts from fully developed nuts is investigated in [16]. It is observed

that the classification accuracy can be further increased by applying our method

on the features extracted from impact sounds of hazelnuts before feeding them

into the classifier. The idea is inspired from the well-known median filtering ap-

proach, which is mainly used to reduce noise due to outliers while preserving useful

detail in an image [43]. In addition to median filtering based post-processing, the

results of an averaging filter are also examined.

The motivation behind empty hazelnut detection is discussed in the Introduc-

tion part. Here, we follow by a summary of the proposed solution presented in

our paper [16]. It is later shown that a better training set can be obtained by

47
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removing outliers in the feature space with the help of median and mean post-

processing methods. With an appropriate selection of the corresponding method

parameters, a more accurate model for the dataset can be obtained, thus leading

to a better classification performance.

5.1 Experimental Setup and Dataset

Since the aim is to assess the applicability of proposed signal processing algo-

rithms, mechanical part of the setup discussed in Section 1.2.2 is simplified into

an impact plate, a chute through which hazelnuts are dropped and a microphone

which is sensitive to frequencies up to 20kHz. Meanwhile, signal processor part

is fully preserved. A heavy polished block of stainless steel (7.5× 15× 2 cm3) is

chosen as impact surface to minimize the interference from internal vibrations of

the plate.

In this study, dataset is composed of the features extracted from impact

sounds of ‘Levant’ type hazelnuts from Akçakoca, Düzce region of Turkey. There

are a total of 492 impact sounds obtained from 231 empty and 261 full hazelnuts.

5.2 Signal Processing

Features are extracted from the recorded impact sounds of empty and full hazel-

nuts. Subsequently, test and training sets are constructed by randomly dividing

each group into two halves. Mean and median filtering based post-processing is

applied on the feature space spanned by the training data. Lastly the classifica-

tion is performed using Support Vector Machines [28].
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(a) Empty Hazelnuts (b) Full Hazelnuts

Figure 5.1: Typical impact sound signals from an empty hazelnut and a full
hazelnut. The extremum of a full hazelnut is usually higher than an empty
hazelnut.

5.2.1 Feature Extraction

5.2.1.1 Time Domain Signal Modeling

Figure 5.1 shows example time domain signals for empty and full hazelnuts. In

order to fully capture the differences between two waveforms, a smoothed envelope

of each signal (from which Weibull function parameters and coefficient of multiple

regression1 are estimated) is computed as follows:

1. rectify the signal by taking the absolute value at all points,

2. non-linearly filter the signal by replacing the center data point with the

maximum value in a 7-point window,

3. estimate the four parameters of the Weibull function, given by the

following equation:

1Coefficient of multiple regression(R2): A statistic that measures how successful the fit is in
explaining the variation of the data.
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Figure 5.2: Average variances from short time windows of time domain signals

Y (t) =





bc
a

[
(t−t0)

a

](b−1)
{

e
−
h

(t−t0)
a

ib}
if t > t0

0 otherwise

5.2.1.2 Short Time Variances in Frames of Data

In addition to modeling global behavior of the impact signal with Weibull func-

tion, local time domain variations are captured by computing variances in short

time windows. Short time windows are 50 samples in duration and each windows

overlaps with the previous and next window by 20 samples. A total of 8 short

time windows are used to compute variances and the first window begins 40 sam-

ples before the sample location corresponding to the maximum amplitude. After

all variances are calculated, they are normalized by the sum of all 8 variances as

follows:

σ2
ni =

σ2
i∑8

i=1 σ2
i

where σ2
ni and σ2

i are the normalized and computed variances from window i with

i = 1 being the first and i = 8 being the last. This method captures the increased

duration of signals from empty hazelnuts in the last three windows as shown in

Figure 5.2.
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(a) Empty Hazelnuts (b) Full Hazelnuts

Figure 5.3: Example frequency spectra magnitudes for empty and full hazelnuts

5.2.1.3 Extrema in Short Time Windows

Beginning from the 30th sample, time domain signal is divided into 11 non-

overlapping windows, each having a size of 15 samples. The extremum value

of each window is selected as a feature value.

5.2.1.4 Frequency Domain Processing

Beginning from 80 samples before the signal maximum slope, a 256-point DFT

(Discrete Fourier Transform) is computed using a Hamming window for each im-

pact sound. Magnitude of the computed spectra is then low-pass filtered using

a 20-tap FIR filter with cut-off frequency equal to π/4 in the normalized DFT

domain to remove jagged spikes. Then the frequency corresponding to the peak

magnitude in the spectra is saved as a discriminating feature. In addition, 15

magnitude values before and after the peak are also preserved after being nor-

malized by the peak magnitude. Figure 5.3 shows the corresponding spectra for

empty and full hazelnuts.
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5.2.1.5 Line Spectral Frequencies

Linear predictive modeling techniques are widely used in various speech coding,

synthesis and recognition applications [44, 45]. Linear Minimum Mean Square

Error prediction based data analysis is equivalent to Auto-Regressive modeling of

the data. Line Spectral Frequency (LSF) representation of Linear Prediction (LP)

filter was introduced by Itakura [46] and extensively used in GSM and MELP

speech coding systems.

In LMMSE analysis, it is assumed that the sound data can be modeled using

an m-th order linear predictor, i.e., xp[n] = a1x[n−1]+a2x[n−2]+. . .+amx[n−m]

where x[n − k] is the sound sample at time instant (n − k)Ts and xp[n] is the

estimated sound sample at time instant nTs (Ts is the sampling period). Let the

prediction error filter Λm(z),

Λm(z) = 1 + α1z
−1 + α2z

−2 + . . . + αmz−m

be obtained by LP analysis of the impact sound, (αi = −ai). The corresponding

all-pole synthesis filter is 1/Λm(z). A minimum phase prediction error filter (i.e.,

one with all its roots within the unit circle) has a corresponding synthesis filter

which is stable. The LSF polynomials P (z) and Q(z) are formed as follows:

P (z) = Λm(z) + z−(m+1)Λm(z−1)

Q(z) = Λm(z)− z−(m+1)Λm(z−1)

The roots of these two auxiliary polynomials determine Line Spectral Fre-

quencies. It is shown in [47] that if Λm(z) is minimum phase, then

- the roots of P (z) and Q(z) are on the unit circle, and

- the roots are interlaced.

If the underlying process is truly Auto-Regressive, phase angles of LSFs con-

centrate around spectrum peaks. Thus, they provide a compact way of repre-

senting the spectrum of the impact sound under AR assumption.
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5.3 Mean and Median Filtering Based Post-

Processing

In classification problems, it is usually the case that dataset is corrupted with

outliers due to various sources of noise sneaking into the system during data

acquisition process. In a system where model parameters are estimated from a

subset of the dataset (called training set), same sort of noise is also inherited.

This may have a negative effect on the system performance when the model is

evaluated on the test set.

Another problem in classification occurs when the samples belonging to differ-

ent classes are not completely separable. Sometimes, part of the feature space is

heavily polluted by samples of different classes simultaneously (occlusion). This,

in turn, increases the complexity of the classifier considerably for just a small

gain in the system performance. In other cases, the increase in the complexity

may not even provide any improvement. Under such circumstances, it may be

desirable to modify training samples locally in small groups without disturbing

their overall distribution noticeably. It may be possible to give sample points

a more organized look in finer scale within the areas of occlusion, and hence,

increase the separability among the sample points belonging to different classes.

In this section, a remedy based on mean and median filtering ideas is proposed

to overcome these problems. In the following sections, corresponding results for

hazelnut dataset are compared with the previously obtained results [16].

5.3.1 Algorithm

Given a sample point and values for the parameters r and T ,

- a hypersphere of radius r is drawn such that the sample point lies in the

center of the hypersphere,
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- if the number of points inside the hypersphere belonging to the same class

as the sample point exceed T , the sample point is replaced with either the

mean or median of those points; otherwise the sample point is deleted

from the set.

This algorithm is repeated for all sample points in the dataset. Since a hyper-

sphere is used, it is crucial to normalize each feature to have zero mean and unit

variance before running the algorithm. The coefficients used in normalization

must be preserved in order to apply the same linear scaling to test set before the

samples are sent to the classifier.

As mentioned earlier, selection of r parameter is important. If it is too large,

filtered output will be a very trivial set and most of the information contained

inside the training set will be lost. If it is too small, a lot of points will be classi-

fied as outliers and this destroys the benefits that we expect from mean/median

filtering. It is usually helpful to investigate the distribution of the data in places

where occlusion occurs and decide the values of T and r parameters accordingly.

As a consequence, it may become a necessity to select different values of r for

different classes whenever the variability of classes are not close to each other.

Filtering can be carried out in two ways:

Mean Filtering: Output sample point is obtained by taking the average of all

sample points inside the hypersphere that belong to the same class as the

selected sample point,

Vector Median Filtering: Output sample point is chosen as the sample point

whose sum of Euclidean distances to other points belonging to the same

class is a minimum.



CHAPTER 5. POST-PROCESSING FOR HAZELNUT CLASSIFICATION 55

Table 5.1: Average classification results obtained for banana shaped classes

Success Percentages
Mean Median Without filtering

Back propagation NN with 5 hidden units 98.5 98.6 98.3
K-nearest neighbor (k = 5) 98.0 98.0 97.9
GMM with 3 mixtures 98.5 98.4 98.3
SVM with Radial Basis Function 98.2 98.3 98.3

5.3.2 Performance Analysis

In order to assess the validity of our approach, described filtering algorithm is

applied to an artificially generated dataset of banana-shaped classes similar to

the one used in Chapter 2 (Banana Set 1). Each one of the two classes consists of

1000 samples. Classification is repeated 5 times by randomly reordering training

and test set features, and final results are taken to be the average of these 5

experiments. Filtering parameters are chosen empirically as r = 0.54, T = 1

for both classes and same values are used for all classifiers. During the filtering

process, 24.0 and 21.7 samples are discarded on the average from training set of

each banana class. Due to randomization and averaging, non-filtered results differ

slightly with respect to previous findings. Corresponding results are tabulated in

Table 5.1. Effect of filtering on the training set is demonstrated on Figure 5.4.

5.4 Support Vector Machine Classifier

Support Vector Machine classifiers operate on the principle of defining a linear

boundary between classes such that the margin of separation between samples

from different classes that lie next to each other is maximized [48]. Support

vectors lie on the margin and carry all the relevant information about the classi-

fication problem.

This approach is generalized to non-linear case by mapping the original feature

space into some other space using a mapping function and performing optimal
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Figure 5.4: Effect of filtering on training set (a) before filtering, (b) after mean
filtering, (c) after median filtering
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hyperplane algorithm in this dimensionally increased space. In the original feature

space, the hyperplane corresponds to a non-linear decision function whose form

is determined by the mapping kernel.

Results presented in the next chapter for hazelnut classification are obtained

using a two-class SVM classifier with radial basis function (RBF) as kernel. RBF

kernels are computed according to the formula:

k(x,y) = e−
‖x−y‖2

2σ2

LIBSVM package provides the necessary quadratic programming routines to

carry out classification [28]. It also normalizes each feature by linearly scaling it

to the range [−1, 1].

5.5 Classification and Comparison of Results

In this section, classification results obtained by using all extracted features are

tabulated for the detection of empty hazelnuts from fully developed nuts. It is also

shown that these results can be further increased by employing post-processing

techniques explained in Section 5.3.1. In order to eliminate noise effects, SVM

classification is repeated 5 times by shuffling feature vectors. The final results

are taken to be the average of these 5 experiments.

During the filtering process, 19.8 and 16.6 samples are discarded on the av-

erage from training sets of empty and full hazelnuts, respectively. r parameter is

set to different values for each class such that 5.5 sample points of the same class

lie in each hypersphere on the average. If there is no sample in the hypersphere

except the point in the center, that point is deleted (T = 1). As depicted in Ta-

ble 5.2, overall classification performance is increased with the filtering approach.

The gain in system performance is greater for the case of mean filtering.
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Table 5.2: Average classification results obtained with/without mean/median
filtering based post-processing by using all features

Success Percentages
Mean Median Without filtering

Empty 97.8 95.9 96.5
Full 96.6 97.4 96.5
Overall 97.2 96.7 96.5



Chapter 6

Conclusions

In this work, we present signal and image processing algorithms for two spe-

cific agricultural applications: (a) Estimation of acrylamide levels in fried potato

chips and roasted coffee beans using digital images, and (b) detection of empty

hazelnuts from fully developed nuts using impact acoustics.

During the frying of potato chips, statistical texture and color properties of

the corresponding digital photo image continuously change and different image

regions appear. However, it is difficult to establish a direct correlation between

CIE a∗ parameter and measured acrylamide concentration. After the frying pro-

cess, three different regions corresponding to bright yellow, brownish yellow and

dark brown areas become visible in a given potato chip image. It is experimen-

tally observed that brownish yellow pixels have a high probability of containing

acrylamide. For this reason, the ratio of brownish yellow regions to the total area

of the chip image is chosen as an estimator of the acrylamide level in fried potato

chips. To reduce illumination effects, normalized-RGB color values are selected

as features. Using our method, we segment each potato chip image into three

corresponding regions. Results indicate that a linear regression coefficient as high

as 0.9868 is achieved for potato chips fried at 170 ◦C. A similar image analysis

method is applied to the images of roasted coffee beans and satisfactory results

are also obtained. In this part, we also show that autocovariance estimates can

be incorporated as additional statistical features to predict acrylamide levels in

59
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potato chips.

There is currently little information about, and poor understanding of, how

acrylamide forms in foods. But it is known that acrylamide forms as an inter-

mediate product during frying and its concentration begins to decrease as the

rate of degradation exceeds the rate of formation during heating. In our analysis,

we assume that formation of dark colored regions on the surface of the potatoes

corresponds to this fact. This assumption has proven its validity throughout our

experiments.

In order to estimate acrylamide levels from a given potato chip or coffee im-

age, an automatic classification method based on the classical k-means algorithm

is proposed. This supervised method consists of training and testing stages, and

proceeds as follows: Given a dataset with a number of classes in arbitrary dimen-

sion, the whole dataset is first partitioned into k distinct clusters by running the

classical k-means algorithm until convergence. Inside each cluster, a represen-

tative vector is calculated for each class by averaging the sample points of that

class assigned to the specified cluster.

This simple approach may fail to perform efficiently due to the large degree

of variability in real-world datasets. This is because all the representative vectors

calculated as described above may not possess the same degree of importance

in terms of their contribution to classification performance and unnecessary cen-

troids may be generated due to noise present in the dataset. For this reason,

two threshold parameters are introduced to decide which representative vectors

should be kept at the end. The first threshold requires that the ratio of the

sample points belonging to each class inside a cluster must exceed some predeter-

mined value. The second thresholds aims at preventing the calculation of class

centroids inside clusters with too few sample points. However, these conditions

may sometimes become too restrictive. To compensate for such an effect, all

class centroids discarded by user-determined thresholds are kept internally and

presented repeatedly under certain arrangements to see if they help to increase

the recognition accuracy. Using this approach step by step, a number of repre-

sentative vectors are estimated for each class from the training set. In the test
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set, the classification is performed by assigning the label of the class centroid that

is closest to the test sample.

The effect of each parameter on classification performance is analyzed using

Lithuanian classes. The applicability of our approach is tested on both Lithuanian

and banana-shaped classes. The results indicate comparable performance with

some other state-of-the-art classification techniques such as Gaussian Mixture

Modeling, Support Vector Machines, Back-Propagation Neural Networks and K-

Nearest Neighbors. The proposed method is generic in the sense that it can be

applied to any classification dataset without much modification.

Information criterion techniques are applied to obtain an initial estimate of the

number of clusters present in the feature space at the beginning of the program.

This is useful to check whether our assumption about three different regions exist-

ing in a potato image is valid. However, information scores follow a monotonically

decreasing behavior within the range of acceptable k values – pointing to larger

values of k as optimal. This is mainly attributed to the inflexible ‘identical spher-

ical Gaussian assumption’ used in model selection. The data coming from three

main regions of a potato chip image is highly non-Gaussian. This forces the model

selection process to move towards larger values of k by modeling non-Gaussian

clusters using a number of smaller identical-spherical Gaussian clusters. Hence,

the density of the distribution is modeled better but resulting estimate for the

number of clusters does not make any sense for our purposes.

Our k-means based image analysis system seems to be a promising approach

for the prediction of acrylamide levels in fried potatoes and roasted coffee beans.

A linear regression equation obtained from a correlation curve, similar to one that

is plotted in Figure 3.8, can be used for this prediction. Since higher NABY values

indicate higher acrylamide levels, products exceeding a predefined critical value

of NABY may be simply sorted out in a processing line based on this principle. In

such systems, cameras can be installed in the packaging lines and digital images

can be analyzed in real-time and those products with high NABY values can

be removed. For example, if a provisional maximum permitted concentration of

acrylamide in the finished product is established, the fried potatoes or roasted
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coffee beans exceeding the corresponding NABY value (to be obtained from the

linear regression plot) can be removed by the machine vision system. It should be

noted here that the calibration curve presented here should be modified according

to the results that will be obtained for a wide range of potato/coffee cultivars and

frying/roasting conditions.

Another contribution of this thesis is the development of a feature domain

post-processing method to increase performance for hazelnut classification. A

prototype system was previously proposed to detect empty hazelnuts using im-

pact acoustics. In that study, a number of feature vectors describing time and

frequency nature of the impact sounds were extracted from the acoustic signals

and classified using support vector machines. We show that a better training set

can be obtained by filtering the data and removing outliers in the feature space

with an appropriate selection of the filtering parameters. Vector median and

mean filtering techniques are used in the post-processing step and the resulting

training features are fed into the SVM classifier. The results indicate a slight gain

in the system performance. The validity of the approach is assessed by applying

the method to artificially generated banana-shaped classes.

As noted earlier, the performance of the proposed filtering approach is com-

pletely determined by a particular choice of filter parameters. Therefore, it is

necessary to examine the distribution of the data in the training set in order

to obtain a promising set of filter parameters. After deciding on which samples

should be considered as outliers, a value for the radius of the hypersphere can be

determined by looking at the average distance of the points considered as outliers

to the nearby points considered as representatives of their class.
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[7] V. Gökmen, H. Z. Şenyuva, J. Acar, and K. Sarıoğlu, “De-

termination of acrylamide in potato chips and crisps by high-

performance liquid chromatography,” Journal of Chromatography A, 2005.

(doi:10.1016/j.chroma.2004.10.094).

63



BIBLIOGRAPHY 64

[8] S. I. F. S. Martins and M. A. J. S. van Boekel, “Melanoidin’s extinction

coefficient in the glucose/glycine maillard reaction,” Food Chemistry, vol. 83,

no. 1, pp. 135–142, 2003.

[9] S. E. Papadakis, S. Abdul-Malek, R. E. Kandem, and K. Yam, “A versatile

and inexpensive technique for measuring color of foods,” Food Technology,

vol. 54, no. 12, pp. 48–51, 2000.
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