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Colliding gravitational plane waves in dilaton gravity
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The collision of plane waves in dilaton gravity theories and the low energy limit of string theory
are considered. The formulation of the problem and some exact solutions are presented.
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I. INTRODUCTION

Plane wave geometries are not only important in clas-
sical general relativity but also in string theory. It is
now very well known that these geometries are the ex-
act classical solutions of the string theory at all orders
of the string tension parameter [1—3]. It is also interest-
ing that plane wave metrics in higher dimensions when
dimensionally reduced lead to exact extreme black hole
solution in string theory [4].

In this work we shall be interested in the head on colli-
sions of these plane waves in the &amework of Einstein-
Maxwell-dilaton theories with one U(1) and two U(1)
Abelian gauge fields [5]. Our formulation of the prob-
lem will also cover the low energy limit of string theory
for some fixed values of the dilaton coupling constants.
Hence the solutions we present in this work are also ex-
act solutions of the low ~ergy hnfit of string theories.
We give the complete data for the colliding plane-shock
waves. We formulate the collision of plane waves and
give solutions for t;he collinear case. When the dilaton
coupling constant vanishes one of our solutions reduces
to the well-known Bell-Szekeres solution [6] in Einstein-
Maxwell theory.

For the collision problem in general relativity, space-
time is divided into four regions with respect to the null
coordinates u and v. The second and third (incoming) re-
gions are the Cauchy data (characteristic initial data) for
the field equations in the interaction region (region IV).
For this purpose the specification of the data is quite im-
portant in the formulation of the collision problem [6—15].
We show that the future closing singularities appearing
in classical solutions exist also in dilaton gravity and in
the low energy lixnit of the string theory. This is due to
focusing effect of the plane waves [16].

It is an open question whether t;his classical treatment
of the collision of plane waves can be extended to all
orders in the string tension parameter [17,18]. One of
the limiting cases of the solutions in Sec. II is the Bell-
Szekeres solution [6]. This solution seeins to be a candi-
date for an exact solution at all orders. The Bell-Szekeres
solution in the interaction region is diÃeomorphic to the
Bertotti-Robinson spacetime [19,15]. It is known that

string theory preserves the form of Bertotti-Robinson
metric at all orders of the string parameter [20,21]. This
does not necessarily lead to a conclusion that the Bell-
Szekeres solution is an exact solution of the string the-
ory. The reason is that the diffeomorphism is valid only
in the interaction region (u ) 0, v ) 0) and hence the
field equations (at higher orders of the string parameter)
may not be satisfied on the hyperplanes u = 0 and v = 0.
The Weyl tensor and its covariant derivatives suffer &om
b-function and derivatives of the b-function type of singu-
larities on the hyperplanes u = 0 and v = 0. It is unlikely
that these singular terms cancel each other in the Geld
equations at all orders. If there exists an exact solution
representing the collision of plane waves in the full string
theory then its low energy limit should be contained in
our solutions in the second and third sections. The proof
of this conjecture is of course not easy.

In the next sections we shall give the form of the met-
rics in the incoming regions. These will constitute the
data for field equations in the interaction region. In the
second section we give the formulation of the problem for
one U(1) Abelian gauge field with a solution generaliz-
ing the Bell-Szekeres solution in general relativity. In the
third section we consider two Abelian U(1) gauge fields
and. give some interesting exact solutions of the collision
of the plane wave problem. In the Appendix we reduce
the Maxwell dilaton Geld equations, in the collision of
plane waves, to the two-dimensional Ernst equation.

II. DILATON GRAVITY WITH ONE U(l)
VECTOR FIELD

Einstein-Maxwell-dilaton gravity is derivable &om a
variational principle with the Lagrangian density

——(V'vP) ——e F2 2 1 Q 2

K 4

where a is the dilaton coupling constant. The field equa-
tions are

G„„=4 0„@B„@— (Vg) g„„—1
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V'„(e +F"")= 0, The above two equations are the real and imaginary parts
of the Ernst equation

K G8„(~gg""8 vP) + e +F = 0.
16 (4) Re(s) V e = Vs Vs, (18)

A spacetime describing the collision of plane waves ad-
mits two spacelike Killing vector fields. In the general
case these vectors are nonorthogonal but here in this work
we consider them to be orthogonal. For such a case an
appropriate form of the metric g„„and U(1) gauge po-
tential A„are given by

ds' = 2e-Mdudv+e- — dy'+e- + dz',

where differential operators in (18) are defined with re-
spect to the metric given by ds2 = 2 du dv —e 2+ d P2
and

8'=e + +i1 . B

The remaining part of the Einstein equations are given
as

A„= (O, O, A, O),

where M = M(u, v), U = U(u, v), V = V(u, v), A =
A(u, v) and dilaton field @ = @(u, v). The field equations
turn out to be

U„. —U„U„= 0,

2 X„—U„X„—U„X„=0,

(2o)

(2i)

—2A „=(V„—a @„)A „+(V„—a @„)A „,
—2M„U„—2 U„„+U„+ —(E„+8X'„) + 2r e + A „

U„„—U„U„=0, (8)
=o, (22)

2M„„=—2 U„„+U„U„+V„V„+8@„g„,
12M„U„——2 U„„+U„+ —(E„+8 X„)+ 2e e + A „

2V„„—U„V„—U„V„—2r e + ~A„A„=0, (10) =o, (23)

GK2y„„—U„@„—U„y„+ .~+~ ~A „A, = O, (11)

-2M U —2U + U'+ V2+8@2+2~2eU+~ ~A'

= 0, (12)

—2M„U„—2 U„„+U„+V„+8$„+2r. e + ~A „

=o. (i3)

Note that (9) can be derived &om the other equations.
It is not independent. From (10) and (ll), letting E =
V —avj we obtain

2

2E„„—U„E„—U„E„—
~

2+ —
~

r e + A„A„. (14)

where

ds = 2dudv+ dy + dz (25)

This is the Hat spacetime with vP = A = 0.
The second region (u ) 0, v & 0):

1 G 1 G
@ = —(X ——E), V = —(aX+ E), a = 1+ —.

8 ' n 8

(24)

Hence a solution of the dilaton gravity field equations
depends upon a linear equation (21) and the Ernst equa-
tion (18). The integrability of the Ernst equation and its
properties are now very well known [22], but the charac-
teristic initial value problem has not been solved yet.

The formulation of the collision of plane waves is as fol-
lows: The spacetime is divided into four disjoint regions
by the null hyperplanes u = 0 and v = 0.

The first region (u & 0, v ( 0):

Letting ds = 2e 'dudv+ e ' 'dy + e '+ 'dz, (26)

a~B= 2+ —KA,

(7) and (14) become

—2B„„=E B„+E„B'„,

where Mz ——M2(u), U2 ——U2(u), V2 ——Vq(u),
v(2(u), and A2 ——Aq(u) constitutes the data at v & 0.
The only field equation is

—2M, „U,„—2 U2 „„+U,'„+—(E,' „+8 X,' „)

2E'„—U„E —U„E„—e + B'„B„=0. +2K e '+ 'A =0. (27)



52 COLLIDING GRAVITATIONAL PLANE WAVES IN DILATON GRAVITY

The third region ( u & 0, v & 0):

ds = 2e™dudv + e ' 'dy + e '+ 'dz, (28)

W11el e M3 —M3 (V) U3 —U3 (V) V3 —V3 (V) @3 —Vp3 (V)
and A3 ——A3(v) constitutes the data at u & 0. The only
field equation is

2M3 ~ U3 „—2 U3 „„+U3 „+—(E3 „+8 X3 „)

+2~'eU'+~'A' = O. (29)

The second and third regions are called the incoming
regions and the corresponding spacetimes are the plane

I

wave geometries. Hence the functions M3 ——M3 (u), U2 ——

U3(u), V3 —V(u), @3
—@3(u), A3 ——A2(u) and M3 ——

M3 (V) P U3 —U3 (V) P V3 —V3 (V) P V/J3 —@3(V)1 A3 —A3 (V)
should be considered as the data on the hyperplanes v =
0 and u = 0, respectively.

The fourth region ( u & 0, v & 0 ): The metric takes
form (5) with M = M(u, v), U = U(u, v), V = V(u, v),
@ = Q(u, v), and A = A(u, v) such that in the incoming
regions (u & 0, v & 0) the metric (5) reduces to the
corresponding metrics in the related regions. The field
equations are given in Eqs. (18) and (20)—(23).

The problem is to Gnd the solutions of the above equa-
tions in such a way that the following conditions must be
satisfied:

M(u, v & 0) = M3(u), U(u, v & 0) = U3(u), V(u, v & 0) = V3(u),

@(u,v & 0) = @3(u), A(u, v & 0) = A3(u),

(3o)
(31)

M(u & O, v) = M3(v), U(u & O, v) = U3(v), V(u & O, v) = V3(v),

@(u & 0, v) = @3(v), A(u & 0, v) = A3(v).

(32)
(33)

An exact solution of the above problem is

U = —lncos(P + Q) —lncos(P —Q),
E = lncos(P + Q) —lncos(P —Q),
A = psin(P —Q),

k1 coS Q —S1I1P k3 coS P —S1I1Q
n + —ln

2 cosQ+ sinP 2 cosP+ sinQ

(34)
(35)

(36)

1 S1I1 Q
1+S1I1Q

a2e-M' = cos

A3 = —p S1I1 Q.

Fourth region u ) O, v )0:

(45)

(46)
(47)

Here P = a2 ug(u), Q = a3 v 8(v), where 8 is the Heavi-
side step function, a2 and a3 are arbitrary constants and

16
(8+ a3)~'

(cos Q —sin P) (cos P —sin Q)e
(cos Q + sin P) (cos P + sin Q)

a2
(cos (P —Q) i '

x
i( cos(P + Q) )

1 —sin P
2

1+sin P

e
—U2 —V2 1 —sin P= cos P 1+ sin P

e
—U2+V2

e
—M2

1 —sin P= cos P 1+ sin P
a2= (cos P) 8

A2 = pslnP.

Third region u & O, v ) 0, or P = 0:

There are two distinct solutions.
(1) k1 ——k2 ——k and k
Second region v & 0, u & 0, or Q = 0:

a Ic
2 CR

(38)

(39)

(4o)

(41)
(42)

e = [cos(P+ Q)] [cos(P —Q)] +
ah

(cos Q —sin P) (cos P —sin Q)
X

(cos Q + sin P) (cos P + sin Q)

e + = [cos(P+ Q)] + [cos(P —Q)]

(cos Q —sin P) (cos P —sin Q)
(cos Q + sin P) (cos P + sin Q)

3a2 a2
e = [cos (P+ Q)]" [cos (P —Q)]"

A = p sin (P —Q).

1 —sin Q
1+sin Q

(43)
(2) k2 ———k1 ———k and k
Second region v & 0, u & 0, or Q = 0:

e-~'-v = cos' Q

a k

1 —sin Q
1+sin Q

(44) e &=
ah

1 —sin P
1+ sin P (48)
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U v 2 1 —sin P
e = cos P 1+sin P

&+& 2 1 —sin P
e = cos 1+ sin P

a2
e = (cos P)'

A2 ——p sin P.

Third region u ( O, v & 0, or P = 0:

1+ sin Q
1 —sin

ak
—v v 2 1+sin Qe = cos

1 —sin Q

1 + Slil Qe = cos
1 —sin Q

a2
e = cos

A2 ———p sin Q.

(4S)

(5o)

(»)
(52)

(53)

(54)

(55)

(56)

(»)

bosonic part of the theory with U(l) U(1) vectors in
each version and one real dilaton field. In the following
Lagrangian, although (a, b) = (2, —2) for the SO(4) case
and (a, b) = (2, 2) for the SU(4) case, we shall keep these
constants (couplings of dilaton field to each gauge field):

I = g—g ——(VvP) ——(e ~F +e ~H )

(58)

The field equations are

G„„=4 8„@0„$— (V'g)—g„„

1 2+K2e-~ H„H„.—-H2g

Fourth region u & 0, v & 0:

(cos Q —sin P) (cos P + sin Q)e
(cos Q + sin P) (cos P —sin Q)

a2
(cos (P —Q) i '
( cos(P + Q) )

= [ o (P 4- Q)] [ o (P —Q)] +

(cos Q —sin P) (cos P + sin Q)
(cos Q + sin P) (cos P —sin Q)

a k

V (.—~F~") =0

V „(. b~H~-") = 0, (60)

where F = E ~E~p and H = H ~H~p . Both F»
and H„are obtained by the vector potentials A„and
B~, respectively; i.e., they are given by

Kg„(~gg""8„@)+ (ae ~F + be ~H ) = 0,16

(61)

e + = [cos(P+ Q)] +«[cos (P —Q)]

(cos Q —sin P) (cos P + sin Q)X
(cos Q + sin P) (cos P —sin Q)

—a2
e = [cos (P —Q)]" [cos (P+ Q)]"

A = p sin (P —Q).

The spacetime in the fourth region is singular on the hy-
perplanes a2u 6 a3v = 2. When a goes to zero both
of the above solutions reduce to the well-known Bell-
Szekeres solution [6].

III. DILATON GRAVITY WITH TWO U(l)
VECTOR FIELDS

Fpv = B~Av —BvAgi Hgv = &gBv —BvBg. (62)

In this section, instead of giving the complete formula-
tion of the problem we give a special solution of collision
problem. We consider the same spacetime structure as
considered in the previous section with the line element
(5). In the general case none of the waves superpose
due to the nonlinearities in the field equations. On the
other hand, the existence of two difFerent Abelian gauge
fields allows one to consider the following type of collision
problem (such a solution does not exist with one Abelian
gauge field). Consider one of the gauge fields is zero in
one of the incoming regions and the second gauge field is
zero in the other incoming region. More specifically one
of the U(1) potentials (A„) vanishes in one of the incom-
ing regions and the other U(1) potential (B„) vanishes
in the other region. In the interaction region we have
both fields. This implies a superposition in the gauge
fields. Such an assumption simplifies the field equations
considerably [23].

The reduced field equations are
A dimensionally reduced superstring theory in four di-

mensions can be described in terms of N = 4 supergrav-
ity [5]. There are two versions of N = 4 supergravity:
SO(4) and SU(4) versions. We shall only consider the

U„—U„U = 0,

2V„. —U„V„—U„V„=0,

(63)

(64)
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—2M„U„—2U„„+U„+
~

1+ —
~
V„+4~ B„e

a )

= 0, (65)

Depending upon the choices of the U(1) potentials we
find the dilaton field @ accordingly. We have two distinct
cases.

Case 1: b = a. We have two subcases (in each case
we assume that a is different then zero). (la):
—V, A„= (0, 0, 0, A(v)), B„= (0, 0, 0, B(u)). The
field equations are given above in (63)—(66). (1b): Q =
—V, A„= (0, 0, A(u), 0), B„=(0, 0, B(v), 0). The field
equations are exactly the same as in case (la) if A and
B are interchanged in Eqs. (65) and (66).

Case 2: b = —a. We have again two subcases. (2a):
@ = —V, A„= (O, O, O, A(v)), B„=(O, O, B(u), 0). The
field equations are exactly the saine as in case (la). (2b):
@ = ——V, A„= (0, 0, A(u), 0), B„= (0, 0, 0, B(v)).
The field equations are exactly the same as in case (1b).

The solutions of Eqs. (63)—(66) are given as [9]

e = f(u)+g(v), (67)

V= (R+S),1

+g (6s)

—2M„U„—2U„„+U„'+
~
1+ —,

~

V„'+4~'A„'e =0.a')
(66)

cases can be given easily by correct identifications.
Second region v & 0, u ) 0, or g = 2. The dilaton Geld

@s ———Vs, the gauge potentials are given as A„= 0 and
B„=(0, 0, 0, B(u)). The only field equation is given by

( s)—2M2 „U2 „—2 Us „„+Us „+ ~

1 + —
~ V2 „a )

+4K2 B2 e ' = 0 (72)

Third region u & 0, v ) 0, or f = 2. The dilaton
field vPs ———Vs, the gauge potentials are given as A„=
(O, O, O, A(v)) and B„=0. The only field equation is
given by

si—2Ms, Us, ~ —2Us, ~+ Us,~+ I
1+ —

2 ~ Vs, ~a )

+4~ A„e s 0 (73)

Fourth region u & O, v ) 0: The exact solutions of
U(u, v) and V(u, v) are given in (67) and (68). The dila-
ton field vP(u, v) = —V(u, v), the gauge potentials are
given as A„= (O, O, O, A(v)) and B„= (O, O, O, B(u)).
The field equations to be solved are (65) and (66).
Given the data (V2(u), Vs(v)) one finds the function
V(u, v) from the integral formula (68). Given the data
(Vs(u), Vs(v)) and (A(v), B(u)) one integrates the func-
tion M(u, v) from (65) and (66).

A simple exact solution to the above problem is given

2(& —f)(2 —g) &
& ~

I
1+ ((+ ', )(f+ g)-r

1—+ 4 V. (&) d(,
2

(69)

1 1(i f)2 f-2 —gl '
V = mi arctanh

~ i ~

+ ms arctanh
~&s+g) &s+f)

(74)

with

1
Vs ——mi arctanh (-,' —f) *,

2(~ —g)(-,' —f) &

(&+ 2)(f + g) )
1

Vs ——m2 arctanh ( 2
—g) ', (76)

dX—
dn

1—+ rl Vs(q) dq,
2

(70)

1 U 1
e — ~ e2 S

2' 2' (71)

where f and g are functions of u and v, respectively, P
2

is the Legendre function of order —2. These functions are
determined from the data . In the incoming regions we
have f = s (u ( 0) and g = s (v ( 0) where

where m~ and m2 are arbitrary constants. In the general
case the initial data is loaded on the functions f and g.
The determination of these functions is important in the
integration of the function M. We 6nd this function by
following two difFerent approaches. This means that we
have two difFerent solutions for two difFerent data.

First solution: The functions f and g are given by

tL g
1f (u) = ——si u"' 8(u), g(v) = ——s2 v"' e(v),

2 ' 2

The functions Vs(u) and Vs(v) are the data for the func-
tion V(u, v). The solutions may be summarized as fol-
lows. Here we are giving case (la) explicitly. The other

where ni and ns are positive integers () 2). This is not
the complete data but the function M(u, v) can be found
as



814 METIN GURSES AND EMRE SERMUTLU 52

( b b , (1 ) , (12M =
I

1 ——(mi+ m2)'
I »(f + g) + — mi »

I

—+ g I
+ m2»

I

—+ f I4 4 . ~2 ) &2 r

+—mim2 in[2 + 2 f g+ 2 g(1 —4 f2)(1 —4g2)] —4r.
I B& d(+ A„dq

b 1 1 (
1 1
2 2

In the incoming regions we have

( b, i (1
2Mz =

I

1 ——mi'
I

lnI —+f
I

—4~' Bgdk, (77)
4

( b, & (1
2Ms ——

I
1 ——m2 I

ln
I

—+g I

—4~ A„dg, (78))
where the last two integrals in above expression are due
to the initial values of the gauge Belds on the null hyper-
planes which are left arbitrary and

8b=1+ —,bm, =8
I

1 ——
Ia2' ' i n)

with i = 1, 2. As far as the singularity structure is con-
sidered our solution given above looks like the vacuum

I

Einstein solutions given by Szekeres [9]. They all suffer
from a future closing spacetime singularity at f + g = 0.

Second solution: The functions f and g are deter-
mined by the equations

—,'+f &2 ) idf)
(79)

2g„„ 1 (1 ) (dVs) 2 (dA) '
—b —+g —4r

—,'+g. &2 ) «g)
(80)

where V2 and Vs are given in (75) and (76). Then the
function M(u, v) is found as

2M = 1-b(-'+-')'
4

m2i+ m2 (1 i (1»(f+g)+ -1+b ' ' »
I

-+f
I I

-+g
I4 . &2 ) &2 )

+b ln
I

—+ 2fg+ —g(1 —4f2)(1 —4g~)
I
.mi m2 (1 1

2 (2 2 (81)

The function M in the incoming regions vanish (M2 ——

Ms ——0). Hence given the functions A(g) and B(f), we
determine the functions f and g through (79) and (80)
in terms of u and v. This completes the determination
of the metric in the fourth region. For different set of
functions (A(g), B(f)) we have difFerent solutions.

When the gauge potentials A and B go to zero and
the dilaton coupling constant becomes larger then both
of the above solutions approach to the Szekeres solutions
[9]. For all of these solutions the surface f + g = 0 is
singular.

higher dimensions. This will be the subject of forthcom-
ing communication.
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IV. CONCLUSION

We have given exact solutions of the colliding plane
waves in the Einstein-Maxwell-dilaton gravity theories.
Although the exact solutions we obtained in this work
differ &om the solutions of the vacuum Einstein and
Einstein-Maxwell theories, the singularity structures of
the solutions of these different theories look the same. In
this work we have studied the collision of plane waves in
four dimensions. Higher dimensional plane waves when
dimensionally reduced (with some duality transforma-
tions) lead to the extreme black hole solutions in four
dimensions. In this respect it is perhaps more interesting
to investigate the colliding gravitational plane waves in

APPENDIX

In Maxwell theory, because of the linearity, the solu-
tion in the interaction region is just the superposition of
the plane wave solutions in the second and third regions.
In Einstein theory such a superposition is not allowed
and hence to find exact solutions (solution of the charac-
teristic initial value problem) is not possible yet. ln this
appendix we consider the collision of the Maxwell-dilaton
plane waves which shares the similar diKculties of the
Einstein theory. The Lagrangian of the corresponding
theory is

(Al)
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where a is the dilaton coupling constant and the space-
time metric is Bat in all regions. Here we kept the con-
stant K which may be set equal to unity. The field equa-
tions are

Re(e) V e = Ve Ve (A6)

where differential operators in (A6) are defined with re-
spect to the metric given by ds = 2dudv and

V' (e +F"")= 0

&~(v gg"—"cf-0) +
16

(A2)

(A3)

.GK
e = e& '+i —A.

4

This can be rewritten as

(A7)

with the choice A„= (0, 0, A, 0), where A = A(u, v) and
dilaton field @ = @(u,v), the field equations turn out to
be

a@„A„+a@„A„—2A„„=0

where

V'(g V'g) = 0,

2 1
—;(e —e)

(A8)

(A9)

GK
e +A„A„=O. (A5)

These equations are the real and imaginary parts of the
Ernst equation

Equation (A8) is the two-dimensional o model equation
on SU(2)/U(l). Although the coinplete solution of (A6)
is not known yet its integrability has been shown long
time ago [24]. The soliton solutions and many interesting
properties are known.
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