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Large-core hollow photonic-crystal fibers (PCFs) are shown to enable a fiber-format air-guided

delivery of ultrashort infrared laser pulses for neurosurgery and nonlinear-optical imaging. With an

appropriate dispersion precompensation, an anomalously dispersive 15-lm-core hollow PCF

compresses 510-fs, 1070-nm light pulses to a pulse width of about 110 fs, providing a peak power

in excess of 5 MW. The compressed PCF output is employed to induce a local photodisruption of

corpus callosum tissues in mouse brain and is used to generate the third harmonic in brain tissues,

which is captured by the PCF and delivered to a detector through the PCF cladding. VC 2012
American Institute of Physics. [doi:10.1063/1.3681777]

Rapidly developing ultrafast laser technologies offer a

vast arsenal of solutions and instruments for life sciences.

Femtosecond light pulses are showing their utility as a

powerful tool for high-resolution bioimaging,1–3 intracellular

nanosurgery,4 laser ophthalmology,5,6 targeted cell transfec-

tion,7 axotomy,8 all-optical histology,9 targeted action on

subsurface cortical blood vessels,10 and cell fusion.11 While

experiments with free-beam ultrashort laser pulses interact-

ing with bio-objects show much promise for diversified life-

science applications, such as multiphoton spectroscopy on

slices of biotissues,1–3 implementation of these approaches

in the endoscopic mode, which is often needed for in vivo
work, faces several fundamental challenges. Standard optical

fibers, used for the delivery of ultrashort pulses in the endo-

scopic mode, tend to give rise to dispersion-induced pulse

stretching and impose severe limitations on the laser fluence,

which needs to be kept below the fiber damage threshold. In

the nano and picosecond ranges of pulse widths, several

attractive solutions have been demonstrated using hollow-

core photonic-crystal fibers (PCFs),12 enabling the fiber

delivery of high-energy nanosecond13 and picosecond14 laser

pulses for a variety of biophotonic and biomedical applica-

tions.15 For femtosecond pulses with relatively low peak

powers, typically employed for multiphoton absorption and

coherent Raman imaging, the fiber-delivery problem for the

endoscopic format of in vivo work can often be resolved by

using soliton regimes of pulse propagation in hollow-16 and

solid-core17 PCFs, as well as low-dispersion, low-nonlinearity

air-guided modes in this class of fibers.18–20 Femtosecond

laser surgery, however, requires an adequate level of laser

energy, posing additional serious problems for fiber delivery

related to fiber damage by laser radiation.

Here, we show that large-core hollow PCFs operating in

the pulse-compression mode can enable a fiber-format

air-guided delivery of ultrashort infrared laser pulses for neu-

rosurgery applications. We demonstrate that, with an appro-

priate dispersion precompensation, a 15-lm-core hollow

PCF can compress stretched 510-fs, 1070-nm laser pulses to

a pulse width of about 110 fs, providing a peak power in

excess of 5 MW. In the experiments presented here, the com-

pressed PCF output is employed to induce a local photodis-

ruption of corpus callosum tissues in mouse brain and is

used to generate the third harmonic in brain tissues with

backward third-harmonic delivery through the PCF cladding.

The hollow-core PCF used in our experiments includes

a periodically structured hexagonal-lattice photonic-crystal

cladding and an air-filled 15-lm-diameter hollow core,

formed by the omission of 19 fiber-structure elements in the

central part of the waveguide. Low-loss light guidance in a

fiber with such a design is supported by the photonic band

gaps (PBGs) of the periodically structured cladding, which

translate into fiber transmission bands.21 The structure of the

hollow PCF used in our experiments is designed to provide

low-loss transmission within the band centered at 1060 nm,

suggesting attractive solutions for the fiber delivery of ytter-

bium laser pulses (cf. the dashed and dashed-dotted lines in

Fig. 1(a)). In our experiments, 140-fs ytterbium-laser pulses

were transmitted through a 1-m piece of such a fiber with

minimal spectral distortions and a loss below 0.05 dB/m.

a)Author to whom correspondence should be addressed. Electronic mail:

zheltikov@phys.msu.ru.
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Due to the high damage threshold and low nonlinearity

of the hollow fiber core, laser pulses with a high peak power

can be transmitted through a fiber with such a design.14

Strong waveguide dispersion of hollow PCFs, however,

gives rise to the stretching of ultrashort laser pulses, limiting

the utility of fiber-based delivery in a broad variety of

nonlinear-optics-based biomedical applications. Here, we

seek the solution to this problem by exploiting an important

general property of the group-velocity dispersion (GVD) of

PBG-guided hollow-PCF modes, which tends to vanish at a

median point of the PCF transmission band, becoming anom-

alous toward longer wavelengths. To visualize this tendency,

we use a 100-fs, 1070-nm output (the solid line in Fig. 1(a))

of an optical parametric amplifier (OPA) pumped by ampli-

fied pulses of a mode-locked Ti: sapphire laser. Figures 1(b)

and 1(c) present the cross-correlation frequency-resolved op-

tical gating (XFROG) traces22 recorded with the use of a

0.5-mm-thick BBO crystal and 790-nm, 80-fs reference

pulses, delivered by the Ti: sapphire laser, for the 1070-nm

OPA output with an initial chirp of 1500 fs2 before and after

the hollow PCF. As can be seen from these measurements,

the fiber dispersion tends to stretch 100-fs light pulses to an

output pulse width of 490 fs. The fiber GVD retrieved from

these XFROG traces (Fig. 1(d)) is indeed anomalous, sug-

gesting the possibility of simple schemes of dispersion pre-

compensation for the shortest pulse width at the PCF output.

For the precompensation of fiber dispersion, tunable

chirp was imposed on laser pulses with a stack of silica

plates. An XFROG trace of an OPA pulse stretched by such

a dispersion-precompensation scheme to a pulse width of

approximately 510 fs is shown in Fig. 2(a). The temporal en-

velope and the chirp of the stretched OPA pulses retrieved

from the XFROG traces are presented in Fig. 2(b). Pulse

stretching is dominated by a linear chirp, which is estimated

as 6540 fs2. The spectrum of the stretched pulses retrieved

from the XFROG traces (the solid line in Fig. 2(c)) closely

follows the directly measured spectrum (filled circles in Fig.

2(c)). The spectral phase of these pulses, also retrieved from

XFROG measurements (the dashed line in Fig. 2(c)), visual-

izes the parabolic phase profile introduced by pulse

stretching.

The stretched light pulses with an energy of 0.5 lJ are

coupled into a 20-cm section of hollow-core PCF by a

micro-objective with a numerical aperture of 0.2. For the

chosen parameters of the fiber and laser pulses, the B inte-

gral, B ¼ 2pk�1
Ð

n2IðzÞdz, where k is the wavelength, n2 is

the nonlinear refractive index, and I(z) is the field intensity,

is less than unity, allowing effects related to the nonlinear

phase shift to be avoided. The XFROG trace of the PCF out-

put (Fig. 2(d)) and its temporal phase profile (the dashed line

in Fig. 2(e)) indicate that most of the linear part of the input

chirp has been compensated by PCF dispersion, restoring the

initial pulse width of about 110 fs and providing a peak

power of about 5 MW. The temporal envelope of the PCF

output retrieved from the XFROG trace is shown by the solid

line in Fig. 2(e). The spectrum and the spectral phase of the

PCF output (Fig. 2(f)) confirm that the nonlinear-optical

effects are weak, which is consistent with the estimate for

the B integral. The noncompensated phase, seen in Figs. 2(e)

and 2(f), is dominated by high-order dispersion of the hollow

PCF.

The compressed PCF output was collimated and then

focused on a slice of a mouse brain tissue with a pair of

aspherical lenses with a numerical aperture of 0.55 (Fig.

3(a)). Focusing to a beam diameter of 3–5 lm yielded a laser

field intensity of 30–70 TW/cm2 and a laser fluence of

3–7 kJ/cm2. This level of fluence is more than two orders of

magnitude higher than the breakdown threshold of a

FIG. 1. (Color online) (a) Transmission spec-

trum of the hollow PCF (dashed line), the

spectrum of the ytterbium laser output

(dash–dotted line), and the spectrum of the

OPA output (solid line). (b) and (c) XFROG

traces of the probe laser pulse measured at

the input (b) and output (c) of a 20-cm piece

of a hollow PCF with a hexagonal-lattice

photonic-crystal cladding and a core diameter

of 15 lm. (d) The spectral profile of the fiber

GVD as retrieved from the XFROG traces.
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transparent wide-gap dielectric, such as fused silica.23 For

biotissues, laser fluences and field intensities in this range

are sufficient for a broad range of biomedical applications,

including multiphoton microscopy,1–3 high-performance

laser surgery,4 laser ophthalmology,5,6 optical histology,9

cell-membrane photoperforation,24 and photostimulated

calcium-response stimulation.25 Figure 3(b) presents an

image of the region of photodisruption induced on a slice of

a corpus callosum tissue from mouse brain. The 1070-nm

laser pulses transmitted through the hollow PCF also provide

a pump for third-harmonic generation (THG) in the beam-

focus region, enabling high-resolution nonlinear-optical

imaging of brain tissues. The third-harmonic signal is

collected by the fiber cladding and delivered to the third-

harmonic detection (THD) system, consisting of spectral fil-

ters and a photomultiplier (Fig. 3(a)). The guidance loss

provided by this light-deliver regime at the central wave-

length of the third-harmonic signal (357 nm) is below

0.2 dB/m. Due to the low optical nonlinearity of the air fill-

ing the hollow PCF core and the low field intensity in the

evanescent part of the PCF modes in the PCF cladding, the

background third-harmonic signal generated by the high-

intensity pump inside the fiber is more than an order of mag-

nitude lower than the third harmonic from the brain tissue.

The sensitivity of THG to ultrafast free-carrier generation by

an ultrashort pump pulse26 suggests a promising approach

for local detection of photodisurption in biotissues.

In conclusion, we have demonstrated that large-core hol-

low PCFs enable a fiber-format air-guided delivery of ultra-

short infrared laser pulses for neurosurgery applications.

With an appropriate dispersion precompensation, an anoma-

lously dispersive 15-lm-core hollow PCF are shown to com-

press 510-fs, 1070-nm light pulses to a pulse width of about

110 fs, providing a peak power in excess of 5 MW, enabling

FIG. 2. (Color online) Characteriza-

tion of laser pulses at the input (a)–(c)

and at the output (d)–(f) of the hollow

PCF: (a) and (d) XFROG traces of the

input (a) and output (d) pulses; (b) and

(e) temporal envelopes (solid lines)

and chirps (dashed lines) of the input

(b) and output (e) pulses; (c) and (f)

measured spectra (filled circles), spec-

tra retrieved from the XFROG traces

(solid lines), and the spectral phases

(dashed lines) of the input (c) and out-

put (f) pulses.

FIG. 3. (Color online) (a) Diagram of laser-induced photodisruption of a

brain tissue by ultrashort laser pulses delivered by a hollow PCF: Ti: S,

mode-locked Ti: sapphire laser oscillator; MPA, multipass amplifier; OPA;

SP, stack of silica plates; DM, dichroic mirror; HC PCF, hollow-core pho-

tonic-crystal fiber, AL, aspheric lens; BS, slice of brain tissue; THD. (b) An

image of the region of photodisruption induced by ultrashort laser pulses on

a slice of a corpus callosum tissue from mouse brain.
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a nonlinear-optical diagnostics and a local photodisruption

of brain tissues.
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