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a b s t r a c t

The Quadratic Assignment Problem is one of the hardest combinatorial optimization
problems known. We present two new classes of instances of the Quadratic Assignment
Problem that can be reduced to the Linear Assignment Problem and give polynomial time
procedures to check whether or not an instance is an element of these classes.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Quadratic Assignment Problem (QAP) is the problem of determining a one-to-one and onto assignment between
two sets, each consisting of n objects (e.g. n facilities and n locations) so as to minimize the sum of the costs associated with
pairs of assignments. The initial formulation is due to Koopmans and Beckmann [1], where the cost of assigning facility i to
location j and of facility k to location l is fikdjl with fik denoting the material flow per unit time between facilities i and k and
djl denoting the distance between locations j and l. Define xij to be 1 if facility i is assigned to location j, and 0 otherwise. The
Koopmans–Beckmann formulation of the QAP is as follows:

minimize
n−

i,j,k,l=1

fikdjlxijxkl (1)

subject to
n−

k=1

xik = 1, ∀i ∈ {1, . . . , n} (2)

n−
i=1

xik = 1, ∀k ∈ {1, . . . , n} (3)

xik ∈ {0, 1} , ∀i, k ∈ {1, . . . , n}. (4)
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Lawler [2] studied the case with general cost coefficients, where fikdjl is replaced by a general cost term Cijkl, which is
the cost of assigning facilities i and k to locations j and l, respectively. The Koopmans–Beckmann form requires, as input,
a flow matrix F = [fik] and a distance matrix D = [djl] resulting in an input of O(n2) while the general form with costs
Cijkl (i, j, k, l = 1, . . . , n) requires the specification of O(n4) cost terms.

The QAP is one of the hardest combinatorial optimization problems known. It is NP-Hard in the strong sense [3]. While
theoretical, algorithmic, and technological developments have led to significant advances in solvable sizes of many well-
known NP-Hard problems, QAP has remained as a stand alone class that seems to defy all solution attempts except for very
limited sizes. The largest solved instance in the QAPLIB [4] is of size 36 [5,6] while that of the Traveling Salesman Problem,
for example, is around 85900 cities [7].

Our focus in this paper is on certain polynomial time solvable classes of the QAP that can be solved as a Linear Assignment
Problem (LAP). Given the costs cij, (i, j ∈ {1, . . . , n}) the LAP is the problem ofminimizing

∑n
i,j=1 cijxij subject to (2)–(4). It is

well known that the LAP is solvable in polynomial time. Akgül [8] gives a review of many of the polynomial time algorithms
that solve the LAP. Reducing an instance of the QAP to an instance of the LAP in polynomial time implies polynomial time
solvability of the QAP instance on hand. Consequently, the three classes proposed in this paper are polynomial time solvable.

Special structures that have received attention in the literature in the context of the QAP seems to be rather limited. We
refer the reader to the survey by Burkard et al. [9] and the books by Burkard [10] andÇela [11] for a complete exposition to the
polynomially solvable classes of the QAP. Prior to these studies, Chen [12] proposed three special cases of the general form
of the QAP that can be represented as parametric LAPs. The complexity status of these classes is open, but computational
results have been reported by Chen for test problems up to size 50. Burkard et al. [13] provided three polynomial time
solvable classes of the Koopmans–Beckmann form,where one inputmatrix ismonotone anti-Mongewhile the other is either
symmetric Toeplitz generated by a benevolent (or a k-benevolent) function, or symmetricwith bandwidth 1. They show that
certain assignments qualify as optimal for these cases. Deineko andWoeginger [14] provided another polynomially solvable
class for the Koopmans–Beckmann form with one matrix being Kalmanson and the other being symmetric decreasing
circulant. Burkard et al. [9] analyzed in their survey, coefficient matrices with special properties (sum, product, Monge,
anti-Monge, Kalmanson, Toeplitz and circulant) and gave complexity results for many of the resulting cases. The two classes
we propose in this paper are new and not derived from the aforementioned classes.

2. New classes of polynomially solvable instances

In this section, we present our analytical results based on decompositions of the cost coefficients.

2.1. Additive decomposition

The first class we propose is what we refer to as the additively decomposable class for general cost terms. The proposed
class is a significant generalization of an earlier class proposed by Burkard et al. [9] for the Koopmans–Beckmann form.
Denote the flow and distance matrices by F = [fik] and D = [djl] for the Koopmans–Beckmann form, respectively. Burkard
et al. [9] showed that if 2n numbers f ri , f ci (i ∈ {1, . . . , n}) can be found associated, respectively, with the n rows and the n
columns of the flow matrix such that fik = f ri + f ck ∀i, k ∈ {1, . . . , n}, the problem is reducible to the LAP. The result is also
valid if a similar decomposition is available for D.

The additive decomposition we propose here is a more general one that works for the case of general costs Cijkl and relies
on solving a linear system of equations with O(n3) variables and O(n4) equations. Because the linear equation system is
overdetermined, it may or may not have a solution. Whenever there exists a solution, the QAP on hand is solved as a LAP in
polynomial time.

To define the additively decomposable class of interest, let I = {1, 2, . . . , n} and let Ik be the k-fold Cartesian product of
I by itself. For k = 4, denote by q = ijkl any quadruplet in I4. We define a quadruplet q = ijkl to be incompatible if either
i = k and j ≠ l or j = l and i ≠ k, and define it to be compatible otherwise. Incompatible quadruplets correspond to the
cases where either two distinct facilities are assigned to the same location or the same facility is assigned to two distinct
locations. Such assignments are infeasible in the QAP. Compatible quadruplets refer to the cases where either two distinct
facilities are assigned to two distinct locations or a facility is assigned to a single location (i.e. q is of the form ijij). Define Ī
to be the subset of I4 consisting of compatible quadruplets. Note that there are n4

− 2n3
+ 2n2 compatible quadruplets. We

write Cq to mean the cost Cijkl for which q = ijkl. For a nonempty subset s of {1, 2, 3, 4}, we define q(s) to be the ordered
|s|-tuple obtained from the quadruplet q by retaining the indices in q that correspond to positions in s while deleting all
other indices. For example, if q = k1k2k3k4 and s = {1, 2, 4}, then q(s) = k1k2k4. If s = {2, 4}, then q(s) = k2k4. Define also
q(φ) = 0 ∀q ∈ I4.

Corresponding to each nonempty proper subset s of {1, 2, 3, 4} and each t ∈ I |s|, define a variable us
t . Additionally, for

s = φ, we take t = 0 and define an additional variable uφ

0 . For example, if n = 5 and s = {1, 2, 4}, then each element of
{1, 2, 3, 4, 5}3 gives an ordered triplet t = ijk for which a variable u{1,2,3}

t is defined. In general, the number of us
t variables

is 4n3
+ 6n2

+ 4n + 1. Let A be a matrix of 0s and 1s with rows corresponding to compatible quadruplets and columns
corresponding to (s, t) pairs. A has |Ī| = n4

− 2n3
+ 2n2 rows and 4n3

+ 6n2
+ 4n + 1 columns. Denote the element in row

q and column (s, t) of A by as,tq . We define as,tq = 1 if q(s) = t and 0 otherwise. For example, if n = 5, s = {1, 2, 4}, t = 115,
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Fig. 1. An example of the A matrix for n = 3. Columns in the middle are omitted due to space limitation.

then each of the choices q = 1125, q = 1135, q = 1145, and q = 1155 gives q(s) = 115 = t so that as,tq = 1 while any
other choice of q gives as,tq = 0. Let A = [as,tq ] and u be the vector of us

t values where the columns of A and the elements of u
are identically ordered by (s, t). Let C be the vector of costs Cijkl, ijkl ∈ I4, and C̄ be the vector obtained from C by deleting all
cost components Cijkl corresponding to incompatible quadruplets ijkl ∈ I4. We assume that the rows of A and the elements
of C̄ are identically ordered by q ∈ Ī . An example of the A matrix for n = 3 is depicted in Fig. 1.

Theorem 1. If the linear equality system

Au = C̄ (5)

has a solution, then the instance of the QAP defined by C can be solved as a LAP.

Proof. Assume that û = (ûs
t) solves (5). Then Aû = C̄ implies that−

t:q(s)=t

ûs
t = Cq, q ∈ Ī. (6)

Using (6), the objective function value of the QAP for any feasible solution X = (xıj) can be rewritten as:

−
ijkl∈I4

Cijklxijxkl =

−
ijkl∈Ī

Cijklxijxkl =

−
ijkl∈Ī


û123
ijk + û124

ijl + û134
ikl + û234

jkl + û12
ij + û13

ik + û14
il

+ û23
jk + û24

jl + û34
kl + û1

i + û2
j + û3

k + û4
l + û0

0


xijxkl (7)

=

−
ijkl∈Ī

û123
ijk xijxkl + · · · +

−
ijkl∈Ī

û0
0xijxkl (8)

where the first equality follows from the fact that feasibility ensures xıjxkl = 0 for any incompatible quadruplet ijkl. Each of
the fifteen summations in (8) can be written in such a way as to separate out the omitted index (indices) from us

t terms. For
example, the first summation gives−

ijk∈I3
û123
ijk xij

−
l∈I

xkl =

−
ijk∈I3

û123
ijk xij (9)

where the equality follows from (2). The other summations can be similarly processed using (2)–(4) to obtain the following
equality:
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ijkl∈I4

Cijklxijxkl =

−
ijk∈I3

û123
ijk xij +

−
ijl∈I3

û124
ijl xij +

−
ikl∈I3

û134
ikl xkl +

−
jkl∈I3

û234
jkl xkl

+ n
−
ij∈I2

û12
ij xij +

−
ik∈I2

û13
ik +

−
il∈I2

û14
il +

−
jk∈I2

û23
jk +

−
jl∈I2

û24
jl + n

−
kl∈I2

û34
kl xkl

+ n
−
i∈I

û1
i + n

−
j∈I

û2
j + n

−
k∈I

û3
k + n

−
l∈I

û4
l + n2û0

0. (10)

The resulting LAP has the following cost coefficient for the variable xij:

ĉij =

−
r∈I

û123
ijr +

−
r∈I

û124
ijr +

−
r∈I

û134
rij +

−
r∈I

û234
rij + n.û12

ij + n.û34
ij (11)

so that the objective function
∑

ijkl∈I4 Cijklxijxkl of the QAP is equal to the objective function
∑

ij∈I2 ĉijxij of the resulting LAP
plus the constant K̂ where

K̂ =

−
ik∈I2

û13
ik +

−
il∈I2

û14
il +

−
jk∈I2

û23
jk +

−
jl∈I

û24
jl + n

−
i∈I

û1
i +

−
i∈I

û2
i +

−
i∈I

û3
i +

−
i∈I

û4
i + n.û0

0


. (12)

Thus, the instance of the QAP defined by C is solvable as a LAP whenever the system Au = C̄ has a solution.
Define Class 1 to be the set of instances of the QAP for which (5) has a solution. The following algorithm checks whether

or not an instance belongs to Class 1 and solves it whenever it does. The correctness of the algorithm directly follows from
Theorem 1. �

Algorithm 1.
Step 1. Solve Au = C̄ to obtain a solution û, if it exists. If no solution exists, stop. The instance does not belong to Class 1.
Else, continue.
Step 2. Define the cost coefficients ĉij using û in (11).

Step 3. Solve the resulting LAP to get an optimal solution X̂ = (x̂ij). Then X̂ solves the QAP instance and its optimal objective
value is−

ijkl∈I4
Cijklx̂ijx̂kl =

−
ij∈I2

ĉijx̂ij + K̂ (13)

where K̂ is as defined in (12).

2.2. Multiplicative decomposition

We now propose a second class of instances of the QAP that are solvable as LAPs. This class is based on decomposing
general cost coefficients in a multiplicative way and requires solving a nonlinear system of equations with O(n2) variables
and O(n4) equations. We do provide a polynomial time solution for this systemwhenever a solution exists. Chen [12] gave a
similar decomposition that results in a parametric LAPwhose complexity status is open, whereas our decomposition implies
polynomial time solvability of the QAP whenever the decomposition proposed in Theorem 2 is valid.

Define first z(c) and z̄(c) to be the minimum and maximum objective values of the LAP, respectively, for which the cost
data is c = (cij).

Theorem 2. If there exists v = (vij, ij ∈ I2) that satisfies

vijvkl = Cijkl, ijkl ∈ Ī, (14)

and if 0 ≤ z(v) or z̄(v) ≤ 0, then the instance of the QAP defined by costs Cijkl, ijkl ∈ I4, is equivalent to the LAP with costs
vij, ij ∈ I2, for the case 0 ≤ z(v), and to the LAP with costs −vij, ij ∈ I2, for the case z̄(v) ≤ 0.

Proof. Assume that such vij, ij ∈ I2, exist. Then the objective function becomes:−
ijkl∈I4

vijvklxijxkl =

−
ijkl∈Ī

vijvklxijxkl. (15)

Reorganizing the terms, (15) can be rewritten as:

−
ij∈I2

vijxij
−
kl∈I2

vklxkl =

−
ij∈I2

vijxij

2

. (16)
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Fig. 2. An example of the decomposable cost matrix and the corresponding decomposition. The cells that have been shaded black are elements of I4 \ Ī .

If 0 ≤ z(v), all feasible assignments induce a nonnegative objective value in the LAP with cost vector v = (vij) so
that any feasible assignment that minimizes

∑
ij∈I2 vijxij also minimizes

∑
ij∈I2 vijxij

2. If z̄(v) ≤ 0, all feasible assignments
yield a non-positive objective value in the LAP so that any feasible assignment that minimizes

∑
ij∈I2 −vijxij also minimizes∑

ij∈I2 vijxij
2. �

Define Class 2 to be the set of instances of the QAP that fulfills the assumptions of Theorem 2. The corresponding v and
C matrices for an element of this set of problems is provided in Fig. 2. Notice that every element of this class must satisfy
v2
ij = Cijij (or equivalently vij = ±


Cijij), implying that an instance for which Cijij < 0 for some ij ∈ I2 is not an element

of Class 2. Note that if all Cijij, ij ∈ I2, are nonnegative, two possible values can be assigned to each vij corresponding to the
plus or minus roots so that there are 2n2 possible choices of the multipliers (vij, ij ∈ I2). Despite the exponential number
of possibilities, the following algorithm identifies the correct values of the multipliers in O(n2) time (followed by an O(n4)
secondary check). The algorithm determines whether or not a given instance belongs to Class 2.

Algorithm 2.
Step 1. Pick an arbitrary facility–location pair ij. Set vij =


Cijij. Note that whenever a multiplicative decomposition with

multipliers vij, ij ∈ I2 exists, another multiplicative decomposition with multipliers −vij, ij ∈ I2 also exists. Hence setting
vij =


Cijij for a single pair ij does not result in a loss of generality.

Step 2. For every facility–location pair ab where i ≠ a and j ≠ b, go to (a) or (b) depending on Cijab < 0 or Cijab ≥ 0,
respectively.

(a) Case with Cijab < 0: Check the equality vij.(−
√
Cabab) = Cijab. If the equality fails, then stop (no multiplicative

decomposition exists), else set vab = −
√
Cabab.

(b) Case with Cijab ≥ 0: Check the equality vij.(
√
Cabab) = Cijab. If the equality fails, then stop (no multiplicative

decomposition exists), else set vab =
√
Cabab.

If termination has not occurred for any of the pairs checked in Step 2, continue to Step 3.
Step 3. For the facility–location pairs il ∈ I2, l ∈ I − {j}, pick a facility–location pair ab ∈ I2, where a ≠ i and b ∉ {j, l}.
Check the equality(

√
Cilil).vab = Cilab. If the equality is satisfied, set vil =

√
Cilil. Else, check the equality(−

√
Cilil).vab = Cilab.

If the equality is satisfied, set vil = −
√
Cilil; else, stop (no multiplicative decomposition exists).

If termination has not occurred for any of the pairs checked in Step 3, continue to Step 4.
Step 4. For the facility–location pairs kj ∈ I2, k ∈ I−{i}, pick a facility–location pair ab ∈ I2, where a ∉ {i, k} and b ≠ j. Check
the equality (


Ckjkj).vab = Ckjab. If the equality is satisfied, set vkj =


Ckjkj. Else, check the equality(−


Ckjkj).vab = Ckjab. If

the equality is satisfied, set vkj = −

Ckjkj; else, stop (no multiplicative decomposition exists).

If termination has not occurred for any of the pairs checked in Step 4, continue to Step 5. All multipliers vpq, pq ∈ I2, have
now been determined.
Step 5. Check the set of equalities vpqvst = Cpqst for any of the quadruplets pqst in Ī not checked yet in the previous steps.
If all equations are satisfied, a multiplicative decomposition is on hand (found at the end of Step 4), else no multiplicative
decomposition exists with multipliers vij, ij ∈ I2.

The steps of the algorithm above take O(1),O(n2),O(n),O(n), and O(n4) time, respectively. If a multiplicative
decomposition has been found, the next step of the procedure is to solve the LAPswith the objective functionmin

∑
ij∈I2 vijxij

and min
∑

ij∈I2 −vijxij to get the values z(v) and z̄(v), respectively. If 0 ≤ z(v) or z̄(v) ≤ 0, then the solution of the
corresponding LAP qualifies as optimal for the QAP instance on hand. If the last condition does not hold, then the QAP
on hand is equivalent to what we refer to as ‘‘the absolute Linear Assignment Problem’’.
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Note also that any QAP with arbitrary costs can be transformed into an equivalent QAP with nonnegative costs by
adding a sufficiently large constant to each cost term. If a multiplicative decomposition exists for the transformed costs,
the transformed as well as the original QAP on hand are polynomial time solvable. If no multiplicative decomposition exists
for the transformedQAP, it is still possible that there exists amultiplicative decomposition for the original QAPwith arbitrary
costs. In this case, the multipliers may be of mixed signs and it is necessary to check the condition 0 ≤ z(v) or z̄(v) ≤ 0.
If this condition does not hold, then we have z(v) < 0 < z̄(v) and the QAP on hand is equivalent to the minimization
of
∑

ij∈I2 vijxij
2 subject to (2)–(4) which is equivalent, in turn, to the minimization of

∑
ij∈I2 vijxij

 subject to the same
constraints. This last problem, which we refer to as the absolute LAP, seeks an assignment where the objective value is as
close to 0 in absolute value as possible.

Regarding the complexity status of the absolute LAP, it has been shown that the special case of Koopmans–Beckmann
QAP with both coefficient matrices being symmetric product matrices is NP-hard [12]. This class of instances can easily be
verified to be a special case of the absolute LAP, namely the case where the coefficient matrix of the LAP is a product matrix:

min
n−

i,j,k,l=1

fikdjlxijxkl = min
n−

i,j,k,l=1

αiαkβjβlxijxkl = min


n−

i,j=1

αiβjxij

2

= min

 n−
i,j=1

αiβjxij

 . (17)

This relationship proves that the absolute LAP is also NP-Hard.
As a consequence,whenever there is amultiplicative decomposition forwhich z(v) < 0 < z̄(v), theQAP onhand reduces

to an absolute LAP which is also NP-Hard. Despite that, it may be easier, on the average, to solve the absolute LAP than the
QAP.

3. Conclusion

In this study, we have identified two classes of instances (additively decomposable general costs and a subset of
multiplicatively decomposable general costs) that are solvable in polynomial time as LAPs. Using a result from the
literature [12], we have also shown that multiplicatively decomposable general cost instances that cannot be solved in
polynomial time, remain NP-Hard. The results we have presented suggest new directions to explore for discovering possibly
exploitable structures.
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