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Abstract. A limit of attainability sets is found for a linear two-scale stochastic system for
the case when the diffusion coefficient of the fast variable is of order ε1/2. The attainability set is
defined as the set of distributions of attainable terminal values of solutions of stochastic differential
equations. As a corollary we calculate a limit of the optimal value of the terminal cost in the stochastic
Mayer problem.
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Introduction. In mathematical modeling of complex systems with processes
having two essentially different “velocities,” fast variables are usually described by
singularly perturbed differential equations, i.e., by equations having a small param-
eter ε on the left-hand side. In general, there is a hope that the reduced limiting
model (when the parameter is equal to zero) is more simple and can be used as an
approximation of the original one which may be rather complicated. This idea seems
to be fruitful also in the set-up of controlled systems. However, here an additional
difficulty arises since the optimal value of the cost function which depends smoothly
on ε ∈]0, 1] may have a discontinuity at the most interesting point ε = 0.

To overcome this difficulty in the deterministic setting, an approach based on a
study of the convergence of the attainability sets in the Hausdorff metric has been
developed; see, e.g., recent work [10]. In the linear case it is possible to find a limit of
the attainability sets in a rather explicit way which has been done by Dontchev and
Veliov [8]; see also the book [7]. Their result is as follows.

Let us consider the controlled system

ẋt = A1(t)xt +A2(t)yt +B1(t)ut, x0 = 0,(0.1)

εẏt = A3(t)xt +A4(t)yt +B2(t)ut, y0 = 0,(0.2)

where ε is a small positive number; u is any measurable function with values in a
convex compact subset of Rd; matrix-valued functions Ai, Bi are continuous; and
the eigenvalues of A4(t) have strictly negative real parts.

Let Kε(t) be the attainability set of the system (0.1), (0.2), i.e., the set of all end
points (xT , yT ) corresponding to various admissible controls, and let Kx

0 (T ) be the
attainability set of the reduced system

ẋt = A0(t)xt +B0(t)ut, x0 = 0,

with the coefficients A0 := A1 −A2A
−1
4 A3, B0 := B1 −A2A

−1
4 B2.
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CONVERGENCE OF ATTAINABILITY SETS 135

Let us define the set K0(T ) := {(x, y) : x ∈ Kx
0 (T ), y ∈ R(T, x)}, where

R(T, x) := −A−1
4 (T )A3(T )x+ Y ,

Y :=
∫ ∞

0
exp{A4(T )s}B2(T )Uds =

{
y : y =

∫ ∞
0

exp{A4(T )s}B2(T )vsds, vs ∈ VU
}
.

VU is the set of all U -valued Borel functions. In other words, if we put F (x, y) =
(x,−A−1

4 (T )A3(T )x+ y), then K0(T ) is the image of Kx
0 (T )× Y under the mapping

F .
THEOREM (see [8], [7]). The sets Kε(T ) tend to K0(T ) in the Hausdorff metric

as ε→ 0.
Let us consider for the system (0.1), (0.2) the Mayer problem

g(xT , yT )→ min,

where g is a continuous function. Then the optimal value for the perturbed problem
is

J∗ε = min
Kε(T )

g(x, y).

From the above theorem it follows immediately that

lim
ε→0

J∗ε = min
K0(T )

g(x, y).

In the paper [13] the authors extended the theorem on the convergence of the attain-
ability sets to stochastic differential equations of the form

dxt = (A1(t)xt +A2(t)yt +B1(t)ut)dt+ dwxt , x0 = 0,(0.3)

εdyt = (A3(t)xt +A4(t)yt +B2(t)ut)dt+ σ(ε)dwyt , y0 = 0,(0.4)

where wx, wy are independent Wiener processes and σ(ε) = O(ε1/2+δ), δ > 0. In
the stochastic setting it is natural to define the attainability set as the set of dis-
tributions of all terminal random variables (xT , yT ) when u runs through the set of
admissible controls. There are several possible choices for the latter. It seems that
the most adequate one is to consider all nonanticipating functions of the trajectories
as admissible controls. This implies the need to understand the system (0.3), (0.4) in
the weak sense; i.e., the Wiener processes are not given in advance and the solution is
actually a probability measure P ε,u in the space of continuous functions C[0, T ]. Such
a solution can be constructed by the Girsanov theorem. In this case the attainability
set Kε(T ) is a compact convex set in the space of probability measures equipped with
the Prohorov metric. In [13] it was shown that Kε(T ) → K0(T ) in the Hausdorff
metric, where K0(T ) is the set of probability measures µF−1 where µ = µ(dx, dy) is
such that µ(dx,Rn) belongs to the attainable set Kx0 (T ) of the reduced system and
µ(Rk, dy) belongs to the set P(Y ) of probability measures on Y . The reduced system
is given by

(0.5) dxt = (A0(t)xt +B0(t)ut)dt+ dwxt , x0 = 0,

where, as in the deterministic case, the coefficients A0 and B0 can be obtained if we
substitute in (0.3) the expression for yt which is a formal solution of (0.4) with ε = 0.
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136 YURI KABANOV AND SERGEI PERGAMENSHCHIKOV

Notice that the condition δ > 0 provides a limiting degeneracy of the stochastic
equation (0.4) (with a fixed control) to an algebraic one.

In the present paper we prove the convergence result for σ(ε) = ε1/2. In this
case K0(T ) is the set of all measures µF−1 such that µ(dx,Rn) ∈ Kx0 (T ) and µ(x, dy)
belong to the convex closure of the set of probability distributions of random variables

ξ0 +
∫ ∞

0
exp{A4(T )s}B2(T )vsds,

where ξ is the stationary Gaussian Markov process (called also Ornstein–Uhlenbeck)
with the zero mean and covariance

K(s, t) := Ξ exp{A′4(T )(t− s)}, s ≤ t,

Ξ :=
∫ ∞

0
exp{A4(T )s} exp{A′4(T )s}ds,

v is any measurable process with values in U such that for any t the random variable
vt is measurable with respect to the σ-algebra Fξ≥t := σ{ξs, s ≥ t}, and prime
denotes the matrix transpose. As a corollary of the theorem on convergence of the
attainability sets we calculate a limit of the optimal value in the Mayer problem
Eg(xε,uT , yε,uT )→ min when ε tends to zero.

In the last few years singularly perturbed controlled stochastic differential equa-
tions have been intensively studied by various methods, mainly based on the theory of
weak convergence in the functional spaces or the Bellman–Hamilton–Jacobi equation;
see monographs [3], [4], [20] and papers [2], [5] (and the collection [17] for early re-
sults). However, almost all studies concern models where the controlled fast variable
does not affect the terminal cost. Harold Kushner wrote in his book [20, p. 64]:

It is hard to deal in any general way with the case where the fast
system is also controlled. The main difficulty is due to the fact that
the ‘stationary measures’ which are used to average out the fast vari-
able depend on the control which is used in the fast system. This
makes it hard to define the ‘averaged problem.’. . . Similar problems
occur in the deterministic case, and it is commonly dealt with there
by supposing that the choice of control for the fast system does not
alter the steady state value of that system, for each value of the fast
variable, i.e., that the fast system is asymptotically stable and the
control chosen in a class such that the limit point of that fast system
does not depend on the control when x is fixed. This assumption es-
sentially ‘decouples’ the fast and slow system. The assumption seems
reasonable and yields good results. Unfortunately, it does not seem
possible to find a stochastic analog of this approach which works in
any generality.

It worth noticing that the result presented here is nontrivial even for a system
with only fast variables. In this case it is clear that the limit of the attainability sets
shows to what extent optimal controls (acting on the drift of the process) can follow
the change in the scale parameter near the point zero.

The structure of the paper is the following. In section 1 we give the formal
description of the problem. Section 2 contains some preliminary explanations and
the proof of the result for the simplest one-dimensional model with the fast variable
only. The proof of Theorem 1.1 is given in sections 3 and 4. Section 5 is devoted to
measure-theoretical aspects which may have some independent interest.

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



CONVERGENCE OF ATTAINABILITY SETS 137

1. Formulations of the results. We consider here the linear stochastic con-
trolled system given by

dxt = (A1(t)xt +A2(t)yt +B1(t)ut)dt+ dwxt , x0 = 0,(1.1)

εdyt = (A3(t)xt +A4(t)yt +B2(t)ut)dt+
√
εdwyt , y0 = 0,(1.2)

where wx and wy are standard independent Wiener processes with values in Rk and
Rn, 0 ≤ t ≤ T <∞, ε ∈]0, 1].

We shall understand (1.1), (1.2) as a symbolic notation for the stochastic differ-
ential equation in a weak sense when a Wiener process W = (wx, wy) is not given in
advance and u is a feedback control. Actually, in the following rigorous formulation we
could avoid the above representation (which is, in fact, a bit ambiguous) altogether.

We consider as a phase space Rm = Rk ×Rn. (Rk corresponds to the slow and
Rn to the fast variables.) The phase space of control will be a compact convex set
U ⊆ Rd. In our matrix notations vectors are column vectors.

The path space of the system is the space C[0, T ] of continuous functions W :
[0, T ] → Rm. Let CT be the Borel σ-algebra on C[0, T ], Cot := σ{Ws, s ≤ t},
Ct := Cot+. Let P be the predictable σ-algebra in C[0, T ]× [0, T ] corresponding to the
filtration C = (Ct).

The class of admissible controls U is defined as the set of all predictable processes
u = (ut)t∈[0,T ] with values in U .

Let Ai = Ai(t), Bi = Bi(t) be matrix-valued continuous functions of dimensions
compatible with (1.1), (1.2); i.e., A1(t) is a k × k matrix, A4(t) is n× n, etc.

We introduce the following notation:

fε(W, t, u) =
(

A1(t) A2(t)
ε−1A3(t) ε−1/2A4(t)

)
Wt +

(
B1(t)

ε−1B2(t)

)
ut,(1.3)

Dε :=
(
Ik 0
0 ε−1In(t)

)
,(1.4)

where Ik, In are the identity matrices of corresponding dimensions.
Consider on (C[0, T ], CT ) the probability measure P ε such that with respect to

P ε the coordinate process W is the Wiener process with the correlation matrix DεD
′

ε.
For any admissible control u we define the measure P ε,u := ρεT (u)P ε with

(1.5) ρεT (u) = exp

{∫ T

0
fε(W, s, us)

′
dWs −

1
2

∫ T

0
|fε(W, s, us)

′
Dε|2ds

}
.

It is well known (see [1] or [16]) that P ε,u is a probability measure. By the
Girsanov theorem the process

Wt −
∫ t

0
fε(W, s, us)ds

with respect to P ε,u is the Wiener process with the correlation matrix DεD
′

ε. Thus,
we can write that

dWt = fε(W, t, ut)dt+DεdBt, W0 = 0,

where B is the standard Wiener process.
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138 YURI KABANOV AND SERGEI PERGAMENSHCHIKOV

If we denote the first k components of W and B by x and wx and the remaining
n components by y and wy, the above representation formally coincides with the
system (1.1), (1.2) and the control u will be a nonanticipating functional of the phase
trajectory. This explains the terminology where P ε,u is called a weak solution of
(1.1), (1.2) and the model itself usually is referred to as the model with the feedback
control.

Let Kε := {P ε,u : u ∈ U}, where ε > 0 is fixed. The set Kε is an analog of the
“tube” of trajectories for deterministic systems. Correspondingly, the attainability
set Kε(T ) := {P ε,uW−1

T : u ∈ U} is the set of all probability measures on Rm which
are the images of elements of Kε under the mapping W 7→ WT . It was proved in [1]
that Kε is a convex set, hence Kε(T ) is also convex. In [1] it was also shown that the
set {ρεT (u) : u ∈ U} of the attainable densities is sequentially compact in the weak
topology of L1(P ε). It follows immediately that Kε and Kε(T ) are compact subsets
of the corresponding spaces of probability measures P(C[0, T ]) and P(Rm) equipped
with the Prohorov metric.

To formulate the convergence result we need the following assumption.
(A) For all t the real parts of the eigenvalues of A4(t) have strictly negative real

parts:

(1.6) Reλ(A4(t)) ≤ −2κ < 0.

Let Kx0 (T ) be the attainability set of the stochastic differential equation

(1.7) dxt = (A0(t)xt +B0(t)ut)dt+ dwxt , x0 = 0,

where A0 := A1 −A2A
−1
4 A3, B0 := B1 −A2A

−1
4 B2.

Let ξ be the (strong) solution of the following stochastic differential equation with
constant coefficients on some filtered probability space (Ω,F ,F = (Ft), P ):

(1.8) dξt = A4(T )ξtdt+ dbt, ξ0 = ξo,

where b is a standard Wiener process in Rn and ξo is an independent Gaussian random
variable with the zero mean and covariance matrix

(1.9) Ξ :=
∫ ∞

0
exp{A4(T )s} exp{A′4(T )s}ds.

In other words, ξ is the stationary Gaussian Markov process with zero mean and
covariance function

(1.10) K(s, t) := Eξsxi
′

t = Ξ exp{A′4(T )(t− s)};

see, e.g., [16].
Let VU be the set of all U -valued processes v = (vt)t≥0 such that v1/t is a pre-

dictable process with respect to the filtration generated by the process ξ1/t, SoY :=
{L(ξ0 + I(v)) : v ∈ VU}, where

(1.11) I(v) :=
∫ ∞

0
exp{A4(T )s}B2(T )vsds.

Here and in what follows we use the notation L(η) := Pη−1 for the distribution of
the random variable η. The set SoY is compact in P(Rn); see Lemma 5.5.

Put SY := conv SoY , the convex closure of SoY in P(Rn).
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CONVERGENCE OF ATTAINABILITY SETS 139

Let S be the set of all probability measures µ = µ(dx, dy) on Rm = Rk × Rn

such that
(1) µ(x, dy) ∈ SY ;
(2) µ(dx,Rn) ∈ Kx0 (T ).
From the Proposition 5.2 it follows that S is compact in P(Rm).
Define a linear mapping F (x, y) := (x,−A−1

4 (T )A3(T )x + y) of Rm into itself.
Put K0(T ) := {µF−1 : µ ∈ S}.

Our main result is the following theorem.
THEOREM 1.1. The set ∪ε∈]0,1]Kε(T ) is compact, and as ε → 0, Kε(T ) tend to

K0(T ) in the Hausdorff metric in the space of compact subsets of P(Rm).
For the model (1.1), (1.2) we consider now the Mayer problem, which can be

rigorously formulated as the problem to determine the minimal value of the functional

(1.12) J∗ε := inf
u∈U

Eε,ug(WT ) = inf
µ∈Kε(T )

∫
g(x, y)µ(dx, dy),

where g is a function on Rm which is integrable with respect to the measures µ from
Kε(T ).

COROLLARY 1.1. Assume that g is continuous and bounded. Then

(1.13) lim
ε→0

J∗ε = inf
µ∈K0(T )

∫
g(x, y)µ(dx, dy).

Remark 1.1. The definition of the set VU seems rather complicated. Essentially,
VU contains measurable processes v such that for any t the random variable vt is
measurable with respect to the σ-algebra Fξ≥t := σ{ξs, s ≥ t}. To avoid a discussion
of the measurable structures related to a decreasing family of σ-algebras we prefer to
consider the processes in reversed time.

Remark 1.2. There is an alternative description of the set SY . Let α be a random
variable independent of ξ with values in some Polish space and with a nonatomic
distribution. Define the set VαU as the set of all U -valued processes v = (vt)t≥0 such
that v1/t is a predictable process with respect to the filtration generated by the process
ξ1/t and the random variable α. Then SY = {L(ξ0 + I(v)) : v ∈ VαU}; see section 5.

Remark 1.3. Evidently, Theorem 1.1 can be applied to the more general opti-
mization problem Jε(u) = F (P ε,u) → min, where F is any continuous function on
P(Rm).

We also use in our proof another possible model based on a different (and more
traditional) interpretation of the equations (1.1), (1.2). To describe this alternative
approach we consider the standard Wiener measure P on (C[0, T ], CT ). Let wx be
the notation for the first k coordinates of the function W and wy be the notation for
the remaining n coordinates. Then for any u ∈ U we can find the strong solution
Xε,u = (xε,u, yε,u) of (1.1), (1.2). This model is referred to as the model with the
open loop controls (since in this case u is a nonanticipating functional of the “noise”).

Let P ε,uX := P (Xε,u)−1 be the distribution in C[0, T ] of the process Xε,u. Cer-
tainly, the measure P ε,uX need not be equal to P ε,u. Let us consider the sets K̃ε :=
{P ε,uX : u ∈ U} ⊆ P(C[0, T ]) and K̃ε(T ) := {P (Xε,u

T )−1 : u ∈ U} ⊆ P(Rm). We
do not know whether the attainability set K̃ε(T ) coincides with the attainability set
Kε(T ). However, in our paper [13] it has been shown that there are dense embeddings
K̃ε ⊆ Kε and K̃ε(T ) ⊆ Kε(T ) in the sense of total variation convergence (thus, in the
weak topology) and that the inclusion K̃ε ⊆ Kε is strict even in the simplest cases.
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140 YURI KABANOV AND SERGEI PERGAMENSHCHIKOV

This fact, certainly, does not exclude the coincidence of K̃ε(T ) and Kε(T ). Neverthe-
less, the result that there is a dense embedding K̃ε(T ) ⊆ Kε(T ) is very helpful since
it permits us to apply pathwise techniques similar to that of the deterministic theory.

2. Main ideas and the proof of Theorem 1.1 in the simplest case. We
recall some basic facts concerning the Hausdorff metric and convergence of compact
sets (for details see, e.g., [11]).

Let (X, d) be a metric space and let KX be the class of all its nonempty compact
subsets. For A, B ∈ KX put l(A,B) := supz∈A d(z,B). The Hausdorff distance
between A and B is defined by the equality

dH(A,B) := l(A,B) ∨ l(B,A).

If Am ∈ KX , m ∈ Z+, and all Am are contained in some compact set, then
lim dH(Am, A0) = 0 if and only if the following two much more tractable conditions
are satisfied for any subsequences of indices (n):

(1) For any convergent sequence zn ∈ An its limit is a point in A0.
(2) For any point z ∈ A0 there exists a subsequence znk ∈ Ank converging to z.
Notice that if An are not subsets of some compact set, the above equivalence fails

in general. For the subsets of the real line An := [0, 1] ∪ {n}, conditions (1) and (2)
are satisfied but An do not tend to A0 in the Hausdorff metric.

The strategy of the proof of Theorem 1.1 is the following. In the first stage
we show that for any µε ∈ Kε(T ), ε ∈]0, 1], there exists µ̄ε ∈ K0(T ) such that
d(µ̄ε, µε) → 0 (d here is the Prohorov metric). Since all Kε(T ) are compact this
implies that ∪ε≥0Kε(T ) is compact and all limit points of {µε} belongs to K0(T ); i.e.,
(1) is fulfilled. Since K̃ε(T ) is dense in Kε(T ) it is sufficient to consider only the case
when µε ∈ K̃ε(T ). Thus, we can argue with terminal random variables (xε,uT , yε,uT )
with the distributions µε and approximate them in probability (or in Lp) by random
variables (x̄ε,uT , ȳε,uT ) with distributions from K0(T ).

In the second step of the proof we should find for a given measure µ ∈ K0(T ) the
sequence of measures µn which are elements of K̃εn(T ) converging to µ. Again we
shall argue with suitably chosen random variables with distributions corresponding
to the measures for which we are looking.

Since the proof for the general multidimensional two-scale system requires rather
long arguments, we clarify main ideas on the example of a one-dimensional model
with constant coefficients and containing only the fast variable.

Let us consider the controlled stochastic differential equation

(2.1) εdyε,ut = (−γyε,ut + ut)dt+ ε1/2dwyt , y0 = 0,

where u is a predictable process which takes values in U = [0, 1]. In this case the set
K0(T ) is the convex closure of the set {L(ξ0 + I(v)), v ∈ VU}, where

I(v) :=
∫ ∞

0
e−γsvsds,

ξ is an Ornstein–Uhlenbeck process on some probability space (Ω,F , P ) with correla-
tion function K(s, t) = (2γ)−1e−γ|t−s|, and VU is the set of all U -valued processes v
such that v1/t is a predictable process with respect to the filtration generated by the
process ξ1/t. For our purpose it is more convenient to use the alternative description
of K0(T ) as the set {L(ξ0 +I(v)), v ∈ VαU}, where α is a random variable independent
of ξ with values in a Polish space and nonatomic distribution and VαU is the set of
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CONVERGENCE OF ATTAINABILITY SETS 141

all U -valued processes v such that v1/t is a predictable process with respect to the
filtration generated by the process ξ1/t and the random variable α. We understand
the equation (2.1) in the strong sense. Its solution can be represented in the following
way:

(2.2) yε,ut = ε−1
∫ t

0
e−γ(t−s)/εusds+ ηεt ,

where

(2.3) ηεt := ε−1/2
∫ t

0
e−γ(t−s)/εdwys .

Put Tε := T (1 − ε1/2). Let us consider on the interval [Tε, T ] the Gaussian
stationary process

ξ̃εt := (2γ)−1/2 exp{−γ(t− Tε)/ε}β + ε−1/2
∫ t

Tε

e−γ(t−s)/εdwys ,

where β is a standard normal random variable independent of the Wiener process wy

(to define β we can extend our canonical coordinate probability space). The process
ξ̃ε is the solution of the linear equation

εdξ̃εt = −γξ̃εt dt+ ε1/2dwyt , ξ̃εTε = (2γ)−1/2β.

Let us consider the Ornstein–Uhlenbeck process ξεt = ξ̃εT−εt, t ∈ [0, T/
√
ε].

Evidently, ηεT − ξε0 = ηεT − ξ̃εT → 0 in L2 as ε→ 0.
For u ∈ U we define the process vs = vεs := uT−εsI[0,T/

√
ε[.

Now we can write that

yε,uT = ηεT +
∫ T/

√
ε

0
e−γsuT−εsds+

∫ T/ε

T/
√
ε

e−γsuT−εsds = ȳε,uT +Rε(u),

where ȳε,uT = ξε0 + I(v),

Rε(u) :=
∫ T/ε

T/
√
ε

e−γsuT−εsds+ ηεT − ξε0.

Since supu∈U |Rε(u)| → 0 in probability, to accomplish the first step we need to check
only that L(ξε0 +I(v)) ∈ K0(T ). Indeed, let us take for ξ the process ξε defined above.
For any s ≤ T/

√
ε the random variable vs is measurable with respect to the σ-algebra

CT−εs. But

CT−εs = σ{wr, r ≤ Tε} ∨ σ{wr, Tε ≤ r ≤ s} ⊆ σ{wr, r ≤ Tε} ∨ σ{ξ̃εr , Tε ≤ r ≤ s}
= σ{wr, r ≤ Tε} ∨ σ{ξεr , s ≤ r ≤ T/

√
ε},

and we see that v ∈ VαU where the random variable α is defined as the projection
mapping of C[0, T ] onto C[0, Tε]. The above considerations show that the limit of any
convergent sequence µn ∈ K̃εn(T ) is an element of K0(T ).

Now we introduce the set Vα′U consisting of all processes

(2.4) vs =
N∑
i=1

ϕiI]si,si+1](s) + u0I]sN+1,∞[(s),
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142 YURI KABANOV AND SERGEI PERGAMENSHCHIKOV

where 0 = s1 < · · · < sN+1, u
0 ∈ U , and the U -valued random variables ϕi have the

form

(2.5) ϕi = fi(α, ξ(ri1), . . . , ξ(riMi
)), si+1 < rij ≤ sN .

Let K′0(T ) := {L(ξ0 + I(v)), v ∈ Vα′U }. It is easy to show that the set {I(v), v ∈
Vα′U } is dense in {I(v), v ∈ VU} in probability. Thus, K′(T ) is dense in K0(T ) in
P(R).

Let µ ∈ K′(T ). This means that µ is the distribution of a random variable
χ := ξ0 + I(v) where v is of the form (2.4). The result will be proved if we construct
a random variable χε and a control uε such that L(χε) = L(χ) and χε − yu

ε,ε
T → 0 in

probability. To this aim it is enough to find on the coordinate probability space
(C[0, T ], C, P ) a stationary Gaussian Markov process ξε with correlation function
K(s, t), a standard normal random variable αε independent on ξε, and an admis-
sible control uε ∈ U such that ξε0 − ηεT → 0 in probability (ηεT is defined by (2.3)),
and ∫ ∞

0
e−γsvεsds− ε−1

∫ T

0
e−γ(T−s)/εuεsds→ 0,

where vε is the process given by the formula (2.4) if we substitute ξε, ϕε, and αε for
ξ, ϕ, and α. Indeed, in this case the random variable χε := ξε0 + I(vε) meets the
required properties.

The process ξε can be constructed in the following way. For sufficiently small ε
let T kε := T (1− kε1/2), k = 1, 2, 3. Put

αε := (wT 2
ε
− wT 3

ε
)/(T 2

ε − T 3
ε )1/2,

βε := (2γ)−1/2(wT 1
ε
− wT 2

ε
)/(T 1

ε − T 2
ε )1/2,

ξ̃εt := exp{(t− T 1
ε )/ε}βε + ε−1/2

∫ t

T 1
ε

e−γ(t−s)/εdws, t ≥ T 1
ε .

Define the process ξε on [0, ε−1/2T ] by the equality ξεt := ξ̃εT−εt.
Evidently,

ξε0 − ηεT = exp{(T − T 1
ε )/ε}βε − ε−1/2

∫ T 1
ε

0
e−γ(T−s)/εdws → 0 in L2.

For sufficiently small ε we put

uε := u0I[0,tN+1[ +
N+1∑
i=1

ϕεi I[ti+1,ti[,

where ti := T − εsi, i ≤ N + 1.
The random variables ϕεi are Cti+1 -measurable. Thus, uε ∈ U . It follows that∫ ∞
0

e−γsvεsds− ε−1
∫ T

0
e−γ(T−s)/εuεsds =

∫ ∞
0

e−γsvεsds−
∫ T/ε

0
e−γsuεT−εsds

=
∫ ∞
T/ε

e−γsvεsds→ 0.

The proof of the result for this particular case is finished.
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CONVERGENCE OF ATTAINABILITY SETS 143

3. Proof of Theorem 1.1. Part 1. We use the notation ‖ f ‖t:= sups≤t |fs|
(omitting the subscript t = T ) and denote by C different constants which do not
depend on ε and u.

In the following statements the solution of (1.1), (1.2) (as well as that of (3.1)) is
understood in the strong sense as given on the probability space (C[0, T ], CT , P ).

PROPOSITION 3.1. Let (xε,uT , yε,uT ) be the solution of (1.1), (1.2) corresponding to
some u ∈ U , and let x̄u be the solution of the reduced equation

(3.1) dx̄ut = (A0(t)x̄ut +B0(t)ut)dt+ dwxt , x̄u0 = 0.

Then for any p ∈ [1,∞[

sup
ε

sup
u∈U

E ‖ xε,u ‖p<∞,(3.2)

lim
ε→0

sup
u∈U

E ‖ xε,u − x̄u ‖p= 0,(3.3)

sup
ε

sup
u∈U

sup
t≤T

E|yε,ut |p <∞.(3.4)

Proof. Let us introduce for ε−1A4(t) the fundamental matrix Ψε(t, s), which is
the solution of the linear matrix equation

(3.5).
∂Ψε(t, s)

∂t
= ε−1A4(t)Ψε(t, s), Ψε(s, s) = In.

Since A4 is continuous and the eigenvalues satisfy (1.6), there exists a constant L such
that

(3.6) |Ψε(t, s)| ≤ Le−κ(t−s)/ε

for all s ≤ t ≤ T and ε ∈]0, 1]; see, e.g., [18]. In particular, from the above bound it
follows that for all t ≤ T and ε ∈]0, 1]

(3.7)
1
ε

∫ t

0
|Ψε(t, s)|ds ≤ L/κ.

Using the fundamental matrix, the equation (1.2) can be solved with respect to
y = yε,u and we get the representation

(3.8) yε,ut =
1
ε

∫ t

0
Ψε(t, s)[A3(s)xε,us +B2(s)us]ds+ ηεt ,

where

(3.9) ηεt :=
1√
ε

∫ t

0
Ψε(t, s)dwys .

The process ηε is the solution of the linear stochastic equation

(3.10) dηεt = ε−1A4(t)ηεt dt+ ε−1/2dwyt , ηε0 = 0.

We shall use the following properties of ηε following, e.g., from Theorem 3.1 in [14]:
there exists a constant Cp such that

(3.11) sup
t≥0

E|ηεt |p ≤ Cp
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144 YURI KABANOV AND SERGEI PERGAMENSHCHIKOV

for any p ∈ [1,∞[ and

(3.12) E ‖ ηε ‖p≤ Cpε−1/4

for any p ∈ [4,∞[.
Substituting (3.8) in the equation (1.1) written in the integral form we come to

the following representation for the slow variable:

xε,ut =
∫ t

0
[A1(s)xε,us +B1(s)us]ds

+
∫ t

0

{
A2(s)

1
ε

∫ s

0
Ψε(s, r)[A3(r)xε,ur +B2(r)ur]dr

}
ds+ ζεt + wxt ,(3.13)

where

(3.14) ζεt :=
∫ t

0
A2(s)ηεsds.

LEMMA 3.1. For any p ∈ [1,∞[ there exists a constant cp such that for all ε ∈]0, 1]
it holds that

E ‖ ζε ‖p≤ cp,(3.15)

lim
ε→0

E ‖ ζε ‖p= 0.(3.16)

Proof. Since A2 is bounded, (3.15) follows immediately from the Jensen inequality
and (3.11). To prove (3.16) we consider the approximation of D := A2A

−1
4 by the

step functions

DN :=
N∑
i=1

DtiI]ti−1 ,ti] ,

where ti := iT/N . Using (3.10) we have

ζεt =
∫ t

0
DN
s A4(s)ηεsds+

∫ t

0
(Ds −DN

s )A4(s)ηεsds

= ε
N∑
i=1

Dti [η
ε
ti∧t − η

ε
ti−1∧t − ε

1/2(wyti∧t − w
y
ti−1∧t)] +

∫ t

0
(Ds −DN

s )A4(s)ηεsds.

This implies the bound

(3.17) ‖ ζε ‖≤ 2ε1/2(ε1/2 ‖ ηε ‖ + ‖ wy ‖) + CδN

∫ T

0
|ηεs |ds,

where δN :=‖ D −DN ‖→ 0 as N →∞ due to continuity of α.
Notice that (3.12) implies that the family of random variables {ε1/2 ‖ ηε ‖, ε ∈

]0, 1]} is bounded in Lp (for any finite p). It follows from (3.11) that the family of
integrals on the right-hand side of (3.17) is also bounded in Lp. Thus,

lim sup
ε→0

‖ ζε ‖≤ CδN

and (3.16) holds.
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CONVERGENCE OF ATTAINABILITY SETS 145

From the representation (3.13) and bounds (3.6), (3.15) it is easy to deduce that

E ‖ xε,u ‖2pt ≤ C
(

1 +
∫ t

0
E ‖ xε,u ‖2ps ds

)
,

and the standard application of the Gronwall–Bellman lemma gives (3.2).
Put ∆̄x,ε,u

t := xε,ut − x̄ut . The relations (3.1), (3.13) imply that

(3.18) ∆̄x,ε,u
t =

∫ t

0
A0(s)∆̄x,ε,u

t ds+Rε,ut ,

where

Rε,ut :=
∫ t

0
A2(s)

[
1
ε

∫ s

0
Ψε(s, r)A3(r)xε,ur dr +A−1

4 (r)A3(r)xε,ur

]
ds

+
∫ t

0
A2(s)

[
1
ε

∫ s

0
Ψε(s, r)B2(r)urdr +A−1

4 (r)B2(r)ur

]
ds+ ζεt .(3.19)

It follows from (3.18) that

E ‖ ∆̄x,ε,u ‖pt≤ C
(∫ t

0
E ‖ ∆̄x,ε,u ‖ps ds+ E ‖ Rε,u ‖p

)
,

and by the Gronwall–Bellman lemma we have

E ‖ ∆̄x,ε,u ‖pt≤ CE ‖ Rε,u ‖p eCT .

Thus, to prove (3.3) we need to show that

lim
ε→0

sup
u∈U

E ‖ Rε,u ‖p= 0.

But this relation follows from (3.2), (3.16) and the following statement (see [15,
Lemma 3.1] or [13, Lemma 3.2]).

LEMMA 3.2. For any ε ∈]0, 1], η > 0, and bounded measurable function h the
following holds: ∥∥∥∥∫ .

0
A2(s)

[
1
ε

∫ s

0
Ψε(s, r)hrdr +A2(s)A−1

4 (s)hs

]
ds

∥∥∥∥
≤‖ h ‖ T (C1η + εC2(η)),(3.20)

where C1, C2(η) depend on A2 and A4.
At last, the property (3.4) of uniform boundedness in Lp of values of the fast

variables for the fixed time follows from the representation (3.8) and (3.2), (3.7),
and (3.11).

PROPOSITION 3.2. Let (xε,u, yε,u) be the solution of (1.1), (1.2) corresponding to
some u ∈ U , and let x̄u be the solution of the reduced equation (3.1). Let the random
variable ȳε,uT be defined by

(3.21) ȳε,uT := −A−1
4 (T )A3(T )x̄uT +

∫ ∞
0

exp{A4(T )r}B2(T )vεrdr + ξ̃εT ,
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146 YURI KABANOV AND SERGEI PERGAMENSHCHIKOV

where vεr := uT−rεI[0,T/
√
ε](r) + u0I]T/

√
ε,∞[(r), u0 is an arbitrary point in U ,

(3.22) ξ̃εT := exp{ε−1A4(T )(T − T ε}β +
1√
ε

∫ T

Tε

exp{ε−1A4(T )(T − s)}dwys ,

Tε := (1−
√
ε)T, β is a Gaussian random variable with the zero mean and covariance

Ξ, and the matrix Ξ is defined in (1.9).
Then for any p ∈ [1,∞[

(3.23) lim
ε→0

sup
u∈U

E|yε,uT − ȳε,uT |p = 0.

Proof. Let ỹε,u be the solution of the stochastic differential equation

(3.24) εdỹε,ut = (A3(T )x̄uT +A4(T )ỹε,ut +B2(T )ut)dt+
√
εdwyt ỹε,u0 = 0.

Put

∆̃y,ε,u
t := yε,ut − ỹε,ut , x̂ε,ut := xε,ut − x

ε,u
T ,

Âi(t) := Ai(t)−Ai(T ), B̂i(t) := Bi(t)−Bi(T ).
The process ∆̃y,ε,u is the solution of the ordinary differential equation

d∆̃y,ε,u
t = (A4(T )∆̃y,ε,u

t + ϕε,ut )dt, ∆̃y,ε,u
0 = 0,

where

ϕε,ut := Â4(t)yε,ut + Â3(t)xε,ut +A3(T )x̂ε,ut +A3(T )∆̄x,ε,u
T + B̂2(t)ut.

Thus,

(3.25) ∆̃y,ε,u
T =

1
ε

∫ T

0
exp{ε−1A4(T )(T − s)}ϕε,us ds.

By virtue of (1.6) for all t ≥ 0 we have that

(3.26) | exp{ε−1A4(T )t}| ≤ Ce−2κt/ε.

Taking into account (3.2), (3.4) and the boundedness of U , we get from (3.25)
that the Lp-norm of ∆̃y,ε,u

T is bounded by

(3.27) C
1
ε

∫ T

0
e−2κ(T−s)/ε(|Â4(s)|+ |Â3(s)|+ fεs + ḡε + |B̂2(s)|)ds,

where

fεs := sup
u∈U

(E|xε,us − x
ε,u
T |p)1/p, ḡε := sup

u∈U
(E|∆̄x,ε,u

T |p)1/p.

Let f̄s be the function similar to fεs but defined for x̄u. It follows from (3.3) that for
any δ > 0 we have fεs ≤ f̄s + δ for all sufficiently small ε. But it is clear from the
equation (3.1) that lims→T f̄s = 0. Taking into account the above remarks we check
easily that the expression (3.27) tends to zero as ε→ 0 and, hence,

(3.28) lim
ε→0

sup
u∈U

E|yε,uT − ỹε,uT |p = 0.

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



CONVERGENCE OF ATTAINABILITY SETS 147

Now we show that

(3.29) lim
ε→0

sup
u∈U

E|ȳε,uT − ỹε,uT |p = 0.

Indeed,

ȳε,uT − ỹε,uT =

(
−A−1

4 (T )− 1
ε

∫ T

0
exp{ε−1A4(T )(T − s)}ds

)
A3(T )x̄uT

+
∫ ∞
T/ε

exp{A4(T )r}B2(T )u0
rdr −

∫ T/ε

T/
√
ε

exp{A4(T )r}B2(T )uT−εrdr

+ exp{ε−1/2A4(T )T}β − 1√
ε

∫ Tε

0
exp{ε−1A4(T )(T − s)}dwys .

Evidently, Lp-norms of all terms on the right-hand side of this identity tend to zero
and the convergence of the first one is uniform in u ∈ U by virtue of (3.2) and (3.3).
Thus, (3.29) holds. The relations (3.28), (3.29) imply (3.23).

Proposition 3.2 is proved.
Assume that sequence L(xεn,unT , yεn,unT ) converges in P(Rm) to some µ. Choose

in the representation (3.22) the random variable β independent of W . It follows from
Propositions 3.1, 3.2 that the sequence L(x̄unT , ȳεn,unT ) converges to the same limit.
Let us introduce the modified controls ûn = unI[0,Tεn ] +u0I]Tεn ,T ], where u0 is a fixed
point from U . Since x̄unT −x̄

ûn
T tends to zero in probability, the sequence L(x̄ûnT , ȳεn,unT )

converges to µ and we need to check only that L(x̄ûnT , ȳεn,unT ) ∈ K0(T ). To show this
notice that x̄ûnT is a function of the natural projection

iεn : {wxt , w
y
t , t ∈ [0, T ]} 7→ ({wxt , t ∈ [0, T ]}, {wyt , t ∈ [0, Tεn ]}).

As in section 2 it can be shown that the regular conditional distribution of the random
variable ξεn0 + I(vεn) for a fixed value iεn belongs to S. Since S is a convex closed
set and x̄ûnT is a measurable function on iεn , it follows from Lemma 5.6 that the
regular conditional distribution of ξεn0 + I(vεn) for a fixed value x̄ûnT also belongs to
S, implying the result.

4. Proof of Theorem 1.1. Part 2. Now we must show that for any measure
µF−1 ∈ K0(T ) there exists a sequence µn ∈ Kεn(T ) which converges to µF−1 in
P(Rn). It is sufficient to find such a sequence for an arbitrary µF−1 from the set
K̃0(T ) which is dense in K0(T ) in the total variation topology. The latter property
holds since the attainability set K̃x0 corresponding to the strong solutions of (2.1)
is dense in Kx0 in the total variation topology. Thus, there are dense embeddings
K̃0 ⊆ K0 and K̃0(T ) ⊆ K0(T ).

Let us fix δ > 0 and a measure µ = m(x, dy)ν(dx) such that µF−1K0(T ). By def-
inition ν = L(x̄uT ), where x̄u is a solution of the reduced equation (2.1) corresponding
to some admissible control u. Let νh := L(x̄uT−h), µh(dx, dy) := m(x, dy)νh(dx), h ∈
[0, T ]. Then there exists h0 > 0 such that

(4.1) d(µF−1, µhF
−1) ≤ δ

for all h ∈]0, h0].
To prove (4.1) we use the following.
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148 YURI KABANOV AND SERGEI PERGAMENSHCHIKOV

LEMMA 4.1. Let x̄u be the solution of (3.1). Then

(4.2) lim
s→0

sup
u∈U

Var(L(x̄uT−s)− L(x̄uT )) = 0.

Proof. For any u ∈ U let ur := uI[0,T−r] + u0I]T−r,T ], where u0 is an arbitrary
point in U . It follows from the bound for the total variation distance in terms of the
Hellinger process ht (see [12, Theorems 2.2 and 5.1]) that

(4.3) Var(L(x̄u)− L(x̄u
r

)) ≤ Cr1/2.

(Notice that in the considered situation the Hellinger process for the pair (L(x̄u),L(x̄u
r

))
has the form

ht =
∫ t

0
I[r,T ](τ)|B0(τ)(ûτ − u0)|2dτ,

where ûs takes values in U .)
Fix γ > 0 and r > 0 such that Cr1/2 ≤ γ. For any s ∈ [0, r] we have

L(x̄u
r

T−s) = L(x̄uT−r) ∗ N (as,Ks),

where ∗ denotes the convolution, N (as,Ks) is the nondegenerate Gaussian distribu-
tion with the mean

as :=
∫ T−s

T−r
B0(τ)u0dτ

and covariance

Ks :=
∫ T−s

T−r
Φ0(T − s, τ)Φ

′

0(T − s, τ)dτ,

and Φ0(T − s, τ) is the fundamental matrix corresponding to A0(t). In particular,

L(x̄u
r

T ) = L(x̄uT−r) ∗ N (a0,K0).

The well-known inequality

Var(F ∗G− F ∗ G̃) ≤ Var(G− G̃)

implies that

Var(L(x̄u
r

T−s)− L(x̄u
r

T )) ≤ Var(N (as,Ks)−N (a0,K0)),

where the right-hand side tends to zero as s→ 0.
Thus, for sufficiently small s we have

(4.4) sup
u∈U

Var(L(x̄u
r

T−s)− L(x̄u
r

T )) ≤ γ.

It follows from (4.3) and (4.4) that

sup
u∈U

Var(L(x̄uT−s)− L(x̄uT )) ≤ 3γ

and the lemma is proved.
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CONVERGENCE OF ATTAINABILITY SETS 149

Since

Var(µF−1 − µhF−1) = Var(µ− µh) = Var(ν − νh)→ 0

by virtue of the above lemma, the relation (4.1) holds.
Furthermore, there exists h1 > 0

(4.5) sup
ε

sup
z∈Uh(u)

d(L(xε,zT−h, y
ε,z
T ),L(xε,zT , yε,zT )) ≤ δ,

where Uh(u) is the set consisting of all z ∈ U such that

(4.6) zI[0,T−h] = uI[0,T−h].

The relation (4.5) is an evident corollary of Proposition 3.1 and the following.
LEMMA 4.2. Let (ξ(i)

ι,h), ι ∈ I(h), h ∈ [0, T ], i = 1, 2, be two families of random
variables with values in Rm such that

sup
h

sup
ι∈I(h)

E|ξ(i)
ι,h|p <∞, i = 1, 2,

lim
h→0

sup
ι∈I(h)

E|ξ(1)
ι,h − ξ

(2)
ι,h |p = 0

for some p > 0. Then for any bounded continuous function f on Rm

lim
h→0

sup
ι∈I(h)

|Ef(ξ(1)
ι,h )− f(ξ(2)

ι,h )| = 0.

The proof of Lemma 4.2 is easy and is omitted.
Lemma 4.2 implies also the existence of h2 > 0 such that

(4.7) sup
ι
d(L(x̄uT−h,−A4(T )A3(T )x̄uT−h + ηι),L(x̄uT−h,−A4(T )A3(T )x̄uT + ηι)) ≤ δ,

where the family (ηι) consists of all random variables with distribution from SY .
Let us consider some h ≤ h0 ∧ h1 ∧ h2. The desired result will be proved if we

find for any sufficiently small ε an admissible control z = zε satisfying (4.6) such that

(4.8) d(L(xε,zT−h, y
ε,z
T ), µhF−1) ≤ 2δ.

Indeed, it follows from (4.1), (4.5), and (4.8) that

d(L(xε,zT , yε,zT ), µhF−1) ≤ 4δ,

and this means that any point in K0(T ) can be approximated by points from Kε(T ).
Let (Ω,F , P ) be a probability space with a countably generated σ-algebra. As-

sume that on this space we have independent random elements ζ, α, ξ, where ζ has
the distribution νh, i.e., the same distribution as x̄uT−h; α has the standard normal
distribution; ξ is a stationary Gaussian Markov process with zero mean and covariance
function given by (1.8), (1.9). Let us consider the set VαU of all U -valued processes
which are predictable with respect to the filtration generated by ξ1/t and α (we denote
by P the corresponding predictable σ-algebra in Ω×R+).

LEMMA 4.3. There is a function v : Ω×R+×Rm → U which is measurable with
respect to P ⊗ B(Rm) such that v(., x) ∈ Vα for all x ∈ Rm and L(ξ0 + I(v(., x))) is
equal to µ(x, dy) for νh almost all x ∈ Rm.
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150 YURI KABANOV AND SERGEI PERGAMENSHCHIKOV

Proof. Evidently, v 7→ L(ξ0 + I(v)) is a continuous, hence measurable, mapping
from the space V := L1(Ω×R+,P, ρ)d into P(Rn), where ρ(dω, dt) = e−2κtP (dω)dt.
Thus, the multivalued mapping

Γ : x 7→ {v ∈ V : v(ω, t) ∈ U ρ a.e., L(ξ0 + I(v)) = µ(x, .)}

has a measurable graph. Hence, it admits a measurable selector x 7→ V (x). Notice
that V (x) as an element of V is a class of ρ-equivalent functions. To choose from V (x)
a representative in a measurable way we proceed as follows. Let (vi) be a sequence
of elements from VαU which is dense in VαU ∩V, j(x, l) := min{i : ‖ v(x)− vi ‖≤ 1/l}.
Then vj(l) = vj(x,l)(ω, t) is a P ⊗ B(Rm)-measurable function with values in U . The
sequence vj(x,l) converges to V (x) in V. Since U is bounded, the sequence vj(l)

converges to V in L1(Ω × R+ × Rm,P ⊗ B(Rm), ρ × νh)d. Hence, there exists a
subsequence which converges ρ × νh a.e. to some P ⊗ B(Rm)-measurable function
v = v(ω, t, x). For νh almost all x we have the inclusion v(., x) ∈ V (x) implying that
L(ξ0 + I(v(., x))) = µ(x, dy) for such x.

It follows from the above lemma that the measure µh is the distribution of the
random variable (ζ, ξ0 + I(v(., ζ))), i.e.,

(4.9) µh = L(ζ, ξ0 + I(v(., ζ))).

Generalizing the arguments of section 2 we introduce a set V(α,ζ)
U ′ consisting of all

functions

(4.10) v(s, x) =
N∑
i=1

ϕi(x)I]si,si+1](s) + u0I]sN+1,∞[(s),

where 0 = s1 < · · · < sN+1, u
0 ∈ U , and ϕi(x) have the form

(4.11) ϕi(x) = fi(α, ξ(ri1), . . . , ξ(riMi
), x), si+1 < rij ≤ sN ,

and the functions fi are measurable with respect to their arguments and take values
in U .

Assume that the representation (4.9) holds with v ∈ V(α,ζ)
U ′. There is a freedom

in the choice of ζ, α, and ξ which we use in the following constructions.
Put T kε := T (1− kε1/2), k = 1, 2, 3, ζ := x̄uT−h.
Define

αε := (wy,1T 2
ε
− wy,1T 3

ε
)/(T 2

ε − T 3
ε )1/2,

where wy,1 is the first component of the vector process wy,

βε := Ξ1/2(wyT 1
ε
− wyT 2

ε
)/(T 1

ε − T 2
ε )1/2.

Let us consider on [T 1
ε , T ] the linear stochastic differential equation

εdξ̃εt = A4(T )ξ̃εt dt+ ε1/2dwyt , ξ̃εT 1
ε

= βε.

Put ξεt := ξ̃εT−εt, t ∈ [0, ε−1/2T ]. For sufficiently small ε we define the admissible
control

zε := uI[0,tN+1[ +
N+1∑
i=1

ϕεi (x̄
u
T−h)I[ti+1,ti[,

where ti := T − εsi, i ≤ N + 1, and ϕεi is constructed in accordance with (4.11).
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CONVERGENCE OF ATTAINABILITY SETS 151

It follows from Propositions 3.1 and 3.2 that

(xε,z
ε

T−h, y
ε,zε

T )− (x̄uT−h,−A4(T )A3(T )x̄uT + ξε0 + I(v(., x̄uT−h)))→ 0

in probability as ε→ 0. Thus,

(4.12) d(L(xε,z
ε

T−h, y
ε,zε

T ),L(x̄uT−h,−A4(T )A3(T )x̄uT + ξε0 + I(v(., x̄uT−h)))) ≤ δ
for all sufficiently small ε. Taking into account (4.7) we get from here the desired
inequality (4.8).

Part 2 of Theorem 1.1 is proved now for the case when µh is given by (4.9) with
v ∈ V(α,ζ)

U ′. Since the set {I(v) : v ∈ V(α,ζ
U ′} is dense in probability in the set

{I(v) : v ∈ Vα,ζU }, the result holds for the general case as well.

5. On a compactness of some subsets in the space of probability
measures.

5.1. Notations and preliminaries. Let X be a Polish space with the Borel
σ-algebra X and P(X) be a space of all probability measures on X with the topology
of weak convergence. It is well known that P(X) equipped by the Prohorov metric is
again a Polish space. The relative compactness of a subset A ⊆ P(X) is equivalent
to its tightness. The last means that for any ε > 0 there exists a compact set K ⊆ X
such that m(K) ≥ 1− ε for all m ∈ A.

We shall use the notation m(f) =
∫
X
f(x)m(dx). We denote by L(ξ) the distri-

bution of a random variable ξ.
Let (X,X ) and (Y,Y) be two Polish spaces. We denote by M(X,Y ) the set of

stochastic kernels from (X,X ) to (Y,Y) that is mappings µ : X ×Y → ([0, 1],B[0, 1])
such that x 7→ µ(x,Γ) is X -measurable for any Γ ∈ Y and µ(x, .) ∈ P(Y ) for any
x ∈ X.

It is easy to check that the mapping µ : X ×Y → ([0, 1],B[0, 1]) is inM(X,Y ) if
and only if one of the following equivalent conditions is satisfied:

(1) The mapping x 7→ µ(x, .) is X -measurable (i.e., µ(x, .) is a P(Y )-valued
random variable).

(2) For any f ∈ Cb(Y ) (the set of all bounded continuous functions on Y ) the
mapping x 7→ µ(x, f) is X -measurable (i.e., µ(x, f) is a real-valued random variable).

THE SKOROHOD REPRESENTATION THEOREM. Let Y be a Polish space and mn ∈
P(Y ) be a sequence converging in P(Y ) to some m. Then on the probability space
([0, 1],B[0, 1], dx) there exist Y -valued random variables ξ̃n and ξ̃ such that L(ξ̃n) =
mn, L(ξ̃) = m, and ξ̃n → ξ̃ pointwise.

THE MEASURABLE ISOMORPHISM THEOREM. Let (X,X be an uncountable Polish
space. Then there is a one-to-one mapping i : X → [0, 1] such that i(Γ) ∈ B[0, 1] for
any Γ ∈ X and i−1(A) ∈ X for any A ∈ B[0, 1].

Another useful result is that any Polish space X is homeomorphic to a Gδ-subset
of the Hilbert cube [0, 1]N. For further information see, e.g., [6], [9].

5.2. For µ ∈ M(X,Y ), m ∈ P(X), and Γ ∈ Y, the integral
∫
X
µ(x,Γ)m(dx)

defines a probability measure on (Y,Y) which we shall denote by
∫
X
µ(x, .)m(dx).

LEMMA 5.1. Let (X,X ) be a Polish space with nonatomic measure ν on it, let S
be a compact set in P(Y ), and let M) be the set consisting of all stochastic kernels µ
from (X,X to (Y,Y) such that µ(x, .) ∈ S for all x ∈ X. Then the set

K =
{
m ∈ P(Y ) : m(.) =

∫
X

µ(x, .)ν(dx), µ ∈M
}

is a convex compact subset in P(Y ) coinciding with convS.
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152 YURI KABANOV AND SERGEI PERGAMENSHCHIKOV

Proof. By virtue of the measurable isomorphism theorem we can consider only
the case when (X,X ) = ([0, 1],B[0, 1]). Assume at first that ν(dx) = dx, i.e., ν is the
Lebesgue measure. Convexity of M is clear: if measures mi(.) =

∫
X
µi(x, .)dx, i =

1, 2, belong to K, α > 0, β > 0, α + β = 1, then the measure αm1(.) + βm2(.) =∫
X
µ(x, .)dx with

µ(x, .) = I[0,α](x)µ1(α−1x, .) + I]1−β,1](x)m2(β−1(x− 1 + β), .)

also belonging to K. The tightness of K follows easily from the tightness of S.
To prove that K is closed, let us consider the sequence mn(.) =

∫
µn(x, .)dx ∈ K

converging to some m(.) in P(Y ). Notice that elements of M are random variables
with values in the compact subset S of a Polish space. Thus, the set of distributions
of these random variables {L(µ) : µ ∈M} is relatively compact in P(P(Y )). Taking,
if necessary, a subsequence we can assume that L(µn) tend to some L in P(P(Y )).
By the Skorohod representation theorem on the probability space ([0, 1],B[0, 1], dx)
there exist S-valued random variables µ̃n and µ̃ such that µ̃n(x, .)→ µ̃(x, .) for all x
when n→∞ and L(µ̃) = m, L(µ̃n) = L(µn) for all n.

The last equality means that for any f ∈ Cb(Y ) the distribution of the random
variable µ̃n(f) coincides with the distribution of µn(f). It follows that for any f ∈
Cb(Y )

m(f) = lim
n→∞

mn(f) = lim
n→∞

∫
µn(x, f)dx = lim

n→∞

∫
µ̃n(x, f)dx =

∫
µ̃(x, f)dx.

Thus, m(.) =
∫
µ̃(x, .)dx ∈ K.

The general case when ν is any nonatomic measure on [0, 1],B[0, 1] is easily re-
duced to the considered one by the quantile transformation. Indeed, let F (t) :=
ν([0, t], C(t) := inf{s : F (s) > t}. Then we have the identities∫

µ(x, .)dx =
∫
µ(F (x), .)ν(dx),

∫
µ(x, .)ν(dx) =

∫
µ(C(x), .)dx

which show that K does not depend on the measure ν.
Evidently, S ⊆ K. Hence, convS ⊆ K. Let m0(.) =

∫
µ(t, .)dt be a point in K

which does not belong to convS. By the separation theorem a convex compact set
and a point outside it can be strictly separated by a continuous linear functional. This
means that there exists f ∈ Cb(Y ) such that infm∈convSm(f) < m0(f). It follows
that

∫
µ(t, f)dt < m0(f) in contradiction with the assumption that m0 ∈ K.

Remark 5.1. If ν has atoms, then we can assert only that K is a subset of convS,
even when S is compact.

5.3. Convergence of measure-valued martingales.
PROPOSITION 5.1. Let (Ω,F , P ) be a probability space with an increasing family

of σ-algebras (Fn) such that F = σ{Fn, n ∈ N}. Let µn(ω, .) be a stochastic kernel
from (Ω,Fn) to (Y,Y) such that for any f ∈ Cb(Y ) the sequence (µn(f),Fn) is a
martingale. Assume that for almost all ω the sequence µn(ω, .) is tight. Then for
almost all ω there exists a limit µ(.) of µn(ω, .) in P(Y ) and E(µ(f) | Fn) = µn(f)
for all f ∈ Cb(Y ) and n ∈ N.

Proof. To clarify ideas we start from the case when Y = R. Let Mn(ω, y) =
µn(ω, ] − ∞, y]) be the distribution function of µn(ω, .). Evidently, (Mn(y),Fn) is
a bounded martingale for all y ∈ R and by the Doob theorem it converges almost
surely (a.s.) to M0(y). There is a set Ω1 with P (Ω1) = 1 such that for all ω ∈ Ω1
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CONVERGENCE OF ATTAINABILITY SETS 153

and all rationals r we have convergence of Mn(ω, r) to M0(ω, r). Put M(ω, y) =
inf{M0(ω, r) : r ∈ Q, r > y} for ω ∈ Ω1. Let M(ω, .) be equal to any distribution
function outside Ω1. The assumption on tightness implies that M(ω, .) is a probability
distribution function and for any ω ∈ Ω1 we have that Mn(ω, y) tends to M(ω, y) at
any point y where the function M(ω, .) is continuous.

As any Polish space is homeomorphic to a Gδ-subset of H = [0, 1]N we can assume
in general case that Y is the intersection of open subsets Gn in H. The closure Ȳ of Y
is a compact subset of H. Thus, Cb(Ȳ ) is separable. Let A be a countable dense subset
of Cb(Ȳ ) closed under finite sums and multiplication by rationals. For any f ∈ A the
sequence µn(ω, f) converges to some µf (ω) for all ω from a set Ωf with P (Ωf ) = 1.
It is possible to find a set Ω1 with P (Ω1) = 1 such that for all ω ∈ Ω1, f, g ∈ A, and
rational a and b

µaf+bg(ω) = aµf (ω) + bµg(ω).

Evidently,

| µf (ω)− µg(ω) |≤‖ f − g ‖, ω ∈ Ω1,

where ‖ . ‖ is a uniform norm in Cb(Ȳ ), and the function f 7→ µf (ω) can be extended
uniquely to the continuous positive linear functional on Cb(Ȳ ) which by the Riesz
theorem has the form µf (ω) = µ(ω, f) for some measure µ(ω, .) on Ȳ . For ω ∈ Ω1 we
put µ(ω, .) equal to any fixed probability measure on Y . We show that µ is the kernel
we are seeking. Notice that µ(ω, Y ) = 1. Fix ω ∈ Ω1. By the assumption there exists
a subsequence µn′(ω, .) which converges in P(Y ) to a measure µ′(ω, .) on Y . We can
extend µn′(ω, .) and µ′(ω, .) to Ȳ in a trivial way. Then for f ∈ A we have∫

Ȳ

f(y)µ′(ω, dy) =
∫
Y

f(y)µ′(ω, dy) = lim
n→∞

∫
Y

f(y)µn′(ω, dy)

= lim
n→∞

∫
Ȳ

f(y)µn′(ω, dy) =
∫
Ȳ

f(y)µ(ω, dy).

It follows that the probability measures µ′(ω, .) and µ(ω, .) coincide, and, since any
convergent subsequence has the same limit, the whole sequence µn(ω, .) converges in
P(Y ) to µn(ω, .).

The result is proved.

5.4. Let X and Y be Polish spaces. Any measure m ∈ P(X × Y ) can be
desintegrated, that is, can be represented as m(dx, dy) = µ(x, dy)ν(dx), where ν is
the image of m under the projection mapping X × Y onto X and µ is an element of
M(X,Y ) (regular conditional probability) defined ν a.s. uniquely.

LEMMA 5.2. Let SY be a convex compact subset in P(Y ), and let S be the set
of all m ∈ P([0, 1] × Y ) such that m(dx, dy) = µ(x, dy)dx with µ(x, .) ∈ SY for all
t ∈ [0, 1]. Then S is a convex compact set.

Proof. The problem is to prove that S is closed. Let us consider for any ∆ =
[a, b] ⊆ [0, 1], b > a, the set

K∆ =
{
m ∈ P(Y ) : m(.) =

1
b− a

∫
∆
µ(x, .)dx, µ(x, .) ∈ SY for all x ∈ ∆

}
,

which is, by Lemma 5.1, a convex compact set in P(Y ). Let L be the set of all
m ∈ P([0, 1] × Y ) such that the image of m under the projection mapping X × Y
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154 YURI KABANOV AND SERGEI PERGAMENSHCHIKOV

onto X is the Lebesgue measure (this means that m(dx, dy) = µ(x, dy)dx without
any restriction on µ). Evidently, L is a closed convex set in P([0, 1]× Y ).

Define the continuous affine mapping f∆ : L → P(Y ) by the formula f∆ : m 7→
m∆ where m∆(Γ) = m(∆ × Γ)/(b − a). The result will be proved if we show that
S = ∩∆f

−1
∆ (K∆). The inclusion S ⊆ ∩∆f

−1
∆ (K∆) is evident. To prove the opposite

inclusion let us consider the measure m from L which belongs to ∩∆f
−1
∆ (K∆). Let

us define the dyadic σ-algebras Fl = σ{∆k,l, k = 1, . . . , 2l}, where ∆0,l = [0, 2−l],
∆k,l =](k − 1)2−l, k2−l], k ≥ 1. Using Lemma 5.1 it is easy to show that for any l
there exists a stochastic kernel µl such that µl(x, .) ∈ SY for all t ∈ [0, 1] and

m(A× .) =
∫
A

µl(x, .)dx

for all A ∈ Fl. Put

ml(t, .) =
2l∑
k=1

I∆k,l
(t)ml,k(.)

where

ml,k(.) = 2l
∫

∆l

µl(x, .)dx ∈ S

according to Lemma 5.1. By Proposition 5.1 on convergence of measure-valued mar-
tingales, the sequence µl(x, .) tends to µ(x, .) in P(Y ) for almost all x and∫

A

µl(x, .)dx =
∫
A

µ(x, .)dx

for all A ∈ Fl. Thus, we find a stochastic kernel µ such that µ(x, .) ∈ SY for all
x ∈ [0, 1] and m(A × Γ) =

∫
A
µ(x,Γ)dx for all A ∈ Bl, l ∈ N, and Γ ∈ Y. It follows

that m(dx, dy) = µ(x, dy)dt. Hence, m ∈ S and the lemma is proved.

5.5.
LEMMA 5.3. Let (X,X ) be any uncountable Polish space with a probability measure

ν on it. Then there exists an increasing family of σ-algebras (Xl), l ∈ N, such that
(1) Xl is generated by a finite partition of X to the sets Ak,l, k = 1, . . . , rl;
(2) X = σ{Xl, l ∈ N};
(3) ν(∂Ak,l) = 0 for any k and l (∂A denotes the boundary of A).
Proof. Since a Polish space is homeomorphic to Gδ-subsets of H = [0, 1]N, we

can assume without loss of generality that X is a Borel subset of H. Moreover,
it is sufficient to construct the family (Xl) for the space H (then the σ-algebras
Xl ∩X = {A ∩X, X ∈ Xl} will have the desired properties for X). Let ε ∈ [0, 1/2[.
Let us define the partitions of the interval [0, 1] by points aεk2−l , k = 0, . . . , 2l, in
the following recurrent way. Let aε0 = 0, aε1 = 1, aε2−l = 2−1 + ε. Starting from the
lth partition we define for k even the point aεk2−l−1 = (aεk2−l + aε(k+1)2−l)/2; i.e., we
construct the ordinary dyadic partitions on both intervals [0, 2−1 + ε] and ]2−1 + ε, 1].

Evidently, diameters of the partitions tend to zero as l→∞.
Put

∆ε
1,l = [0, aε2−l ], ∆ε

k,l =]aε(k−1)2−l , a
ε
k2−l ], k = 1, . . . , 2l,

Γε = {aεk2−l , k = 1, . . . , 2l, l ∈ N}.
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CONVERGENCE OF ATTAINABILITY SETS 155

Let ∆ε
k1,...,kl,l

= {x : x1 ∈ ∆ε
kl,l
, . . . , xl ∈ ∆ε

k1,1}, X
ε
l = σ{∆ε

k1,...kl,l
, ki ≤ 2l}. Notice

that the set Nd of superscripts ε ∈ [0, 1/2[ such that Γε are disjoint is uncountable
(this follows from the observation that Γε ∩ Γη = � if Qε + Q 6= Qη + Q and there
are uncountably many different sets Qε + Q). Let’s consider the countable subset
Np of Nd containing all superscripts ε such that at least one of the probabilities
ν(x : xk ∈ Γε), k ∈ N, is positive. Thus, Nd \Np is uncountable. It is clear that for
any ε ∈ Nd \Np the sequence of σ-algebras X εl has the needed properties.

5.6. The following assertion is a generalization of Lemma 5.2.
PROPOSITION 5.2. Let SX be a compact subset in P(X), and let SY be a convex

compact subset in P(Y ). Assume that all elements of SX are nonatomic. Let S be
the set of all m ∈ P(X × Y ) such that m(dx, dy) = µ(x, dy)ν(dx) with µ(x, .) ∈ SY
for all x and ν(.) ∈ SX . Then S is a compact set.

Proof. Since the relative compactness is evident, we need to show only that S
is closed. Let us consider the sequence mn ∈ S with mn(dx, dy) = µn(x, dy)νn(dx)
which tends in P(X × Y ) to m(dx, dy) = µ(x, dy)ν(dx). As νn tends to ν in P(X)
and SX is a compact, ν ∈ S.

To prove that m ∈ S for all x, we construct a sequence of stochastic kernels
µ̃l such that µ̃l(x, .) ∈ SY for any x, µ̃l(x, .) converges ν-a.s. to some µ̃(x, .), and
µ̃(x, dy)ν(dx) = µ(x, dy)ν(dx).

Let us consider the σ-algebras Xl = σ{Ak,l, k = 1, . . . , rl}, l ∈ N, defined in
Lemma 5.3. Since ν(∂Ak,l) = 0, the sequence of measures mn(Ak,l × .) converges in
P(Y ) to the measure m(Ak,l× .) for any set Ak,l. From Lemma 5.1 it follows that for
any l ∈ N there exists a stochastic kernel µl such that µl(t, .) ∈ SY for all t ∈ [0, 1]
and

m(A× .) =
∫
A

µl(x, .)ν(dx)

for all A ∈ Xl. Let

µ̃l(x, .) =
2l∑
k=1

IAk,l(x)ml,k(.),

where

ml,k(.) =
1

ν(Ak,l)

∫
Ak,l

µl(x, .)ν(dx) ∈ SY

according to Lemma 5.1 (if ν(Ak,l) = 0 we can put ml,k(.) to be equal to any point
of SY ). By Proposition 5.1 on the convergence of measure-valued martingales the
sequence µ̃l(x, .) tends to µ̃(x, ) in P(Y ) for almost all x and∫

A

µ̃l(x, .)ν(dx) =
∫
A

µ̃(x, .)ν(dx)

for all A ∈ Xl. Thus, we found a stochastic kernel µ such that µ̃(x, .) ∈ SY for all
x ∈ [0, 1] and m(A×Γ) =

∫
A
µ̃(x,Γ)ν(dx) for all A ∈ Xl, l ∈ N, and Γ ∈ Y. It follows

that m(dx, dy) = µ̃(x, dy)ν(dx). Hence, m ∈ S.
Remark 5.2. Walter Schachermayer suggested the following simpler proof of the

above result without the assumption that measures from SX are nonatomic. At first,
notice that SY = ∪nj=1Γj , where Γj := {µ : µ(fj) ≤ βj}, fj ∈ Cb(Y ), βj ∈ R.
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156 YURI KABANOV AND SERGEI PERGAMENSHCHIKOV

Indeed, from the Hahn–Banach theorem it follows that SY is an intersection of sets of
this type. Their complements form an open covering of the open set P(Y )\SY . Since
a Polish space is Lindelöf it contains a countable covering Γ̄j , j ∈ N. Assume now
that for the limiting measure m(dx, dy) = µ(x, dy)ν(dx) there exists a set of positive
ν-measure where µ(x, .) 6∈ SY . The above representation for SY implies that there
exists a set B = {x : µ(x, f) > β} with ν(B) > 0. Let gk ∈ Cb(X) be a sequence
converging in L1(ν) to IB . Since µn(x, .) ∈ SY we have that µn(x, f) ≤ β. Thus,

lim
k→∞

lim
n→∞

∫ ∫
gk(x)f(y)mn(dx, dy) = lim

k→∞
lim
n→∞

∫
gk(x)µn(x, f)νn(dx)

≤ lim
k→∞

β

∫
gk(x)ν(dx) = βν(B).

From the other side,

lim
k→∞

lim
n→∞

∫ ∫
gk(x)f(y)mn(dx, dy) = lim

k→∞
lim
n→∞

∫ ∫
gk(x)f(y)m(dx, dy)

= lim
k→∞

∫
gk(x)µ(dx, f)ν(dx) =

∫
B

µ(dx, f)ν(dx) > βν(B),

and we get a contradiction to the assumption that µ(x, .) does not belong to SY ν-a.s.

5.7. Now we consider the following problem.
Let (Ω,F , P ) be a probability space, P be a σ-algebra in the product Ω×R+ such

that P ⊆ F⊗B(R+), Γ is a measurable set-valued mapping from (R+,B(R+)) to Rq.
Measurability means that the graph Gr Γ = {(t, x) : x ∈ Γ(t)} is a B(R+)⊗ B(Rq)-
measurable set. We shall assume that Γ(t) are closed sets and there exists a function
r ∈ L1(R,dt) such that |Γ(t)| ≤ rt for all t. Let V be a set of all P-measurable
functions f on Ω×R+ such that f(ω, t) ∈ Γ(t). Define the set K in P(Rq) as

K :=
{
L(φ) : φ =

∫ ∞
0

f(t)dt, f ∈ V
}
.

The question is if K is a compact set. We give here only a partial answer to this
question imposing some specific assumption on the structure of the σ-algebra P.

Let w = (wt) be a d-dimensional Wiener process on (Ω,F , P ), Fo,wt = σ{ws, s ≤
t}, Fwt = Fo,wt+ ∨ N , where N is a family of all sets from F of zero probability. In
other words, Fw = (Fwt ) is the minimal filtration generated by the Wiener process
and satisfying the usual assumptions.

LEMMA 5.4. Assume that P is the predictable σ-algebra generated by Fw and Γ(t)
is a convex set for all t. Then K is a compact set.

Proof. Since random variables φ are bounded by some constant, K is relatively
compact and it remains to show that K is closed.

Let us consider the sequence fn ∈ V such that the corresponding sequence of
distribution L(φn) converges in P(Rq). Define the random processes

φnt =
∫ t

0
fn(ω, s)ds.

Using the criteria of relative compactness in P(Cq+d(R+)) (the space Cq+d(R+) is
equipped with the metric

∑
j 2−j ‖ x ‖j (1+ ‖ x ‖j)−1), we can assume without loss

D
ow

nl
oa

de
d 

10
/3

0/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



CONVERGENCE OF ATTAINABILITY SETS 157

of generality that the sequence L((φn, w)) converges to some L in P(Cq+d(R+)). The
Skorohod theorem asserts that on some probability space (Ω̃, F̃ , P̃ ) (actually, on the
standard unit interval) there are processes (φ̃n, w̃n), n ∈ N, and (φ̃, w̃) such that
L(φ̃n, w̃n) = L(φn, w), L(φ̃, w̃) = L, and (φ̃n, w̃n) converges to (φ̃, w̃) in Cq+d(R+)
pointwise.

It is easy to show that the following properties hold:
(1) The process φ̃n is adapted with respect to (F̃nt ), where F̃nt := σ{w̃ns , s ≤ t}

and

(5.1) φ̃nt (ω̃) =
∫ t

0
f̃n(ω̃, s)ds

with P̃n-measurable f̃n such that f̃n(ω̃, s) ∈ Γ(s) for (ω̃, s) (where P̃n is the pre-
dictable σ-algebra generated by (F̃nt )).

(2) The process φ̃ is adapted with respect to (F̃t), where F̃t := σ{w̃s, s ≤ t} and

(5.2) φ̃t(ω̃) =
∫ t

0
f̃(ω̃, s)ds

with P̃-measurable f̃ such that f̃(ω̃, s) ∈ Γ(s) for (ω̃, s) (where P̃ is the predictable
σ-algebra generated by the minimal filtration with the usual assumptions for w̃).

Let us prove that φ̃n is adapted with respect to (F̃nt ). Fix t ∈ R+ and define the
Wiener process ŵns = w̃ns+t− w̃nt , s ∈ R+, which is independent of F̃nt . It is sufficient
to show that Ẽ(φ̃nt | F̃nt ) = φ̃nt (P̃ -a.s.) or, equivalently, that

ẼẼ(φ̃nt | F̃nt )h(w̃n)g(ŵn) = Ẽφ̃th(w̃n)g(ŵn)

for any bounded continuous functions h : Cd[0, t] → R and g : Cd(R+) → R (the
argument of h, in fact, is the restriction of w̃n to [0, t]). Since h(w̃n) is F̃nt -measurable,
it follows from properties of the conditional expectations that the above equality holds
if and only if

(5.3) Ẽφ̃nt h(w̃n)Ẽg(ŵn) = Ẽφ̃nt h(w̃n)g(ŵn).

But L(φ̃n, w̃n) = L(φn, w), and the last identity is equivalent to the following one:

Eφnt h(w)Eg(w) = Eφnt h(w)g(w
′
),

where w
′

s = ws+t − wt, s ∈ R+, which holds because φn is adapted with respect to
(Fnt ).

Taking a limit in (5.3) we get that

Ẽφ̃th(w̃)Ẽg(w̃) = Ẽφ̃th(w̃)g(ŵ),

where ŵs = w̃s+t − w̃t, s ∈ R+. As above, this means that φ̃t = Ẽ(φ̃t | F̃t); i.e., φ̃
is adapted with respect to (F̃t). The representation (5.1) follows from the definition
of φn and coincidence of L(φ̃n, w̃n) and L(φn, w). To obtain the representation (5.2)
we notice that by the Komloś theorem [19] for the bounded sequence f̃n, there exists
a subsequence (nj) such that (f̃n1 + · · · + f̃nk)/k converge to some function f̃0 for
almost all (ω̃, t). It follows that

(5.4) φ̃t(ω̃) =
∫ t

0
f̃0(ω̃, s)ds.D
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158 YURI KABANOV AND SERGEI PERGAMENSHCHIKOV

The convexity assumption implies that f̃0(ω̃, s) ∈ Γ(s) for almost all (ω̃, s), and we
can assume without loss of generality that f̃0(ω̃, s) ∈ Γ(s) for all (ω̃, s). This means
that the trajectories of φ̃ are absolutely continuous functions. Let

f̃
′
(ω̃, s) = lim sup

m→∞

m∑
i=2

I∆i(s)2
m(φ̃ti−1(ω̃)− φ̃ti−2(ω̃)),

where ti = i2−m, ∆i = ti− ti−1. Clearly, f̃
′
(ω̃, s) is a P̃-measurable function, and for

all ω̃ and almost all s it coincides with f̃0(ω̃, s) ∈ Γ(s). Thus, the following function
gives the representation (5.2) with the required properties:

f̃(ω̃, s) = f̃
′
(ω̃, s)IA + x(s)IĀ,

where A = {(ω̃, s) : f̃
′
(ω̃, s) ∈ Γ(s)}, x(s) is any Borel function such that x(s) ∈ Γ(s).

Properties (1) and (2) imply the result. Indeed, it follows from (2) and Lemma
2.1 in [13] that there exists a predictable function a(x, s) : Cd(R+) × R+ → Rq

such that f̃(ω̃, s) = a(w̃(ω̃), s). Evidently, we can modify a(x, s) in such a way that
a(x, s) ∈ Γ(s) for all (x, s). Let us define on the original probability space (Ω,F , P )
the process

φt(ω) =
∫ t

0
f(ω, s)ds

with f(ω, s) = a(w(ω), s). Since f ∈ V and L(φ) = L(φ̃) = L it follows that the limit
of L(φn) belongs to K and the lemma is proved.

5.8. Now we apply the previous result to our specific setting.
LEMMA 5.5. The set S0

Y := {L(ξ0 + I(v) : v ∈ VU )} is compact in P(Rn).
Proof. Reversing the time and taking into account the notations of the previous

subsection we can reduce the problem to the question of whether the set

K :=
{
L(φ) : φ =

∫ ∞
0

f(t)dt, f ∈ V
}

is compact. Here Γ(t) = −s−2 exp{A4(T )/s}B2(T )U and the σ-algebra P is generated
by the time reverse of the Ornstein–Uhlenbeck process ξ1/t, or, equivalently, by the
process ηt := tξ1/t. The process η (as well as ξ) is defined in the present context
only up to the distribution. For example, we can take as η the process defined by the
stochastic differential equations

(5.5) dηt = t−2(tI −A)ηtdt+ dwt, η0 = 0,

where I is the unit matrix and w is the Wiener process. This representation can be
deduced from the differential equation for the Ornstein–Uhlenbeck process by the Ito
formula. But from equation (5.5) it follows that Fo,wt = σ{ηs, s ≤ t} and the needed
result is a corollary of Lemma 5.4.

5.9. Let ηi be random variables with values in Polish spaces (Xi,Xi), i = 1, 2, 3,
let νi be the distribution of ηi, and let µij(xj , dxi) be the regular conditional distri-
bution of ηi given ηj .

LEMMA 5.6. Let η3 = f(η2) for some measurable function f : X2 → X3, and let
S1 be a compact convex set in P(X1). Assume that µ12(x2, dx1) ∈ S1 for all x2. Then
µ13(x3, dx1) ∈ S1 for ν3-almost all x3.
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CONVERGENCE OF ATTAINABILITY SETS 159

Proof. The assertion follows from the relation

µ13(x3, dx1) =
∫
X2

µ12(x2, dx1)µ23(x3, dx2) (ν3-a.e.)

and Remark 5.1.

Acknowledgment. The authors express their thanks to Walter Schachermayer
for helpful discussions of functional-analytic aspects of the problem.
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