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Enhancing higher harmonics of a tapping cantilever by excitation at a submultiple
of its resonance frequency
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In a tapping-mode atomic force microscope, the frequency spectrum of the oscillating cantilever contains
higher harmonics at integer multiples of the excitation frequency. When the cantilever oscillates at its funda-
mental resonance frequeneay, the highQ-factor damps the amplitudes of the higher harmonics to negligible
levels, unless the higher flexural eigenmodes are coincident with those harmonics. One can enhathce the
harmonic by theQ factor when the cantilever is excited at a submultiple of its resonance freq@enby).

Hence, the magnitude of thth harmonic can be measured easily and it can be utilized to examine the material
properties. We show theoretically that the amplitude of enhanced higher harmonic increases monotonically for
a range of sample stiffness, if the interaction is dominated by elastic force.
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I. INTRODUCTION for all kinds of samples. The transfer gains for the higher

The determination of sample elasticity at a nanometepalrmonlcs in conventional tapping-mode operatiorsw,,

scale has been a goal of many researchibsThe where w; is the resonant frequency of the first mode

nanoindentatio, force modulatior?, atomic force acoustic 2 VoY small uniess the higher harmonic frequencies are
. ’ . ; coincident with the resonant frequencies of the higher
microscopy? or ultrasonic force microscopyare the meth-

ods developed so far to characterize the local elastic propere-lgeandes' If we consider only the fundamental eigenmode

ties of samples. In these methods. the aoplied static Ioaqof a cantilever with a stiffness o, the transfer gain for the
pes. . * PP Wh harmonic will be [k(n2—1)]"L. This yields a very
degrade the lateral resolution.

It was recently found that the anharmonic oscillationss’mall value for increasing. The use of higher harmonics

. L - . close to the higher transverse resonances can enhance the
of the cantilever contain information about the material na- 9

nomechanical propertié&-20 Hillenbrand et al. used the measurement sensitivit§. However, to increase the ampli-

13th harmonic signal to increase the image confaSbme Fudes of higher harmpnlqs n th's. case, one may need to
authors used second and third harmonic amplitudes to mapC, case the free o_scHIatlon_amphtude or decrease the set
the surface charge density of DNA molecuté®iirig real- gomt (dampedl amplitude which in turn increases the tip-

ized that the higher harmonic amplitudes can be utilized forsample forcgs. . .

the reconstruction of the interaction for€eA numerical . Most cantilevers do not.h:_:we elg(_enmodes at integer m.ul-
analysis by Rodriguez and Garcia showed that phase of thtéoles of each oth?r. But, '.t IS pO.SS'ble to fabricate special
second mode can be utilized to map the Hamaker conﬁant.cant'levers’ _called ham?on'c cantllevers, m_such a way that
Since the tip-sample interaction is periodic, the frequenc;f)ne of the e::gg?enmodes Is at an integer _multlple of the funda-
spectrum of the detected signal has compongmamonics 08 TG 0 FREE B, Y R B I e
at integer multiples of the driving frequency. These harmon; 9

. . ) .(Ji]armonics’-.8
ics depend on the interaction force and hence the materi : . . .
properties Indeed, measuring the higher harmonic signal

In conventional tapping-mode experiments, the higheP)e(grsT:E%':]y mgu:ﬁatgel le apo %?Fig;tirtlItr?art%géilscs?%%?:rseﬁgc-
harmonics are generally ignored and in fact, their amplitude 9 brop

are two or three orders of magnitude smaller than the funda-'yely' To enhance the quality of the measured harmonic

mental component of oscillation as both numeftand signal, we propose a method which can easily be employed

experimentaP results indicate. Thath harmonic amplitude in conventional tapping-mode systems. In the next section,

< Tt o thh hamo ofhe tacion ocp a5, 9o he et and et 1 by mumerica
the transfer gainH(nw)| as follows: ' Y Y

tion is also provided in an Appendix to provide physical
A= H(hwWf,|, forn=2, (1)  insight.

wherew is the excitation frequency. The transfer function of
a rectangular cantilever including higher flexural eigenmodes
was obtained by Stark and Hed¥I.

To increase thath harmonic amplitudé\,, and hence the Considering the fundamental eigenmode, the transfer gain
measurement sensitivity, we must increase eitheror  reaches its maximum valug/k, where Q is the quality
|[H(nw)|. Notice that increasind, may mean an additional facton at the first resonance frequenay. If we drive the
damage to the sample, and therefore it may not be desirabt@ntilever at a submultiple ofy, i.e., atw=w;,=w;/n (nis

Il. SIMULATIONS OF A NEW HARMONIC
ENHANCEMENT METHOD
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an integer numbey then, due to the high transfer gain at 95—
nw;,=w;, the nth harmonic amplitude is expected to be < Region |
much larger than the conventional case. This allows us tc<:=
detect the harmonic signal with a good signal-to- noise§ 04r
ratio and to inspect the tip-sample interaction effectively.
To vibrate the cantilever at;,, with a reasonable amplitude,

a higher driving force must be applied since there is no
Q enhancement for the fundamental component of the
oscillation.

To investigate if the proposed method can be helpful Y
for differentiating the stiffness of materials and to analyze £ N
the effect of the method on the dynamics of tip-sample § *
system, we performed numerical simulations. The simula-g 01f &
tions are done by converting the mechanical model |ntoE r
an equivalent electrical circéh containing nonlinear 2 5o
elements. The equivalent circuit is simulated with SPICE, a 0 g 5 = = = = i )
H ; ; i ; 10 10 10 10 10 10 10
powerful and easily available circuit simulator. The details of Effective tip-sample elasticity E* (GPa)
the simulation setup can be found elsewh®r&he simula-
tions are done in a time domain with a step size of one FIG. 1. Simulation results for the second and third harmonics
thousandth of one period. To make sure that the steady stafghen the cantilever is driven at=w;/2 andw=w;/3, respectively.
is reached, 1Q oscillation cycles are simulated. We choose aa,/A, (stars andAs/ A, (asterisksare plotted for a paraboloidal tip
typical cantilever with a stiffness &&=1 N/m, a quality fac-  with a radius of curvatur®=10 nm. The simulation parameters are
tor of Q=100, and a fundamental resonance frequency ofy;=100 nm,A;/A;=0.99,Q=100 anck=1 N/m. A vertical dashed
w; =27 X 120 krad/s. The free oscillation amplituédg and  line separates the regior{4<0) and region li(y>0), whereas the
set point amplitudeA; are chosen to bé,=100 nm and dotted line indicates the beginning of the chaotic region for the third
A;=0.97,. harmonic. Those locations for the second harmonic are very close to

In tapping-mode operation, the cantilever tip experienceghese lines and not shown for clarity.
both attractive surface forces and a repulsive contact force.

The attractive part of the interaction force contains the varat a lower elasticity region compared to the third harmonic.
der Waals and capillary forcé$lf the elastic repulsive force Finally, we find that the tip motion can show chaotic behav-
applied during the contact is much larger than the attractivgor at a relatively high elasticity regiofmarked by a dotted
forces, then one can ignore the attractive forces. We considine).

ered only the elastic force in our simulations to find how the The phase of the cantilever oscillation can be used to
enhanced higher harmonics change with sample elasticitshap energy dissipatiotf. On the other hand, it cannot be
even though the attractive forces can easily be included. Aagsed to differentiate the compliance of purely elastic
cording to the Hertzian contact mechanics, the normal loadamples® In such a case, the enhanced harmonic signal
Fy is related to the indentation depthfor any kind of in-  can be useful to increase the image contrast. To map the
denter a% Fy=pE 5% where E is the effective Young's sample elasticity, the harmonic amplitude variations
modulus, 8 and « are the constants dependent on the tipshould be monotonic in a range which covers Young's
geometry. Usually, the tip end is approximated with a pa-moduli of the materials under investigation. If we consider
raboloidal (spherical shape having a radius of curvatuRe  region I, it is seen that the samples which have different
In this case, the parameters defining the tip geometry will b&ompliance may not be differentiated and the contrast in the
B=4/R/3 and «=3/2. In thesimulationsR is selected to images cannot be interpreted uniquely because of the
have a typical value of 10 nm. nonmonotonic variations. Furthermore, there are no steady-

We analyzed in detail the response of the enhanced sestate values of harmonic amplitudes for relatively stiff
ond and third harmonic signals as a function of the effectivesamples due to the chaotic system response. We used a time
tip-sample elasticitfe’, when the cantilever is driven at the series analysis softwarerisean® to find the largest
submultiple frequencies af=w;,=w;/2 andw=w;3=w;/3. Lyapunov exponent which indicates whether the system is
Figure 1 shows the variation of normalized sec@Ad/A;)  chaotic or nof® The possibility of chaotic system behavior
and third(As/Ag) harmonic amplitudes witlE". This figure in conventional tapping-mode AFM was predicted by
is divided into two regions by a dashed vertical line. In re-Hunt and Sarid® The numerical analysis by Stdfkalso
gion 1, the tip stays in contact with the sample more than ashowed that the chaos can occur depending on the tip-sample
half oscillation period, whereas in region Il the contact timegap as the higher harmonics are enhanced by higher
is less than a half period. The first observation is that theeigenmodes.
magnitude of the second harmonic signal can reach almost To gain further insight on the dynamics of the system
40% of the fundamental component. Second, it is seen thaesponse, we provided one cycle of tip position graph as
the higher harmonic amplitudes are increasing monotonicallpbtained from the simulations for three different samples
in a certain range of sample stiffness. The second harmonia Fig. 2. It is seen that as the sample gets stiffer, the tip
amplitude is larger than the third harmonic amplitude and thenotion deviates heavily from the sinusoidal shape. We
steeply increasing part of the second harmonic amplitude isan also write the power balance equation to find the relation
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) . . . . FIG. 3. Left-hand axis: Simulation results forA,

FIG. 2. Tip motions taken from simulations for three different (W=0.98,/2) marked by stars anég (w=0.9%;/3) marked by
e_Igstlc samples when the cantilever is eXC_'te_Wa_wl/Z' The po- _asterisks in the percentageA&yf with the same parameters of Fig. 1.
sition of the undeformed sample surface is indicated by the ho”The vertical dashed line indicates the=0 location. Right-hand
zontal line. axis: Simulation results for the conventional case=w;). A, is

marked by circles ané; is marked by rectangles in the percentage
between A, and the system variables. The power inputof Ay at A;/A,=0.6. The other parameters are the same.
to the system & kw;,A4A; sin(¢)/2, where Ay and ¢ wrate for | _ o stiff The saturated i
; : ; aturate for increasing sample stiffness. The saturated ampli-
are the drlv_e amplitude a_nd the ph_ase shift _betv_vegn the des of second ang thirdp harmonics are still more tha?n
drive and displacement signals. This power is d|§S|p§te 5% of A, which gives a very good sensitivity. To make a
partly by the fundamental component of tip oscillation . . . : i
[kW2 A%/ (20w,)] and partly by the enhanced higher har- COMPaiSOn between the harmonic amplitudes of the conven

i , tional mode of operation, where the cantilever is excited at
monic [kwjA7/ (2Qwy)]. We assumed that there is no energyw=w,, we performed more simulations and plotted the re-

dissipation in the sample and the othenmatched higher  syts’in the same figure. We find that the second and third
harmonics are negligibldas obtained from simulations harmonic amplitudes in the conventional case are not more
sinceA;/ A, is set very close to 1. From this balance one carnthan 0.3% ofA,.
find A, in terms of¢ as The force applied by the tip on the surface must be
B . 12 carefully chosen for imaging delicate samples. For the
An=(A/M[Q(N=1M)(AJAYsin(¢) - 117 (2)  same cantilever and tip shape, the parameters that affect
In this formulation, we usediy=(1-w2/w2)A, which is the interaction force are the driving frequefes? w, free

. . . . . oscillation amplitudeA,, and the set point ratié\;/A,. To
valid for a highQ cantilever excited av<w,/2. Itis found  oppance the second harmonic, we excite the cantilever at
thatA, and ¢ depend on each other. We observed in S|mula0_98N12' A, and A;/A, are selected to be 100 nm and

tions that¢ initially increases and after a peak value it de-q g9 "For the selected parameters, we found that the
creases as the sample gets stiffer. This explains the nomaximum value of the interaction force is less than 18 nN
monotonic behavior seen in Fig. 1. Equati@also helps to  for the elasticity of samples less than 10 GPa. As a compari-
explain the observed amplitude differences in second angdon, the maximum applied force is found to be less
third harmonics. For a givew;, asn increases the energy than 17.6 nN in conventional tapping mode operation
input decreases which in turn limits the amplitude of tite  (w=w;) with the parameters of,=100 nm andA,/A,=0.6
harmonic. and for the same range of sample elasticity. Note that the
If the higher harmonic signah,, becomes a significant force applied to the surface in a conventional case will be
fraction of Ay, the relation betweeA,, and the sample stiff- less than 5.5 nN if we seleét;/A;=0.99, in which case the
ness is no longer monotonic. Moreover, the cantilever camigher harmonic amplitudes will be less than 0.05%Agf
get into chaotic motion if the sample stiffness is very high.Here, we selected;/A, to be 0.6 to make a fair comparison
To avoid these problems, the enhancement can be reduced bgtween the higher harmonic amplitudes of two cases.
choosing an excitation frequency that is slightly differentHence, we conclude that higher harmonic amplitudes of the
than the submultiple frequency. proposed method are much larger than that of the conven-
We performed the simulations at slightly shifted excita-tional case even though the same forces are applied to the
tion frequencies and plotted the results in Fig. 3. Forsurface.
the second harmonic we drive the cantilevemat0.98v,,
and for the third harmonic we selected=0.9%vq3. It is lll. CONCLUSIONS
seen that the variations become monotonic in region Il We showed that the higher harmonic amplitudes can be
and the chaotic behavior is eliminated. The amplitudessnhanced by exciting the cantilever at a submultiple of fun-
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damental resonance. With this method, the most sensitive 10®
portion of the cantilever transfer function is utilized for

the detection of harmonic amplitudes. We demonstrated tha
the amplitude of the enhanced higher harmonics is almosg
monotonically related to sample elasticity. In tapping-mode 5 1©
operation, the lateral forces are reduced significantly ancdg
therefore harmonic imaging offers a higher image resolution®

compared to the previously developed elasticity imaginggwo
methods. 3
£
-l
APPENDIX: ANALYTICAL APPROXIMATION FOR LOW %
HARMONIC DISTORTION £10”
[=]
=

In tapping-mode operation, as the tip taps on an elastic
sample, it indents periodically into the sample during the
contact. If we assume that the sinusoidal nature of the tip 1¢2
motion is preservedlow harmonic distortiojy then the in- 1
dentation depth is also sinusoidal in the contact duration
For a given set point amplitud&;, mean tip to surface sepa- FIG. 4. Normalized maximum repulsive forde, s/ (BATE)
ration z. and excitation frequency, we can express the (thin lines and F,/f (thick lines are plotted as a function of
time-dependent interaction forcég(t) in one period if normalized mean tip-surface distangefor varying values ofg’

0.5 0 -0.5 -1 -1.5 -2
Normalized mean tip-surface distance

|z|<A; as andf, for a conical tip(a=2).
E'[A, cogwt) —z]¢ for |t| < cosXz/A))/w _
fTs(t):{B [ 1 S( ) Zr] | | . (Zr 1) flelg(W)|H(W)| 1' (A6)
0, otherwise.
(A1) where
If z>A, then frg()=0 and if z<-A; then fig(t) s(w) ={(Ag/A)? = sirf[ L H(w) [}/ - cog Z H(w) ],
=BE[A, cogwt)-z]°. (A7)

For a tip having a conical shape, the parameter definin
the tip geometry is the semivertical angld =2 tar(6)/ ,
a=2]. Defining a normalized mean tip to surface distance
as y=z/A,, the maximum force applied to the sample is Q (1—W2/W§)Q—iw/w1

found to be H(w) = (L W22 PP + Wi
Fmax= 2 tar(0)E"A2(1 - y)?/ 7. (A2)

%nd the transfer function of a fundamental flexural eigen-
mode of the cantilever is

(A8)

herek, Q, Ay, andw; are the cantilever stiffness, quality
In the steady state, the interaction force can be expandddctor, free oscillation amplitude, and fundamental resonant
in a Fourier seriég40 as fg(t)=fo+=,-,f, cogdnwt). For  frequency, respectively. Equation®4) and (A6) tell us
|y1=<1, the average forc, is given by that for any given set of cantilever parameters and a set
point amplitude,F ., and ¢ are almost inversely propor-
tional.
EquationgA2) and(A4) must be satisfied simultaneously.
Therefore, we plot ./ (BATE) and F,,/f as a function
4)f v for differing values of E' and f, in Fig. 4 to
ind a solution for a given sample elasticity. Heke,and
f=BA{E are the arbitrary values & andf,. An intersection
of the curves gives the solution foy and F,,, values

fo= Fma)éO.S +92+ O.S(iir_myz)g) - 2ysindé) (A3

where sin€x) = sin(wx)/ (7x). é=cos*(y)/ is the normal-
ized contact time, i.e., the contact time divided by one perio
(wr/24). The fundamental and higher order force compo-
nents are found using

ha(y) for a specific sample and a cantilever. No intersection means
fnZZmeé(l_ 2 (Ad)  that there is no solution for the chosen cantilever. When
Y y<-1, it is found that fo=F,(0.5+/2)/(1-7)2
whereh,(y) is given by f1==2F maxy! (1=7)2, f2:0.5|:m,jv(/(12—y)2 and f,-3=0.
) i Actually, f; is given by -4 taf@)E"Ay/ 7 which increases
ha(7) = = psind (1 +m)¢] + sind (1 -ml} + (0.5 +99) for decreasingy and hence there is1 always an intersection
xsinané) + 0.25sind (2 +n)&] + sind (2 - n)£]}. point.
(A5) Figure 5 is a sample plot of analytical and simulation

results for the tip position and the interaction force. Although
f, causes an amplitude damp#gand can be related the two curves are very similar, they do not match each other
to oscillation amplitude and cantilever parameters undeperfectly. Since the enhanced second harmonic amplitude is
the assumption of low harmonic distortion as follows: about 17.5% ofA, in this case, a small harmonic amplitude
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FIG. 5. Tip position and tip-sample interaction force in one  F|G. 6. A variation of the first four normalized harmonic ampli-

cycle for a conical tip having a semivertical angle®#15° and @ tydes|A(y)| as a function of the normalized effective tip-sample
sample ofE =0.5 GPa. The thin solid lines show the analytical g|asticity A"(y) for a conical tip («=2). It is assumed that

solutions whereas the thick dashed lines indicate the simulatiop, <A,. Vertical dashed and dotted lines mark the=0 and
results. Ap=100 nm, A;/A;=0.99, Q=100, k=1N/m, and  ,=-1 |ocations.

w=0.98n,/2. Notice that the interaction force is multiplied by 10 to
fit into the figure. . . R _
tive tip-sample elasticitfE" BAS/f,=\"1(y)] under the as-

TR . C . sumption of a very small harmonic distortidl,<A,). In
approximation in an analytical derivation is violated and this his figure, the dashed vertical line marks the location of a
deviation is to be expected. The two curves approach eacﬁﬁ '

. . . v=0 point.
other with smaller harmonic amplitudes. : . . o
. . . . . . ... The higher harmonic amplitudes show a monotonic in-
Different sample elastic properties give rise to signifi-

cantly differentF,., and y values. Although we are not able crease in a wide range of sample compliance. Notice that the

to measure any one of these parameters diréttiye can steeply increasing part of the amplitude curves shift towards

extract the sample elasticity by measuring the harmonic ame high Young's moduli region as the harmonic number in-

plitudes. Notice that the constant term in B41) depends creases. This makes one of the higher harmonics more pref-

on v, but the feedback signal contains information on theerable than the other ones depending on the sample. As the
4 - 9 sample gets stifferA, saturates since the variation of the
height variations of the sample surface also.

We can relate the effective tip-sample elasticity to ttfe contact time(and the penetration deptigets smaller. This

; ) St imposes an upper limit for measurable sample elasticity as
ha_lr.monlc am_plltude by comblnlng- EqeA2) and (A4) and reported earlief. There is also a lower limit oE" for which
utilizing A,=,=|H(nw)f,| as follows:

v>0. Both limits can be shifted to the lower side of elastic-
A= |(4/7r)tar(0)AfH(nw)§hn(y)E*|. (A9) ity by softening the lever, by increasing the set pdgtA,
] ] ) .. or oscillation amplitude, or by using a dull tip. The use of a
There is no direct relation betweef® andE" in Eq. (A9). gy tip is not preferable since it decreases the lateral image
However,¢ or y can be used as an independent parameter tRago|ution. There is a practical maximum valuefqi A, as
find respectiveA, andE" values. We can expregs, andE determined by the precision of the feedback electronics. The
in terms of y only, oscillation amplitude can have an upper limit. Hence, the
A, = [H(nW)As(w)|HW)[ A ()], (A10)  cantilever stiffness is the most suitable parameter to adjust
X the measurement region. The reverse procedure can be ap-
whereA(y) is equal toh,(y)/hy(y). Also E"=f1/[BAYN(¥)],  plied to shift the operation range to the high elasticity side.
where A(y) is equal to 2Zh,(y). Notice that asé—0, Note that changing these parameters also effect the maxi-
A(y)—1 for which A, reaches its maximum value mum force applied to the surfadg,,, We recall that the
[maxA,)] and\(y) — 0 for whichE" goes to infinity. In Fig.  attractive forces are assumed to be very small compared to
6 we plot the first four normalized harmonic amplitudesF.,and increasing ., too much can destroy the tip and/or
[A,/maxA,)=|A(y)|] as a function of the normalized effec- the sample.
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