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ABSTRACT

DYNAMIC CAPACITY ADJUSMENT FOR
VIRTUAL-PATH BASED NETWORKS USING

NEURO-DYNAMIC PROGRAMMING

Cem Şahin

M.S. in Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Nail Akar

September, 2003

Dynamic capacity adjustment is the process of updating the capacity reservation

of a virtual path via signalling in the network. There are two important issues to

be considered: bandwidth (resource) utilization and signaling traffic. Changing

the capacity too frequently will lead to efficient usage of resources but has a

disadvantage of increasing signaling traffic among the network elements. On

the other hand, if the capacity is adjusted for the highest possible value and

kept fixed for a long time period, a significant amount of bandwidth will be

wasted when the actual traffic rate is small. We proposed two formulations for

dynamic capacity adjustment problem. In the first formulation cost parameters

are assigned for bandwidth usage and signalling, optimal solutions are reached

for different values of these parameters. In the second formulation, our aim is to

maximize the bandwidth efficiency with a given signaling requirement. In this

formulation, a leaky bucket counter is used in order to regulate the signaling rate.

We used dynamic programming and neuro-dynamic programming techniques and

we applied our formulations for voice traffic scenario (voice over packet networks)

and a general network architecture using flow-based Internet traffic modelling.

In the Internet traffic modelling case, we tested two different control strategies:

event-driven control and time-driven control. In event-driven control, capacity

update epochs are selected to be the time instants of either a flow arrival or a

flow departure. In time-driven control, decision epochs are selected to be the

equidistant time instants and excessive amount of traffic that cannot be carried

will be buffered.

Keywords: Dynamic capacity adjustment, virtual path, voice over packet

networks, dynamic programming, neuro-dynamic programming, leaky bucket

counter, flow-based internet traffic modelling.
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ÖZET

SANAL-YOL TABANLI AĞLARDA
SİNİRSEL-DİNAMİK PROGRAMLAMA
KULLANILARAK DİNAMİK KAPASİTE

AYARLANMASI

Cem Şahin

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yard. Doç. Dr. Nail Akar

Eylül, 2003

Dinamik kapasite problemi, sinyalleşme yardımıyla bir sanal yolun kapasite rez-

ervasyonunun değiştirilmesi işlemidir. Gözönüne alınması gereken iki önemli

nokta, kaynak kullanımı ve sinyalleşme trafiğidir. Kapasitenin sık bir biçimde

değiştirilmesi, etkin bir kaynak kullanımını sağlar fakat bu yöntemin dezavantajı,

ağ elemanları arasındaki sinyalleşme trafiğinin artmasıdır. Diğer taraftan, eğer

kapasite en yüksek değerine ayarlanıp uzun bir zaman diliminde değiştirilmezse,

trafik yoğunluğunun az olduğu zamanlarda büyük miktarda kapasite boşa har-

canır. Dinamik kapasite problemi için iki farklı formulasyon önerdik. Birinci

formulasyonda, her sinyalleşme maliyeti ve aynı zamanda birim zamanda kul-

lanılan kaynak maliyeti için parametreler atanmıştır ve bu parametrelerin değişik

değerleri için optimal çözümlere ulaşılmıştır. İkinci formulasyondaki amacımız,

verilen bir sinyalleşme kısıtına uyarak, kaynak kullanım verimini arttırmaktır.

Bu formulasyonda sinyalleşme oranını ayarlamak için sızdıran kova sayıcısı kul-

lanılmıştır. Ses trafiği ve genel akış bazlı İnternet trafiği modelleri için, dinamik

programlama ve sinirsel-dinamik programlama teknikleri kullanılmıştır. İnternet

trafiği senaryosu için, zaman-sürümlü ve olay-sürümlü kontrol stratejileri kul-

lanılmıştır. Olay-sürümlü kontrolda karar zamanları, akışların geliş ve gidiş za-

manları olarak atanmıştır. Zaman-sürümlü kontrolde ise karar zamanları eşit

aralıklı zaman noktalarıdır ve taşınamayan trafik için tampon sistemi olduğu

varsayılmıştır.

Anahtar sözcükler : Dinamik kapasite ayarlanması, sanal yol, paket üzerinde

ses ağları, dinamik programlama, sinirsel-dinamik programlama, sızdıran kova

sayıcısı, akıntı tabanlı internet trafik modellemesi.
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Chapter 1

Introduction

1.1 Motivation

Dynamic capacity adjustment refers to the process of dynamically changing the

capacity reservation (bandwidth) of a virtual-path (VP) via signaling in the net-

work domain. This process depends heavily on some certain criteria including

instantaneous traffic load for the VP, current capacity reservation, hour of day or

day of week and Quality of Service (QoS) parameters (e.g., signaling constraints).

A VP or a pseudo-wire stands for a generic path carrying aggregate traffic

between two network end points. The route of the VP is fixed and the capacity

allocated to it can be resized on-line dynamically (without a need for tearing it

down and reestablishing it with a new capacity). With this generic definition,

multiple networking technologies can be accommodated; a virtual path may be

an MPLS-TE (MultiProtocol Label Switching - Traffic Engineering) LSP (Label

Switched Path) [1], an ATM (Asynchronous Transfer Mode) VP [2], or a single

aggregate RSVP (Resource ReserVation Protocol) reservation [3]. The end points

of the virtual path will then be LSRs (Label Switch Router), ATM switches, or

RSVP-capable routers, respectively.

At the first stage, we are motivated by “Voice Over Packet (VoP)” networks

1



CHAPTER 1. INTRODUCTION 2

(see Figure 1.1) where individual voice calls are aggregated into a VP in the

packet-based network. VoP networks can be easily simulated and for the sake

of simplicity, a good start point for testing our solution methodologies since all

the voice calls require same amount of bandwidth in the network domain. At the

edge of the packet network, there are the voice over packet gateways which are

interconnected to each other using VPs. The packet network may be an MPLS,

an ATM, or a pure IP network supporting dynamic aggregate reservations. In

this scenario, end to end reservation requests that are initiated by PSTN (Public

Switched Telephone Network) voice calls and which are destined to a particular

voice over packet gateway arrive at the aggregator gateway. These reservations

are then aggregated into a single dynamic reservation through the packet network.

The destination gateway then deaggregates these reservations and forwards the

requests back to the PSTN. Capacity update decision epochs are assumed to be

the instants of either a call arrival or a call departure.

Voice Over Packet Network

VoP Aggregator
Gateway

VoP Deaggregator
GatewayPseudo-wire

PSTN voice
Calls-E2E
reservation

requests

capacity of the pseudo-wire adjusted
dynamically by the aggregator gateway

Figure 1.1: E2E (End-to-End) reservations due to PSTN voice calls are aggre-
gated into one single reservation through the voice over packet network

There are two important issues in the dynamic capacity adjustment problem:

utilization of bandwidth resources and signaling traffic in the network. If we

adjust the bandwidth of the VP too frequently, under-utilization of bandwidth

resources will decrease but this causes a huge amount of signaling traffic in the

network which will be inefficient for the networks where traffic intensity changes
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rapidly. On the other hand if we fix the bandwidth of the VP to a constant value

and not change it over a long time period, signaling traffic in the network will

decrease with the cost of increasing bandwidth under-utilization. From this point

of view two different capacity adjustment approaches will be introduced: SVC

(Switched Virtual Circuit) and PVP (Permanent Virtual Path) approaches. For

optimal usage of the bandwidth, the capacity allocated to the VP should ideally

track the actual aggregate traffic but this policy requires a substantial amount

of signaling rates and it would not scale to large networks with rapidly changing

traffic. For example, consider two VoP gateways interconnected to each other

using a VP. Calls from the PSTN are admitted into the VP only when there is

enough bandwidth and once admitted, traffic is packetized and forwarded from

one gateway to the other in which it will be depacketized and forwarded back to

the PSTN. Every time a new voice call arrives or an existing call terminates, the

capacity of the VP may be adjusted for optimal use of resources. This approach

will be referred to as the SVC approach throughout this thesis since the messaging

and signaling requirements of this approach will be very similar to the case where

each voice call uses its own SVC as in SVC-based ATM networks. The best way

for reducing the signaling traffic in the network is through allocating capacity for

the highest load over a long time window (e.g., 24-hour period). This approach

would not suffer from signaling and message processing requirements since each

capacity update would take place only once in a very long time window. Again

motivated by ATM networks, this approach will be called the PVP approach.

However, the downside of the PVP approach is that the capacity may be vastly

under-utilized when the load is significantly lower than the allocated capacity

(peak load). In this case, this idle capacity would not be available to other VP’s

that actually need it and this would lead to inefficient usage of resources. Figure

1.2 shows a snapshot of the behaviors of these approaches. In this figure the solid

line shows the variation of the number of active calls in the system with respect to

time. As mentioned above, the SVC policy tracks this signal ideally that means

that the variation of the bandwidth assigned to the VP with respect to time is

the same signal with the solid line. Dashed line shows the PVP bandwidth usage

that is the bandwidth assigned to the VP is selected same as the peak load in

the system. Dotted line gives an idea of the bandwidth usage scheme that we
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are trying to find in this thesis since it represents a scheme that is in the middle

of the SVC and the PVP approaches. Added to this, the optimal bandwidth

usage scheme will depend on the relation between signaling and bandwidth usage

efficiency.

TIME

BANDWIDTH

Peak Load

Number of active calls (SVC 
bandwidth usage)

PVP bandwidth usage

Optimal bandwidth usage

TIME

BANDWIDTH

TIME

BANDWIDTH

Peak Load

Number of active calls (SVC 
bandwidth usage)

PVP bandwidth usage

Optimal bandwidth usage

Figure 1.2: Sample figure depicting the behavior of SVC and PVP

For modelling the problem, the semi-Markov decision process is used and in

order to relate the signaling and bandwidth utilization, two different formulations

are introduced. In the first formulation, we assign cost parameters for bandwidth

usage per unit time (denoted by b) and for every signaling required for a new

capacity update (denoted by S) and for a wide range of S/b ratio our solution

methodology will be applied. However the drawback of this formulation is the

need for a mechanism for tuning the cost parameters to achieve an optimal band-

width usage under a specific signaling constraint that occurs due to the practical

limit on the number of capacity updates per unit time for a VP. For example,

let us assume that the network nodes in the aggregation region can handle at

most N capacity update requests per hour, which is assumed to be the scala-

bility requirement. Assuming that on the average there are I output interfaces

on every node and L VP’s established on every such interface, an individual VP

may be resized on the average N/(IL) times in every hour. With typical values
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of N = 36000 (10 capacity updates per second for an individual network node),

I=16, and L=100, one can afford adjusting the capacity of each VP 22.5 times

in an hour. In order to cope with this situation a novel formulation that has

a goal of minimizing the idle capacity between the allocated capacity and the

actual bandwidth requirement over time while satisfying the scalability require-

ment(e.g., by resizing the capacity of the VP less than 22.5 times per hour) will

be used . A version of the leaky bucket counter is used to regulate the number

of the capacity updates per unit time with the cost of adding a new dimension

to the state space in our first formulation. Such counters have successfully been

used for usage parameter control in ATM networks [2] and traffic conditioning at

the boundary of a diffserv (Differentiated Services architecture) domain [4].

Solution techniques proposed in this thesis are more general and are amenable

to dynamic capacity adjustment for non-voice scenarios as well. In the second

stage, we are motivated by general (non-voice) traffic types (e.g., data, video)

and we implemented a flow-based Internet traffic using the traffic modelling tech-

niques given in [5] and [6]. In these techniques, traffic flowing through the VP

is assumed to be the superposition of flows that are described in [5] by the use

of PSNP (Poisson Shot Noise Process) and in [6] PPBP (Poisson Pareto Burst

Process). Both event-driven and time-driven control methods are implemented

and signaling rate is again regulated with the use of the leaky bucket counter.

In event-driven control, the decision epochs for the capacity update process are

taken to be the arrival or departure instants of the flows (assuming that the

aggregator end point is able to detect these instants). In time-driven control,

decisions are made whenever a pre-specified time interval (denoted by T ) expires

and this control strategy is more applicable than the event-driven one since it can

be difficult to detect the instants of flow arrival or departure. Decision epochs are

pre-specified time instants and so there is a need for a buffering mechanism that

will be implemented by the aggregator gateway. For different values of traffic rate

and T , our methods are applied for both of the control strategies.

Solution techniques that we proposed can be classified into two groups namely:

dynamic programming (DP) methods (see [7], [8]) and neuro-dynamic program-

ming (NDP) (or reinforcement learning (RL)) methods (see [9], [10], [11]). These
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methods were applied to some existing networking problems successfully and the

list below summarizes some of these works:

• In [12], the problem of call admission control and routing in an integrated

services environment with several classes of calls with different service re-

quirements are considered. The problem of maximizing the average number

of admitted calls in the system per unit time is solved by NDP methods.

• In [13], the problem of call admission control in integrated services envi-

ronment is studied for the single link case. DP methods are applied and

when the problem size gets bigger, NDP methods that are more scalable

than their DP counterparts are applied.

• In [14], the problem of dynamic channel allocation for cellular telephone

systems is considered. The problem is formulated as a DP problem and a

reinforcement learning solution is applied in order to maximize service and

they show that the results perform better than the existing heuristics.

• In [15], the problem of call admission control and routing in multimedia

networks are considered under QoS constraints. Problem is formulated by

a semi-Markov decision process and an NDP algorithm is used and they

showed that NDP provides better results than the alternative heuristics.

• In [16], dynamic routing and wavelength assignment problem in optical net-

works is studied. Assuming memoryless inter-arrival and holding times for

calls, the problem is modeled as a Markov decision problem and NDP tech-

niques are applied to problems where DP algorithms become intractable.

• In [17], the dynamic link sharing problem is solved under signaling con-

straints using NDP methods and it is shown that NDP solutions are scalable

and perform better then the existing heuristic solutions.

In the next section, several QoS architectures that are proposed by the IETF

(Internet Engineering Task Force) for IP networks will briefly be reviewed and how

they relate to dynamic capacity adjustment will then be presented. After that
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related work about dynamic capacity adjustment problem and different solution

techniques will be reviewed.

1.2 QoS Architectures

1.2.1 Integrated Services

The integrated services architecture defines a set of extensions to the traditional

best effort model of the Internet so as to provide end-to-end QoS commitments

to certain applications with quantitative performance requirements [18], [19]. An

explicit setup mechanism like RSVP will be used in the integrated services archi-

tecture to convey information to IP routers so that they can provide requested

services to flows that request them [20]. Upon receiving per-flow resource require-

ments through RSVP, the routers apply admission control to signaled requests.

The routers also employ traffic control mechanisms to ensure that each admitted

flow receives the requested service irrespective of other flows. These mechanisms

include the maintenance of per-flow classification and scheduling states. One of

the reasons that have impeded the wide-scale deployment of integrated services

with RSVP is the excessive cost of per-flow state and per-flow processing that

are required for integrated services.

The integrated services architecture is similar to the ATM SVC architecture

in which ATM signaling is used to route a single call over an SVC that provides

the QoS commitments of the associated call. The fundamental difference between

the two architectures is that the former typically uses the traditional hop-by-hop

IP routing paradigm whereas the latter uses the more sophisticated QoS source

routing paradigm.
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1.2.2 Differentiated Services

In contrast with the per-flow nature of integrated services, differentiated services

(diffserv) networks classify packets into one of a small number of aggregated flows

or ”classes” based on the Diffserv Codepoint (DSCP) in the packet’s IP header

[21], [22]. This is known as Behavior Aggregate (BA) classification. At each

diffserv router in a Diffserv Domain (DS domain), packets receive a Per Hop

Behavior (PHB), which is dictated by the DSCP. Since diffserv is void of per-flow

state and per-flow processing, it is generally known to scale well to large core

networks. Differentiated services are extended across a DS domain boundary

by establishing a Service Level Agreement (SLA) between an upstream network

and a downstream DS domain. Traffic classification and conditioning functions

(metering, shaping, policing, and remarking) are performed at this boundary to

ensure that traffic entering the DS domain conforms to the rules specified in the

Traffic Conditioning Agreement (TCA) which is derived from the SLA.

1.2.3 Aggregation of RSVP Reservations

In the integrated services architecture, each E2E reservation requires a significant

amount of message exchange, computation, and memory resources in each router

along the way. Reducing this burden to a more manageable level via the aggrega-

tion of E2E reservations into one single aggregate reservation is addressed by the

IETF [3]. Although aggregation reduces the level of isolation between individual

flows belonging to the aggregate, there is evidence that it may potentially have

a positive impact on delay distributions if used properly [23] and aggregation is

required for scalability purposes.

In the aggregation of E2E reservations, we have an aggregator router, an

aggregation region, and a deaggregator. Aggregation is based on hiding the E2E

RSVP messages from RSVP-capable routers inside the aggregation region. To

achieve this, the IP protocol number in the E2E reservation’s Path, PathTear,

and ResvConf messages is changed by the aggregator router from RSVP (46) to

RSVP-E2E-IGNORE (134) upon entering the aggregation region, and restored
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to RSVP at the deaggregator point. Such messages are treated as normal IP

datagrams inside the aggregation region and no state is stored. Aggregate Path

messages are sent from the aggregator to the deaggregator using RSVP’s normal

IP protocol number. Aggregate RESV messages are then sent back from the

deaggregator to the aggregator via which an aggregate reservation with some

suitable capacity will be established between the aggregator and the deaggregator

to carry the E2E flows that share the reservation. Such establishment of a smaller

number of aggregate reservations on behalf of a larger number of E2E flows leads

to a significant reduction in the amount of state to be stored and the amount of

signaling messages exchanged in the aggregation region.

One fundamental question to answer related to aggregate reservations is on

sizing the reservation for the aggregate. A variety of options exist for determining

the capacity of the aggregate reservation, which presents a tradeoff between opti-

mality and scalability. On one end (i.e., SVC approach), each time an underlying

E2E reservation changes, the size of the reservation is changed accordingly but

one advantage of aggregation, namely the reduction of message processing cost,

is lost. On the other end (i.e., PVP approach), in anticipation of the worst-case

token bucket parameters of individual E2E flows, a semipermanent reservation

is made. Depending on the actual pattern of E2E reservation requests, the PVP

approach, despite its simplicity, may lead to a significant waste of bandwidth.

Therefore, a policy is required which maintains the amount of bandwidth re-

quired on a given aggregate reservation by taking account of the sum of the

bandwidths of its underlying E2E reservations, while endeavoring to change it

infrequently. If the traffic trend analysis suggests a significant probability that in

the next interval of time the current aggregate reservation will be exhausted, then

the aggregator router will have to predict the necessary bandwidth and request it

by an aggregate Path message. Or similarly, if the traffic analysis suggests that

the reserved amount will not be used efficiently by the future E2E reservations,

some suitable portion of the aggregate reservation may be released. We call such

a scheme a dynamic capacity management scheme.

Classification of the aggregate traffic is another issue that remains to be solved.

IETF proposes that the aggregate traffic requiring a reservation may all be marked
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with a certain DSCP and the routers in the aggregation region will recognize the

aggregate through this DSCP. This solves the traffic classification problem in a

scalable manner.

Aggregation of RSVP reservations in IP networks is very similar in concept

to the Virtual Path in ATM networks. In this framework, several ATM virtual

circuits can be tunneled into one single ATM VP for manageability and scalability

purposes. A Virtual Path Identifier (VPI) in the ATM cell header is used to

classify the aggregate in the aggregation region (VP switches) and the Virtual

Channel Identifier (VCI) is used for aggregation/deaggregation purposes. A VP

can be resized through signaling or management.

1.3 Related Work

There are several other techniques proposed in the literature to solve the dynamic

capacity adjustment problem. In the list below, some of these techniques are

discussed briefly.

• In [24], the capacity of the VP is changed at regular intervals based on the

QoS measured in the previous interval. A heuristic multiplicative increase

multiplicative decrease algorithm in case of stationary bandwidth demand

gives the amount of change. If the bandwidth demand exhibits a cyclic

variation pattern, Kalman filtering is used to extract the new capacity re-

quirement.

• In [25], blocking rates for the VP are calculated using the Pointwise Sta-

tionary Fluid Flow Approximation (PSFFA) and capacity is updated based

on these blocking rates. Their approach is mainly based on the principle

that if the calculated blocking rate is much less than the desired blocking

rate, then the capacity is decreased by a certain amount and it is increased

otherwise.
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• In [26], the problem of traffic estimation and resource allocation for band-

width brokers (BB) is addressed. A BB is defined to be a resource manager

for network providers and neighboring BB’s communicate with each other

for establishing inter-domain resource reservation agreements. In this study

the same trade-off between signaling and resource (bandwidth) utilization is

addressed. If the allocation follows the traffic demand very tightly this will

lead to a huge amount of inter-BB signaling but the resources will be used

efficiently. Also if large resources are allocated and the modifications are far

spaced in time, signaling traffic will decrease but this time resource usage

efficiency will decrease seriously. As a solution methodology, they used a

new scheme using Kalman filtering for estimating the traffic and forecasting

its capacity requirement based on measurement of the current usage. Their

method allows an efficient resource utilization while decreasing the number

of reservation modifications.

• In [27], same problem is addressed for ATM networks. Here the problem is

to adjust the network resources to be allocated to VP (ATM virtual path)

authorities in order to balance resource waste and connection setup load

(signaling) in the network. The problem is modelled by accounting both

for bandwidth utilization and for signaling constraints. For a single link

problem an approximate model is derived and the optimal rule is expressed

as a closed form square-root allocation. The single link model is generalized

and an algorithm based on the single link allocation is proposed.

• A practical example is the Cisco’s MPLS AutoBandwidth Allocator (see

[28]). This allocator automatically adjusts the bandwidth size of an MPLS-

TE tunnel based on the traffic flowing through the tunnel. In Figure 1.3,

an example of this process can be seen. Allocator monitors the largest

X (e.g., 5 minutes) average of the traffic flow over a large configurable

interval Y (e.g., 24 hours) and then readjusts the bandwidth upon the

largest average output rate for the next Y interval. The downside of this

approach is that whenever the traffic intensity is lower or higher than the

adjusted value, system will suffer from resource under-utilization and service

blockage respectively.
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Figure 1.3: Sample figure depicting the behavior of Cisco’s AutoBandwidth Al-
locator

1.4 Organization of the Thesis

In Chapter 2, semi-Markov decision process that we used will be described, DP

and NDP algorithms will be given in a detailed way and a comparison between

these algorithms will be given also. Chapter 3 presents the two formulations

(formulation with cost parameters and formulation under signaling constraints)

for VoP networks. Solution methods and numerical results will be given. Chapter

4 is devoted to the Internet flow-based traffic modelling, and solution methods

with numerical results will be given for two different control strategies (time-

driven and event-driven). Finally, Chapter 5 will conclude this thesis.



Chapter 2

Dynamic and Neuro-Dynamic

Programming

Firstly, the notion of Markov Decision Processes (MDP) that is used as a frame-

work for our formulations will be described. Based on this framework, solution

techniques and algorithms that we used will be given in two major categories (DP

and NDP). Also at the end of the chapter, a detailed comparison between these

two categories will be given.

2.1 Markov Decision Processes

MDP is used to describe the controller-system interactions that hold the Markov

property for system state transitions. It means that the probability distribution

over the next state depends only on the current state and current action of the

controller. Figure 2.1 shows a sample state-transition diagram for an MDP. As it

is seen in the figure, different actions may lead the process to different states and

for a certain action (e.g., a1), there may be different successor states with given

transition probabilities.

MDP’s are defined by the following elements:

13
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s 1
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Figure 2.1: Sample state-transition diagram for a Markov Decision Process. Cir-
cles denote the states and black dots (e.g., a1, a2, a3) represent the actions that
the controller can take.

State Space State space of the system will be denoted by S and consists of a

finite set of elements {s1, s2, s3, s4, ..., sN}.

Action Space For each state, a finite set of actions is defined, A(s) =

{as1, a
s
2, a

s
3, a

s
4, ..., a

s
M}.

State Transition Probabilities At a specific state (denoted by s), for each ac-

tion that is selected by the controller (denoted by a) the time-homogeneous

state transition probabilities are defined for each successor state (denoted

by s′), Pa(s, s
′).

State Transition Time Discrete time MDP’s have constant state transition
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times (denoted by 1 unit), continuous time MDP’s (also known as semi-

Markov Decision Processes) generally have state transition times that are

continuous-time random variables. Specifically we will focus on semi-

Markov Decision Processes (SMDP) since our problem formulations have

continuous time nature.

Immediate Cost (Reward) Function For each state transition an immediate

reward or cost that is a function of the current state, action, next state and

state transition time (denoted by t) is incurred. This one step cost (reward)

can be denoted by cs(a, s
′, t) (rs(a, s

′, t)).

A stationary (time-invariant) policy (π(·)) is defined to be the rule that assigns

an action value for each state in S. Policies may be deterministic or randomized.

Randomized policies define a probability distribution over the actions for each

state in S. In this thesis only stationary and deterministic policies will be dis-

cussed.

The aim of dynamic and neuro-dynamic programming techniques that we will

cover next, is minimization of the total discounted cost or minimization of the

long-run average cost. Assuming there are at most H state transitions in the

process, total discounted cost is given as:

ΣH = c0 + (γ × c1) + (γ2 × c2) + (γ3 × c3) + ...+ (γH × cH) (2.1)

where c(·) stands for the incurred immediate cost for each iteration. Here γ ∈ [0, 1]

stands for the discount factor. A famous example for the discount factor is the

interest rate in economic theory problems. Also the long run average cost is

defined to be the time average of the undiscounted (γ = 1) total cost.

If the number of state transitions (H) is finite, the problem is called a finite

horizon optimization problem. Conversely if H is infinite or very large that

means process continues over an infinite horizon, the problem is called an infinite

horizon optimization problem. In this thesis, only infinite horizon, undiscounted

problems will be considered and our optimization criteria is the minimization of

the long run average undiscounted cost. Algorithms that will be presented next,
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will lead us to optimal or sub-optimal, stationary and deterministic policies. In

other words, these policies will rule how much bandwidth will be assigned to the

virtual path for a given state of the network and VP.

2.2 Dynamic Programming

Dynamic programming algorithms include the value iteration, policy iteration

and linear programming algorithms. A detailed analysis of these algorithms can

be found in [7] and [8]. We use in this thesis one of the most scalable and

time-efficient one, the so-called relative value iteration (RVI) algorithm. In order

to apply the algorithm firstly a data transformation method for converting the

semi-Markov decision problems to a discrete-time Markov decision model with

the same state space is used. This transformation method and the RVI algorithm

is given next [7].

2.2.1 Data Transformation

With this transformation method the expected immediate cost and state transi-

tion probabilities are converted as follows. Let cs(a) denote the expected imme-

diate cost until next state when the current state is s and action a is chosen. Also

let τs(a) denote the expected state transition time and ps,s′(a) denote the state

transition probability from the initial state s to a next state s′ when action a is

chosen. Expected immediate costs (c̃s(a)) and one-step transition probabilities

(p̃s,s′(a)) of the converted Markov decision model are given as the following [7]:

c̃s(a) =
cs(a)

τs(a)
(2.2)

p̃s,s′(a) =
τ

τs(a)
ps,s′(a), s

′ 6= s (2.3)

p̃s,s′(a) =
τ

τs(a)
ps,s′(a) + (1−

τ

τs(a)
), s′ = s (2.4)

where τ should be chosen to satisfy

0 < τ ≤ min(s,a)τs(a) (2.5)
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After these transformations, the original semi-Markov decision process is con-

verted to a auxiliary discrete time Markov decision process and these two systems

are equivalent [7].

2.2.2 Relative Value Iteration Algorithm (RVI)

Let Vn(s) denote the minimal total expected undiscounted immediate costs of the

n state transitions starting with the initial state s. With these definitions and

transformations the RVI algorithm is given as follows:

Step 0 Select V0(s), ∀s ∈ S, from 0 ≤ V0(s) ≤ mina c̃s(a) and n := 1.

Step 1a Compute the function Vn(s), ∀s ∈ S, from the equation

Vn(s) := min
a


c̃s(a) +

∑

s′∈S

p̃s,s′(a)Vn−1(s
′)


 (2.6)

Step 1b Perform the following for all s ∈ S where s0 is a pre-specified

reference state:

Vn(s) := Vn(s)− Vn(s0) (2.7)

Step 2 Compute the following bounds

Mn = max
s

(Vn(s)− Vn−1(s)),

mn = min
s

(Vn(s)− Vn−1(s)). (2.8)

If the following convergence condition is satisfied go to Step 3,

0 ≤ (Mn −mn) ≤ εmn, (2.9)

Else, let n := n+ 1 and go to Step 1a.

Step 3 Find the optimal policy from the relation below and exit.

π∗(s) := argmin
a


c̃s(a) +

∑

s′∈S

p̃s,s′(a)Vn−1(s
′)


 (2.10)
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where ε is a pre-specified tolerance number. The condition 2.9 asserts that there

is no more significant change in the value function of the states {Vn(·)}. Also as

we will mention, the optimal policy (denoted by π∗(·)) is obtained by choosing

the argument that minimizes the right hand side of (2.6). Also the role of Step 1b

is to prevent the divergence of the values (Vn(·)) when the number of iterations

increases.

2.3 Neuro-Dynamic Programming

Neuro-dynamic programming or equivalently reinforcement learning methods are

optimization techniques that seek for optimal or sub-optimal solutions using

simulation-based methods. The optimal results of DP methods are approximated

using stochastic approximation techniques, neural network based function approx-

imations and state aggregation techniques. The NDP methods that we use in this

thesis are given below in detail.

2.3.1 Asynchronous Relative Value Iteration Algorithm

(A-RVI)

Asynchronous relative value iteration (A-RVI) is a simulation-based method that

tries to approximate the optimal result of the RVI algorithm. In particular, we use

the asynchronous version of RVI [11], [29], that uses simulation-based learning.

Instead of updating all the values at a single iteration (batch updating) using

the expected value of immediate cost and state transition probabilities, the real

system (equivalently the auxiliary discrete-time Markov system that is obtained

by the transformation mentioned before) is simulated and only the visited state’s

value is updated at a single iteration (single updating). This time V (s) denotes

the value of the state s and the optimal or sub-optimal policy is found by using

these updated values that are learned throughout the process. Again with the

same definitions for the terms c̃s(a) and p̃s,s′(a), the A-RVI algorithm is given as

follows:
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Step 0 Initialize V (s) = 0, ∀s ∈ S, n := 1, average cost ρ = 0 and fix

a reference state s0, that V (s0) = 0 for all iterations. Select a random

initial state and start simulation.

Step 1 Choose the best possible action from the information gathered

so far using the following local minimization problem:

min
a


c̃s(a) +

∑

s′∈S

p̃s,s′(a)V (s′)


 (2.11)

Step 2 Carry out the best or another random exploratory action.

Observe the incurring immediate cost cinc and next state s′. If best

action is selected, perform the following updates:

V (s) := (1− κn)V (s) + κn(cinc − ρ+ V (s′))

ρ := (1− κn)ρ+ κn(cinc + V (s′)− V (s))

Step 3 n := n+ 1, s := s′. Stop if n = maxsteps, else go to Step 1.

where κn is the learning rate which is forced to die with increasing number of

iterations. Maximum number of iterations that is denoted by maxsteps is a prob-

lem dependent pre-specified number and must be larger for large-sized problems.

Exploration is crucial for guaranteeing the convergence of NDP algorithms and

will be discussed later in detail. The algorithm terminates with the stationary

policy π(·) obtained in a same manner like RVI:

π(s) := argmin
a


c̃s(a) +

∑

s′∈S

p̃s,s′(a)Vn−1(s
′)


 (2.12)

2.3.2 A-RVI with Value Function Approximation A-RVI-

FA

Function approximation can be used for approximating the value function (V (·))

defined over the state space S. In this method we approximate the value of a
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state by a linear architecture that is a function of the features of the state and

in the algorithm, instead of the updating the value entry of the states in the

tabular representation V (·), the weights of the feature components are updated.

As an example, in our first formulation, the state variable s includes two different

state values s = (sa, sr), where sa denotes the actual number of voice calls in the

system and sr denotes the reserved number of trunks (bandwidth required for a

single voice communication) in the system. With this state definition, we choose

our state feature vector as follows:

F (s) = (1, sa, sr, s
2
a, s

2
r, sasr) (2.13)

Feature selection depends on problem formulation and selecting a large number

of features may decrease the error of approximation but the number of iterations

that is needed for convergence of the weight vector will increase. Similarly select-

ing a small number of features may be very efficient for convergence purposes but

this time the approximation error may increase. Generally let F (s) denote the

feature vector of the state s then the approximated value is expressed as follows:

Ṽ (s, w) = F (s) · wT (2.14)

where (·) denotes the scalar vector product and w denotes the weight vector that

is equal to (w1, w2, w3, ..., wn) and n is the number of features. In this approxima-

tion scheme, the approximated value function depends on the weight parameters

linearly. There are other approximation schemes in the literature that include

nonlinear dependence (e.g., a feedforward neural network with a single hidden

layer that includes sigmoidal functions), but we selected this linear architecture

because the weight parameter update rule is easier to perform because of the lin-

ear dependence. Figure 2.2 shows a general block diagram depicting this linear,

feature-based function approximation architecture.

Method for updating the weight vector is a stochastic approximation method

which is called temporal difference (TD) learning (see [9] for details). In this

method, the weight vector is updated based on a value called the temporal differ-

ence that accounts for the difference between the estimated and observed value

in the simulation. The update scheme is a gradient based stochastic approxima-

tion method and the A-RVI algorithm with function approximation and weight
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Figure 2.2: Block diagram of the linear architecture for value function approxi-
mation

(parameter) updating is given below:

Step 0 Initialize elements of the weight vector w0 to random numbers

uniformly distributed in the interval [0, 1], n := 1, average cost ρ = 0.

Select a random initial state and start simulation.

Step 1 Choose the best possible action from the information gathered

so far using the following local minimization problem:

min
a


c̃s(a) +

∑

s′∈S

p̃s,s′(a)Ṽ (s′, wn)


 (2.15)

Step 2 Carry out the best or another random exploratory action.

Observe the incurring immediate cost cinc and next state s′. If best

action is selected, calculate the TD from the relation below:

TD = cinc − ρ+ Ṽ (s′, wn)− Ṽ (s, wn) (2.16)

and perform the following updates:

wn := wn + (TD × κn × (∇wṼ (s, w) |w=wn
))

ρ := (1− κn)ρ+ κn(cinc + V (s′, wn)− V (s, wn))

Step 3 n := n+1, s := s′ and wn+1 = wn. Stop if n = maxsteps, else

go to Step 1.
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While calculating the TD, the term Ṽ (s, wn) accounts for the estimated value for

the value V (s) and the term cinc − ρ + Ṽ (s′, wn) accounts for the new estimate

for the value and the weight vector is updated using this difference between the

estimated and observed values in a gradient basis. Other parts of the algorithm

is similar to the original A-RVI.

2.3.3 Gosavi Algorithm (GA)

DP and NDP algorithms given above require the full knowledge of the transition

probabilities of the system. For problems with more complex formulations (e.g,

our formulation with signaling constraints) the calculation and storage of these

transition probabilities may be very hard. To cope with this situation we use a

different NDP algorithm developed by Gosavi (see [30] for details). This algorithm

is proposed for semi-Markov decision problems under the optimization criteria of

minimization of the long-run average cost. Convergence proof and other details

can be found in [30]. Algorithm is a model-free method that means the agent

does not need to know the transition probability matrix of the underlying process

and a new term (Q-value) is defined. Q-function or Q-value (Q(s, a)) is a variant

of the value function (V (s)) and it is function of both the state variable s and

action value a. With this new term, the Gosavi algorithm is as follows:

Step 0 Initialize Q(s, a) = 0, ∀s ∈ S, ∀a ∈ A(s), set n := 1, cumu-

lative cost ccum = 0, total time T = 0, average cost ρ = 0 and start

simulation after selecting an initial starting state.

Step 1 Choose the best possible action by finding

argmin
a

Q(s, a) (2.17)

Step 2 Carry out the best or another random exploratory action.

Observe the incurring cost cinc, state transition time τs and next state

s′. Perform the following update

Q(s, a) := (1− κn)Q(s, a) + κn(cinc − ρτs +min
a

Q(s′, a)) (2.18)
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If the best action is selected, perform the following updates:

ccum := (1− ςn)ccum + ςncinc

T := (1− ςn)T + ςnτs

ρ =
ccum
T

Step 3 n := n+ 1, s = s′. Stop if n = maxsteps, else go to Step 1.

where κn and ςn are the learning rates which is forced to die with increasing

number of iterations. When the algorithm terminates, policy is evaluated from

the relation:

π(s) = argmin
a

Q(s, a) (2.19)

2.3.4 Exploration in NDP Algorithms

Exploration is crucial for guaranteeing the convergence of simulation-based NDP

algorithms [9], [10], [11]. Especially it is required that all of the state-action

pairs (s, a) are infinitely often tried for convergence of the algorithms. This is

accomplished by not choosing the optimal action at every iteration. Instead a

sub-optimal action is chosen according to the selected exploration strategy. The

list below shows some of these existing exploration strategies and details can be

found in [11].

• Boltzmann exploration

• Semi-uniform exploration

• Receny-based exploration

• Uncertainty exploration

• Darken-Chang-Moody exploration scheme (look in [31])

We propose a different exploration strategy and it will be denoted by least visited

search. In this method, the action that leads the system to the least visited
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state-action pair is chosen with some small probability ε. In our simulations ε is

gradually decreased from some starting value (e.g., 0.5) to zero throughout the

process in order to decrease the exploration when number of iterations increase.

2.3.5 State Aggregation in NDP Algorithms

When the problem size increases, function approximation and state aggregation

are the proposed techniques for increasing scalability in NDP algorithms. Gener-

ally function approximation (FA) techniques may yield unstable behavior and a

general FA architecture that works well for every MDP does not exist. Because of

the instability and problem-dependent nature of FA techniques, state aggregation

(SA) may be a more suitable technique for enhancing scalability. In SA, state

space is partitioned into clusters and clusters are formed by joining the states

that are in proximity in a certain sense. Figure 2.3 shows an example of SA.

We used state aggregation with the Gosavi algorithm and our cluster forming

technique and the experimental results will be given in the next chapter.

...
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Figure 2.3: State aggregation example
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2.4 DP versus NDP

DP and NDP algorithms differ mainly in the scalability issue. That means that

when the problem size grows DP algorithms become intractable and the optimal

solution can be approximated via NDP algorithms. Reasons behind this is that,

firstly DP algorithms are batch-update algorithms. They swap all the state space

at a single iteration and when the state space dimensionality increases the com-

putational complexity increases and the algorithm will become slower and slower.

On the contrary, NDP algorithms use a single update. At a single iteration only

the visited state’s value is updated. The other reason is that DP requires the full

knowledge and the storage of the transition probabilities of the underlying MDP.

Most of the NDP algorithms do not need the full knowledge of the transition

probability matrix and this makes NDP very powerful because it can be applied

to problems without a model. Generally speaking, DP represents model-based

techniques. On the other hand, NDP represents model-free techniques that can

be applied to many complex practical problems that are hard to model.



Chapter 3

Voice Traffic Modelling

In this chapter, we consider a VoP network as in Figure 1.1 that supports ag-

gregate reservations. We assume end-to-end (E2E) reservation requests (voice

calls) are identical and they arrive at the VoP aggregator gateway according to

a homogeneous Poisson process with rate λ. We also assume exponentially dis-

tributed holding times for each E2E reservation with mean 1/µ. In this model,

each individual reservation request is identical (i.e., one unit accounts for the

bandwidth needed for the voice call communication), and we assume that there

is an upper limit Cmax units for the aggregate reservation. In other words Cmax

accounts for the maximum number of voice calls that the system can handle

simultaneously. We decide to set Cmax to the minimum capacity required to

achieve a desired blocking probability that is denoted by p. Cmax is derived using

p = EB(Cmax, λ/µ) where EB represents the Erlang’s B formula. This ensures

that the E2E reservation requests will be rejected when the instantaneous aggre-

gate reservation is exactly Cmax units and total rejection ratio cannot exceed p.

In our simulation studies, we take p = 0.01. In this study, we do not consider

the blocking due to unavailability of the bandwidth in the network. As we men-

tioned before, two important issues that affect the dynamic capacity adjustment

policy is the bandwidth usage efficiency and signaling traffic in the network. We

propose two different formulations for this problem. In the first formulation, we

assign cost parameters for bandwidth usage and signaling and we find the optimal

26
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policies for this cost parameters. Results are compared with the two approaches

mentioned before, SVC and PVP. In the second formulation (which is more re-

alistic than assigning cost parameters) we try to find the optimal policy under

a signaling constraint. We used a variant of the leaky bucket counter for regu-

lating the signaling rate. Next two sections are devoted to these two different

formulations and numerical results.

3.1 Formulation with Cost Parameters (S, b)

In this formulation, we assign a cost for every capacity update (S) and a cost for

allocated bandwidth unit per unit time (b). Our goal is to minimize the long run

average cost per unit time as opposed to the total cumulative discounted cost,

because our problem has no meaningful discount criteria. We denote the set of

possible states in our model by S:

S = {s|s = (sa, sr), 0 ≤ sa ≤ Cmax,max(0, sa − 1) ≤ sr ≤ Cmax},

where sa refers to the number of active calls using the VP just after an event which

is defined either as a call arrival or a call departure. The notation sr denotes the

reserved bandwidth of the aggregate reservation (VP) before the event. For each

s = (sa, sr) ∈ S, one has a possible action of reserving s′r, sa ≤ s′r ≤ Cmax units

of bandwidth until the next event. The time until the next decision epoch (state

transition time) is a random variable denoted by τs that depends only on sa and

its average value is given by:

τ̄s =
1

λ+ saµ
(3.1)

As described, at a decision epoch, the action s′r (whether to update or not and

if an update decision is made, how much allocation/deallocation of bandwidth

will be performed) is chosen at state (sa, sr), then the time until, and the state

at, the next decision epoch depend only on the present state (sa, sr) and the

subsequently chosen action s′r, and are thus independent of the past history of
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the system that satisfies the Markov property. Upon the chosen action s′r, the

state will evolve to the next state s′ = (s′a, s
′
r) and s′a will equal to either (sa+1)

or (sa − 1) according to whether the next event is a call arrival or departure.

The probability of the next event being a call arrival or call departure is given as

follows:

p(s′a | sa) =





λ
λ+saµ

, for s′a = sa + 1,
saµ

λ+saµ
for s′a = sa − 1.

Two types of immediate costs are incurred when at state s = (sa, sr) and

action s′r is chosen; first one is the cost of reserved bandwidth which is expressed

as bτss
′
r where b is the cost parameter of reserved unit bandwidth per unit time.

Secondly, since each reservation update requires message processing in the net-

work elements, we also assume that a change in the reservation yields a fixed cost

S. Immediate cost (cs(a)) can be expressed mathematically as the following:

cs(a) =

{
bτss

′
r, for s′r = sr,

bτss
′
r + S for s′r 6= sr.

This formulation fits very well to a semi-Markov decision model where the

minimization of the long-run average cost is taken as the optimality criterion.

We propose the RVI, A-RVI and A-RVI-FA for this problem based on [7], [11],

and [29].

In the subsections next we will present the experimental results of our al-

gorithms with respect to changing S/b ratio, Cmax and arrival rate λ. Also a

large-sized problem (where DP algorithm is intractable) is tested and we will

present the results of the A-RVI for this case.

3.1.1 Varying S/b Ratio

The S/b ratio is changed from 0.1 to 1000 and the dynamic capacity adjustment

results are presented in terms of average bandwidth gain (BG), signaling rate
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Table 3.1: Results for the RVI, A-RVI and A-RVI-FA policies for varying S/b
ratio.

RVI A-RVI A-RVI-FA

S/b BG% SR ρ BG% SR ρ BG% SR ρ

1000 16.93 6.26 15.03 0.00 0.00 16.00 0.00 0.00 16.00
750 19.59 8.12 14.56 0.00 0.00 16.00 0.00 0.00 16.00
500 22.59 10.87 13.89 0.00 0.00 16.00 0.00 0.00 16.00
250 28.29 20.60 12.90 20.46 10.41 13.45 29.10 34.68 13.75
200 30.68 26.37 12.56 24.81 14.98 12.86 29.34 35.24 13.26
150 31.91 31.00 12.19 29.21 24.46 12.35 40.91 128.40 14.80
100 33.96 39.11 11.65 31.63 32.74 11.85 44.32 324.07 17.91
50 36.50 57.36 10.96 37.13 68.00 11.00 44.71 351.92 13.73
25 40.36 112.26 10.32 40.74 128.60 10.37 44.71 351.92 11.29
10 42.56 172.57 9.67 43.93 279.59 9.75 44.71 351.92 9.82
5 44.71 351.92 9.34 44.53 334.32 9.34 44.71 351.92 9.34
1 44.71 351.92 8.95 44.66 347.23 8.95 44.71 351.92 8.95

0.1 44.71 351.92 8.86 44.66 347.23 8.86 44.71 351.92 8.86

(SR) which is equal to the number of capacity updates per hour and long run

average cost normalized with the parameter (b) that is denoted by ρ. Bandwidth

gain is the percentage of bandwidth that is preserved with respect to PVP average

bandwidth usage which is equal to Cmax units. The problem parameters are

chosen as λ = 0.0493 calls/sec., 1/µ = 180 seconds, Cmax = 16. Maximum

number of iterations for A-RVI and A-RVI-FA is taken to be maxsteps = 107.

We run ten different 12 hour simulations for different values of S/b, and average

of these simulations are reported. Results for the RVI, A-RVI, A-RVI-FA, SVC

and PVP policies are given in the tables 3.1 and 3.2. Also Figure 3.1 shows a

sample behavior of the policies found by RVI, A-RVI and A-RVI-FA with respect

to increasing value of the ratio S/b. In the subplots, the x-axis shows the time

in seconds and the y-axis shows the number of bandwidth units. Blue line shows

the variation of actual number of voice calls in the system and the red line shows

the corresponding number of bandwidth units assigned to the VP.

As we compare the results in tables 3.1 and 3.2 we see that, when the S/b

ratio decreases the policies found by the methods converge to the SVC policy.

Conversely, if this ratio is very high, solutions converge to the behavior of the PVP
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Figure 3.1: Snapshot of the policy behaviour of RVI, A-RVI and A-RVI-FA for
different values of S/b



CHAPTER 3. VOICE TRAFFIC MODELLING 31

Table 3.2: Results for the SVC and PVP policies for varying S/b ratio.

SVC PVP

S/b BG% SR ρ BG% SR ρ

1000 44.71 351.96 106.60 0.00 0.00 16.00
750 44.71 351.96 82.16 0.00 0.00 16.00
500 44.71 351.96 57.72 0.00 0.00 16.00
250 44.71 351.96 33.29 0.00 0.00 16.00
200 44.71 351.96 28.40 0.00 0.00 16.00
150 44.71 351.96 23.51 0.00 0.00 16.00
100 44.71 351.96 18.62 0.00 0.00 16.00
50 44.71 351.96 13.74 0.00 0.00 16.00
25 44.71 351.96 11.29 0.00 0.00 16.00
10 44.71 351.96 9.83 0.00 0.00 16.00
5 44.71 351.96 9.34 0.00 0.00 16.00
1 44.71 351.96 8.95 0.00 0.00 16.00

0.1 44.71 351.96 8.86 0.00 0.00 16.00

policy. This result is expected because the SVC and PVP are the two optimal

approaches when the signaling cost is very low or very high, respectively. As we

compare the average cost performance of RVI and A-RVI we see that they are

almost equal for values of the ratio S/b < 500. They achieve the same average cost

performance with different policies since for lots of the ratio values in S/b < 500,

A-RVI signaling rate is smaller than the RVI signaling rate. Conversely A-RVI

average bandwidth gain is usually smaller. A-RVI-FA performs poorly compared

with A-RVI in the performance of average cost criteria. Also for the values

S/b ≥ 500, both A-RVI and A-RVI-FA policies are same with the PVP approach.

A-RVI and RVI policies converge to the SVC approach for the values S/b < 10,

instead A-RVI-FA converges to the SVC for the values S/b < 100 and this shows

the unstable nature of the function approximation algorithm. Only for the values

100 < S/b < 500, A-RVI-FA performs better with respect to SVC and PVP and

for all the values it performs poorly with respect to RVI and A-RVI in average

cost performance.

Figure 3.1 shows snapshot from the policy behaviors for different values of

S/b. For small values of the ratio, reserved bandwdith covers the number of active

calls ideally which is the behavior of the SVC approach. When S/b increases, the
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Table 3.3: Results for the RVI and A-RVI policies for varying λ and Cmax values.

RVI A-RVI

λ Cmax BG% SR ρ BG% SR ρ

0.03 10 43.62 100.17 6.33 44.66 128.60 6.43
0.21 50 21.58 181.03 40.47 20.50 132.27 40.67
0.47 100 13.76 213.73 87.72 12.48 124.29 88.38

signaling rate decreases and they converge to the PVP behavior.

3.1.2 Varying λ

Systems with different arrival rate and Cmax values are simulated. Again λ and

Cmax are related to each other via the relation p = EB(Cmax, λ/µ). S/b ratio is

selected to be 25 and 1/µ = 180 seconds. Again maximum number of iterations

for A-RVI and A-RVI-FA are taken to be maxsteps = 107. Tables 3.3, 3.4, 3.5

and 3.6 show the results for this study. When the arrival rate increases (so Cmax

increases) the problem size increases and this affects the scalability of our algo-

rithms. Table 3.6 shows the number of iterations that is needed for convergence of

the RVI. As the arrival rate increases, number of iterations increases and solution

via RVI becomes more and more slower. Also when the arrival rate increases,

the speed of the process increases. For this reason bandwidth gain decreases for

larger arrival rates and in order to achieve a good bandwidth gain, we must use

smaller values for S/b with increasing value of the arrival rate. Results for RVI

and A-RVI are promising but A-RVI-FA results converge to the SVC policy be-

havior due to unstable nature of the algorithm. As a result we can say that, as

arrival rate increases RVI and A-RVI results are better than the SVC and PVP

results but there occurs an overall degradation of the bandwidth gain because of

the increasing arrival rate of the process.
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Table 3.4: Results for the A-RVI-FA policy for varying λ and Cmax values.

A-RVI-FA

λ Cmax BG% SR ρ

0.03 10 47.11 208.63 6.74
0.21 50 24.92 1498.37 47.95
0.47 100 15.94 3384.00 106.81

Table 3.5: Results for the SVC and PVP policies for varying λ and Cmax values.

SVC PVP

λ Cmax BG% SR ρ BG% SR ρ

0.03 10 47.11 208.67 6.74 0.00 0.00 16.00
0.21 50 24.93 1499.32 47.95 0.00 0.00 16.00
0.47 100 16.38 3339.48 106.81 0.00 0.00 16.00

Table 3.6: Number of iterations needed for convergence of the RVI with changing
λ and Cmax.

λ Cmax Number of Iterations

0.03 10 163
0.21 50 1710
0.47 100 2631
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Table 3.7: Performance results of the A-RVI policy for the case Cmax=300.

S/b = 100 S/b = 50 S/b = 20

A-RVI average cost 272.20 262.00 212.83
SVC average cost 526.60 387.90 304.60
PVP average cost 300.00 300.00 300.00

A-RVI bandwidth gain % 9.33 13.00 15.33
A-RVI signaling rate 45.00 550.00 2418.00

3.1.3 A Larger Sized Problem: Cmax=300

Table 3.7 shows the performance of A-RVI for a larger size problem where the RVI

solution is numerically intractable. We take Cmax = 300, λ= 1.5396 calls/sec and

1/µ = 180 seconds. This table demonstrates that with a suitable choice of the

ratio S/b, one can limit the frequency of capacity updates in a dynamic capacity

adjusment scenario. Moreover, A-RVI consistently gives better results than both

PVP and SVC in terms of the overall average cost and this shows that NDP

algorithms can be applied to large problems with success.

3.2 A Disadvantage: Tuning the Cost Parame-

ters

The disadvantage of the previous formulation is that there is no immediate mech-

anism to tune the cost parameters for a desired signaling rate (constraint). More-

over, cost parameters have no practical meaning from the perspective of a network

administrator (agent). Cost of signaling in the network and bandwidth usage cost

cannot be related with each other easily. So a revised formulation of the problem

is needed. In this new formulation that will be presented in the next section, a

new state variable is introduced. This new state variable stands for the value of

the leaky bucket counter that is used for regulating the signaling rate. The aim

of our revised formulation is a more practical one from the point of view of the

network agent. In this formulation, our aim will be to find the optimal bandwidth
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usage that leads us to the maximum bandwidth gain together with a desired rate

of signaling. The details of the revised formulation and the working principle of

the leaky bucket counter will be given in the following section.

3.3 Formulation with the Signaling Rate Con-

straint

In this new formulation, we introduce a desired signaling rate D (number of

desired capacity updates per hour). Our goal will be to minimize the average

reserved bandwidth usage subject to the constraint that the frequency of capacity

updates will be smaller or equal to the desired rate D. A variant of the leaky

bucket counter is used in this formulation. There will be no more cost parameters

and only bandwidth usage will incur cost during the process. There is no signaling

cost in the network, instead it is regulated by the counter.

A generic leaky bucket counter is a counter that is incremented by unity

each time an event occurs and that is periodically decremented by a fixed value.

We suggest to use a modified leaky bucket counter for the dynamic capacity

adjusment problem to regulate the actual signaling rate to the desired value. Let

X, 0 ≤ X ≤ Bmax be the value of the counter where Bmax denotes the size of the

counter. The working principle of our modified leaky bucket counter is given as

follows:

When a new capacity update request occurs, then

a) If X < Bmax − 1, then the bucket counter is incremented by one,

b) If X = Bmax, then the capacity update request will be rejected,

c) If X = Bmax−1, then the new reserved capacity for the VP will be forced to

be Cmax which is the maximum allowable bandwidth that can be assigned

to the VP and the counter will be incremented by one to Bmax.
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In the meantime, the counter is decremented with the desired rate. This means

that buffer leak rate will be equal to the value D and bucket will be decremented

by unity every 3600/D seconds. The difference between the modified counter

introduced above and the generic leaky bucket counter is the operation under the

condition c). The motivation behind the operation c) is that if the capacity of the

VP was not set to Cmax, then in the worst case scenario, the blocking probability

would have exceeded the value p until the next epoch of decrementing the counter.

Also this condition has a key role in regulating the actual signaling rate to the

value D. Whenever the process enters the state X ≥ Bmax − 1, the action will

be setting the bandwidth to Cmax and by this choice the cost of this state will be

the maximum since only bandwidth usage incurs cost in the formulation. This

results that the resulting policy will learn not to enter this state and this can be

handled only by regulating the signaling rate to be smaller than the bucket leak

rate. But in the optimal case actual rate of the policy will be equal to the desired

signaling rate because learning process will do its best to minimize bandwidth

usage by achieving a signaling rate with the maximum value it can take (D). We

also note that Bmax is analogous to the maximum burst size in ATM networks

and its role in this paper is to limit the number of successive capacity update

requests. In our simulations, we fix Bmax = 10 and leave a detailed study of the

impact of Bmax for future work.

Our re-defined state space is as follows:

S = {s|s = (sa, sr, sb), 0 ≤ sb ≤ Bmax},

where sa and sr are as defined before and sb refers to the value of the leaky bucket

counter. For each state (sa, sr, sb) an action value s′r satisfying sa ≤ s′r ≤ Cmax will

be chosen. With addition of this new state variable, the transition probabilities

of the model become harder to calculate and we used the model-free Gosavi

algorithm to find the dynamic capacity adjustment scheme. Also for a big size

problem we used a state aggregation technique. The experimental results are

given in the following subsections.
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3.3.1 Varying Desired Rate D

The problem parameters are chosen as λ = 0.0493 calls/sec., 1/µ = 180 seconds,

Cmax = 16. Maximum number of iterations for the Gosavi algorithm is taken to

be maxsteps = 107. Different desired rate D values are tested from the value 10 to

140 capacity updates per hour. Figure 3.2 shows the average bandwidth usage in

terms of capacity units of our policy which is denoted by DCM (Dynamic Capacity

Management). Results are obtained from 24 hour simulations. As it is seen from

the figure when D increases, bandwidth usage converges to the SVC approach

and the converse is true also. This result is expected since when the maximum

allowed rate of signaling (D) increases, bandwidth gain will increase. Added to

this, the actual rate of our policy that is observed through the simulations, ideally

tracks the desired rate and stays within the 2% neighborhood of D irrespective of

the value of D. Figure 3.3 shows one hour snapshot of the behavior of our policy

for different values of D. Again the blue line shows the actual number of voice

calls in the system and the red envelope shows the reserved bandwidth for the

VP determined by our policy. It is seen clearly that when D increases, number

of capacity updates increases while the average reserved bandwidth decreases.

3.3.2 Varying λ

The performance of our algorithm is tested for different values of arrival rate λ

and increasing number of iterations. Number of iterations (maxsteps in the Gosavi

algorithm) here denotes the number of state transitions that takes place during

the simulation for learning. Figure 3.4 shows the results for this part. With the

increasing value of λ, the problem becomes harder to solve because of the growth

in the state space of the underlying process. From the figure 3.4 it is seen that

for a fixed value of D, when the arrival rate increases the average bandwidth gain

with respect to the PVP approach decreases. This is expected since the larger the

arrival rates, the smaller the variance of the number of ongoing calls at a given

instance and the reduction in this variance causes the reduction of gain from the

dynamic capacity adjustment scheme. When desired signaling grate D is allowed
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Figure 3.2: Average reserved bandwidth for the VP for different values of D
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Figure 3.3: Snapshot of the policy behaviour for different values of D
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to vary, increasing this value has a positive effect on both bandwidth gain and

algorithm convergence times as seen from the Figure 3.4. Again, the actual rate

of our policy that is observed through the simulations, ideally tracks the desired

rate and stays within the 2% neighborhood of D irrespective of the value of D.
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Figure 3.4: Average bandwidth gain for different values of λ and D

3.3.3 State Aggregation with Gosavi Algorithm

For the problems with larger state-space dimensionality, the number of iterations

needed for good performance increases and our method becomes intractable as
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seen from the results in Figure 3.4. One major reason for that is, in order for

the learning algorithm to converge as we mentioned before, each state-action

pair must be visited many times during the simulation (in theory infinitely many

times). When the number of iterations during the learning is kept fixed, each

state-action pair will be visited fewer times when the state space dimensionality

increases and this has a negative effect on the performance of our method. To

cope with this situation we used a state-aggregation (cluster forming) technique,

namely the uniform state aggregation. To express it in detail, we aggregated the

state variables uniformly in the first two dimensions. Figure 3.5 demonstrates

this procedure and will help the reader to understand it.
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Figure 3.5: Uniform state aggregation in two dimensions

The original problem has a state space dimensionality of (C2+3C−2)(Bmax+

1)/2 states where C is defined to be the value Cmax+1. With the use of the cluster

forming technique represented in Figure 3.5, our state space dimensionality will



CHAPTER 3. VOICE TRAFFIC MODELLING 42

reduce to the value (C
2
+3C−2)(Bmax+1)/2 where C is defined to be C/α and α is

called the aggregation factor in this study. When the aggregation factor increases

the state space will be aggregated more aggressively. The results obtained via

state aggregation is shown in the Figure 3.6.
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Figure 3.6: Average bandwidth gain for different levels of aggregation for a prob-
lem with Cmax = 99

There are two main issues that must be considered during the state aggre-

gation process. If the clusters are formed aggressively that means α in our ap-

proach increases and clusters cover large number of states, this leads to better

performance in convergence but the information lost during the learning process

increases. This trade-off can be seen easily from the results in Figure 3.6. For ex-

ample for the case where number of iterations is equal to 108 steps, best strategy

is to choose α = 5, α = 10 converges very fast but when the number of iterations

increase best performance is obtained by a conservative strategy where α = 5 and
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α = 1 denotes the original problem where there is no state aggregation is applied

and it can be seen that even for 108 iterations it still does not converge to a good

result. α = 2 is better than the α = 1 in the performance of bandwidth usage

and convergence but in the overall case best strategy is selecting α = 5.



Chapter 4

Flow-Based Internet Traffic

Modelling

NDP methods can be applied to more complex traffic modelling structures. In

this chapter, a flow-based Internet traffic modelling is used, based on the theory

in [5] and [6]. Flow is used as a generic term and it can represent different traffic

types including voice, data and video. Total traffic on the VP is assumed to be

the superposition of individual flows and the total rate is computed using the

flows’ characteristics (arrival times, size, duration). Traffic flows are represented

by shots whose duration and size is generated according to some distribution

and arrival process of the flows is assumed to be a homogeneous Poisson process

with rate λ. Different shot shapes (rectangular, triangular, sublinear, superlinear

shapes and etc.) are presented in [5] for modelling the Internet traffic. In this

study we used a general rectangular shot shape and Figure 4.1 shows it in detail.

The arrowheads show the arrival times of the flows that are generated by the

Poisson process with rate λ. Two other important parameters are the duration

(denoted by d) and size (equals to the area under the rectangular region of the

shot and denoted by s) of the flow. The rate of the flow (r) is assumed to be

constant and computed by the simple relation s/d. Key point is selecting the

distributions for the duration and size.

44
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Figure 4.1: Rectangular shots representing individual flows

Many studies in the literature (e.g., [32], [33] and [34]) have shown the self-

similar nature of the Internet traffic over large time scales. Self-similarity (bursti-

ness) has been explained by the heavy-tailed distribution of transfer durations.

In this study, durations of the flows are generated using the Pareto model. Ac-

cording to this model, duration of an individual flow d is generated by using the

complementary distribution function given below:

Pr(d > x) =

{
(x/δ)−γ , for x ≥ δ,

1 otherwise.

where δ > 0 and 1 < γ < 2 and according to these the mean value of the duration

is given by the following:

E(d) =
δγ

(γ − 1)
(4.1)

Size of the flow is generated using the normal distribution with mean µ in

terms of Mbits and variance σ2 and for all the simulations in this chapter, flow

size and durations are assumed to be independent random variables.
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Using the modelling structures given above, dynamic capacity adjustment

problem is applied to flow-based Internet traffic and our optimization criteria

will again be to minimize the bandwidth usage cost for long-term given a desired

signaling rate. In our formulations we used two different control strategies. In

event-driven control, decision epochs for sizing the bandwidth of the VP is se-

lected to be the arrival or departure times of the individual flows assuming that

the aggregator gateway is able to detect those instants. In time-driven control,

decision epochs are equidistant time instants and the controller has an opportu-

nity to update the bandwidth of the VP at every pre-specified time interval T .

We propose this control strategy because it can be applied to real traffic traces

easily since the detection of the arrival and departure instants of the flows can

be difficult. In the following sections these control strategies and experimental

results are given in detail.

4.1 Event-Driven Control

We define our state space as the following:

S = {s|s = (sa, sr, sb), 0 ≤ sa ≤ Cmax,max(0, sa−1) ≤ sr ≤ Cmax, 0 ≤ sb ≤ Bmax},

For each state (sa, sr, sb) an action value s′r satisfying sa ≤ s′r ≤ Cmax will be

chosen. In this part, sa refers to the total rate of the active flows in the system

that is rounded to an integer value. Let NF denotes the number of active flows in

the system and let ri denote the rate of the i’th flow. Then sa will be computed

by the following:

sa = round(
∑

1≤i≤NF

ri) (4.2)

Total rate can be a non-integer value and this causes a problem since this

is a continuous-state space problem. In order to apply the Gosavi algorithm

we approximate the continuous state space problem by a discrete state space

formulation by rounding the total rate to the nearest integer by the round(·)
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operation. Again sr denotes the current bandwidth of the VP and it is an integer

value in the range [0, Cmax] where Cmax is an integer value and defined to be

the maximum amount of bandwidth that can be assigned to the VP in terms of

Mbits/s. Definitions for the sb and Bmax are the same as they are defined before.

Cmax is selected to be 60 Mbits/s. Again average flow duration (E(d)) is

selected to be 180 seconds. Then the flow arrival rate λ is found from the formula

given below [35]:

pk =
(λx)k

k!
e−λx (4.3)

In this formula, pk is defined to be the steady state probability of the number of

the customers in the M/G/∞ system being equal to the value k. Also x denotes

the mean holding time of each customer and it represents the mean duration of

the flows in our formulation. We assume all the flows have constant rate which is

equal to 1 Mbits/s and we found the arrival rate λ by selecting the k to be equal

to 60 (this case denotes that VP’s capacity is full) and we choose the probability

(p60) to be equal to 0.01.

In the subsections below different simulation results will be presented accord-

ing to varying values of desired signaling rateD, mean size of the flows µ, standard

deviation of the size of the flows σ and mean duration of the flows E(d).

4.1.1 Varying D

Gosavi algorithm is applied to different values of D. Other problem parameters

are chosen to be as, Cmax=60 Mbits/s, E(d)=180 seconds, λ=0.0668, µ=540

Mbits, σ=108 Mbits and the maximum number of iterations in the Gosavi al-

gorithm is selected to be 107 steps. Table 4.1 shows the results in terms of

bandwidth gain BG and signaling rate SR for different values of D. Also Figure

4.2 shows the policy behavior of the Gosavi algorithm for a time period of 1 hour

and for different values of desired signaling rate. It is seen from the results that

when the allowed signaling rate increases, average bandwidth usage decreases as

expected. Also observed signaling rate ideally tracks the desired signaling rate

for all the values of D. The results are very similar to the results obtained by
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Table 4.1: Results for varying D.

D(updates/hour) BG% SR

10 0.63 9.96
20 1.18 20.04
30 2.82 30.00
60 9.63 60.04
100 21.15 100.00
120 22.47 120.08
140 24.10 140.00

Table 4.2: Results for varying µ.

µ(Mbits) BG% SR

720 2.65 60.00
540 9.63 60.04
360 19.67 60.00
180 44.98 59.96
90 57.57 59.96

voice traffic modelling and this is shows that our method still performs well for

the case of a more complex traffic modelling structure.

4.1.2 Varying µ

In this part different values for the mean of size of the flows are tested. D is

taken to be 60 updates/hour. Other problem parameters are the same as above.

Table 4.2 and Figure 4.3 show the results for this case. As the mean size of the

flows decreases, average bandwidth usage decreases and for all the values of µ,

actual signaling rate ideally tracks the desired one. In Figure 4.3, there are some

huge jumps to the value Cmax = 60. The reason of these jumps is that the leaky

bucket is full and according to our working principle, the bandwidth assigned to

the VP is forced to be the maximum value that can be assigned.
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Figure 4.2: Policy behaviour for different values of D
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Table 4.3: Results for varying E(d).

E(d)(seconds) BG% SR

18 0.65 4.50
54 10.13 59.92
180 9.64 60.04
360 10.75 60.00

4.1.3 Varying E(d)

In this part, numerical results are obtained for different values of mean flow

duration times. D is selected to be 60 updates/hour and the mean size of the

flows is selected to be 540 Mbits. Table 4.3 and Figure 4.4 show the results

for this case. For a very small value of E(d)=18, system behaves very oscillatory

(since the mean duration of the flows decreases and flow departure rate increases)

and the bandwidth gain for this case is small due to this oscillatory behavior. For

larger values of mean duration time, bandwidth gain increases and the system

behaves more stable as seen from the Figure 4.4.

4.1.4 Varying σ

The effect of the standard variation of the size of the flows is studied in this part.

D is selected to be 60 updates/hour and the mean size of the flows is selected to

be 360 Mbits. Other parameters are chosen as the ones in Section 4.1.1. Table

4.4 and Figure 4.5 show the results for this case. As the standard deviation

decreases, bandwidth gain increases since the huge jumps and oscillations in the

traffic behavior decreases resulting a stable learning behavior with less jumps to

Cmax.
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Figure 4.4: Policy behaviour for different values of E(d)

Table 4.4: Results for varying σ.

σ(Mbits) BG% SR

360 16.10 60.00
270 15.05 59.96
180 20.95 59.96
90 23.07 60.00
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4.2 Time-Driven Control

In this part, decision epochs are selected to be the equidistant time instants

and the time interval between two successive decision instants is denoted by the

constant T . At the start of a new interval, a decision is made according to the

value of the traffic in the previous interval, current reserved bandwidth of the VP

and the state of the leaky bucket counter. With this decision the bandwidth of

the VP is set to new value which will be fixed throughout the new interval. Since

amount of the traffic can exceed the bandwidth assigned to the VP, we assumed

that the excessive amount of traffic that can’t be carried will be buffered by the

aggregator. For the sake of simplicity we assume that buffer limit is infinite.

Since there is a buffering mechanism, there will be no blocking in the system and

excessive traffic will be buffered. We define our state space as follows:

S = {s|s = (sa, sr, sb), 0 ≤ sa ≤ Cmax, 0 ≤ sr ≤ Cmax, 0 ≤ sb ≤ Bmax},

For each state (sa, sr, sb) an action value s′r satisfying sa ≤ s′r ≤ Cmax will be

chosen. State space looks like the same as defined previously for the other formu-

lations but here the definition for the variable sa is different. In this definition,

sa denotes the average traffic in the previous interval. Let NF (t) denotes the

number of flows in the system at the previous interval and let ri denotes the rate

of the i’th flow, sa will be calculated using the formula given below:

sa = round(

∫ T
0 (

∑
1≤i≤NF (t) ri)dt

T
) (4.4)

As seen from the relation, sa is found by averaging the traffic in the previous

interval. Since we assume no blocking in the system, sa can be larger than the

value Cmax, for these values of sa we will set it to the value Cmax again. Otherwise

state space dimension will grow without a bound. With this choice, the state

sa = Cmax will denote the states that hold the relation sa ≥ Cmax and represents

the instants that total traffic in the system is larger or equal to the total maximum

capacity of the link. The other variables sr and sb are defined in the same manner

in the previous section. With these assumptions a new dimension will be added
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Table 4.5: Results for varying T .

T (seconds) BG% SR BF (Mbits)

10 8.75 60.04 4.97
20 12.87 59.96 9.53
30 20.63 59.75 17.38
40 21.87 59.96 21.16

to the problem: assigning the value of the time interval T . If it is chosen very

large, the averaging operation will cause the total traffic in the system will be

smoothed very much and oscillations in the traffic will be neglected resulting a

smaller amount of bandwidth usage. If it is chosen very small, than the system

reacts to the oscillations and the jumps in the system rapidly so the resulting

policy will be an unstable and oscillatory one resulting in an inefficient usage of

bandwidth. In the numerical results that will be presented below, different values

of T and desired rate D is tested.

4.2.1 Varying T

Different values for T is tested. Other problem parameters are selected to be

Cmax=60 Mbits/s, E(d)=180 seconds, λ=0.0668, µ=540 Mbits, σ=108 Mbits

and D is selected to be 60 updates per hour. Same traffic is generated for all the

values of T . Results in Table 4.5 are given in terms of bandwidth gain, signaling

rate and average buffer size in the time interval T denoted by BF . When time

interval T increases, smoothing of the traffic will increase and the oscillations

with jumps will be neglected more. This results a higher buffer occupancy with

decreasing bandwidth usage as seen from the results and sample Figure 4.6.

4.2.2 Varying D

Again different values of desired rate is tested. T is chosen to be 30 seconds.

Other parameters are same as in the previous subsection. Results are in Table
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Figure 4.6: Policy behaviour and buffer occupancy for different values of T
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Table 4.6: Results for varying D.

D(updates/hour) BG% SR BF (Mbits)

60 20.63 59.75 17.38
40 14.98 40.00 12.21
20 6.93 19.96 10.86
10 2.77 10.00 8.21

4.6 and Figure 4.7. Again same traffic is generated for all the values of D. As

seen from the results, when D decreases, average bandwidth gain decreases with

a decreasing average buffer occupancy as expected. Also observed signaling rate

ideally tracks the desired rate for all the values of D.
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Conclusions and Future Work

In this thesis, we solved the dynamic capacity adjustment problem for virtual

path based networks using the semi-Markov decision framework. We used dy-

namic programming (DP) and neuro-dynamic programming (NDP) techniques

for reaching the optimal or sub-optimal capacity adjustment policy. Generally

speaking, NDP techniques are more scalable than their DP counterparts. In

the experiments, when the state space dimensionality increases NDP methods

including state aggregation and function approximation are used successfully.

Two important issues in this problem are the bandwidth usage efficiency and

the signaling traffic in the network. We proposed two different formulations for

dynamic capacity adjustment. In the first formulation, cost parameters are as-

signed for a single capacity update (S) in the network and bandwidth usage per

unit time (b). For different values of S/b ratio we apply both DP and NDP meth-

ods with voice traffic modelling. We saw that, for small-sized problems NDP

results behave very similar to the DP results except for the cases where this ratio

is very small or very large. At those cases, especially function approximation

technique (A-RVI-FA) behaves unstable which is a reason of the unstable and

problem-dependent nature of function approximation methods in NDP frame-

work. We compared our results with two different approaches namely the SVC

approach and the PVP approach. Results show that, for all the cases of S/b we

achieve a better performance in terms of long run average cost compared with the

59
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SVC and the PVP. Also for large sized problems we show that the sNDP method

A-RVI scales well and gives good results.

In the second formulation, we try to solve the problem of capacity adjust-

ment under signaling constraints. Our aim is to minimize the bandwidth under-

utilization given a signaling rate constraint. In order to regulate the signaling

rate, we used a variant of the generic leaky bucket counter and this is the key

point of this part. With the addition of the new state variable denoting the value

of the bucket, our state space complexity and dimensionality increases so we used

a model-free NDP method: the Gosavi algorithm and again we used voice traffic

modelling. From the experimental results we see that for all the values of the

desired signaling rate, our policy achieves an actual signaling rate which ideally

tracks the desired value. We achieve a significant bandwidth gain compared with

respect to the PVP approach under the signaling constraint. In addition to this,

a uniform state aggregation technique using the Gosavi algorithm is used in or-

der to increase the scalability and to solve large-sized problems. We see from the

results that when we aggregate the state space aggressively, convergence perfor-

mance of the algorithm improves with the disadvantage of information loss. For

a large-sized problem we achieve larger bandwidth gain with the usage of state

aggregation compared to the original problem where no aggregation is applied.

Our methods are applicable for more complex traffic models. We used flow-

based Internet traffic modelling using Poisson shot noise process and apply the

Gosavi algorithm for this case. We proposed two different control strategies:

event-driven and time-driven. In event-driven case, again we achieve a significant

amount of bandwidth gain with a given signaling constraint. Also our method

reacts successfully to the changes in the traffic intensity which is affected by mean

flow duration, mean flow size and the standard deviation for flow size distribution.

For time-driven control strategy, we assume a buffering mechanism and we tested

our method for different values of constant T which is defined to be the time

interval between decision epochs. When T increases, the oscillations in the traffic

is neglected and a larger bandwidth gain is achieved with the usage of buffering.

Another important result is that, for Internet traffic modelling and both of the

control strategies, again the actual desired rate ideally tracks the desired one
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which shows that our leaky bucket mechanism is very powerful for regulating the

signaling rate.

In this thesis, we introduce an important footstep for the problem of dynamic

capacity adjustment for virtual path based networks. We presented our results

for voice traffic modelling in [36], [37] and [38]. We list our future research plan

below:

• We applied a time-driven control strategy for Internet traffic modelling and

our assumption in this thesis is that the buffer limit is infinite. In practice,

there is a limit on the buffer size and a new formulation is needed for

controlling the buffer occupancy. We plan to add a new variable to our

state space which will denote the level of buffer occupancy (e.g., very low,

low, medium, large, very large). We are planing to use the similar leaky

bucket methodology for controlling the buffer level together with achieving

the maximum bandwidth gain with signaling constraint.

• Gosavi algorithm with time-driven control strategy will be applied to real

Internet traffic traces. In this case, underlying Markov model will be com-

pletely lost and this work will be very useful showing the model-free appli-

cability of NDP methods.

• Finally, a network environment that is composed of different virtual paths

will be simulated. VPs will share the same bandwidth pool and our opti-

mization criteria will be the maximization of bandwidth efficiency through-

out the network with signaling constraints. Also different classes of traffic

with different QoS requirements will be considered.
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