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ABSTRACT
We consider a semimartingale market model when the underlying
diffusion has a singular volatility matrix and compute the hedging
portfolio for a given payoff function. Recently, the representation
problem for such degenerate diffusions as a stochastic integral with
respect to a martingale has been completely settled. This represen-
tation and Malliavin calculus established further for the functionals
of a degenerate diffusion process constitute the basis of the present
work. Using the Clark–Hausmann–Bismut–Ocone type representa-
tion formula derived for these functionals, we prove a version of this
formula under an equivalent martingale measure. This allows us to
derive the hedging portfolio as a solution of a system of linear equa-
tions. The uniqueness of the solution is achieved by a projection idea
that lies at the core of themartingale representation at the first place.
We demonstrate the hedging strategy as explicitly as possible with
some examples of the payoff function such as those used in exotic
options, whose value at maturity depends on the prices over the
entire time horizon.
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1. Introduction

An important application of the classical martingale representation theorem is in math-
ematical finance for calculating the hedging strategy when the risky asset price can be
modelled as a diffusion process. For a portfolio of assets that are diffusions in Rn, the
volatility is captured by σ ∈ Rn×d, and the hedging strategy is derived under the assump-
tion that the diffusion matrix σσ ∗ is non-singular. This case is studied extensively in prior
work for hedging (see, e.g. Refs. [12,22]). On the other hand, themartingale representation
of degenerate diffusions recently developed in Ref. [25] makes the calculation of a hedging
strategy possible when the volatility matrix σσ ∗ is singular. Such degeneracy can occur for
example when the noise dimension is larger than the stock dimension, or when the range
of the volatility matrix becomes smaller than the dimension of the stock vector in general.
In this paper, we derive the replicating portfolio as a solution of a system of linear equa-
tions in the degenerate case based onmartingale representation [25] andMalliavin calculus
developed in Ref. [26]. Malliavin calculus has already been applied to problems in finance,
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2 M. ÇAĞLAR ET AL.

which include minimal variance hedging in incomplete markets, sensitivity analysis and
efficient computation of Greeks, optimal portfolio selection with partial information or in
an anticipating environment, optimal consumption in a general information setting, and
insider trading [6, Preface], [17, Chp. 6].

Let (�,H,P) be a probability space, and let X = {Xt : 0 ≤ t ≤ 1} satisfy the stochastic
differential equation

dXt = b (Xt) dt + σ (Xt) dWt , (1)

where {Wt : 0 ≤ t ≤ 1} is an Rd-valued Brownian motion and σ : Rn → Rn×d and b :
Rn → Rn are measurable maps. We assume that the drift b and the diffusion matrix σ

are C1-Lipschitz and of linear growth to ensure existence of the strong solution of (1).
The diffusion X is possibly degenerate in the sense that σ(x)σ (x)∗ can be singular for
some x ∈ Rn. We consider a market model where the risky assets are diffusions described
by (1). Using Malliavin calculus and generalizing the Clark representation formula, the
hedging portfolio is found in Ref. [18] under the ellipticity condition, which is called
non-degeneracy condition, for a similar model. Ellipticity condition, which is given by∑

j
∑

k ξ∗σ(x)σ ∗(x)ξ ≥ ε‖ξ‖2 for some ε > 0 and for all ξ ∈ Rn, clearly implies the non-
singularity of σσ ∗. Similarly, degenerate diffusions in Ref. [28] refer to those for which
ellipticity condition does not hold.A specific stochastic differential equationwith a singular
diffusionmatrix is considered in Ref. [28] for the purpose of establishing an explicit deriva-
tive formula for the associated Markov semigroup using Malliavin calculus. The terms
degenerate and singular are used interchangeably for diffusion matrices in Ref. [5], aris-
ing in several models for option pricing. The value process is characterized as a solution of
partial integro-differential equations, for which existence, uniqueness or regularity of solu-
tions may not hold in the case of degeneracy. Therefore, the theory of viscosity solutions
is used to deal with a singular diffusion matrix under the assumption that a suitable Lya-
punov function exists. The method is demonstrated for Asian option in Heston stochastic
volatility model among other examples in Ref. [5].

Malliavin calculus is a probabilistic approach for deriving the hedging strategy in con-
trast to partial differential equations ( PDEs) approach which yields the so-called�-hedge
formula [6, Sec. 4.4]. The main advantage of �-hedge formula is that it does not involve
conditional expectations or gradients. As discussed in Ref. [3], in a one-dimensional mar-
ket where the value process has the formVθ (t) = f (t,X(t)) for some function f : R2 → R

and payoff function in the form of G(XT), the two approaches are in some cases more or
less equivalent with respect to the differentiability properties of f. The �-hedge formula
can be derived for more complicated claims such as Asian options when the value process
has the form Vθ (t) = f (t,X(t), S(t)), where S(t) is a state variable. However, this method
requires that f is a C1,2,2 function, although Malliavin calculus yields the same representa-
tion under the condition that f is only Lipschitz. The�-hedge is based on solving a relevant
PDE under the ellipticity condition, which does not hold in the present paper.

Let F(X) = {Ft(X) : 0 ≤ t ≤ 1} denote the filtration generated by X. The martin-
gale representation theorem for degenerate diffusions [25, Thm. 2] reveals that an F1-
measurable functional F of X can be represented as

F(X) = E[F(X)] +
∫ 1

0
P(Xs)ξs(X) · dWs = E[F(X)] +

∫ 1

0
ξs(X) · P(Xs) dWs
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with an Ft(X)-adapted process ξ taking values in Rd, where dot product is used for sim-
plicity of notation and P(Xs) denotes orthogonal projection to the range space of σ ∗,
the transpose of σ . In essence, there exists a martingale, given above as P(Xs) dWs in
its infinitesimal Itô form, with respect to which every square integrable F1-measurable
functional can be written as an integral of an F(X)-adapted process. The representa-
tion problem for degenerate diffusions has been settled in Ref. [25] as a result. Fur-
thermore, Malliavin calculus for degenerate diffusions is developed in Ref. [26], from
which we borrow the results needed for the present paper. Let (W,H,μ) be the classi-
cal Wiener space on Rd. For suitable F-measurable functionals F, we first provide the
Clark–Hausmann–Bismut–Ocone type formula of Ref. [26, Thm. 8] given by

F(X) = E[F(X)] +
∫ 1

0
P(Xs)E[D̂sF(X) |Fs] · dWs, (2)

where the operator D̂ is defined as the density of ∇̂ with respect to Lebesguemeasure and ∇̂
is an operator similar to Gross-Sobolev derivative∇ forWiener functionals. Then, we find
the hedging strategy given a stock portfolio where the prices are modelled as degenerate
diffusions, where the projection P(Xs) plays a crucial role.

In this paper, we not only solve the hedging problem for a semimartingalemarketmodel
of degenerate diffusions but also find a hedging strategy adapted to F(X), the filtration
of the asset prices themselves, instead of the filtration F(W) of the driving Wiener pro-
cess. More explicitly, let the price dynamics of n assets Xt in a market follow (1) and let the
equation for the risk-free assetX0

t at time t be given by dX0
t = rtX0

t dt, where rt is the inter-
est rate at time t, for t ∈ [0, 1]. Let θt and θ0t be the number of shares of n risky assets and the
risk-free asset, respectively, where θt is taken as a row vector. Then, the value process Vθ

t
is written as Vθ

t = θt Xt + θ0t X
0
t . Assuming that the portfolio (θ , θ0) is self-financing, we

find the hedging portfolio that replicates the terminal value functionV1, which is assumed
to be specified by an F1-measurable random variable G(X) called the payoff function.

When the volatility matrix σσ ∗ is singular, the equation

σ(Xt)u(Xt) = b(Xt) − rtXt

in u may not have a unique solution. We assume that it has more than one solution so
that the market can be used for option pricing. Although the market is incomplete under
this assumption, P(Xt)u(Xt) is unique for all solutions u and it can be chosen to construct
an equivalent martingale measure Q uniquely. By denoting the d-dimensional Brownian
motion under Q with W̃ and assuming that r is deterministic, we show that the hedging
strategy is obtained by solving the equation

σ ∗(Xt)θ
∗
t

= e−
∫ 1
t rs dsP(Xt)EQ

[
D̂tG(X) − G(X)

∫ 1

t
P(Xs)D̂t (P(Xs)u(Xs)) · dW̃s | Ft(X)

]
for θ , whichmay not be unique although {P(Xt)θt : 0 ≤ t ≤ 1} is unique for all solutions θ .
We prove two fundamental results related to ∇̂ needed in our derivations. Namely, Propo-
sition 2.1 as the chain rule and Lemma 2.1 as the fundamental theorem of calculus are
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developed as a follow up of Ref. [26], where ∇̂ is shown to satisfy the properties of a deriva-
tive operator. Clearly, these properties are adopted from those of ∇ , but with care on the
projection with P(Xs) and using the cylindrical functions common in the domains of the
two operators when necessary. In Theorem 3.1, we derive an equivalent representation
to (2) using the equivalent martingale measure Q and Wiener process W̃, in view of the
properties of the operator ∇̂ . Then, we take F = e−

∫ 1
0 rs dsG(X) to obtain the equation for

the hedging portfolio. As martingale representation and hedging are closely related, a rep-
resentation result is proved and then applied to incomplete financial markets in general in
Ref. [10]. In this paper, we show that some differentiability assumptions on the contingent
claimG are sufficient for attainability in an incomplete market that arises from degeneracy
due to a singular volatility matrix.

In applications, the sample covariance matrix of stock returns is rarely used to estimate
volatility because it may be either singular or ill-conditioned. This can occur for example
when the number of stocks n is of the same order of magnitude as the number of histor-
ical observations, even if the true covariance matrix is non-singular. An estimate of the
covariance matrix of stock returns by an optimally weighted average of the sample covari-
ancematrix and Sharpe’s single-index covariancematrix is proposed inRef. [13]. Then, it is
shown to performwell for NYSE andAMEX stock returns from 1972 to 1995 inMarkowitz
optimal portfolio selection. For the same problem, Moore–Penrose pseudo-inverse is pro-
posed in Ref. [19] and its numerical tractability is demonstrated with financial data from
2008. However, in somemodels like Asian options withHestonmodel given in Ref. [5], the
diffusionmatrix is singular. In these problems, the results of the present paper can be used.
Therefore, we demonstrate the hedging strategy as explicitly as possible with some specific
examples of the payoff G. Asian options, exotic options, look-back options, and exchange
options are considered since their value at maturity depends on the path of the price pro-
cess over the whole time horizon. It should be pointed out that our expressions involve
conditional expectations. The search for more explicit formulas for the hedging strategy
might require further specification of the drift and diffusion parameters. In Ref. [3], it is
shown that the hedging strategy involves no conditional expectations for the Asian options
in the one-dimensional model. Similarly in Ref. [20], explicit expressions are obtained for
look-back options under the assumption of constant coefficients. Our formulas can be sim-
plified further with similar assumptions on the coefficients. The results can be useful in
several finance and interdisciplinary applications where diffusion processes and hedging
are considered (see, e.g. Refs. [4,7–9,23]).

The paper is organized as follows. In Section 2, we review the essential parts of Malli-
avin calculus for degenerate diffusions and prove the preliminary results useful for the
present work. Then, the hedging formula is derived for the degenerate semimartingale
market model in Section 3. Special cases of the payoff function are considered in Section 4
to demonstrate hedging and option pricing. Finally, Section 5 concludes the paper.

2. Preliminaries

In this section, we establish the essential properties of the operator ∇̂ for the aim of
obtaining the hedging strategy in the sequel. This is closely related to the Gross–Sobolev
derivative ∇ defined on the classical Wiener space (W,H,μ) [24]. The random variable



STOCHASTICS 5

G : W → R is called a cylindrical Wiener functional if it is of the form

G(ω) = f (δh1(ω), . . . , δhm(ω)) , h1, . . . , hm ∈ H, f ∈ S (
Rm)

for some m ∈ Rm, where S(Rm) denotes the Schwartz space of rapidly decreasing func-
tions onRm and δh = ∫ 1

0 h′
s dWs. The space of cylindrical functions onW will be denoted

by S(W). For G ∈ S(W) and h ∈ H, the Gateaux derivative of G in the direction of h is
defined as

∇hG(ω) = d
dε

G(ω + εh)
∣∣∣∣
ε=0

.

Then, we define ∇ as

∇G(ω) =
∞∑
i=1

∇eiG(ω)ei ω ∈ W,

where {ei : i ∈ N} is any complete, orthonormal basis in H. The operator ∇ is a closable
operator on Lp(μ) for any p ≥ 1. Note that∇G is nowwell defined forG ∈ Lp(μ) and it can
be regarded as anH-valued Wiener functional. The density of ∇ with respect to Lebesgue
measure is denoted by D, that is, D is defined by

∇G(t) =
∫ t

0
DsG ds

for each t ∈ [0, 1].
Now, consider F1-measurable functionals of the diffusion process X. By Ref. [17,

Thm. 2.2.1], ∇X is well defined in view of Lipschitz and linear growth assumptions on
the coefficients of (1). In particular for Xt , we define

∇̂hXt := E[∇hXt |F1(X)], (3)

where ∇hXt = (∇hX1
t , . . . ,∇hXn

t ). Let S(X) denote the set of cylindrical functions given
by

S(X) = {
f
(
X1
t1 , . . . ,X

n
t1 , . . . ,X

1
tm , . . . ,X

n
tm

)
:

0 ≤ t1 < · · · < tm ≤ 1, f ∈ S (
Rnm)

,m ≥ 1
}
,

where S(Rnm) denotes the space of rapidly decreasing smooth functions of Laurent
Schwartz. As in Ref. [26], for h ∈ H and F(X) ∈ S(X), the operator ∇̂h is defined as

∇̂hF(X) =
m∑
j=1

n∑
i=1

∂(j−1)n+if (X1
t1 , . . . ,X

n
t1 , . . . ,X

1
tm , . . . ,X

n
tm)∇̂hXi

tj

in view of (3). The following theorem gathers the basic properties of ∇̂ from Ref. [26,
Thm. 5,Cor. 2], including the result that it is a closable operator on L2(ν), where ν denotes
the image of μ under X, that is, the probability law of X.
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Theorem 2.1: The process {∇̂hXt : 0 ≤ t ≤ 1} satisfies the equation

∇̂hXt =
∫ t

0
∂σ(Xs)∇̂hXsP(Xs) dWs +

∫ t

0
∂b(Xs)∇̂hXs ds +

∫ t

0
σ(Xs)h′

s ds

μ-almost surely. Moreover, if (Fk(X), k ≥ 1) ⊂ S(X) converges to zero in L2(F(X)) and
(∇̂hFk(X), k ≥ 1) is Cauchy in L2(F(X)), then

lim
k→∞

∇̂hFk(X) = 0

μ-a.s.

Proof: For i ∈ {1, . . . , n}, we have

∇hXi
t =

d∑
j=1

n∑
k=1

∫ t

0
∂kσij(Xs)∇hXk

t dW
j
s +

d∑
j=1

∫ t

0
σij(Xs)(h

j
s)

′ ds

+
n∑

k=1

∫ t

0
∂kbi(Xs)∇hXk

t ds

=
∫ t

0
Jσi(Xs)∇hXs · dWs +

∫ t

0
∂bi(Xs) · ∇hXs ds +

∫ t

0
σi(Xs)h′

s ds, (4)

where σi is the ith row of matrix σ , Jσi denotes the Jacobian matrix of σi, and ∂bi denotes
the gradient of bi. We use the compact notations ∂σ and ∂b for the respective tensor and
matrix identified in (4). Taking the conditional expectation of both sides of this equation
with respect toF1(X), the term with stochastic integral follows from Ref. [25, Thm. 3] and
the Lebesgue integral follows from

E[∇hXt |F1(X)] = E[∇hXt |Ft(X)]

due to the fact that Ft(W) := σ(Ws, s ≤ t) is independent of the future increments of the
Brownian motion after t.

Let η = η(X) be the limit of (∇̂hFk(X), k ≥ 1). Then, using Ref. [25, Th. 3], we have, for
any cylindrical G(X) ∈ S(X),

E[η(X)G(X)] = lim
k

E[∇̂hFk(X)G(X)] = lim
k

E[∇hFk(X)G(X)]

= lim
k

E[Fk(X)(−∇hG(X) + G(X)δh)]

= lim
k

E[Fk(X)(−∇̂hG(X) + G(X)δ(P(X)h))] = 0,

where δ(P(X)h) = ∫ 1
0 P(Xs)h′

s · dWs. �
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Similar to ∇ , we can define the operator ∇̂ by

∇̂F(X) =
∞∑
i=1

∇̂eiF(X)ei

for F(X) ∈ S(X), where {ei, i ≥ 1} is a complete, orthonormal basis in the Cameron–
Martin spaceH. It follows that ∇̂ is a closable operator from Lp(ν) to Lp(ν;H), whereH is
indicated to specify the range of ∇̂ .

The norm defined by

‖F(X)‖p,1 := ‖F(X)‖Lp(μ) + ‖∇̂F(X)‖Lp(μ;H)

is used for the completion of S(X), which will be denoted by Mp,1. Note that we use | · |
for Euclidean norm, ‖ · ‖ for L2([0, 1])-norm, and for all others we specify the space in the
notation. For F(X) ∈ M2,1, define D̂ similar toD by ∇̂F(X)(t) = ∫ t

0 D̂sF(X) ds, ∀ t ∈ [0, 1].
Note that D̂sF(X) is ds × dμ-almost everywhere well defined. Then, we have the following
relation:

∇̂hF(X) = 〈∇̂F(X), h〉H =
∫ 1

0
D̂sF(X) · h′

s ds = 〈D̂F(X), h′〉L2([0,1]).

The following theorem is borrowed from Ref. [26, Thm. 8], as a Clark–Hausmann–
Bismut–Ocone formula for degenerate diffusions.

Theorem 2.2: Assume that F(X) ∈ M2,1, then it can be represented as

F(X) = E[F(X)] +
∫ 1

0
P (Xs) E

[
D̂sF(X) | Fs(X)

]
· dWs,

where D̂sF(X) is defined as ∇̂F(X)(·) = ∫ ·
0 D̂sF(X) ds.

Proof: We know from Ref. [25, Thm. 2] that F(X) can be represented as

F(X) = E[F(X)] +
∫ 1

0
P (Xs) αs(X) · dWs

for some α(X) ∈ L2a(dt × dμ,Rd), adapted to the filtration (Ft(X), t ∈ [0, 1]). Moreover,
if F(X) ∈ S(X), then from the Gaussian case, we have

F(X) = E[F(X)] +
∫ 1

0
E [DsF(X) | Fs(W)] · dWs, (5)

where {Fs(W) : 0 ≤ s ≤ 1} is the filtration of the Brownian motion. It follows from Ref.
[25, Thm. 3], taking the conditional expectations of both sides of (5), that

F(X) = E[F(X)] +
∫ 1

0
P (Xs) E [DsF(X) | Fs(X)] · dWs.

Hence in this case P(Xs)αs(X) = P(Xs)E[DsF(X) | Fs(X)] = P(Xs)E[E[DsF(X)|F1(X)|
Fs(X)]], which is equal to P(Xs)E[D̂sF(X) | Fs(X)], ds × dμ -a.s. Choose now a sequence
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(Fn(X), n ≥ 1) ⊂ S(X) which approximates F(X) in M2,1. Then (∇̂Fn(X), n ≥ 1) con-
verges to ∇̂F(X) in L2(μ,H) (in other words (∇̂Fn) converges to ∇̂F in L2(ν,H)).
Consequently,

lim
n

E

∫ 1

0

∣∣∣P (Xs) E
[
D̂sFn(X) − D̂sF(X) | Fs(X)

]∣∣∣2 ds = 0.

Hence, the result follows for any F(X) ∈ M2,1. �

In the next section, we will need the representation of a payoff function of the stock
price X with respect to a Wiener process under the equivalent martingale measure. We
will derive such a representation on the basis of Theorem 2.2. In view of this, we prove
further properties of ∇̂ in the following proposition and lemma.

Proposition 2.1: Assume F ∈ Mp,1(R
d), g : Rd → R is a continuous function.

(i) If g is Lipschitz continuous, then g ◦ F ∈ Mp,1.
(ii) If g is C1-function such that

E

[
|g ◦ F|q +

∑
i

∣∣∣∂ig ◦ F ∇̂Fi
∣∣∣p] < ∞,

then g ◦ F ∈ Mr,1 for any r < p ∧ q, where p and q are conjugates.

Proof: (i) is evident fromMazur Lemmawhich says that closure of a convex set is the same
under any topology of the dual pair and from the fact that the graph of ∇̂ is convex in any
Ln(ν), for any n ≥ 1.

(ii) Let θ be a smooth function of compact support onRd, θ(0) = 1. Let θn(x) = θ(x/n).
Then

E
[
|∇̂(θng) ◦ F|r

]
≤ 2r−1

∑
i

E
[
|g ◦ F|r|∇̂Fi|r + K|∂ig ◦ F|r|∇̂Fi|r

]
and we have

E
[
|g ◦ F|r|∇̂Fi|r

]
≤ E

[|g ◦ F|q]r/q E
[
|∇̂Fi|p

]r/p
,

whereK is an upper bound for θ and the termwith θ ′
n does not contribute. So, (θng ◦ F, n ≥

1) is bounded inMr,1; hence it has a subsequence which converges weakly and this implies
that limn θng ◦ F = g ◦ F belongs to Mr,1. �

Lemma 2.1: Let u(Xs) ∈ M2,1(L2([0, 1])) be adapted to F(X). Then, we have

∇̂h

∫ 1

0
P(Xs)us(X) · dWs

=
∫ 1

0
P(Xs)∇̂hus(X) · dWs +

∫ 1

0
P(Xs)∂P(Xs)∇̂hXsus(X) · dWs

+
∫ 1

0
P(Xs)us(X) · h′

s ds.
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Proof: Assume that (us) is a step process, then∫ 1

0
P(Xs)us(X) · dWs =

∫ 1

0
us(X) · P(Xs) dWs

=
∑
i
usi(X) · (Msi+1 − Msi),

whereMt = ∫ t
0 P(Xs) dWs by the martingale representation theorem [25, Thm. 2]. There-

fore, we have

∇̂h

∫ 1

0
P(Xs)us(X) · dWs =

∑
i

∇̂husi(X) · (Msi+1 − Msi)

+
∑
i
usi(X) · (P(Xsi+1)hsi+1 − P(Xsi)hsi)

+ E

[∑
i
usi(X) ·

(∫ si+1

si
∂P(Xs)∇hXs · dWs

)
| F1(X)

]
,

where we define the action of P(X) on the Cameron–Martin space H as P(Xt)ht =∫ t
0 P(Xs)h′

s ds and use Ref. [24, Prop. II.2] for ∇Mt . It follows from Ref. [25, Thm. 3] that
the last term is equal to∑

i
usi(X) ·

(∫ si+1

si
P(Xs)∂P(Xs)∇̂hXs · dWs

)
.

Then, we pass to the limit in L2 as the mesh of partition goes to zero. For the other terms,
the result is straightforward. �

Remark 2.1: Suppose u(Xs) satisfies the hypothesis of Lemma 2.1. Then, we have

D̂t

∫ 1

0
P(Xs)u(Xs) · dWs =

∫ 1

0
P(Xs)D̂t (P(Xs)u(Xs)) · dW(s) + P(Xt)u(Xt)

dt × μ-almost everywhere, as ∇̂hF = ∫ 1
0 D̂sFh′

s ds.

Lemma2.2: Let u(Xs) ∈ M2,1(L2([0, 1])) be adapted toF(X). Then, ‖u(Xs)‖2 ∈ M2,1 and

∇̂h‖u(Xs)‖2 = ∇̂h‖U(X)‖2H = 2〈∇̂hu,U(X)〉H ,
where Ut(X) = ∫ t

0 u(Xs) ds.

Proof: The proof is similar to that of Lemma 2.1. �

Remark 2.2: Suppose u(Xs) satisfies the assumption of Lemma 2.2. Then,
∫ 1
0 |P(Xs)u(Xs)|2

ds ∈ M2,1 and

D̂t

∫ 1

0
|u(Xs)|2 ds = 2

∫ 1

0
D̂tu(Xs) · u(Xs) ds.
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3. Hedging a stock portfolio

We consider a semimartingale market model with n risky assets with price Xt =
(X1

t , . . . ,X
n
t )

∗ and a risk-free asset X0
t at time t. The asset prices Xt and X0

t are determined
by the system of stochastic differential equations

dXt = b(Xt) dt + σ(Xt) dWt ,

dX0
t = rtX0

t dt, (6)

whereWt = (W1
t , . . . ,W

d
t )

∗ and rt is the deterministic interest rate, t ∈ [0, 1]. We assume
that the drift b and the diffusionmatrix σ satisfy the linear growth and Lipschitz conditions
for the existence and uniqueness of a strong solution [29, Thm. 3.1] and they are assumed
to be C1-functions for applicability of the results of Section 2. In (6), the arguments of b
and sigma can include time t separately and the analysis of this section will be still valid
as this is allowed in our basic reference [25], but omitted for the sake of brevity. Examples
where the coefficients are functions of only time t are included in the next section among
others. In this section, we will derive the hedging strategy for a given payoff.

Recall that the value process Vθ
t is given by

Vθ
t = θ0t X

0
t + θtXt , (7)

where by θt , θ0t denote the number of shares of n assets and risk-free asset, respectively, and
θt is taken as a row vector for simplicity of notation. The portfolio (θ , θ0) is considered to
be self-financing, that is, Vθ

t satisfies

dVθ
t = θ0t dX

0
t + θt dXt . (8)

Since from (7), we have θ0t = (Vθ
t − θtXt)/X0

t , we rewrite (8) as

dVθ
t = rt

(
Vθ
t − θtXt

)
dt + θt dXt

= [
rtVθ

t + θtb(Xt) − rtθtXt
]
dt + θtσ(Xt) dWt .

Assume that the equation below has a solution

σ(Xt)u(Xt) = b(Xt) − rtXt . (9)

Although this equation may have several solutions u, the orthogonal projection by P(Xt)

of these solutions onto the range space of σ ∗(Xt) is unique, which can be verified by simple
algebra. Then, the solution P(Xt)u(Xt), calledmarket price of risk process, satisfies

σ(Xt)P(Xt)u(Xt) = b(Xt) − rtXt . (10)

Note that when (9) does not have a solution, then the market is not arbitrage-free and
it cannot be used for pricing [22, p. 228]. Since we have assumed (9) has a solution, we
can proceed with (10) for u. By definition of the projection operator P(Xt), there exists an
Rn-valued random variable ξ such that σ ∗(Xt)ξ = P(Xt)u(Xt) and (10) can be rewritten
as

σ(Xt)σ
∗(Xt) ξ = b(Xt) − rtXt .

Now, it is clear that (9) would have a unique solution if the diffusion matrix σσ ∗ was
invertible.
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Assume also that the d-dimensional market price of risk process u(Xt) satisfies∫ 1

0
|P(Xt)u(Xt)|2 dt < ∞

almost surely and the positive local martingale

Zt � exp
{
−

∫ t

0
P(Xs)u(Xs) · dWs − 1

2

∫ t

0
|P(Xs)u(Xs)|2 ds

}
(11)

satisfies EZ1 = 1. Then, Z is a martingale with respect to the filtration generated by X,
F(X), in view of the converse statement in the martingale representation theorem [25,
Thm. 2]. Now, define W̃t by

W̃t = Wt +
∫ t

0
P(Xs)u(Xs) ds. (12)

Then, {W̃t , 0 ≤ t ≤ 1} is a Brownian motion under the probability measure Q on F1(W)

given by

Q(A) = E[Z11A] ∀ A ∈ F1(W).

Using (10) and(12), we can write the price dynamics (6) using W̃ as

dXt = rtXt dt + σ(Xt) dW̃t .

Similarly, the discounted price St := exp(− ∫ t
0 rs ds)Xt satisfies

dSt = e−
∫ t
0 rs dsσ(Xt) dW̃t .

Note that W̃ cannot be written in terms of the price process S since the diffusion matrix is
not invertible. Moreover, in view of (7) and (12), we can rewrite the value process as

dVθ
t = rtVθ

t dt + θtσ(Xt) dW̃t . (13)

Define the discounted value processUθ
t := e−

∫ t
0 rs dsVθ

t . LetG(X) be anF1(X)-measurable
and integrable payoff function. After setting Vθ

1 = G(X) to find the hedging strategy, the
equation

dUθ
t = e−

∫ t
0 rs dsθtσ(Xt) dW̃t (14)

can be considered as a backward stochastic differential equation with final condition

Uθ
1 = e−

∫ 1
0 rs dsG(X). (15)

Clearly, both the discounted price process and the value process are martingales under Q

when we assume
∫ 1
0 σ(Xt)σ

∗(Xt) dt is finite a.s. We further assume that∫
θtσ(Xt)σ

∗(Xt)θ
∗
t dt < ∞ a.s.

to have an admissible strategy θ [12, p. 302]. In the following theorem, we will derive the
representation of an F1(X)-measurable function F with respect to W̃.
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Theorem 3.1: Suppose F ∈ M2,1 is F1(X)-measurable and the conditions

E[Z2
1F

2] < ∞, E
[
Z2
1‖D̂F‖2

]
< ∞,

E

[
Z2
1F

2
∥∥∥∥∫ 1

t
P(Xs)D̂ (P(Xs)u(Xs)) · dW(s) + P(Xt)u(Xt)

+
∫ 1

t
D̂ (P(Xs)u(Xs)) · P(Xs)u(Xs) ds

∥∥∥∥2
]

< ∞.

Then, we have Z1F ∈ M2,1 and

F = EQ [F] +
∫ 1

0
P(Xt)EQ

[
D̂tF − F

∫ 1

t
P(Xs)D̂t (P(Xs)u(Xs)) · dW̃s | Ft(X)

]
dW̃t .

Proof: We will show that Z1F ∈ M2,1 first. Remember that Z1 = e−K , where

K =
∫ 1

0
P(Xs)u(Xs) · dWs + 1

2

∫ 1

0
|P(Xs)u(s,X)|2 ds.

Lemma 2.1 implies that
∫ 1
0 P(Xs)u(Xs) · dWs ∈ M2,1 and Lemma 2.2 implies that∫ 1

0 |P(Xs)u(Xs)|2 ds ∈ M2,1. Hence,K ∈ M2,1. SinceE[F2e2K],E[e2K‖D̂F‖2] andE[F2 e2K

‖D̂K‖2] are finite by the given assumptions, Proposition 2.1 implies that Z1F ∈ M2,1
satisfying

D̂tZ1F = Z1
(
D̂tF − F(D̂tK)

)
and

D̂tK = −
∫ 1

t
P(Xs)D̂t (P(Xs)u(Xs)) · dWs − P(Xt)u(Xt)

−
∫ 1

t
D̂t(P(Xs)u(Xs)) · P(Xs)us ds.

Let Yt = EQ[F | Ft(X)] and note that

Z−1
t = exp

{∫ t

0
P(Xs)u(Xs) · dWs + 1

2

∫ t

0
|P(Xs)u(s,X)|2 ds

}
= exp

{∫ t

0
P(Xs)u(Xs) · dW̃s − 1

2

∫ t

0
|P(Xs)u(s,X)|2 ds

}
. (16)

Then, we get

Yt = Z−1
t E [Z1F | Ft(X)]

= Z−1
t

{
E[Z1F] +

∫ 1

0
P(Xs)E

[
D̂sE [Z1F | Ft(X)] | Fs(X)

]
· dWs

}
= Z−1

t

{
E[Z1F] +

∫ t

0
P(Xs)E

[
D̂s(Z1F) | Fs(X)

]
· dWs

}
=: Z−1

t At , (17)

where we have applied the formula of Ref. [26, Thm. 8] to E[Z1F | Ft(X)] and used the
fact D̂sE[Z1F | Ft(X)] is Ft(X)-measurable for t > s and equal to 0 otherwise. From (16)



STOCHASTICS 13

and (17), we get

dZ−1
t = Z−1

t P(Xt)u(Xt) · dW̃t ,

dAt = P(Xt)E
[
D̂t(Z1F) | Ft

]
· dWt ,

dAt dZ−1
t = Z−1

t P(Xt)u(Xt) · P(Xt)E
[
D̂t(Z1F) | Ft

]
dt.

Since dYt = At dZ−1
t + Z−1

t dAt + dAt dZ−1
t , it follows that

dYt =
{
E[Z1F] +

∫ t

0
P(Xs)E

[
D̂s(Z1F) | Fs(X)

]
· dWs

}
Z−1
t P(Xt)u(Xt) · dW̃t

+ Z−1
t P(Xt)E

[
D̂t(Z1F) | Ft(X)

]
· dWt

+ Z−1
t P(Xt)ut · P(Xt)E

[
D̂t(Z1F) | Ft(X)

]
dt

= YtP(Xt)ut · dW̃t + Z−1
t P(Xt)E

[
D̂t(Z1F) | Ft(X)

]
· dW̃t

= P(Xt)utEQ [F | Ft(X)] · dW̃t

+ P(Xt)EQ

[
D̂tF | Ft(X)

]
· W̃t

+ P(Xt)EQ

[
F

{
−

∫ 1

t
P(Xs)D̂t (P(Xs)us) · dW(s) − P(Xt)ut

}
| Ft(X)

]
· dW̃t

+ P(Xt)EQ

[
F

{
−

∫ 1

t
D̂t(P(Xs)u(Xs)) · P(Xs)u(Xs) ds

}
| Ft(X)

]
· dW̃t

= P(Xt)EQ

[
D̂tF − F

∫ 1

t
P(Xs)D̂t (P(Xs)u(Xs)) · dW̃s | Ft(X)

]
· dW̃t .

In view of Y1 = EQ[F | F1] = F and Y0 = EQ[F | F0] = EQ[F], we get

F = EQ [F] +
∫ 1

0
P(Xt)EQ

[
D̂tF − F

∫ 1

t
P(Xs)D̂t (P(Xs)u(Xs)) · dW̃s | Ft(X)

]
· dW̃t .

�

Now, we are ready to find the hedging strategy for our market model, when a payoff
function G is given. Letting F := Uθ

1 = e−
∫ 1
0 rs dsG(X) in (15), which needs to hold for the

aim of finding a replicating portfolio, and substituting F in the result of Theorem 3.1 with
the assumption that its conditions are satisfied, we get

Uθ
1 = EQ[e−

∫ 1
0 rs dsG] +

∫ 1

0
P(Xt)EQ

[
D̂t(e−

∫ 1
0 rs dsG)

−e−
∫ 1
0 rs dsG

∫ 1

t
P(Xs)D̂t (P(Xs)u(Xs)) · dW̃s | Ft(X)

]
dW̃t . (18)
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On the other hand, in view of (14) and as Uθ
0 = Vθ

0 by definition, we have

Uθ
1 = Vθ

0 +
∫ 1

0
e−

∫ t
0 rs dsθtσ(Xt) dW̃t .

In comparison with (18), we conclude that

Vθ
0 = EQ[e−

∫ 1
0 rs dsG(X)] (19)

and the hedging strategy θt solves

σ ∗(Xt)θ
∗
t = e

∫ t
0 rs dsP(Xt)EQ

[
D̂t(e−

∫ 1
0 rs dsG(X))

− e−
∫ 1
0 rs dsG(X)

∫ 1

t
P(Xs)D̂t (P(Xs)u(Xs)) · dW̃s | Ft(X)

]
(20)

at each time t ∈ [0, 1]. Note that u appears in Q and W̃ in the above equation, and we can
obtain a unique and adapted strategy if we replace θt by P(Xt)θt . Since the interest rate is
deterministic, Equation (20) reduces to

σ ∗(Xt)θ
∗
t = e−

∫ 1
t rs dsP(Xt)

× EQ

[
D̂tG(X) − G(X)

∫ 1

t
P(Xs)D̂t (P(Xs)u(Xs)) · dW̃s | Ft(X)

]
. (21)

Remark 3.1: The interest rate rt can be taken as random only as a function of the asset
prices, denoted by r(Xt). The solution of (9) needs to be in the form of u(Xt) so that u is
adapted to F(X) and Zt in (11) can be a martingale.

Remark 3.2: If σ is non-degenerate, then the projection map P(Xs) is just the identity
map, F(X) = F(W) and ∇̂ = ∇ . Assuming that σ is a square matrix for simplicity, we
can rewrite (21) as

θ∗
t = σ ∗(Xt)

−1 e
∫ t
0 rs dsEQ

[
Dt(e−

∫ 1
0 rs dsG(X))

− e−
∫ 1
0 rs dsG(X)

∫ 1

t
Dt (u(Xs)) · dW̃s | Ft(W)

]
,

which is the same as Ref. [18, Eq. (3.10)].

4. Examples for payoff function

In this section, the hedging strategy is worked out for some examples of the payoff function
to demonstrate the formulas. Here, we indicate the terminal time by T. From the point of
view of option pricing with a claimG(X), the analysis of a hedging strategy θ can readily be
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used. The claimG(X) is attainable ifE[G(X)] < ∞ and there exists an admissable strategy
θt , 0 ≤ t ≤ 1 [12, p. 303]. Then, the price of the claim at time t is given by

e
∫ 1
t rs dsEQ[G | Ft(X)]

with the assumption that the interest rate r is deterministic, and in particular at time 0, the
price is equal to (19). We consider various claims below as suitable for demonstration of
our results.

4.1. Vanilla options

Consider the one-dimensional Black–Scholes model

dX0
t = ρX0

t dt, X0
0 = 1,

dX1
t = μX1

t dt + σX1
t dW

1
t , X1

0 > 0,

where ρ,μ, σ > 0. The equivalent martingale measure for this one-dimensional model is
R(A) = E[YT1A], where

Yt = exp
{
−

∫ t

0
u dW1

s − 1
2

∫ t

0
u2 ds

}
, 0 ≤ t ≤ T

and u = (μ − ρ)/σ . For this model, the hedging strategy is given by

θt = eρtσ−1(X1
t )

−1ER

[
DtG | Ft(W1)

]
, (22)

where DtG = (d/dt)∇G and ∇ is Gross–Sobolev derivative defined for the functionals of
W1 [6, Ex. 4.11]. Clearly, this model is not an example of the degenerate case. However,
we can rewrite it as a degenerate model by artificially taking X2 := X0 as a toy example to
demonstrate our formulas. Degeneracy of the diffusion parameter appears intrinsically in
this example of a single risky asset. In (6), take rt = ρ

b(Xt) = (μX1
t , ρX

2
t ), σ(Xt) =

[
σX1

t 0
0 0

]
.

Observe that

P(Xt) =
[
1 0
0 0

]
, P(Xt)u(Xt) =

[μ − ρ

σ
0

]
, D̂tP(Xt)u(Xt) = (0, 0).

If we substitute these in (21), we get[
σX1

t 0
0 0

]
θ∗
t = eρt

[
1 0
0 0

]
EQ

[
D̂tG | Ft(X)

]
.

Moreover, it is easy to see that Ft(X) = Ft(W1), Q(A) = R(A), for each A ∈ Ft(X), and
D̂tG = (DtG, 0), where derivativeDtG is taken in the sense ofMalliavin calculus for Brow-
nian motion. Hence, the hedging strategy is θ∗

t = [θt , 0] with θt of (22). When G is taken
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to be the European option G = (X1
T − K)+, we have G ∈ M2,1 by Proposition 2.1. The

hedging portfolio for G is given by

θ∗
t =

[
eρtσ−1(X1

t )
−1ER[DtG | Ft(X)]

0

]
in this case, equivalent to the result in Ref. [6, Ex. 4.11].

An exchange option gives the right to put a predefined risky asset and call the other risky
asset, as introduced in Ref. [15]. The price and hedging strategy have been calculated in
Ref. [16] via Malliavin calculus in the non-degenerate case. To find the hedging strategy,
we need to compute D̂tG(X). For the payoff function G(X) = (X1

T − X2
T)+, it is given by

D̂tG(X) = 1A(D̂tX1
T − D̂tX2

T) for dt × dμ-a.e., where A = {X1
T − X2

T > 0}.
A power option depends on the underlying asset price raised to some power [31].

The payoff of call power option is given by G(X) = ∑n
i=1((X

i
T)k − Kk

i )
+. Then, we have

D̂tG(X) = ∑n
i=1 k 1Ai(X

i
T)k−1D̂tXi

T for dt × dμ-a.e., where Ai = {(Xi
T)k − Kk

i > 0}.

4.2. Exotic options

Exotic options are a class of options contracts in that the value of an option and the expi-
ration date depend on the prices of the assets on the whole period [12]. Since exotic
options can be customized to the needs of the investor, it provides various investment
alternatives. We will examine exotic options in a two-dimensional market model with ter-
minal time T. Without loss of generality, we assume that σ11 in (6) is away from zero. Let
� = σ11(Xs)σ22(Xs) − σ12(Xs)σ21(Xs). When � = 0, the projection map can be written
as

P (Xs) = 1
σ 2
11(Xs) + σ 2

12(Xs)

[
σ 2
11(Xs) σ11(Xs)σ12(Xs)

σ11(Xs)σ12(Xs) σ 2
12(Xs)

]
and the projected market price of risk process is given by

P (Xs) u (Xs) = b1 (Xs) − rsX1
s

σ 2
11 (Xs) + σ 2

12 (Xs)

[
σ11 (Xs)

σ12 (Xs)

]
in view of (9). Suppose b and σ have bounded partial derivatives, then P(Xs)u(Xs) has the
derivative D̂tP(Xs)u(Xs) = Jf (Xs)(D̂tX1

s , D̂tX2
s ), where Jf is the Jacobian of

f (x, y) = b1(x, y) − rsx
σ 2
11(x, y) + σ 2

12(x, y)

[
σ11(x,y)
σ12(x,y)

]
and D̂tXs solves

D̂tXs =
∫ s

t
Jb(Xr)D̂t(Xr) dr +

∫ s

t
Jσi(Xr)D̂t(Xr) · P(Xr) dWr + σ(t,Xt)

dt × dμ-a.e. [26, Thm. 5], whereσi is ith rowofmatrixσ(Xs) and Jb, Jσi denote the Jacobian
matrices of b and σi, respectively.
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Consider the linear case, that is, b(Xs) = (b1(s)X1
s , b2(s)X2

s ) and

σ =
[

σ11(s)X1
s σ12(s)X1

s
σ21(s)X2

s σ22(s)X2
s

]
.

Then, we have

P (Xs) u (Xs) = b1 (s) − rs
σ 2
11 (s) + σ 2

12 (s)

[
σ11 (s)
σ12 (s)

]
.

Clearly, P(Xs)u(Xs) is deterministic, which implies D̂tP(Xs)u(Xs) = 0 and the hedging
strategy θt at time t solves

σ ∗(Xt)θ
∗
t = e−

∫ T
t rs dsP(Xt)EQ

[
D̂tG | Ft(X)

]
for given payoff function G by (21).

Asian options are options where the payoff depends on the average of the underlying
assets. Pricing of Asian options has been performed in Refs. [21,27] by the use of PDEs, but
hedging has not been studied. In Ref. [11], Edgeworth expansion is applied to approximate
the hedging strategy for Asian options, and in Ref. [1], it is approximated with the strategy
for European options. In Ref. [30], Malliavin calculus is used to derive the hedging strategy
and the price of Asian option. All these studies have considered one-dimensional market.
We will consider Asian call option with floating strike, which pays at time T, the pay-
off G(X) = ((1/T)

∫ T
0 X1

s ds − KX2
T)+. Proposition 2.1 implies G ∈ M2,1 and D̂tG(X) =

1A((1/T)
∫ T
t D̂tX1

s ds − KD̂tX2
T) for dt × dμ-a.e., where A = {(1/T)

∫ T
0 X1

s ds − KX2
T >

0} and

D̂tXi
s =

[
σi1 (s)
σi2 (s)

]
exp

(∫ s

t
P(Xr)σi(r) · dWr +

∫ s

t
bi(r) dr − 1

2

∫ s

t
|P(Xr)σi(r)|2 dr

)
.

Look-back options are a particular type of path-dependent options so that the value of the
payoff function depends on the minimum or maximum of the underlying asset price. The
price of option and the hedging strategy have been derived in Refs. [2,20] with Malliavin
calculus. Defining MX1

0,T = sup0≤t≤T X
1
t , we consider the payoff G(X) = (MX1

0,T − KX2
T)+,

which has the derivative

D̂tG(X) = 1A
(
D̂tMX1

0,T − KD̂tX2
T

)
with

D̂tMX1

0,T =
[
σi1(τ )

σi2(τ )

]
exp

(∫ τ

t
P(Xs)σi(s) · dWs +

∫ τ

t
bi(s) ds − 1

2

∫ τ

t
|P(Xs)σi(s)|2 ds

)
for dt × dμ-a.e., where τ = inf{t : X1

t = MX1

0,T} and A = {MX1

0,T − KX2
T > 0}. Here, we

have used the approach in Ref. [14, p. 55] to calculate the derivative of MX1

0,T as follows.
The model considered in Ref. [14] is one-dimensional, has constant volatility and Malli-
avin calculus for Brownian motion is used to calculate the hedging portfolio. However,
the idea can be applied easily to our case. For each m ∈ N, choose a partition πm =
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{0 = s1 < · · · < sm = T} so that πm ⊆ πm+1 and ∪mπm is dense in [0,T]. Define ϕm by
ϕm(x) = max1≤i≤m xi. Then, ϕm(X1

πm) → MX1

0,T in L2. Since the function ϕm is Lipschitz,
ϕm(X1

πm) ∈ M2,1 by Remark 2.2. Moreover, supm ‖D̂tϕm(X1
πm)‖2 ≤ supt σtT‖MX1

0,T‖2L2(μ)

and this impliesMX1

0,T ∈ Mp,1. Note that

D̂tϕm(X1
πm) =

[
σi1(τm)

σi2(τm)

]
exp

(∫ τm

t
P(Xs)σi(s) · dWs

+
∫ τm

t
bi(s) ds − 1

2

∫ τm

t
|P(Xs)σi(s)|2 ds

)
,

where τm = min{tj : X1
tj = ϕm(X1

πm)}. For eachm, τm is a measurable function and τm →
τ a.s. When σi1 is assumed to be continuous, the result follows as D̂ is a closed operator.

5. Conclusion

We have used Malliavin calculus for degenerate diffusions to derive the hedging portfolio
for a given payoff function in a semimartingale market model. The prices are assumed to
follow amultidimensional diffusion process with a singular volatility matrix σσ ∗, where σ

is taken to be a function of the prices with no extra randomness. In applications, the esti-
mation of the volatility σσ ∗ is crucial from financial data, which may be accomplished for
example through estimation of the covariance of the price time series, yielding an estimate
for σσ ∗. In the case of degeneracy of the estimate, this can now be taken care of by the
results of the present paper.

From a theoretical point of view, the projection operator P to the range space of σ ∗ plays
a crucial role in our results. We have shown that the hedging portfolio can be obtained
uniquely as a solution to a system of linear equations by projecting any solution of the sys-
tem with P. For this purpose, a version of the Clark–Ocone type formula for functionals of
degenerate diffusions is proved under an equivalent change of measure. As demonstration
of our results, intermediate calculations for the Gross–Sobolev type derivative of the payoff
function of the prices are given in the case of exotic options in a two-dimensional linear
model.

As future work, the stochastic volatility models can be considered on the basis of the
results established in the present paper. Moreover, the hedging strategy can be made more
explicit under simplifying assumptions on the coefficients as in previous studies.
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