
1438 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

Exploiting Relevance for Online Decision-Making in
High-Dimensions

Eralp Turğay , Cem Bulucu , and Cem Tekin , Senior Member, IEEE

Abstract—Many sequential decision-making tasks require
choosing at each decision step the right action out of the vast
set of possibilities by extracting actionable intelligence from
high-dimensional data streams. Most of the times, the high-
dimensionality of actions and data makes learning of the optimal
actions by traditional learning methods impracticable. In this work,
we investigate how to discover and leverage sparsity in actions and
data to enable fast learning. As our learning model, we consider
a structured contextual multi-armed bandit (CMAB) with high-
dimensional arm (action) and context (data) sets, where the rewards
depend only on a few relevant dimensions of the joint context-arm
set, possibly in a non-linear way. We depart from the prior work
by assuming a high-dimensional, continuum set of arms, and allow
relevant context dimensions to vary for each arm. We propose a new
online learning algorithm called CMAB with Relevance Learning
(CMAB-RL). CMAB-RL enjoys a substantially improved regret
bound compared to classical CMAB algorithms whose regrets
depend on the number of dimensions dx and da of the context
and arm sets. Importantly, we show that when the learner has prior
knowledge on sparsity, given in terms of upper boundsdx andda on
the number of relevant context and arm dimensions, then CMAB-
RL achieves Õ(T 1−1/(2+2dx+da)) regret. Finally, we illustrate
how CMAB algorithms can be used for optimal personalized blood
glucose control in type 1 diabetes mellitus patients, and show that
CMAB-RL outperforms other contextual MAB algorithms in this
task.

Index Terms—Online learning, contextual multi-armed bandit,
regret bounds, dimensionality reduction, personalized medicine.

I. INTRODUCTION

A I-ENABLED technologies are becoming ubiquitous for
many applications that involve repeated decision-making

under uncertainty. Delivering personalized medicine for treat-
ment of complex diseases [1], discovering and recommending
interesting articles for a particular user from huge corpora of
documents [2], [3] and optimizing hyper-parameters of deep
learning architectures given a particular dataset [4] all require
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context-driven learning of optimal decisions over huge action
sets. As the dimensionality of the contexts and the actions
grow, learning the optimal decision for each context becomes
a formidable task since what has been learned in the past cannot
be used to accurately estimate the action rewards for the current
context. Nevertheless, in many high-dimensional settings, only
a subset of context and action dimensions affect the reward.
For instance, in controlling the blood glucose of type 1 diabetes
mellitus (T1DM) patients, data analysis highlights that future
blood glucose of a patient only depends on blood glucose
before the treatment, dose of the treatment and carbohydrate
intake, whilst the affect of other physiological and environmental
variables on blood glucose are found to be negligible [5], [6].
Similarly, when training deep neural networks, it is observed
that in general not only a small subset of hyperparameters can
be considered relevant, but also the content of relevant subset of
hyperparameters differs from one task to another [7].

In this paper, we model online decision-making in high-
dimensions as a multi-armed bandit (MAB) [8], [9]. MABs have
successfully modeled a wide set of applications that involve
sequential decision-making under uncertainty ranging from dy-
namic spectrum sharing [10]–[12] to medical diagnosis [13].
Specifically, we formalize the problem as a contextual MAB
(CMAB) [14], where the learner observes a dx-dimensional
context from a context set X at the beginning of each round
before selecting a da-dimensional action (arm) from an arm
set A.1 This generalizes the MAB model and allows the arms’
reward distributions depend on the context. The goal of the
learner in this setting is to compete with an oracle that selects
at each round the arm with the highest expected reward for
the current context. The cumulative loss of the learner with
respect to this oracle is called the regret, thereby minimizing
the regret is equivalent to maximizing the cumulative expected
reward. The learner’s time-averaged expected reward will ap-
proach to that of the oracle as long as it can keep its regret
sublinearly growing over time. Being able to capture intricacies
of data-driven decision-making, CMAB algorithms have been
successfully used in recommender systems [15], personalized
medicine [16] and cognitive communications [17].

Since the cardinalities of X and A are very large, further
assumptions on the problem structure are required to obtain
sublinear in time regret. In this paper, we consider a variant of
CMAB with similarity information [14], where the reward from

1In general, X and A have uncountably many elements.
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a context-arm pair comes from a fixed distribution, expected
rewards vary smoothly in contexts and arms, and no stochastic
assumptions are made on how contexts arrive over time.2 In
this setting, dimensionality of the context and arm sets play a
key role on the performance of learning algorithms [18]. In the
worst-case, the regret has exponential dependence on dx and
da, and thus, grows almost linearly in time in high-dimensional
problems.

This motivates us to develop a new CMAB model and al-
gorithm that address the learning challenges arising from high-
dimensional context and arm sets. As discussed in the preced-
ing paragraphs, in many applications of the CMAB, although
the contexts and arms are high-dimensional, the most relevant
information is embedded into a small number of relevant dimen-
sions. Therefore, we consider a CMAB problem with similarity
information where the expected reward only depends on relevant
subcomponents of the arms and contexts. While the relevant
subcomponent of the arms is fixed, the relevant subcomponent
of the contexts can be different for each arm. For instance, in
personalized treatment assignment, each arm can represent a
drug cocktail and each component of an arm may correspond to
the dose of a particular drug. Then, the relevance information
tells that the outcome of the treatment only depends on a subset
of relevant drugs in the cocktail and a subset of contexts of the
patient (e.g., physiological data, genomic data) that are relevant
to the drug cocktail. Minimizing the regret in this problem
is extremely challenging since the learner knows neither the
reward distributions nor what is relevant beforehand. All of these
need to be learned online by only using the observed contexts,
the selected arms and the random rewards observed from the
selected arms in the past.

In this paper, we solve the problem described above by only
assuming that the learner knows upper bounds dx and da on the
number of relevant context and arm dimensions. Essentially, we
propose a new algorithm called CMAB with Relevance Learning
(CMAB-RL) that learns the relevant context and arm dimen-
sions to achieve Õ(T 1−1/(2+2dx+da)) regret, while on the other
hand, CMAB algorithms that do not learn the relevance achieve
Õ(T 1−1/(2+dx+da)) regret in the worst-case [18]. This implies
that CMAB-RL has a better regret bound than these algorithms in
terms of its dependence on time as long as 2dx < dx is satisfied,
and significantly improves over the prior work for sparse MAB
problems, where dx << dx and/or da << da.

The most closely related work to ours is [19], which considers
a CMAB problem with finite number of arms, where the relevant
context dimensions may vary from arm to arm. Provided with the
same upper bound on the number of relevant context dimensions,
the algorithm RELEAF in [19] is shown to achieve Õ(T g(d̄x))

regret, where g(d̄x) = (2 + 2d̄x +
√

4d̄2x + 16d̄x + 12)/(4 +

2d̄x +
√

4d̄2x + 16d̄x + 12). However, the setting in [19] is
quite different from ours, since the authors assume that reward
feedback is costly, and thus, needs to be acquired only when
there is a need to explore. Therefore, their algorithm achieves a
worse regret bound than CMAB-RL (the regret of CMAB-RL for

2Analysis holds for any fixed sequence of contexts.

this setting is Õ(T (1+2d̄x)/(2+2d̄x))), because it needs to rely on
control functions to either perform exploration or exploitation
in each round, while CMAB-RL does not explicitly separate
these two. Moreover, our formulation allows us to deal with
high-dimensional and continuum sets of arms, which can be used
in representing action sets for drug dosage, online auctions [20],
routing [21], web-based recommendations [22] and web page
content optimization [23].

In the core of CMAB-RL reside two new methods to identify
and exploit relevance. The first one generates a collection of
partitions of the context and arm sets formed by low-dimensional
subsets of context and arm dimensions. This allows CMAB-RL
to estimate rewards of context-arm pairs for only certain subsets
of context and arm dimensions, thereby mitigating estimation
errors caused by sparsity of similar samples that emerge from
high-dimensionality. The second one identifies for each arm the
candidate relevant tuples of context dimensions by comparing
the variation of the sample mean rewards with confidence inter-
vals constructed using selection statistics of related context-arm
pairs. After identifying the candidate relevant tuples, CMAB-RL
chooses the tuple with the minimum variation for each arm.
Then, it uses the selected tuples to form reward estimates, and
uses the principle of optimism in the face of uncertainty to
minimize its regret.

Apart from the regret bounds, we also show the superiority of
CMAB-RL as compared to other learning methods via extensive
simulations on synthetic and real-world datasets. We model
optimal personalized blood glucose control problem in T1DM
patients for the first time (to the best of our knowledge) as
a CMAB problem, where the contexts represent multimodal
physiological data streams obtained from sensor readings and
the arms represent bolus insulin doses that are appropriate for
injection, and show that blood glucose control can be signifi-
cantly improved by using our method.

In a nutshell, our main contribution is to design an online
learning algorithm that can maximize the cumulative expected
reward (minimize the regret) in sequential decision-making
problems that involve high-dimensional and large context and
arm sets with a sparse structure, where the expected reward is
a (possibly) non-linear function of contexts and arms. While
doing so, we do not make any assumptions on how contexts
arrive over time as stochastic models may fail to accurately
capture real-world phenomena that generate the contexts. Nev-
ertheless, we show that time-averaged regret can be made ar-
bitrarily small by utilizing the prior knowledge which states
that similar contexts and actions should yield similar expected
rewards.

The rest of the paper is organized as follows. Related work
is given in Section II. CMAB and the regret are described in
Section III. CMAB-RL is introduced in Section IV and its
regret is analyzed in Section V. The effectiveness of learning
the relevant dimensions is shown via simulations over (i) a
high-dimensional synthetic dataset and (ii) a model created from
real-world data collected from T1DM patients in Section VI.
Concluding remarks are provided in Section VII and appendices,
including tables of notation and auxiliary results, are given in
the supplemental document.
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II. RELATED WORK

Research relevant to our work can be categorized along two
dimensions: related work in CMAB and related work in rele-
vance learning and dimension reduction.

A. Related Work in CMAB

CMAB has been studied under various assumptions on the
relation between context-arm pairs and rewards. In the context
of our work, prior art in CMAB can be categorized into three
groups.

Problems in the first category (including our model) usually
assume that there is an unknown but fixed reward distribution for
every context-arm pair and the expected reward is a Lipschitz
continuous function of the distance between context-arm pairs.
Generally, for this category, no stochastic assumptions are made
on the context arrivals. Under these assumptions, [18] proposes
an algorithm that achieves O(T 1−1/(2+dc)+ε) regret for any
ε > 0where dc is the covering dimension of the similarity space,
i.e., the space of feasible context-arm pairs. The proposed algo-
rithm partitions the similarity space and uses the past history in
each set of the partition to form reward estimates of context-arm
pairs within that particular set. It is also shown that a lower
bound of orderΩ(T 1−1/(2+dp)−ε) exists where dp is the packing
dimension of the similarity space. Another related work [14]
proposes an algorithm that adaptively divides the similarity
space with the help of a covering oracle, essentially by “zoom-
ing” into regions where the context arrivals concentrate and
arms provide high rewards, in order to perform high-precision
exploration in these areas. It is shown that this algorithm achieves
Õ(T 1−1/(2+dz)) regret where dz is the zooming dimension,
which is linked to the covering dimension of the set of near-
optimal context-arm pairs. The same problem is considered
in [24] with a Gaussian process prior on the reward, and a
CMAB algorithm that constructs a tree of partitions inspired by
the HOO strategy in [25] is shown to achieve an optimal regret
bound. To the best of our knowledge, the only other paper that
considers relevance learning in this category is [19]. As noted
in the introduction section, different from [19], we consider a
high-dimensional arm set and provide improved regret bounds
by constructing a novel method to test the relevance.

The second category works under the linearly realizability
assumption. Here, contexts represent arm features and the ex-
pected reward of an arm is a linear function of its context. [15]
proposes LinUCB algorithm for personalized news article rec-
ommendation, and [26] proves that a variant of LinUCB achieves
Õ(

√
Td) regret, where d is the dimension of the context. [27]

extends these algorithms by introducing kernel functions, and

shows that the proposed algorithm achieves Õ(
√

T d̃) regret,
where d̃ represents the effective dimension of the kernel feature
space. Notably, [28] provides an improved regret analysis for this
problem by constructing more refined confidence sets. Sparsity
in the context of linear CMAB is considered in [29] and [30]. In
these works, sparsity corresponds to having arm weight vectors
with many zero elements, as dimensions with zero weights have
no effect on the expected reward. Similar to our setting, these
works also assume prior knowledge on sparsity in terms of an

upper bound on the number of relevant dimensions. Unlike
sparse linear CMAB, we consider sparsity in a much more gen-
eral environment, where the reward is allowed to be a non-linear
function of arms and contexts. We only impose a mild Lipschitz
continuity assumption (Assumption 1) on the expected reward,
which allows our framework to be applicable to a much broader
set of problems. We would also like to note that any linear bandit
also satisfies the Lipschitz continuity assumption. Therefore, it
can be said that [29] and [30] assume a much stronger prior
knowledge on the form of the expected reward than our work.

The third category assumes that at each round the context and
the arm rewards in that round are jointly drawn from a time-
invariant distribution and the goal is to compete with the best
policy in a given policy class. Among many works that fall into
this category, [31] proposes the Epoch-Greedy algorithm that
achieves O(T 2/3) regret. Follow-up works such as [32] and [33]
propose improved algorithms with Õ(T 1/2) regret.

Apart from these, [34] considers that each element of the
context comes from a binary distribution and proposes the Bandit
Forest algorithm. This algorithm chooses relevant contexts and
eliminates the irrelevant ones by using conditional probabilities.
However, it considers only finitely many arms and contexts.
Learning the optimal policy from a logged dataset with bandit
feedback is considered in [35]. There, the authors identify the
relevant context dimensions from logged data by constructing a
relevance test that uses the importance sampling method. How-
ever, their method can only detect whether a context dimension
is individually relevant or not.

In addition to these, [36] and [37] investigate non-contextual
MAB with high-dimensional arms. Like our work, [36] assumes
that only a subset of the arm dimensions are relevant and
proposes a smart discretization of the arm set to achieve regret
whose time order only depends on the number of relevant arm
dimensions. On the other hand, [37] assumes that the expected
reward is low-dimensional and smooth, and proposes an explore-
then-exploit strategy that performs subspace identification fol-
lowed by Bayesian optimization to minimize the regret. Methods
in these works cannot be directly applied in our setting since we
also need to take into account exogenously arriving contexts.

Table I lists the assumptions and regret bounds of the works
that are most closely related to ours.

B. Related Work in Relevance Learning and
Dimension Reduction

Related work in relevance learning (or feature selection)
mainly consists of offline methods. Similar to the related work
in CMAB, offline feature selection can be categorized into three:
Filter, wrapper and embedded approaches. In the embedded
approach, feature selection is a part of the training procedure of
a classifier. Wrapper methods select features based on the classi-
fier’s feedback. In contrast, filter methods do not take classifier
feedback into account, and select features based on intrinsic
and statistical properties of the features such as correlations
and marginal distributions. A plethora of papers exist for each
approach. For the embedded approach, decision trees [38] and
lasso based methods [39] are commonly used. As an example of
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TABLE I
COMPARISON OF OUR WORK WITH THE RELATED WORKS

the wrapper methods, Recursive Feature Elimination proposed
in [40] iteratively trains the classifier, computes the ranking for
each feature and removes the feature with smallest rank to find
an optimal subset of the feature set. Examples of filter methods
include feature weighting [41] and information-theoretic feature
selection algorithms [42].

Online methods in feature selection can be seen as adapta-
tions of offline methods. Due to computational efficiency, filter
methods are generally preferred in the online framework [43].
For instance, [44] proposes a method called Online Streaming
Feature Selection (OSFS). This algorithm divides the feature
set into three disjoint sets: strongly relevant, weakly relevant
and irrelevant. OSFS works in two phases. In the first phase,
it learns strongly and weakly relevant features and eliminates
irrelevant features. In the second phase, features that are relevant
but redundant due to correlations with the other features are elim-
inated. While there is an abundance of literature in online feature
selection (see e.g., [45] and references therein), they do not fit
into the CMAB setting where the goal is to learn the relevant
features in order to minimize the regret. Moreover, these works
try to identify a fixed set of relevant features, while in our case
the set of relevant context dimensions may differ among arms.

III. PROBLEM FORMULATION

The system operates in rounds indexed by t ∈ {1, 2, . . .}.
At the beginning of each round, the learner observes a context
x(t) that comes from a dx-dimensional context setX := [0, 1]dx ,
and then, chooses an arm a(t) from a da-dimensional arm set
A := [0, 1]da . The set of feasible context-arm pairs is denoted
by F :=X ×A. The random reward obtained from playing arm
a(t) in round t is given as r(t) :=μa(t)(x(t)) + κ(t), where
μa(x)denotes the expected reward of a context-arm pair (x, a) ∈
F and κ(t) is the noise process whose marginal distribution is
conditionally 1-sub-Gaussian, i.e. ∀λ ∈ R

E[eλκ(t)|a1:t, x1:t, κ1:t−1] ≤ exp(λ2/2)

where for b ∈ {a, x, κ}, b1:t := (b(1), . . . b(t)).
Let Da := {1, . . . , da} denote the set of arm dimensions. For

anyz ⊆ Da,Az := [0, 1]|z| denotes the subset ofA that contains
the values of arm dimensions in z and for any a ∈ A, az ∈
Az denotes the |z|-tuple subarm whose elements are elements
of a that correspond to the arm dimensions in z. For any z ⊆
Da and z′ = Da \ z, we write a = {az, az′ }. Let c denote the
subset ofDa that contains the relevant arm dimensions, i.e.∀z ⊆
Da \ c, ∀az, a′z ∈ Az , ∀aDa\z ∈ ADa\z and ∀x ∈ X , we have
μ{az,aDa\z}(x) = μ{a′

z,aDa\z}(x).

Similarly, let Dx := {1, . . . , dx} denote the set of context
dimensions. For any z ⊆ Dx, Xz := [0, 1]|z| denotes the sub-
set of X that contains values of the context dimensions in z
and for any x ∈ X , xz ∈ Xz denotes the |z|-tuple subcontext
whose elements are elements of x that correspond to the context
dimensions in z. For any z ⊆ Dx and z′ = Dx \ z, we write
x = {xz, xz′ }. Since relevant context dimensions may be dif-
ferent for different arms, for any a ∈ A, let ca denote the subset
ofDx that contains the relevant context dimensions, i.e. ∀a ∈ A,
∀z ⊆ Dx \ ca, ∀xz, x

′
z ∈ Xz and ∀xDx\z ∈ XDx\z , we have

μa({xz, xDx\z}) = μa({x′
z, xDx\z}).

For a given context x, the optimal arm is defined as
a∗(x) := arg maxa∈Aμa(x). Since there are infinitely many arms
and contexts, it is impossible to learn the optimal arm for
each context without any further assumptions on the expected
rewards. To overcome this issue, the following assumption pro-
vides a similarity structure on the expected rewards with respect
to the set of context-arm pairs, which is a modified version
of the Lipschitz continuity assumption commonly used in the
contextual MAB literature [14]. It states that the variation of
the expected reward between two context-arm pairs is bounded
by the distance between the context-arm pairs in the relevant
dimensions.

Assumption 1: ∃L > 0 such that ∀a, a′ ∈ A and x, x′ ∈ X ,
we have

|μa(x)− μa′(x′)| ≤ L(‖xca
− x′

ca
‖+ ‖ac − a′c‖)

where ‖.‖ represents the Euclidean norm.
Assumption 1 also implies that

|μa(x)− μa′(x′)| ≤ L(‖xca′ − x′
ca′ ‖+ ‖ac − a′c‖).

We assume that the learner knows L given in Assumption 1,
but does not know μa(x), a ∈ A, x ∈ X . To evaluate the per-
formance of the learner given an arbitrary sequence of contexts
x1:T , we adopt the commonly used (pseudo) regret notion, given
as

Reg(T ) :=
T∑

t=1

μa∗(x(t))(x(t))−
T∑

t=1

μa(t)(x(t)).

Note that Reg(T ) is a random variable since a(t) itself de-
pends on the learning algorithm and its observations. In essence,
Reg(T ) compares the expected reward accumulated by the
learner with that of the oracle. Our goal is to design a learning
algorithm to minimize the regret. Algorithms that do not take
relevant dimensions into account (see, e.g. [18]) will achieve
Õ(T 1−1/(2+dx+da)) regret in the worst-case. On the other hand,
our algorithm CMAB-RL achieves Õ(T 1−1/(2+2dx+da)) regret



1442 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

Algorithm 1: CMAB-RL.

1: Input: X ,A, T, L, dx, da, m
2: Initialization: (C(X ),Y) = Generate(X ,A, dx, da,m)

Set μ̂y,pw
(0) = 0, Ny,pw

(0) = 0 for all y ∈ Y ,

w ∈ V2dx
x , pw ∈ Pw

3: while 1 ≤ t ≤ T do
4: Observe x(t) and for each w ∈ V2dx

x , find
pw(t) ∈ Pw that x(t) belongs to

5: Compute Ry(t) for all y ∈ Y as given in (1)
6: for y ∈ Y do
7: if Ry(t) = ∅ then
8: Randomly select ĉy(t) from Vdx

x

9: else
10: For each v ∈ Ry(t), calculate σ̂2

y,v(t) =
max

w,w′∈V2dx
x (v)

|μ̂y,w(t)− μ̂y,w′(t)|
11: Set ĉy(t) = arg minv∈Ry(t)

σ̂2
y,v(t)

12: end if

13: Calculate μ̂
ĉy(t)
y (t) =

∑

w∈V2dxx (ĉy(t))
μ̂y,w(t)Ny,w(t)

∑

w∈V2dxx (ĉy(t))
Ny,w(t)

14: Determine wy(t) = arg max
w′∈V2dx

x

uy,w′(t)

15: end for
16: Select y(t) = arg maxy∈Y μ̂

ĉy(t)
y (t) + 5uy,wy(t)(t)

17: Update estimates and the counters given for all
w ∈ V2dx

x

18: end while

where dx and da are known upper bounds on the number of
relevant context and arm dimensions: dx := maxa∈A |ca| ≤ dx
and da := |c| ≤ da. This shows that when 2dx + da < dx + da,
CMAB-RL achieves better regret compared to the algorithms
that do not exploit the relevance structure. Thus, in the rest of
the paper, we assume that 2dx ≤ dx. Note that we do not re-
quire existence of a unique low-dimensional subspace of F that
captures all the relevance, since it is possible that∪a∈Aca = Dx.

IV. LEARNING ALGORITHM

Our algorithm, called CMAB with Relevance Learning
(CMAB-RL), is described in Algorithms 1 and 2. CMAB-RL is a
CMAB algorithm that optimizes itself by generating supersets of
the relevant context and arm dimensions with sizes 2dx and da.
The main step in learning relevance is to form a set of candidate
dimensions (tuples) that contains the relevant dimensions with
a high probability. Past observations that fall into these tuples
are then used to estimate expected rewards of the arms, which
results in highly accurate estimates when the tuples that contain
the relevant dimensions are correctly identified.

For any l ∈ Z
+, let V l

x denote the set of all l-tuples of context
dimensions, i.e. V l

x := {v ∈ ℘(Dx) : |v| = l} where ℘(Dx) de-
notes the power set (set of all subsets) of Dx. Similarly for any
l ∈ Z

+, let V l
a denote the set of all l-tuples of arm dimensions.

For v ⊆ Dx and l ∈ {|v|, |v|+ 1, . . . , dx}, letV l
x(v) denote the

set of all l-tuples of context dimensions that contain v, i.e. if we
have w ∈ V l

x(v), then v ⊆ w is satisfied.

Algorithm 2: Generate.

1: Input: X ,A, da, dx,m
2: Create Ii := {[0, 1

m ], ( 1
m , 2

m ], . . . , (m−1
m , 1]} and

Pi := {[0, 1
m ], ( 1

m , 2
m ], . . . , (m−1

m , 1]}
3: Generate Vda

a and V2dx
x

4: for v ∈ Vda
a do

5: Iv =
∏

i∈v Ii
6: end for
7: for w ∈ V2dx

x do
8: Pw =

∏
i∈w Pi

9: end for
10: C(A) :=

⋃
v∈Vda

a

Iv and C(X ) :=
⋃

w∈V2dx
x

Pw

11: Index the geometric center of each set in C(A) by y
and generate the set of arms Y

12: return C(X ) and Y

At the beginning, CMAB-RL takes as inputs the context set
X , the arm set A, the total number of rounds T , L given in
Assumption 1, the partition number m (which will be optimized
later), an integer that is an upper bound on the number of
relevant arm dimensions da ≤ da and an integer that is an upper
bound on the number of relevant context dimensions dx ≤ dx/2.
CMAB-RL uses Assumption 1 to learn together for similar arms
and similar contexts. This is achieved by properly discretizing
the arm and context sets. In its initialization phase, CMAB-RL
generates a discretized arm set Y ⊆ A and a collection of
partitions ofX , denoted byC(X ) using the Generate subroutine
given in Algorithm 2.

Next, we describe this initialization process in detail.
CMAB-RL first generates the set Vda

a . For all v ∈ Vda
a , each di-

mension of the arm subsetAv is partitioned intom intervals with
equal lengths. LettingIi := {[0, 1

m ], ( 1
m , 2

m ], . . . , (m−1
m , 1]} de-

note the partition of the arm subset in dimension i, Iv :=∏
i∈v Ii forms a partition of Av into mda non-overlapping sets.

The collection of partitions of the da-dimensional subsets of
the arm set formed this way is denoted by C(A) := ∪

v∈Vda
a

Iv .

Note that C(A) contains (
da
da

)mda sets. We index the geometric

centers of these sets by y, and the set of arms that correspond
to these centers is denoted by Y . For an arm that corresponds to
the geometric center of a set in Iv , values of the dimensions of
that arm in i ∈ Da \ v are set as 0.5.3

Similarly, CMAB-RL also generates the set V2dx
x . For all

w ∈ V2dx
x each dimension of the context subset Xw is par-

titioned into m intervals with equal lengths. Letting Pi :=
{[0, 1

m ], ( 1
m , 2

m ], . . . , (m−1
m , 1]} denote the partition of the con-

text subset in dimension i, Pw :=
∏

i∈w Pi forms a partition of

Xw into m2dx non-overlapping sets. The collection of partitions
of the2dx-dimensional subsets of the context set formed this way

30.5 is chosen for convenience. Indeed, any value in [0,1] will work.
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is denoted by C(X ) := ∪
w∈V2dx

x

Pw. Note that C(X ) contains

(
dx
2dx

)m2dx sets.

For simplicity of notation, for any x ∈ X if xw ∈ pw for
pw ∈ Pw, then we say that x ∈ pw for w ∈ V2dx

x . Also, we let
pw(t) ∈ Pw denote the set that xw(t) belongs to.

For each w ∈ V2dx
x , pw ∈ Pw and y ∈ Y , CMAB-RL stores

a counter Ny,pw
(t) that counts the number of times context was

in pw and arm y was selected before round t, and the sample
mean of the rewards μ̂y,pw

(t) that is obtained from rounds
prior to round t in which context was in pw and arm y was
selected. In order to define the arm selection rule, CMAB-RL
also needs to calculate another statistic, called the uncertainty
term, which is defined for all w ∈ V2dx

x , pw ∈ Pw, y ∈ Y
as uy,pw

(t) :=
√
(2 + 4 log(2|Y|Cm2dxT 3/2))/Ny,pw

(t),

where C := (
dx − 1

2dx − 1
). For simplicity of notation, we

use μ̂y,w(t) := μ̂y,pw(t)(t), uy,w(t) :=uy,pw(t)(t) and
Ny,w(t) :=Ny,pw(t)(t), since in each round t there exists
only one pw ∈ Pw such that xw(t) ∈ pw. Based on this, the
sample mean reward of arm y ∈ Y for the tuple of context
dimensions v ∈ Vdx

x in round t is defined as

μ̂v
y (t) :=

∑
w∈V2dx

x (v)
μ̂y,w(t)Ny,w(t)∑

w∈V2dx
x (v)

Ny,w(t)
.

At the beginning of round t, CMAB-RL first observes the
context x(t). Then, for eachw ∈ V2dx

x , it identifies the set pw(t)
inPw thatx(t)belongs to. Using this information and the sample
mean rewards, it generates the set of candidate relevant tuples
of context dimensions for each y ∈ Y as follows:

Ry(t) :=

{
v ∈ Vdx

x : |μ̂y,w(t)− μ̂y,w′(t)| ≤ 2 L

√
dx/m

+ uy,w(t) + uy,w′(t), ∀w,w′ ∈ V2dx
x (v)

}
. (1)

Here, the term 2 L
√

dx/m+ uy,w(t) + uy,w′(t) accounts
for the joint uncertainty over the sample mean rewards of arm y
calculated using observations inpw(t) andpw′(t). If the absolute
difference between the sample mean rewards is larger than the
joint uncertainty term, we can say that the subset of relevant
context dimensions that is in tuple w is different from the subset
of relevant context dimensions that is in tuple w′ with high
probability. Since v ⊂ w and v ⊂ w′, this implies that v does
not contain all relevant context dimensions. Therefore, the tuple
v is not included in the set of candidate relevant tuples of context
dimensions Ry(t).

Let ĉy(t) denote the tuple of estimated relevant context di-
mensions for army in round t. IfRy(t) is empty, then CMAB-RL

selects ĉy(t) from Vdx
x randomly. Otherwise, to compute ĉy(t),

CMAB-RL calculates the variation of the sample mean rewards
for every v ∈ Ry(t) as follows:

σ̂2
y,v(t) := max

w,w′∈V2dx
x (v)

|μ̂y,w(t)− μ̂y,w′(t)|.

After calculating the variation, CMAB-RL chooses ĉy(t) for
all y ∈ Y as ĉy(t) = arg minv∈Ry(t)

σ̂2
y,v(t). Then, using ĉy(t),

CMAB-RL calculates μ̂ĉy(t)
y (t) for all y ∈ Y . To select an arm

from Y , CMAB-RL uses the principle of optimism under the
face of uncertainty. The estimated rewards of the context-arm
pairs are inflated by a certain level, such that the inflated reward
estimates become an upper confidence bound (UCB) for the
expected reward with high probability. Denote the 2dx-tuple of
context dimensions with the highest uncertainty term for arm y
in round t by wy(t) := arg max

w′∈V2dx
x

uy,w′(t) (where ties are

broken randomly). UCB of arm y ∈ Y at time t is calculated as

UCBy(t) := μ̂
ĉy(t)
y (t) + 5uy,wy(t)(t).

Then, CMAB-RL selects the arm with the highest UCB, i.e.
y(t) = arg maxy∈YUCBy(t). This forces the arms that are rarely
selected by CMAB-RL to get explored (since they have high
uncertainty) while balancing the trade-off between exploration
and exploitation. After selecting arm y(t), CMAB-RL observes
the reward r(t) and updates the parameters for arm y(t) for all
w ∈ V2dx

x as follows:

μ̂y(t),w(t+ 1) =
μ̂y(t),w(t)Ny(t),w(t) + r(t)

Ny(t),w(t) + 1
and

Ny(t),w(t+ 1) = Ny(t),w(t) + 1. (2)

In addition, for y ∈ Y \ y(t), w ∈ V2dx
x and pw ∈ Pw,

we have Ny,pw
(t+ 1) = Ny,pw

(t), μ̂y,pw
(t+ 1) = μ̂y,pw

(t),
hence these values remain unchanged. Please refer to Appendix
B in the supplemental document for the analysis of memory and
computational complexities of CMAB-RL.

Remark 1: After a simple modification, CMAB-RL can also
work when it is restricted to make choices from a given finite
set of arms Af , which is a subset of the da-dimensional arm
set A. For this, it will first identify sets in C(A) that contain at
least one arm in Af . Let Cf (A) represent the collection of such
sets. For each set in Cf (A), CMAB-RL will pick a unique arm
from Cf (A) and include it in Y . By this construction, all arms
in Y will be from Af . After initializing the arm set Y this way,
CMAB-RL will compute and update UCB indices for these arms
in the same way as the original algorithm.

V. REGRET ANALYSIS

We first state and discuss our main result, and then, present
the technical details.

A. Main Result

Our main result is given in the following theorem.
Theorem 1: Given an arbitrary fixed sequence of contexts

x1:T , when CMAB-RL is run with m = �T 1/(2+2dx+da)�, we
have with probability at least 1− 1/T

Reg(T ) ≤ Cmax|V2dx
x |

(
da
da

)
T̃

2dx+da

2+2dx+da

+

(
L(10

√
dx +

√
da)+2

√
|V2dx

|
(
da
da

)
Bm,T

)
T̃

1+2dx+da

2+2dx+da
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where T̃ = (T 1/(2+2dx+da) + 1)2+2dx+da and Cmax :=
maxy,y′∈Y,x∈X (μy′(x)− μy(x)).

Importantly, Theorem 1 says that CMAB-RL incurs
Õ(T 1−1/(2+2dx+da)) regret with probability at least 1− 1/T

when it is run with m = �T 1/(2+2dx+da)�. A standard dou-
bling trick argument [25] can be used to make the algorithm
anytime (does not require T as input) while preserving the
order of the regret. As a side result, this sublinear regret bound
also implies average reward optimality of CMAB-RL. On the
other hand, classical CMAB algorithms that do not exploit
the relevance structure achieve Õ(T 1−1/(2+dx+da)) regret in
the worst-case [18]. Thus, when 2dx + da < dx + da, CMAB-
RL achieves a better regret order compared to the classical
CMAB algorithms. As noted before, for the finite-armed ver-
sion of our problem, RELEAF [19] achieves Õ(T g(d̄x)) re-
gret for g(d̄x) = (2 + 2d̄x +

√
4d̄2x + 16d̄x + 12)/(4 + 2d̄x +√

4d̄2x + 16d̄x + 12), while our regret bound for this case be-
comes Õ(T (1+2d̄x)/(2+2d̄x)), which is strictly better than that
of RELEAF. As a final remark, we would also like to note that
if ca is fixed for all a ∈ A, then it is possible to construct a
strategy based on Exp4 [46] that achieves Õ(T 1−1/(2+dx+da))
regret even though it requires defining an infeasible number
of experts (see Appendix C in the supplemental document for
details). In addition to assuming that the set of relevant context
dimensions is the same for each arm, when the set of relevant
context and arm dimensions are known (which is not the case
in our work), an obvious lower bound on the worst-case regret
would be Ω(T 1−1/(2+dx+da)) [18]. It is therefore an interesting
future research direction to close the gap between this lower
bound and our upper bound.

Remark 2: It is also possible to consider a joint upper bound
d̄z on the number of relevant context and arm dimensions.
In this case, since the learner does not know how many of
these dimensions correspond to contexts or arms, it needs to
consider all possible ways how d̄z-dimensions can be split
between context and arms. Two extreme non-trivial cases are
(d̄x = d̄z − 1, d̄a = 1) and (d̄x = 0, d̄a = d̄z). Note that the
case when (d̄x = d̄z, d̄a = 0) is trivial as all arms in this case
will yield the same expected reward for a given context, i.e., all
arms are equally well and there is no need for learning. Thus, if
only given d̄z , then the learner can set d̄x = d̄z − 1 and d̄a = d̄z
in CMAB-RL. Based on Theorem 1, this will result in a regret
bound of Õ(T 1−1/(3d̄z)) when 2(d̄z − 1) ≤ dx, which is still
sublinear in T .

We end this subsection by giving a high-level explanation of
the proof Theorem 1. To prove Theorem 1, as the first step, we
construct contextual variants of the tight confidence sets derived
from analysis of self-normalized martingale processes [28]. We
build our analysis over concentration of these sets (intervals
in our case) for the tuples that contain the relevant context
dimensions. Our first result (Lemma 1) indicates that the con-
fidence intervals remain reasonably small over all rounds with
a high probability. The rest of our analysis focuses on what
happens under this high probability event. For instance, defining
the relevance test as given in (1) ensures that all d̄x-tuples of
context dimensions that include the relevant context dimensions

pass the test (Lemma 2), and this further guarantees that the
estimated reward of each arm concentrates around its true mean
value for the current context (Lemma 3). As a result of this, the
UCB index used by CMAB-RL to select its arm ensures that
the suboptimality gap of the selected arm is proportional to its
uncertainty term (Lemma 4). As the uncertainty of an arm for
the current context decreases every time that arm is selected, as
time goes on, we conclude that the suboptimality gaps of the
selected arms go to zero, which when summed over all rounds,
gives us the worst-case regret bound. Technical details of the
proof can be found in the next subsection.

B. Proof of Theorem 1

We start by introducing the notation. For an event H, let Hc

denote its complement. For any w ∈ V2dx
x and pw ∈ Pw, let

Npw
(t) denote the number of context arrivals to pw by the end

of round t, τpw
(t) denote the round in which a context arrives

to pw for the tth time and Ry(t) denote the random reward of
arm y in round t.

For any w ∈ V2dx
x , pw ∈ Pw and y ∈ Y let

x̃pw
(t) := x(τpw

(t)), R̃y,pw
(t) := Ry(τpw

(t)), Ñy,pw
(t) :=

Ny,pw
(τpw

(t)), μ̃y,pw
(t) := μ̂y,pw

(τpw
(t)), ũy,pw

(t) :=
uy,pw

(τpw
(t)), ỹpw

(t) := y(τpw
(t)) and κ̃pw

(t) :=κ(τpw
(t)).

For any v ∈ Vdx
x and d′ ≤ dx − dx, d′ ∈ Z

+, let Vx(v, d
′) be

the set of d′-tuples of context dimensions whose elements are
from the set Dx \ v. Hence, for any v ∈ Vdx

x and j ∈ Vx(v, d
′),

(v, j) denotes a (dx + d′)-tuple of context dimensions.
For any y ∈ Y , v ∈ Vdx

x (cy), j ∈ Vx(v, dx) and p(v,j) ∈
P(v,j) we define the following lower and upper bounds:
Ly,p(v,j)

(t) := μ̃y,p(v,j)
(t)− ũy,p(v,j)

(t) and Uy,p(v,j)
(t) :=

μ̃y,p(v,j)
(t) + ũy,p(v,j)

(t).

For ε = L(
√

dx/m), y ∈ Y , v ∈ Vdx
x (cy), j ∈ Vx(v, dx)

and p(v,j) ∈ P(v,j), let

UCy,p(v,j)
:=

Np(v,j)
(T )⋃

t=1

{μy(x̃p(v,j)
(t)) /∈

[Ly,p(v,j)
(t)− ε, Uy,p(v,j)

(t) + ε]}

denote the event that the learner is not confident about its reward
estimate for at least once in time steps in which the contexts
is in p(v,j) by round T . Also, let UCy,(v,j) := ∪p(v,j)∈P(v,j)

UCy,p(v,j)
,UC(v,j) := ∪y∈Y UCy,(v,j) and

UC :=
⋃

v∈Vdx
x (cy),j∈Vx(v,dx)

UC(v,j).

Similarly for any y ∈ Y , v ∈ Vdx
x (cy), j ∈ Vx(v, dx) and

p(v,j) ∈ P(v,j), let

μy,p(v,j)
= sup

x∈p(v,j)

μy(x) and μ
y,p(v,j)

= inf
x∈p(v,j)

μy(x).

The following lemma states that UC occurs with a small
probability.
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Lemma 1:

Pr(UC) ≤ 1

T
.

Proof: Let {R̃y,p(v,j)
(t)}

Np(v,j)
(T )

t=1 denote the sequence of
rewards observed from arm y in time steps when the context is
in p(v,j). We can express the sample mean reward of y as

μ̃y,p(v,j)
(t) =

∑t−1
l=1 R̃y,p(v,j)

(l)I(ỹp(v,j)
(l) = y)

Ñy,p(v,j)
(t)

for Ñy,p(v,j)
(t) > 0, where I(·) is the indicator function. When

Ñy,p(v,j)
(t) = 0 we have μ̃y,p(v,j)

(t) = 0. We also have

R̃y,p(v,j)
(t) = μy(x̃p(v,j)

(t)) + κ̃p(v,j)
(t)

where {κ̃p(v,j)
(t)}

Np(v,j)
(T )

t=1 is a sequence of zero mean 1-
sub-Gaussian random variables. We define two new sequences
of random variables, whose sample mean values will lower
and upper bound μ̃y,p(v,j)

(t). The best sequence is defined as

{R̄y,p(v,j)
(t)}

Np(v,j)
(T )

t=1 where

Ry,p(v,j)
(t) = μy,p(v,j)

+ κ̃p(v,j)
(t)

and the worst sequence is defined as {Ry,p(v,j)
(t)}

Np(v,j)
(T )

t=1

where

Ry,p(v,j)
(t) = μ

y,p(v,j)
+ κ̃p(v,j)

(t).

Let

μy,p(v,j)
(t) :=

t−1∑
l=1

Ry,p(v,j)
(l)I(ỹp(v,j)

(l) = y)/Ñy,p(v,j)
(t)

μ
y,p(v,j)

(t) :=
t−1∑
l=1

Ry,p(v,j)
(l)I(ỹp(v,j)

(l) = y)/Ñy,p(v,j)
(t)

for Ñy,p(v,j)
(t) > 0. When Ñy,p(v,j)

(t) = 0 we have

μy,p(v,j)
(t) = μ

y,p(v,j)
(t) = 0. Since v ∈ Vdx

x (cy), we have

∀t ∈ {1, . . . , Np(v,j)
(T )}

μ
y,p(v,j)

(t) ≤ μ̃y,p(v,j)
(t) ≤ μy,p(v,j)

(t)

almost surely. Let

Ly,p(v,j)
(t) := μy,p(v,j)

(t)− ũy,p(v,j)
(t)

Uy,p(v,j)
(t) := μy,p(v,j)

(t) + ũy,p(v,j)
(t)

Ly,p(v,j)
(t) := μ

y,p(v,j)
(t)− ũy,p(v,j)

(t)

Uy,p(v,j)
(t) := μ

y,p(v,j)
(t) + ũy,p(v,j)

(t).

Then, we have

{μy(x̃p(v,j)
(t)) /∈ [Ly,p(v,j)

(t)− ε, Uy,p(v,j)
(t) + ε]}

⊂ {μy(x̃p(v,j)
(t)) /∈ [Ly,p(v,j)

(t)− ε, Uy,p(v,j)
(t) + ε]}

∪ {μy(x̃p(v,j)
(t)) /∈ [Ly,p(v,j)

(t)− ε, Uy,p(v,j)
(t) + ε]}. (3)

The following inequalities are obtained using Assumption 1
since v ∈ Vdx

x (cy):

μy(x̃p(v,j)
(t)) ≤ μy,p(v,j)

≤ μy(x̃p(v,j)
(t)) + ε (4)

μy(x̃p(v,j)
(t))− ε ≤ μ

y,p(v,j)
≤ μy(x̃p(v,j)

(t)). (5)

Using (4) and (5) it can be shown that

{μy(x̃p(v,j)
(t)) /∈ [Ly,p(v,j)

(t)− ε, Uy,p(v,j)
(t) + ε]}

⊂ {μy,p(v,j)
/∈ [Ly,p(v,j)

(t), Uy,p(v,j)
(t)]},

{μy(x̃p(v,j)
(t)) /∈ [Ly,p(v,j)

(t)− ε, Uy,p(v,j)
(t) + ε]}

⊂ {μ
y,p(v,j)

/∈ [Ly,p(v,j)
(t), Uy,p(v,j)

(t)]}.

Plugging this to (3), we get

{μy(x̃p(v,j)
(t)) /∈ [Ly,p(v,j)

(t)− ε, Uy,p(v,j)
(t) + ε]}

⊂ {μy,p(v,j)
/∈ [Ly,p(v,j)

(t), Uy,p(v,j)
(t)]}

∪ {μ
y,p(v,j)

/∈ [Ly,p(v,j)
(t), Uy,p(v,j)

(t)]}

Using the equation above and the union bound we obtain

Pr(UCy,p(v,j)
)

≤ Pr

⎛
⎝Np(v,j)

(T )⋃
t=1

{μy,p(v,j)
/∈ [Ly,p(v,j)

(t), Uy,p(v,j)
(t)]}

⎞
⎠

+ Pr

⎛
⎝Np(v,j)

(T )⋃
t=1

{μ
y,p(v,j)

/∈ [Ly,p(v,j)
(t), Uy,p(v,j)

(t)]}

⎞
⎠ .

Both terms on the right-hand side of the inequality above can
be bounded using the concentration inequality in Appendix D in
the supplemental document by setting δ = 1/(2|Y|Cm2dxT ):

Pr(UCy,p(v,j)
) ≤ 1

|Y|Cm2dxT

since 1 +Ny,p(v,j)
(T ) ≤ T . Finally, the union bound gives us

Pr(UC) ≤ 1/T . �
The next lemma states that Ry(t) �= ∅ for all y ∈ Y on event

UCc.
Lemma 2: On event UCc, ∀y ∈ Y , ∀v ∈ Vdx

x (cy) and ∀t ∈
{1, . . . , T}, we have v ∈ Ry(t).

Proof: ∀y ∈ Y , ∀v ∈ Vdx
x (cy) and ∀w ∈ V2dx

x (v), we have
w ⊃ cy , since w ⊃ v. By definition of UC, on event UCc,
∀t ∈ {1, . . . , T}, we have |μ̂y,w(t)− μy(x(t))| ≤ ε+ uy,w(t).

Thus, ∀w,w′ ∈ V2dx
x (v), we obtain |μ̂y,w(t)− μ̂y,w′(t)| ≤

2ε+ uy,w(t) + uy,w′(t) and consequently, we have v ∈ Ry(t)
by definition of Ry(t). �

The next lemma shows that the difference between estimated
and expected rewards of an arm is small on event UCc.

Lemma 3: On event UCc, for all y ∈ Y and t ∈ {1, . . . , T}
we have

|μ̂ĉy(t)
y (t)− μy(x(t))| ≤ 5ε+ 5uy,wy(t)(t).
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Proof: Fix v ∈ Vdx
x (cy). Since cy ⊆ v, we have on event

UCc

μ̂v
y (t) =

∑
w′∈V2dx

x (v)
μ̂y,w′(t)Ny,w′(t)∑

w′∈V2dx
x (v)

Ny,w′(t)

≤

∑
w′∈V2dx

x (v)
(μy(x(t)) + ε+ uy,wy(t)(t))Ny,w′(t)∑

w′∈V2dx
x (v)

Ny,w′(t)

= μy(x(t)) + ε+ uy,wy(t)(t).

Similarly, we also have

μ̂v
y (t) ≥

∑
w′∈V2dx

x (v)
(μy(x(t))− ε− uy,wy(t)(t))Ny,w′(t)∑

w′∈V2dx
x (v)

Ny,w′(t)

= μy(x(t))− ε− uy,wy(t)(t).

Combining these two yields

|μ̂v
y (t)− μy(x(t))| ≤ ε+ uy,wy(t)(t). (6)

Next, consider ĉy(t), which is chosen from Ry(t) as the dx-
tuple of context dimensions with the minimum variation. We
have for all j,k ∈ Vx(ĉy(t), dx)

|μ̂y,(ĉy(t),k)(t)− μ̂y,(ĉy(t),j)(t)| ≤

2ε+ uy,(ĉy(t),k)(t) + uy,(ĉy(t),j)(t).

Also, on event UCc, we have for all l ∈ Vx(v, dx)

|μ̂y,(v,l)(t)− μy(x(t))| ≤ ε+ uy,(v,l)(t).

Thus, on event UCc, we obtain for all l,n ∈ Vx(v, dx)

|μ̂y,(v,l)(t)− μ̂y,(v,n)(t)| ≤ 2ε+ uy,(v,l)(t) + uy,(v,n)(t).

Let g(v, ĉy(t)) be a 2dx-tuple of context dimensions that in-
cludes all entries of v and ĉy(t), i.e., for all i ∈ v and j ∈ ĉy(t),
we have i, j ∈ g(v, ĉy(t)). The existence of at least one such
2dx-tuple of context dimensions is guaranteed since v and ĉy(t)
are both dx-tuples of context dimensions. Combining what we
have obtained thus far, we get

|μ̂v
y (t)− μ̂

ĉy(t)
y (t)|

≤ max
k∈Vx(v,dx)

j∈Vx(ĉy(t),dx)

{
|μ̂y,(v,k)(t)− μ̂y,(ĉy(t),j)(t)|

}

≤ max
k∈Vx(v,dx)

j∈Vx(ĉy(t),dx)

{
|μ̂y,(v,k)(t)− μ̂y,g(v,ĉy(t))(t)|

+|μ̂y,g(v,ĉy(t))(t)− μ̂y,(ĉy(t),j)(t)|
}

≤ max
k∈Vx(v,dx)

j∈Vx(ĉy(t),dx)

{
4ε+ uy,(v,k)(t)

+uy,(ĉy(t)),j)(t) + 2uy,g(v,ĉy(t))(t)
}

≤ 4ε+ 4uy,wy(t)(t).

Finally, combining the result above with (6), we obtain

|μ̂ĉy(t)
y (t)− μy(x(t))| ≤ 5ε+ 5uy,wy(t)(t).

�

To prove the next lemma, we introduce new notation. For
y ∈ Y , w ∈ V2dx

x and pw ∈ Pw, let

Ty,w,pw
:= {t ∈ {1, . . . , T} : x(t) ∈ pw, y(t) = y,

wy(t) = w}

and τy,w,pw
(t) denote the round in which a context arrives

to pw, arm y is chosen and wy(t) = w for the tth time. For
simplicity, with an abuse of notation we let Ty,pw

:= Ty,w,pw

and τy,pw
(t) := τy,w,pw

(t).

Lemma 4: On event UCc, for all y ∈ Y ,w ∈ V2dx
x , pw ∈ Pw

and for all t ∈ {1, . . . , |Ty,pw
|}, we have

μy∗(τy,pw (t))(x(τy,pw
(t)))− μy(x(τy,pw

(t)))

≤ 10ε+ 10uy,w(τy,pw
(t))

where y∗(t) ∈ arg maxy′∈Yμy′(x(t)).
Proof: Since CMAB-RL chooses arm y in round

τy,pw
(t), we have y ∈ arg maxy′∈Y{μ̂

ĉy′ (τy,pw (t))

y′ (τy,pw
(t)) +

5uy′,wy′ (τy,pw (t))(τy,pw
(t))}. By Lemma 3, we have

|μ̂ĉy(τy,pw (t))
y (τy,pw

(t))− μy(x(τy,pw
(t)))|

≤ 5ε+ 5uy,wy(τy,pw (t))(τy,pw
(t)).

For all y′ ∈ Y , let

U ′
y′(t) := μ̂

ĉy′ (t)

y′ (t) + 5uy′,wy′ (t)(t) + 5ε and

L′
y′(t) := μ̂

ĉy′ (t)

y′ (t)− 5uy′,wy′ (t)(t)− 5ε.

Note that by the selection rule of CMAB-RL, U ′
y(τy,pw

(t)) ≥
U ′
y∗(τy,pw (t))(τy,pw

(t)). Combining this with the result of
Lemma 3 we obtain U ′

y(τy,pw
(t)) ≥ U ′

y∗(τy,pw (t))(τy,pw
(t)) ≥

μy∗(τy,pw (t))(x(τy,pw
(t))) ≥ μy(x(τy,pw

(t))) ≥ L′
y(τy,pw

(t)).
Therefore, we get μy∗(τy,pw (t))(x(τy,pw

(t)))−
μy(x(τy,pw

(t))) ≤ U ′
y(τy,pw

(t))− L′
y(τy,pw

(t)) = 10ε+
10uy,wy(τy,pw (t))(τy,pw

(t)). Finally, note that in round
τy,pw

(t) it holds that wy(τy,pw
(t)) = w, hence we also

have uy,wy(τy,pw (t))(τy,pw
(t)) = uy,w(τy,pw

(t)). Using this
information we get the inequality stated in the lemma. �

For each y ∈ Y , there are |V2dx
x | = (

dx
2dx

) different 2dx-tuples

of context dimensions and for each 2dx-tuple of context dimen-
sions w ∈ V2dx

x , |Pw| = m2dx . Thus, we have

T∑
t=1

μy∗(x(t))(x(t))−
T∑

t=1

μy(t)(x(t))

≤ Cmax|V2dx
x |m2dx |Y|

+
∑
y∈Y

∑
w∈V2dx

x

∑
pw∈Pw

∑
t∈{1,...,|Ty,pw |}

10uy,w(τy,pw
(t)) + 10ε

= Cmax|V2dx
x |m2dx |Y|+ 10εT

+
∑
y∈Y

∑
w∈V2dx

x

∑
pw∈Pw

∑
t∈{1,...,|Ty,pw |}

10uy,w(τy,pw
(t))

≤ Cmax|V2dx
x |m2dx |Y|+ 10εT
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+Bm,T

∑
y∈Y

∑
w∈V2dx

x

∑
pw∈Pw

|Ty,pw |−1∑
l=0

√
1

1 + l

≤ Cmax|V2dx
x |m2dx |Y|+ 10εT

+ 2Bm,T

∑
y∈Y

∑
w∈V2dx

x

∑
pw∈Pw

√
|Ty,pw

|

≤ Cmax|V2dx
x |m2dx |Y|+ 10εT + 2Bm,T

√
|V2dx

x |m2dx |Y|T

where Bm,T := 10
√

2Am,T and Am,T := (1 +

2 log(2|Y|C̄m2dxT 3/2)).
In order to bound the regret, next, we evaluate the error due

to discretization of the arm set. Recall that instead of choosing
arms from A, CMAB-RL chooses arms from Y such that |Y| =

mda(
da
da

). The regret due to this discretization can be bounded

as

T∑
t=1

μa∗(x(t))(x(t))−
T∑

t=1

μy∗(x(t))(x(t)) ≤ TL

√
da/m.

Combining this with the regret bound obtained above and re-
calling that ε = L(

√
dx/m), we get

Reg(T ) ≤ Cmax|V2dx
x |m2dxmda

(
da
da

)
+

10 LT

m

√
dx

+
LT
√

da
m

+ 2Bm,T

√
|V2dx

x |m2dxmda

(
da
da

)
T

with probability 1− 1/T . Finally, after choosing m =

�T 1/(2+2dx+da)� the regret bound becomes

Reg(T ) ≤ Cmax|V2dx
x |T̃

2dx+da

2+2dx+da

(
da
da

)

+ L(10

√
dx +

√
da)T̃

1+2dx+da

2+2dx+da

+ 2Bm,T

√
|V2dx

x |
(
da
da

)
T̃

1+2dx+da

2+2dx+da

which proves Theorem 1.

VI. ILLUSTRATIVE RESULTS

In this section, we numerically evaluate the performance of
CMAB-RL in two experiments. In the first experiment, we gen-
erate a synthetic simulation environment with multi-dimensional
context and arm sets, where in each set only a single dimension
is relevant. In the second experiment, we apply CMAB-RL
to the dynamic drug dosage regulation problem (bolus insulin
administration) by utilizing OhioT1DM dataset [47].

A. Competitor Learning Algorithms

1) Instance-Based Uniform Partitioning (IUP) [13]: This is
a contextual MAB algorithm that learns the optimal arm for each

context by uniformly partitioning the set of feasible context-
arm pairs F into mdx+da hypercubes, where the choice m =
�T 1/(2+dx+da)� is shown minimize the regret. In each round,
IUP first identifies the set of hypercubes that contain the current
context, and then, plays an arm within the hypercube with the
highest UCB among all hypercubes in that set. IUP does not take
the relevance information into account.

2) Contextual Hierarchical Optimistic Optimization (C-
HOO): This is the contextual version of hierarchical optimistic
optimization (HOO) strategy proposed in [25].4 Originally,
HOO adaptively partitions the arm set A, by the help of a binary
tree structure it stores. Each node of the tree corresponds to a
subset ofA, and as the depth level of a node increases, the subset
it represents gets smaller. Subsets that correspond to nodes that
have the same depth level form a partition on A. The tree of
partitions is constructed in a way such that the union of the
regions covered by the children of a node n is equal to the
region that node n covers. In each round, HOO constructs a path
starting from the root node, which corresponds to A. The path
is constructed such that at every level of the tree, the child node
with the highest UCB is added to the path. When a node with at
most one child is reached, if the node has one child, the second
child is created. Otherwise, a random child is created. The arm to
be played is selected from the region that the newly created child
represents. As HOO gathers information about the environment,
it “zooms” into regions with potentially high expected rewards,
thereby performing more careful exploration in these regions.

We create C-HOO based on HOO as follows. First of all, we
construct a tree of partitions over F instead of A. In each round,
C-HOO first observes the context, and then, constructs its path
similar to HOO. The difference is that when constructing the
path, at every level of the tree, first the availability (whether
a node contains the context) of the children are checked, and
among the children that contain the current context, the one
with the highest UCB is added to the path. It is also important to
note that since the computational complexity of HOO increases
quadratically with the number of rounds, we construct C-HOO
based on the truncated version of HOO [25], which is more
efficient and enjoys the same regret bound as HOO except an
additive factor of 4

√
T .

3) Uniform Random: This benchmark randomly selects an
arm in each round without taking the current context or past
information into account.

B. Parameters Used in the Experiments

We assume that the Lipschitz constants in both experiments
are unknown to the learner, thus simply setL = 1 in the learning
algorithms. Moreover, the set of all feasible context-arm pairs
F , time horizon T , dimensionality of context and arm sets,
i.e., dx and da, are given as inputs to all learning algorithms.
In addition, we set dx = dx and da = da for CMAB-RL, and
v1 = 2

√
dx + da and ρ = 2(−1/(dx+da)) for C-HOO (consistent

with Assumption A1 in [25]). For IUP, no additional parameters

4Another related work [24] also proposes a contextual version of HOO for
the Bayesian version of the MAB problem with Gaussian process prior.
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are required. The confidence terms of all learning algorithms
are scaled (multiplied) with a constant that is chosen from
the set {0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 1}which pushes
algorithms to exploit more. The rationale behind this choice is
that during our experiments we observed that the confidence
terms start large and vanish slowly forcing learning algorithms to
explore too much, and scaling helps learning algorithms achieve
higher cumulative rewards. For each learning algorithm, the op-
timal multiplier for the confidence term is found by grid search.
For all experiments, in order to reduce the effect of randomness
due to context arrivals, arm selections and reward generation on
the performance measurements, the reported results correspond
to the average of 20 independent repetitions.

C. Experiments on a Synthetic Simulation Environment

We consider a setting with dx = 5, da = 5, dx = 1 and da =
1, and assume that the relevant context dimension is the same
for all arms. We let the relevant arm and context dimensions
to be the first arm and context dimensions respectively, i.e.,
c = {1} and ca = {1}, ∀a ∈ A. Since the expected reward
function does not depend on the irrelevant context dimensions,
we have dx + da = 2. The expected reward function is defined
by using a multivariate Gaussian mixture model, where the
expected reward for context-arm pair (x, a) ∈ F is given as

μa(x) = min

{
s

K∑
i=1

ρif((x1, a1)|θi,Σi), 1

}

for
∑K

i=1 ρi = 1 and ρi > 0, for 1 ≤ i ≤ K. Here, s denotes
the scaling factor, K denotes the number of components, f de-
notes the probability density function of a multivariate Gaussian
distribution and ρi, θi and Σi stand for the component weight,
mean vector and covariance matrix of the ith component, re-
spectively. The parameters of the Gaussian mixture are set as
follows: s = 0.25, K = 2, ρ1 = ρ2 = 0.5, θ1 = [0.25, 0.75]T ,
θ2 = [0.5, 0.5]T and

Σ1 =

[
0.05 0.03

0.03 0.025

]
, Σ2 =

[
0.025 −0.03

−0.03 0.05

]
.

Variation of the expected reward function over the relevant
context and arm dimensions can be seen in Fig. 1. The reward
that the learner receives in round t is sampled from a Bernoulli
distribution with parameter μa(t)(x(t)) independently from the
other rounds.

Learning algorithms are run for a time horizon of T = 105

rounds. In each round, a context arrives uniformly at random.
The optimal multipliers for the confidence terms are found to
be 0.001 for CMAB-RL, 0.01 for IUP and 0.05 for C-HOO.
Reported results correspond to this choice of multipliers. Cu-
mulative rewards of the algorithms over time are given in Fig. 2.
As we can see, CMAB-RL achieves more than 29% and 100%
improvement over the cumulative rewards of C-HOO and IUP
respectively. Although C-HOO does not utilize relevancy infor-
mation, it significantly outperforms IUP as a result of employing
adaptive exploration using a tree of partitions. On the other hand,
IUP performs poorly due to the curse of dimensionality. As a

Fig. 1. Expected reward as a function of the relevant context and arm dimen-
sions in the first experiment.

Fig. 2. Cumulative rewards of CMAB-RL, C-HOO and IUP for T = 105 in
the first experiment.

result, its cumulative reward is only slightly higher than that of
Uniform Random.

Results on the regret are given in Fig. 3. The increase in
the regret of CMAB-RL significantly drops down after 15 000
rounds, while the increase in the regrets of C-HOO and IUP
does not drop significantly in the given time horizon. Since T
is an input to the learning algorithms, we provide additional
results on the regret when the algorithms are run with input time
horizons ranging from T = 5000 to T = 105. Fig. 4 shows that
CMAB-RL achieves the smallest regret for all time horizons.

D. Experiments on the OhioT1DM Dataset

For our second experiment, we use the OhioT1DM dataset
that consists of several physiological measurements for 6 T1DM
patients who are on continuous glucose monitoring and insulin
pump therapy over a time period of 8 weeks (see [47] for the
details). While the original dataset is split into training and test
sets for each patient in advance, we merge them into a single set
to perform online learning.

Our aim in this experiment is to learn the optimal bolus
insulin dose for a patient such that their mean blood glucose
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Fig. 3. Regrets of CMAB-RL, C-HOO and IUP for T = 105 in the first
experiment.

Fig. 4. Regrets of CMAB-RL, C-HOO and IUP when they are run with differ-
ent time horizons in the first experiment. The jumps in the regrets correspond to
time horizons for which the value of m changes (since m takes integer values).

levels remain within the desired range of 80 to 180 mg/dL (see,
e.g., [48]) by making use of contextual information such as the
state of the patient and the ongoing basal insulin treatment before
a bolus injection. As the state of the patient, we consider means
of (i) continuous glucose measurements (CGMs), (ii) heart rate,
(iii) skin temperature, (iv) air temperature and (v) galvanic skin
response measurement, and sums of (i) carbohydrate intake from
meals, (ii) exercise scores (multiplication of the duration and
the intensity of an exercise session) and (iii) number of steps
taken for the last 30 minutes before a bolus injection. As the
ongoing basal insulin treatment, we consider the mean of the
basal insulin dosages for the last 30 minutes. This corresponds
to the setting where dx = 9. As the arms, we only consider the
bolus insulin dosages, thus da = da = 1. Since bolus insulin
doses are administered by an insulin pump that provides doses
of insulin with a fine granularity, the set of bolus insulin doses
can be approximated well by a continuum of values. Note that
data is scaled such that it resides in range [0, 1] for all context
and arm dimensions.

The rewards are based on the mean of the CGMs of the patients
for the next 30 minutes to 2 hours after a bolus injection. Thus,
for the sake of simplicity, in the rest of this section, we call CGM
values that we use as contexts as past CGMs and CGM values
that we use for reward generation as resulting CGMs.

We impute the missing values as follows. If no data is available
to generate the contexts, then we set the contexts for carbohy-
drate intake, exercise and number of steps as zero, since lack
of data suggests no activity. For heart rate, skin temperature,
air temperature and galvanic skin response, we take the mean
value of the whole dataset. Data is always available for bolus
injections as we first locate the bolus events and extract other
variables near the bolus events. If however, no data is available
for past or resulting CGMs of a bolus event, then we ignore that
bolus event.

In order to setup the simulation, for each patient we fit a
multivariate Gaussian distribution to all context dimensions,
using only the said patient’s data. Moreover, we learn a prior
distribution over the patients by considering how frequently they
appear in the dataset. We also need to model every possible
combination of contexts, arms and rewards, which means that
we need to learn a mapping from the context-arm space to
the reward space. To achieve this, we use a Gradient Boosting
regression model with Huber loss, which has 100 decision trees
as weak estimators where each tree is constrained to have a
maximum depth of 5. The inputs to the regression model are
contexts and arms, whereas the outputs are the resulting CGMs.
We use oversampling so that all patients have equal amount of
data prior to the training of Gradient Boosting. The oversampling
is done by sampling with replacement. During the experiment,
in each round t, we select a patient randomly using the prior
distribution, then we sample the context vector x(t) from the
selected patient’s Gaussian distribution. If the generated context
is not in range [0, 1](dx+da), we repeat the sampling process
until a valid context is generated. Then, we feed the generated
context to the CMAB algorithm. When the CMAB algorithm
returns the arm a(t), we query the regression model for the
reward r(t), inputting x(t) and a(t). Upon receiving the query,
the environment generates a resulting CGM value, and translates
it into r(t) using the following mapping:

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, x ≤ 80 (hypoglycemia)
x−80
10 , 80 ≤ x ≤ 90

1, 90 ≤ x ≤ 130
180−x
50 , 130 ≤ x ≤ 180

0, 180 ≤ x (hyperglycemia)

(7)

Note that we add zero-mean Gaussian noise with standard
deviation of 5 to the resulting CGMs to introduce randomness
to the rewards.

After training the Gradient Boosting regression model, we
examine average impurity decrease for each input across all
trees which are then normalized so that the sum of the average
impurities for all inputs add up to 1. This examination shows
that only the past CGM values before a bolus event yields a
score higher than 0.5, while all the other variables yield scores
lower than 0.1. This result is consistent with other works that
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TABLE II
PERCENTAGES OF SAMPLES FOR ALL APPROACHES AND PATIENTS

Fig. 5. Histograms of the resulting CGMs for all patients under different
learning algorithms and the original dataset.

study this dataset in the setting of forecasting, including [5]
and [6]. Therefore, it can be argued that past CGM values are
the most relevant in the set of available features. In light of this
information, we set dx = 1 during the experiment and fix the
horizon to be T = 105. The confidence term multipliers in this
experiment are 0.001 for CMAB-RL, 0.05 for IUP and 0.1 for
C-HOO.

The histograms of resulting CGMs of all learning algorithms
and the original dataset are given in Fig. 5. These are normalized
such that the area under individual histograms sum up to 1, so that
the difference between the glucose control in the original dataset
and that of the learning algorithms can be observed better. It is
observed that in general all learning algorithms provide better
glucose management than the one in the original dataset. In
addition, Table II, represents the percentage of samples for which
the resulting CGMs represent hypoglycemia or hyperglycemia,
or are in the desired range. It is seen that for each patient, CMAB-
RL has the highest percentage of samples between the desired
range of 80 to 180 mg/dL. Moreover, CMAB-RL also has the
lowest density in the regions that correspond to hypoglycemia
and hyperglycemia, except for patient 588, for which the original
dataset has no hypoglycemic CGMs.

VII. CONCLUSION

In this work, we considered a CMAB problem with high-
dimensional context and arm sets, and motivated by real-world
applications, assumed that the reward only depends on a few rele-
vant dimensions of the context and the arm sets. For this problem,
we proposed an online learning algorithm, called CMAB-RL,
which learns the relevant context and arm dimensions simul-
taneously, thereby achieving a regret bound that only depends
on the maximum number of relevant dimensions given that this
number is known by the learner. Our regret analysis does not
require any stochastic assumptions on the context arrivals, and
CMAB-RL is shown to beat other contextual MAB algorithms
that do not exploit the relevance in both synthetic and real-world
datasets.
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