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Abstract—We give a polar coding scheme that achieves the
full admissible rate region in the Slepian-Wolf problem without
time-sharing. The method is based on a source polarization result
using monotone chain rule expansions.
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I. INTRODUCTION

Consider a memoryless source with generic variables
(X,Y) ~ Pxy where Pxy is a fixed but arbitrary prob-
ability distribution on X x Y with X = Y = {0,1}.
Let (XV,Y%) denote N successive outputs of this source,
XN = (X1,...,Xn), YN = (Y1,...,YN). This paper
considers the Slepian-Wolf problem for this source. As usual,
the coding system consists of two encoders and one decoder.
For a specified rate pair (R, Rz), encoder 1 observes X* and
encodes it into a codeword of length |/NR;| bits; encoder
2 observes YV and encodes it into a codeword of length
| NR2| bits. The decoder observes the two codewords and
is expected to recover (X~ ,Y") with small probability of
error. The Slepian-Wolf result [1] states that this is possible
if (R1, R9) falls strictly inside the Slepian-Wolf rate region
defined as Rsw = {(R:,Ry) : R, > H(X|Y), R, >
H(Y|X), R, + R, > H(X,Y)}. The subset of Rgw
consisting of points for which R, + R, = H(X,Y) is
referred to as the dominant face (of the rate region); and
the points (R,,R,) = (H(X),H(Y|X)) and (R, R,) =
(H(X|Y),H(Y)) are referred to as the corner points.

Polar coding for the above Slepian-Wolf problem was first
considered by Hussami et al [2] (see also Korada [3]) who
showed that the corner points of Rgy, could be achieved by
polar codes for the special case where Px and Py are uniform
on {0, 1}. In [4], this result was proved without any restrictions
on Px and Py . These results showed that polar codes could
achieve the entire region Rgy by time-sharing between two
codes designed for the corner points.

This paper is concerned with the question of whether polar
codes can achieve Rgy without aid from time-sharing. This
question is motivated by the fact that there are random-coding
methods, such as Cover’s “binning” method [5], that do not
require time-sharing to achieve Rgy . Thus, the question is
important for understanding the power of polar coding relative
to other coding methods both as a proof method and also for
practical applications.

In fact, such questions on the relative power of polar coding
first arose in the context of the multiple access channel (MAC),
which is the dual of the Slepian-Wolf problem. In [6], Sasoglu

et al described a polar coding scheme for the MAC that
did not use time-sharing and yet was able to achieve some
interior (i.e., non-corner) points of the dominant face of the
MAC capacity region. The method in [6] was based on “joint
polarization” for the MAC and it produced a multitude of
extreme channels, revealing a novel aspect of polarization in
the multi-terminal case. Abbe and Telatar refined and extended
the joint polarization approach in [7], [8]. Meanwhile, on
the Slepian-Wolf front, the joint polarization approach was
formulated in [9]. In [10], Abbe gave a unified treatment of
joint polarization for the MAC and Slepian-Wolf problems
using “matrix polarization.” The question of whether joint po-
larization alone could achieve the entire achievable rate regions
for the MAC or the Slepian-Wolf problems remained unsolved
until recently when Sagoglu [11] answered the question in the
negative by giving counter-examples. This was a set-back for
the polarization approach.

In this paper, we consider polarization in a broader setting
and give a polar coding method that achieves Rgy without
time-sharing. In this broader setting joint polarization appears
as a special instance of a general approach. The main idea of
our approach is described in the next section.

II. CHAIN RULES AND POLAR CODES

Consider a source block (X, Y) as above. Suppose N =
2™ for some n > 1 and define

UN = xNay, vN =vyNGy (1)
where Gy is the polar transform defined as
Gy =[19]"" By @)

where the exponent denotes the nth Kronecker power and
By is the “bit-reversal” permutation (see [12]). Since
(XN YN) — (UM, V) is a one-to-one mapping, we have

HUN, V)= H(XY, YY) =NH(X,)Y), (3

which states that entropy is conserved. Polar codes can
be obtained from (3) by various chain rule expansions of
H(UN V). To construct a polar code that achieves a corner
point of Rsw, one expands H (UM, V) as

N N

SCHUUTY) + > HV[VITLUN)
i=1 j=1

“

and shows that the entropy terms polarize to 0 or 1 as N
increases.
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In the joint polarization approach mentioned above, one uses
the expansion

N . .
S HU, VUL VY,

=1

)

and proves that the entropy terms in (5) polarize to 0, 1, or
2. Actually, to construct a specific polar code, one needs to
expand (5) further, for example, as

N
[H(U;| U VY + HV;[UL VD], (6)
i=1
and show that the entropy terms in (6) converge to 0 or
1. By using the degrees of freedom in expanding (5) into
an expansion of type (6), one obtains polar codes achieving
various rates on the dominant face of Rgy directly (without
time-sharing). However, as shown in [11], this approach cannot
achieve the entire dominant face in general.

It is clear that there are many other ways in which the total
entropy H (U™, V™) can be expanded into a sum of individual
entropy terms, suggesting that there may exist many more
polar codes, again raising the hope that the entire dominant
face may be achievable by polar coding. This is the idea
pursued in this paper.

III. MONOTONE CHAIN RULES

We call a chain rule expansion of UV V™ monotone w.r.t.
U™ if the expansion is of the form
2N
> H(S|STY @)
i=1
where 2V = (S, ..., Sax) is a permutation of UN V¥ such
that the permutation preserves the relative order of the ele-
ments of U . We define the monotonicity of a chain rule w.r.t.
VN similarly. A chain rule for UN V¥ is said to be monotone
if it is monotone w.r.t. both U™ and V~. The expansions (4)
and (6) are examples of monotone chain rules. The expansion
H(UQ) + H(U1|U2) + H(V1|U1, UQ) + H(‘/2|U1, Us, Vl) is
monotone in V2 but not in UZ2.

We use diagrams, as in Fig. 1, to represent monotone
chain rules, and refer to them briefly as ‘“chain rule
diagrams.” Each directed path in Fig. 1, from () to U*V4,
corresponds to a monotone chain rule on H(U* V*?).
For example, the “corner-point” path that goes from
horizontally to U* and then vertically down to U*V*
corresponds to the expansion (4). The “staircase” path
((Z), Ul, UlVl, U2V1, UQVQ, U3V2, U3V3, U4V3, U4V4)
corresponds to (6).

A label U’V attached to a node in a chain rule diagram
designates the known variables when, and if, a chain rule
visits that node; the entropy H(U?,V7) is used to measure
the amount of that knowledge. The edge connecting node
U=1VJ to node U'V7 is associated with the variable U;
and carries H(U;|U*~!,V7) units of incremental knowledge.
Likewise, the edge connecting two vertically adjacent nodes

0 Ut U? Ul U+

Vl Ulvl U2V1 U3V1 U4V1
V2 Ul V2 U2 VZ U3 V2 U4 VZ
V3 Ul VS U2 V3 U3 VS U4 V3
v vtvt \orvt otvt \utve

Fig. 1. Diagram for representing monotone chain rules on H(U*, V'4).

UtVIi=1 and U*V7 is associated with V; and carries an incre-
mental knowledge of H(V;|U*® VJ~!) units. There is a path-
independence property associated with states of knowledge
in chain rule diagrams in the sense that the accumulated
knowledge H(U?,V7) at a node UV’ is the sum of the
conditional entropy terms along any path from () to U*V7.
In this sense, the entropy values assigned to the nodes form
a potential function. Investigation of the properties of this
potential function is left for future work. Here, we just note
an elementary monotonicity property that may be useful for
such studies.

Proposition 1. The conditional entropy terms associated with
vertical edges in the chain rule diagram for UNVYN are
monotone in the sense that, for any fixed 1 < 7 < N,
H(V\ U= Vimty > H(V;|U', VITY) for all 1 < i < N.
Likewise, for any fixed 1 < i < N, H(U;|U*=Y, Vi—l) >
H(U;|UY, V) forall 1 < j < N.

A. Paths, rates

The chain rule diagram for UN V™ contains (2]@7 ) paths
from the initial node {) to the final node UV V. We identify
each path in the diagram by a string b>V = by by --- boy
where b; is O if the ¢th move along the path is in the horizontal
direction and 1 otherwise. For instance, the corner-point path
in Fig. 1 that goes from () to U* then to U*V* has the label
00001111. The label 01010101 designates the staircase path
of expansion (6).

Let S2V = (Sy,...,Son) denote the edge variables along
a given path b2V . For example, for b = 01010101, the edge
variables are S® = (U, Vi, Us, Vo, Us, V3, Uy, Vy).

For any given path b*V with edge variables S?V, we define
a pair of rates

1 i—1
Rlzﬁ_g H(S;|S"™7) (8)
7:b;=0
and
1
_ H ’ 7—1
o=y 3 HSIS™ ©)
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The rate R; (IR2) is the sum of the conditional entropy terms
on the horizontal (vertical) edges in the path, normalized by
N. For b® = 01010101, the rate R, is given by

Ry == [HU)+ HU|U", V!)+

H(Us|U?,V?) + H(U4|U?, V)] .

] =

(10)
Clearly, for any path for UN V' the rate pair (R, R2) satisfies

1 1
Ry > N (UMVY), Ro> N (VYU

1
Ri+ Ry = NH(UN, VM.

Stated in terms of the original source variables, these inequal-
ities take the following form.

Proposition 2. Let UNVN be obtained from a memoryless
source XNY™N by (1). Then, the rate pair (Ry, R) for any
monotone chain rule expansion of UNV™N satisfies

Ry > H(X|Y), Ry>H(Y|X), Ri+Ry=H(X,Y).

The first inequality is satisfied with equality for the path 1N 0V,
and the second inequality is satisfied with equality for 0V 17V,

This follows easily from the fact that the transform (1) is
one-to-one. Thus, the rate pairs (Ry, R2) over the class of
monotone chain rules lie on the dominant face of the region
Rsw, spanning its two end-points. The next question we
address is whether the rate pairs from this class form a dense
subset of the dominant face.

B. Continuity of rates and approximations

Let b2V and b*V be any two paths in the chain rule
diagram for UMV, with rate pairs (R1, Rz) and (Ry, Ry),
respectively. We define the distance between b2" and b2V as

d(b*N,0*N) = |R, — Ry|. (11)
Note that since Ry + Ry = R1+ Ry = H(X,Y), this distance

is also given by |Ry — Ra|.

We now seek a combinatorial notion of neighborhood
among paths that is consistent with the above notion of
distance. It is tempting to define two paths as neighbors if
they differ by a transposition; however, this does not quite
work here. For example, the path 4® = 01010011 has a rate
R, given by (10) while the path b® = 11010010, which differs
from b® by a single transposition, has a rate given by

Ry =~ [H(h|V?) + H(Us|U'V?)+

H(Us|U?V?) + HULU?VY)] .

FNy-

It is not clear if |R; — R | is small. If we restrict the class of
transpositions as follows, we obtain a notion of neighborhood
which serves our purposes.

Let two paths b2V and b*N be neighbors if b*V can be
obtained from b2V by transposing b; with b; for some i < j
such that (i) b; # b; and (ii) the substring b;11b;42---bj_1
bracketed by the transposed elements is either a string of all Os

or all 1s. For instance, 10000111 and 00001111 are neighbors
but 01001011 and 00001111 are not. Note that a path cannot
be a neighbor of itself according to this definition.

Proposition 3. For paths b*N and b2V that are neighbors,
d*N ,p*N) < 1/N. (12)

Proof: Let bV be a path with edge variables S?V and
let b2V differ from b2V by a transposition in the coordinates
i < j. Assume that b; = 0, b; = 1, and that the bracketed
string b;11---bj_1 is all 1s. Then, observe that R — Rl =
(1/N)[H(S;|S*Y) — H(S;|S"1, S;, S21)]. It is clear that
Ry — Ry > 0. Moreover, Ry — Ry < (1/N)H(S;]S*"1) <
1/N. Thus, |R; — R;| < 1/N. This covers the case of b’
being equal to 01/~¢. There are three other possibilities for
b!, namely, 0/=%1, 1770, and 107~". These other cases can be
treated similarly to the first by exchanging the roles of b2V
and b2V or by considering Ry — Ry or both. ]

We now turn our attention to rate approximations. For this,
we focus on the subset of paths Vs 2 {OilNON’i 0<i <
N} that have only one vertical segment.

Theorem 1. Let (R, Ry) be a given rate pair on the dominant
face of the Slepian-Wolf rate region. For any given € > 0,
there exists N and a chain rule b*N on UNVYN such that
b*N belongs to the class Von and has a rate pair (Ry, Rz)
satisfying

|R1 - Rm| S € |R2 - Ryl S €. (13)

Proof: Fix N > 1/e. Let (R1(i), R2(i)) denote the rate
pair for the path 0°1V0N~%, for 0 <4 < N. We have R;(0) =
H(X|Y) and R1(N) = H(X). Also, |R1(1+ 1) — R1(9)| <
1/N by Proposition 3. Thus, for any R, € [H(X|Y), H(X)]
there exists 0 < ¢ < N such that |R;(i) — R,| < 1/N. For
this 4, we must also have that |R2(i) — R,| < 1/N. |

Theorem 1 shows that we can approximate arbitrary points
on the dominant face of R gy with paths from the class {Va :
N = 2" n > 1}. Clearly, other classes of paths could have
been used (some more effectively) for rate approximations.
The class {Van} has the advantage of being simple.

and

C. Path scaling and polarization

Although we have found a way of approximating rates,
the polarization issue has not yet been addressed. Here, we
introduce an operation on paths that achieves polarization
while keeping the rate approximation intact.

For any path b2 = byby - -- by representing a monotone
chain rule for UNV® and any integer k = 2™, let kb*"V denote
by---biby---bg-ve- bon -+ - ban,

k k k
which represents a monotone chain rule for U¥NV*N | This
operation is a geometric scaling operation in the sense that it
preserves the “shape” of the original path. In particular, if 2"V
belongs to the class Von then kb?Y belongs to Vorn.

Fix a path b*V for UNV and consider the path 2b*" for
U2NV2N | Let S?V and T*V denote the edge variables for
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b*N and 2b%V, respectively. Let 52N be an independent copy
of S2V. The transformation (1) may be viewed as a mapping
from the pair of random vectors (S%V,S?V) to T4V with

Toin =8 ®S;, Toi=S5;, i=1,....2N. (14

This gives the following relationship between the entropies
H(Toi1|T%72) + H(Toi| T* )
= H(Tyi—1,Toi|T*7?)
= H(S;®S;, 8|St St s h)
= H(S;, 8|S, 871

= 2H(S;|S"h). (15)

This may be interpreted as a local conservation law for
conditional entropies under path scaling. As a corollary, the
path rates (Ry, Ro) are preserved under path scaling.

Proposition 4. Let b*>Y be a fixed path. Let (Ry, Ry) be the
rate pair for b*N. Then, for any m > 1, (R, Ry) is also the
rate pair for the path 2mb3V.

Another aspect of path scaling is polarization:

H(Toi|T? 1Y) = H(S;|T? 72, Ty 1)
< H(Si|T2i_2)

< H(S; @ S;|T?*7?)

= H(

Toi—1|T?72) (16)

where there is equality if and only if H(T%;|T2%"~') equals 0
or 1. Thus,

H(To|T*™Y) < H(S;|S™Y) < H(Tw 1|T*72) (17)

with equality if and only if H(S;|S?~1) equals 0 or 1.
We can keep doubling (scaling by two) the paths to enhance
polarization. Asymptotically, we obtain the following result.

Theorem 2. Let (X,Y) ~ Pxy be an arbitrary memoryless
source over the alphabet X x Y where X = Y = {0,1}.
Consider the setting defined by equations (1) and (2). Fix
No = 2™ for some ng > 1. Fix a path b*No for UNoyNo,
Let (Ry, Ry) be the rate pair for b*No. Let N = 2™ N, for
m > 1 and let T*N be the edge variables for 2mp2No_ Then,
for any given § > 0, as m goes to infinity, we have

%]{1 <i<2N:§<H(TJ|T'" ') <1-6}[—0, (18)

7|AA1]\(75)| — R1 and

where A;(0) = {1 <i < 2N :b; = j, H(T;|T*"') > 6} for
j = 0, 1. Furthermore, this statement remains true even if §
is allowed to go to zero as a function of N as § = O(2’NB ),
where [3 is fixed as any positive number less than 1/2.

[A2(9)|

— Ro, (19)

We omit the proof of this theorem due to space limitations
and also because it follows by standard ideas presented in
detail elsewhere. We just note that the first step of the proof is
to set up a martingale for the conditional entropy terms using

the conservation law (15). One may then use the approach
taken in [4] which uses an auxiliary supermartingale based on
the source Bhattacharyya parameters; alternatively, one may
use the direct approach by Sagoglu [11, Lemma 2.1] in which
only the main martingale is used. To prove the exponential
convergence claim of the theorem one may use the method
presented in [13].

To summarize, this subsection has shown that one can
achieve rate-approximation and polarization without leaving
the class of paths {Von : N =2",n > 1}.

IV. SLEPIAN-WOLF CODING

We now combine the above results to give a polar coding
scheme for the Slepian-Wolf problem. The polar codes consid-
ered here are defined by two parameters (b*V, ) where bV
is a monotone chain rule for UNV® and § > 0 is a threshold
parameter.

A. Encoding

Given a source realization (z”,y"), encoders 1 and 2
compute u¥ = NGy and vV = yNGy, respectively, as
defined by equations (1) and (2). The realizations u” and vV
define a realization 2"V of the edge variables 72" associated
with b2V, Encoder 1 possesses u” = (¢; : b, = 0) and
transmits the variables (¢; : i € A;(d)), while encoder 2
possesses vV = (t; : b; = 1) and transmits (t; : i € A2(4)).
The rates for this scheme are given by |A;(d)|/N for user 1
and |A2(0)|/N for user 2.

B. Decoding

The decoder receives the variables (¢; i € A0}
where A(6) = A;(d) U A2(0) and wishes to reconstruct
the missing variables (¢; : @ ¢ A(J)). For this task, we
consider a successive cancellation (SC) decoder, as in [12]
and [4]. The SC decoder enters the ith step of decoding with
the decisions £*~! from previous steps and sets the current
decision as #; = 0 if Pr(T; = 0|T"~' = #"~1) is greater than
Pr(T; = 1|7~ = #"~!) and as ; = 1 otherwise. If i € A(J),
the decoder overrides this rule by setting #; = ¢; since in that
case the decoder already knows the correct value of ¢;.

Once the estimate 2V of ¢2VV is obtained, the decoder
sets iy = (£; : by = 0) and N = (£; : b; = 1), and
calculates %V = 4V (Gn) 7! and 9V = oV (Gn) 7!, to obtain
the estimates of zV and ", respectively. Note that for the
mapping G'n here, the inverse of Gy is itself, so this final
step is just another encoding operation.

C. Performance

The performance of the above coding scheme is mea-

sured by the probability of frame error, defined as P, 2

Pr[(XN,YN) #£ (XN, YN)]. Equivalent expressions for the
frame error probability are P, = Pr[(TUN,VN) # (UN, VN)]
and P, = Pr(TN # TN). By the “genie-bound” for SC
decoders (see, e.g., [12]), the frame error can be bounded as
P < Zi“@ Pr(T; ;é T = Ti_l). Further, one has
Pr(T; # TH|T"~! = TP) < Z(T,|T"") where Z(T;|T")
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is the source Bhattacharyya parameter defined in [4]. The
parameter Z(T;|T%*"1) is in turn bounded by /H (T;|T"1)
by Prop. 2 of [4]. Thus, P. < ZigA(é) (TZ|T“ ) <
(N — |A(8)[)Vd < NVG.

D. A polar coding theorem

Theorem 3. Consider an arbitrary memoryless source
(X,Y) ~ Pxy over the alphabet X x Y with X =) =
{0,1}. Let (R, Ry) be a target point in the Slepian-Wolf rate
region. Given any € > 0 and 8 < 1/2, there exists a polar
coding scheme (b*N | §) such that (i) the path b*™ has the form
0'1NON =7 for some O <1 < N, (ii) the threshold parameter
satisfies 6 = O(2~ N® ), (iii) users 1 and 2 transmit at rates
|A1()|/N < Ry + € and |A3(9)|/N < R, + ¢, respectively,
and (iv) the probability of error under successive cancellation
decoding satisfies P, = 0(27%]\75).

Proof: We may assume without loss of generality that the
target rate (R, R, ) lies on the dominant face of the rate region
Rsw. Theorem 1 guarantees the existence of a path o in
Van, for which the rate pair (R1, Ro) satisfies Ry < R, +¢/2
and Ry < R,+¢€/2. We fix such a path. Theorem 2 guarantees
that there exists a path 6>V = 2™p?>No for some m > 1 for
which the sets A;(0) and A5(0) satisfy |A1(3)|/N < Ry +¢€/2
and |Ay(6)|/N < Ry +¢/2 with § = O(2=N"). The Slepian-
Wolf code defined by the parameters (b%V,§) achieves the
rates |A1(0)|/N < Ry + € and |A2(d)|/N < R, + ¢, and has
a probability of error bounded by P, < NV§ = O(2’§NB).

|

E. Complexity

The encoding operations in the above Slepian-Wolf polar
coding scheme are the same as in the single-user case and
have complexity O(N log N) as in that case [12].

It can be shown that the SC decoder here can be imple-
mented in complexity O(N log N) as in the single user case.
At each step of decoding, the SC decoder needs to calculate a
probability of the form Py (uf,v7) 2 Pr(Ut = u?, VI = v7),
where the subscript 2V indicates the length of the code.
Depending on whether ¢ and j are odd or even, there is a
different recursive formula to carry out this calculation. For
example, Py (u?*~1 v%~1) can be calculated as

> Pulul +u? o2 + o) Py (u2,v¥)

€
U23,V2;5

where 42’ and u?* denote the sub-vectors cons1st1ng of odd-
numbered and even-numbered coordinates of u??, respectively,
and similarly for v2/ and v27. This reduction is continued until
the desired probabilities can be computed from Px y directly.

Finally, for code construction, one needs to be able to com-
pute entropy terms of the form {H (T;|T"" 1) : 1 <i < 2N}
along a chosen path. This type of computation is necessary
both for rate approximations and also for determining the sets
A1(d) and A2(6). We conjecture that the density evolution
method for ordinary polar coding developed in [14] and [15]
can be adapted to this case, too, so as to compute these entropy
terms with sufficient precision in complexity O(V).

V. SUMMARY AND REMARKS

We considered polarization in the context of monotone
chain rules, which is the largest class of chain rules that
respects the natural decoding order defined by polarization.
The main coding result has been the derivation of a polar
coding scheme that achieves the Slepian-Wolf rate region
without time-sharing.

Most of the discussion has been restricted to the subset
of monotone chain rules represented by paths of the type
0°1N0N—% for 0 < ¢ < N. On closer inspection, the use of
such paths reminds one of the “source-splitting” approach to
Slepian-Wolf coding developed by Rimoldi and Urbanke [16].
A path of the form 0°1V 0~ ~% has three segments, with each
segment corresponding to a virtual source in the rate-splitting
argument. In effect, the polar codes that we have constructed
appear to operate at a corner point of a Slepian-Wolf rate
region for three virtual sources.

Finally, we wish to note that, although not discussed ex-
plicitly, the results of this paper have duals in the context of
coding for the MAC and yield capacity-achieving polar codes
without time-sharing in that context.
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