
PATIKAWEB : A WEB SERVICE FOR
ACCESSING AND VISUALIZING PATHWAY

DATA IN PATIKA DATABASE

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Emine Zeynep Erson

July, 2005

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Uğur Doğrusöz (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Özgür Ulusoy

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Uygar Tazebay

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

ii

ABSTRACT

PATIKAWEB : A WEB SERVICE FOR
ACCESSING AND VISUALIZING PATHWAY

DATA IN PATIKA DATABASE

Emine Zeynep Erson

M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. Uğur Doğrusöz

July, 2005

After completion of Human Genome Project, there has been an exponential in-

crease in the available biological data. Although there has been an enormous ef-

fort for creating ontologies, standards and tools, current bioinformatics infrastruc-

ture is far from coping with this data. The Patika Project aims to provide the

community an integrated environment for modeling, analyzing and integrating

cellular processes.

Patika project develops software tools providing access, visualization and

analysis on the data in Patika database. In this thesis, we present analysis, de-

sign and implementation of Patikaweb, a Web-service having a user-friendly in-

terface without requiring any registrations, installations. To achieve an enhanced

data analysis , Patikaweb provides a multiple-view schema , compartments and

compound graphs for visualizing molecular complexes, pathways and black-box

reactions.

Querying component supports SQL-like queries and an array of graph-

theoretic queries for finding feedback loops, common targets and regulators, or

interesting subgraphs based on user’s genes of interest. Constructed models can

be saved in XML, exported to standard formats such as BioPAX, SBML or con-

verted to static images. A highly interactive and user friendly querying interface

is supported with Patikaweb.

Visual representation of complex information in pathway research is very im-

portant. The information should be presented with high coverage, while providing

a user friendly interface. In this thesis we also present a new approach to visualize

complex pathway information coping with the limitations introduced by ontology

and graphical representation.

iii

iv

Patikaweb ’s unique visualization and querying features fill an important gap

in the pool of currently available tools and databases.

Keywords: Bioinformatics, pathway visualization, complex view management,

Web service.

ÖZET

PATIKAWEB : PATIKA VERİTABANıNDAKİ YOLAK VERİSİNE

ERİŞMEK VE GÖRÜNTÜLEMEK İÇİN AĞ HİZMETİ

Emine Zeynep Erson

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assist. Prof. Dr. Uğur Doğrusöz

Temmuz, 2005

İnsan Genome Proje’sinin tamamlanmasının ardından, biyolojik sistem veri-

lerinde üstsel bir artış oldu. Fazla sayıdaki ontoloji, standart ve araç yaratabilme

çabalarına rağmen, mevcut biyo-enformatik yapısı bu verilerin karmaşıklığı ile

mücadele etmekten çok uzaktır. Patika Projesi topluluğa hücresel işlemleri mod-

ellemek, çözümlemek ve birleştirmek için tümleşik bir ortam sağlamayı amaçlar.

Patika projesi Patika veritabanındaki veriye ulaşılmasını, çözümlenmesini

ve görüntülenmesini sağlayan yazılım araçları sağlamaktadır. Bu tezde,

Patikaweb isimli ağ tabanlı, kullanışlı, kayıt, yükleme gerektirmeyen yazılım

aracının tasarım ve uygulanmasını sunmaktayız. Gelişmiş veri çözümleme

olanağını sağlamak için, Patikaweb iki seviyede çoklu görüntü olanağı, moleküler

komplekslerin, yolakların ve kara kutu reaksiyonların görüntülenmesi için bileşik

çizge sağlamakta ve kompartmanları desteklemektedir.

Sorgulama bileşeni, geribildirimli döngüleri, ortak hedef ve düzenleyici veya

kullanıcının ilgili genine dayalı ilgili alt çizgeleri bulmak için hem SQL benzeri

sorguları hem de çizge kuramsal sorgu dizilerini destekler. Oluşturulan mod-

eller XML formatında saklanabilir; BioPAX, SBML gibi standart biçimlere ak-

tarılabilir veya sabit görüntülere çevirilebilir. Patikaweb fazla etkileşimli ve

kullanışlı sorgulama arayüzünü destekler.

Yolak araştırmalarında, karmaşık bilginin görsel olarak gösterimi kritik bir

rol oynamaktadır. Kullanışlı bir arayüz oluşturmaya çalışırken bilgi doğru

olarak, mümkün olan en geniş kapsamla gösterilmelidir. Bu tezde, aynı zamanda

karmaşık yolak bilgisini görselleştirmede ontoloji ve çizgesel gösterimden kay-

naklanan sınırlamalarla mücadele eden yeni bir yaklaşım sunmaktayız.

Patikaweb’in benzersiz görselleştirme ve sorgulama olanakları ile, şu anda

v

vi

mevcut araçlar ve veritabanları havuzunda önemli bir boşluk doldurmaktadır.

Anahtar sözcükler : Biyo-enformatik, yolak görsellenmesi, karmaşık görüntü

idaresi, ağ hizmeti.

Acknowledgement

I would like to express my deepest gratitudes to my supervisor Assist. Prof.

Uğur Doğrusöz, for his guidance and feedbacks during the preparation of this

thesis. It has been a great experience and privilege for me to work with him and

get benefit from his valuable mentorship.

I also would like to thank Prof. Özgür Ulusoy and Assist. Prof. Uygar

Tazebay for reviewing the manuscript of this thesis and spending their valuable

time.

During these two years I had the chance to work with a perfect team, Patika

team. Friendships and supports of Asli Ayaz, Özgün Babur, Ahmet Çetintaş,

Emek Demir and Erhan Giral were very valuable for me. They are, and will

always be, more than friends for me.

Above all, I am very grateful for the endless love and support of my parents

Leyla and Metin Erson, and my dearest sister Elif Erson. I feel stronger and

happier with their love.

vii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Background Information . 3

2 Related Work 5

2.1 PATIKA Project . 8

3 Software System 11

3.1 Problem Statement . 11

3.2 PATIKAweb Client . 16

3.2.1 Analysis of Query Facility 16

3.2.2 Analysis of User Interface 16

3.2.3 Detailed Design of PATIKAweb Client 17

3.3 PATIKAweb Bridge . 22

3.3.1 Analysis of Pathway Data Visualization and Editing 22

3.3.2 Detailed Design of PATIKAweb Bridge 27

viii

CONTENTS ix

3.4 PATIKA Server, Data Flow and Communication 40

3.5 Implementation Details . 40

4 Conclusions 46

4.1 Contribution . 47

4.2 Future Work . 48

A Screenshots from PATIKAweb 51

List of Figures

1.1 Sample pathway: Valine Catabolism, from Patikaweb 4

2.1 Screenshot from Patikapro . 10

3.1 Modular architecture of Patikaweb 13

3.2 General use cases of Patikaweb 14

3.3 Editing use cases of Patikaweb 14

3.4 Deployment diagram of Patikaweb 15

3.5 User interface of Patikaweb. 18

3.6 Class diagram for query applet . 21

3.7 Sequence diagram for a query execution 22

3.8 Abstractions in Holo and Expanded states 25

3.9 Abstractions in Collapsed and Expanded states 26

3.10 Bridge design . 28

3.11 Sequence diagram for node deletion in Patikaweb 30

3.12 State-transition diagram of abstractions’ visual states 33

x

LIST OF FIGURES xi

3.13 Design of abstraction view manager 39

3.14 Sequence of expanding a hidden abstraction 39

3.15 Architecture diagram of Patikaweb and their communication

scheme . 41

3.16 Screenshot for the signed applet jars 44

A.1 Welcome page of Patikaweb . 52

A.2 Query applet . 52

A.3 Query is in progress . 53

A.4 Result report for the submitted query 54

A.5 Result of the query is visualized with the inspector window open

for pathway object . 55

List of Tables

3.1 Summary of the valid options for all types of abstractions 27

3.2 Programmatic states for abstractions’ visual states 32

3.3 Browser statistics month by month from W3 Schools 45

xii

Chapter 1

Introduction

Bioinformatics, which is a fast evolving field of modern science is defined as the

computational analysis and processing of biological information. Roots of bioin-

formatics date back to 1950’s, when the DNA structure was discovered by Watson

and Crick and the encoding of genetic information for proteins was studied by

Gamow [12]. Since then, high-throughput biological experiments caused accumu-

lation of information and huge amount of data. Moreover in molecular biology, the

discoveries are expressed in natural language rather than mathematical models as

in physics. Defining qualitative and quantitative functionalities in molecular level

presented computational challenges and that’s how importance of bioinformatics

is perceived [3]. Especially after 1990, when different types of high-throughput

data became available, analysis of this data and higher order functionalities in

cellular processes increased [7]. In parallel to these improvements, data access

and analysis problems in molecular biology started to enter the scope of computer

science approaches.

An era started in molecular biology, therefore in bioinformatics, when the

Genome Project began in 1996. By 2003, 160 genomes were completely se-

quenced, and a lot more sequencing projects were in progress. The available data

for DNA/protein sequences increased exponentially following these studies. The

produced data were stored in databases like GenBank, EMBL (European Molec-

ular Biology Laboratory nucleotide sequence database), DDBJ (DNA Data Bank

1

CHAPTER 1. INTRODUCTION 2

of Japan), PIR (Protein Information Resource) and SWISS-PROT [7]. Although

the sequence information is almost completely discovered, functional attributes of

genes are not fully understood. In other words, although we have the ingredients,

we still do not have the recipe of how an organism functions. Therefore, the next

logical step in Human Genome Project is discovering what these sequences mean

in terms of their functions and possible interactions [17]. Due to the complexity

of the problem, research on perceiving this information requires a different mod-

eling approach. Bioinformatics, presenting computer science approaches provides

the solution for this problem. Modeling the available data and its representation

is one of the essential purposes of bioinformatics. Presenting available informa-

tion with heterogeneous meta-data, especially for the functional genomics, is the

solution produced by bioinformatics research [17]. A level of abstraction is re-

quired to manage and perceive the data. Therefore pathways are used, as the

abstraction of molecular and cellular functional events, such as metabolic path-

ways and signaling transduction. Next step is to analyze this level of information

for more complicated interactions and pathways. Analyzing pathways, brought

new problems into consideration such as accessing and visualization of this data

in an effective way. We attack this problem in this thesis, with a new software

tool named Patikaweb, a promising solution to some of these issues.

1.1 Motivation

Accessing, analyzing and editing available information for metabolic/signaling

pathway data became an important research in molecular biology. As new bioin-

formatics tools are developed, new requirements are emerged. The Patika

project has been developing integrated visual environments for collaborative con-

struction and analysis of various cellular pathways. These tools provided very ex-

tensive functionalities for data access, analysis and submission/integration. How-

ever even for the editing or the creation of a new pathway, the research process

requires to access the current available data and analyze this data. Therefore easy

access and enhanced analysis techniques like graphical visualization becomes a

key step in pathway informatics. When we analyzed the use cases of Patika, we

CHAPTER 1. INTRODUCTION 3

have observed that most frequent use cases are the data access and analysis as

opposed to data submission.

Another motivation of this research thesis is related to the preferences of the

users about the convenience of the tools. For accessing and analyzing a specific

gene or protein and related pathways, researchers do not want to spend time on

registering for, downloading and setting up software. With these observations

in mind, we have developed an easy-to-access tool Patikaweb, which is a Web

based service. Main motivation for this tool is to provide a service to reach the

data in Patika database via an extensive querying interface and visualize this

data.

1.2 Background Information

A pathway is a network of interacting proteins to perform a specific metabolic

or signaling task in living systems (See Figure 1.1). Signal transduction is the

process converting one kind of signal into another by chemical modifications.

Series of biochemical reactions produce metabolic byproducts, end-products or

become part of other pathways themselves. Current knowledge in metabolic

pathways is deeper than the signaling pathways [1].

Since the completion of the Human Genome Project, scientists have been

generating huge amounts of data on cellular pathways. Therefore, many different

databases started to host such data to simplify such complicated information.

Although such databases contain different types of data, there is significant data

overlap problem in these sources. KEGG1, Enzymes and Metabolic Pathways

database (EMP)2, EcoCyc3, SWISS-PROT4, Gene Ontology (GO)5, ExPASY6

1http://www.genome.jp/kegg/
2http://www.empproject.com/
3http://ecocyc.org/
4http://www.expasy.org/sprot/
5http://www.geneontology.org/
6http://www.expasy.org/

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Sample pathway: Valine Catabolism, from Patikaweb

are only a few of examples. Some of these databases contain only metabolic path-

way information like EcoCyc and EMP. Some others contain both metabolic and

regulatory pathway data like KEGG. Researchers need to access the integrated

information from these databases, while conducting their research. Accessing

such data and integrating them will not be the feasible solution for most of the

scientist. Therefore we developed a knowledge base, where we perform the data

integration process and provide the integrated data from different databases. We

used many public databases while integrating data for Patika database, includ-

ing Entrez Gene, UniProt, PubChem, GO, Reactome and KEGG.

As sources available to reach data increased, the requirement for the portabil-

ity of the data became an important issue. A standard way should be developed

to exchange available data and newly produced data. BioPAX7 and SBML (The

Systems Biology Markup Language)8 are such efforts. We use these standards in

our software tools, to provide data portability.

7http://www.biopax.org/
8http://sbml.org/index.psp

Chapter 2

Related Work

As biological pathway data started to accumulate, software tools to access and vi-

sualize this data became indispensable. Therefore both commercial and academic

research groups aimed to satisfy this requirement.

Initially the developed tools only presented still pictures of known pathways.

BioCarta1, which is a commercial company founded in 2000, developed this kind

of a tool, where they provided still images of specific pathways. As new path-

ways are introduced into the knowledgebase of BioCarta, corresponding images

have to be created manually. The necessary description of the pathway is then

given by a summary text. ExPASy2 is a similar tool providing a simple inter-

face for textual queries to match any of the available biochemical data. Data

is presented with map like still pictures. KEGG (Kyoto Encyclopedia of Genes

and Genomics) provides hand-drawn still images3. MetaCyc4 provides access to

metabolic pathways for over than 300 organism. Similarly EcoCyc5 is a database

providing genome, metabolic pathway information for the bacterium Escherichia

coli. Both MetaCyc and EcoCyc provide Web based tools for querying, editing

and visualization for the data in their database [9].

1http://www.biocarta.com/
2http://www.expasy.org/cgi-bin/search-biochem-index
3http://www.genome.jp/kegg/
4http://metacyc.org/
5http://ecocyc.org/

5

CHAPTER 2. RELATED WORK 6

One of the major drawbacks of all these tools is that it is required to create the

pathway drawings as new data is introduced. That means that the integration

of data and its representation in images require a significant amount of extra

effort. Moreover still images cannot be modified, therefore they are only used for

knowledge acquisition of one type. Research and development in this area started

to develop new tools to provide dynamic visualization of pathways and to be able

to integrate different databases at the same time.

Cytoscape6 is a free, open source tool for general purpose modeling environ-

ment. The strongest point of Cytoscape compared to other tools is its plug-in

adaptable architecture. Especially for data analysis, they provide different plu-

gins like microarray data analysis. Integration of data, mainly annotations to

the available graph is strongly supported. However, as it is mainly designed as

a modeling tool, knowledge acquisition through Cytoscape is possible through

plugins to load some data. They introduce new plugins as new types of data to

load becomes available. For example, latest plugin release supports downloading

protein-protein interactions. Another way to analyze the current data in Cy-

toscape is to save the data in the acceptable format and to reload it. Different

layout algorithms are implemented to enhance the visualization quality. Cy-

toscape Core is implemented in Java with LGPL Open Source license. Graphical

component of Cytscape uses yFiles Graph Library (Java Graph Layout and Vi-

sualization Library)7. One potential downfall for users is that Cytoscape requires

a download and installation to run the software [14].

Another software tool for pathway visualization is VisANT 8, which is an

open-source, online tool for access and visualization of bimolecular interactions.

Currently VisANT obtains pathway data from KEGG database and draws infor-

mation from Predictome database. Annotation and cross references are obtained

by GenBank and SwissProt. The system provides navigation of data, manipula-

tion and expansion of visualized pathways by basic graph operations like degree

distribution, loop detection and shortest path identification [5].

6http://www.cytoscape.org/
7http://www.yworks.com
8http://visant.bu.edu/

CHAPTER 2. RELATED WORK 7

Users need to point their browsers to the provided Web page and, choose to

run the VisANT applet, run the VisANT Java Web-Start Application or down-

load and install the stand-alone application. VisANT provides textual querying

facility, where the user can enter the ORF IDs, GI numbers, or KEGG pathway

IDs for an arbitrary number of genes. Saving the pathway locally or by protecting

password to reach later remotely is possible in a simple delimiter based format.

However not all the functionalities are available for the downloadable applet form.

Registration is required for save and load operations. The system provides online

structure by using J2EETM technology. They require a Web browser and Java

Runtime Engine (JRE).

Another academic group developed a similar tool for pathway visualization.

Center for Computational Genomics at the Case Western Reserve University,

developed a system called Pathways Database System [10]. This system is an

integrated system, composed of different software components. This system’s

database component provides pathway data extraction from different databases

such as SwissProt and GenBank. They also provide a querying component, to

access the data in their database. Their third main component is the visual-

ization component. To achieve the visualization of the pathway data, they use

their own graph editing library, PathwayViz in Java [13]. In their visualiza-

tion scheme, they allow multiple level of abstractions to visualize data. To get

full functionality for the system, users need to download different components,

like browser and the viewer independently. Currently available components are

metabolic/signaling pathway browsers, pathway viewers, pathway explorer, path-

way editor, Java based viewer and an XML based Web service to make queries.

Java based viewer component loads an applet from the Web site, and provides

a tree of pathways, processes and molecular entities to be visualized. There is

a limited number of entities provided to be visualized within this component.

Limited editing operations are provided , like move, expand/collapse and find

node/edge.

Observing the positive and negative points of these tools, Bilkent Univer-

sity Center for Bioinformatics started a project namely, Patika, which produce

CHAPTER 2. RELATED WORK 8

software tools containing workpackages like data integration, analysis and visu-

alization.

2.1 PATIKA Project

The Patika project aims to cope with the complex information in cellular

processes and provide an infrastructure for this information. Having this road

map, Patika project produces software tools with its own ontology, mapping to

the data in its knowledge base visualizable, editable and analyzable in an editor

[2]. Ontology is the formal specification of a concept, built to be portable among

applications with different domains [8]. Patika team developed its ontology en-

abling integration of incomplete, complex and fragmented pathway information

[1]. Throughout this thesis we will refer to the components of this ontology,

therefore we will briefly cover these components.

• States and Bioentities: Macromolecules, small molecules are the actors of

molecular level reactions. However these molecules have different states in

the cell based on the localization or chemical modifications. Therefore we

define these molecules as bioentities and define their states based on the

variable conditions.

• Transitions: It is modeling for a functional process. They provide as avoid-

ing hyper edges in graphical representation of a pathway.

• Compartments: Physical localizations of proteins play a significant role in

pathway analysis as a potential implication of function. Therefore graphi-

cally cell compartments must be modeled as well.

• Molecular Complexes: Molecules performing in structural or functional

groups are defined as complexes.

CHAPTER 2. RELATED WORK 9

• Abstractions: Incomplete and complex information contributing to the net-

work of higher level information must be represented. Abstracting a path-

way information as a single processes or grouping similar process are re-

quired for complexity management. Abstractions are basically composed

of states, transitions and possibly other abstractions. Visual representation

of abstractions with the limitations introduced by the compartments and

graphical invariants are also addressed in this thesis. We have five types

of abstractions defined in Patika ontology as Homology State, Homology

Transition, Incomplete State, Incomplete Transition and Regular Abstrac-

tion.

Considering the visualization of the pathway data specified with Patika on-

tology, we designed different levels of visualization. Analysis and representation of

different levels of data requires separate handling. Therefore we defined two views

as Mechanistic Level View and Bioentity Level View. Relations among bioentities,

such as protein-protein interactions, are represented in Bioentity view, whereas

data related to metabolic or signaling pathways are visualized in Mechanistic

view. Visual representation of the ontological components can be seen in Figure

2.1 in both Bioentity and Mechanistic levels.

Figure 2.1 is a screenshot from Patikapro showing all ontological components.

CHAPTER 2. RELATED WORK 10

Figure 2.1: Screenshot from Patikapro

Chapter 3

Software System

3.1 Problem Statement

As we have stated previously in Section 1, data available in cellular processes at

molecular level is accumulating very fast; and thus in parallel, researchers would

like to reach this information rapidly. Presentation of the information is at least

as important as the fast and rapid access to the data. Visual representation of

the pathway information is preferred over the textual representation of the data

by the researchers, due to the nature of the information.

We reconsidered these facts with the current user profile of Patika and other

pathway visualization tools. Most of the researchers need fast and easy access to

the metabolic/signaling pathway information to accelerate their research. Down-

loading, installing, executing a software tool, just to perform read only operations

on a pathway database is not desirable in terms of time and effort for most of the

researchers. We also foresee that, majority of the users will perform read-only

access to our database, rather than write operations such as data submission.

Therefore, we have decided to provide a Web service reachable through a Web

browser.

In Patika the problem of pathway visualization and tools having extensive

11

CHAPTER 3. SOFTWARE SYSTEM 12

visualization facilities had been attacked previously. For visualization compo-

nent in Patikapro we have used Tom Sawyer Visualization Java Edition and

customized it for extensive pathway visualization [15].

We need to build a framework where we can reuse the previously built vi-

sualization component of Patikapro and integrate it with the new Web based

service, Patikaweb. Therefore our problem comes down to defining the require-

ments of Patikaweb based on the so far defined use case, design the system so

that we can integrate the currently available approach to pathway visualization

and define the technology to apply these architectures. We will address these

issues in the next chapter.

Given the problem stated in Chapter 3.1, we have decided to build a Web-

based service providing a read-only access to the Patika database, an interface to

visualize this data and limited editing operations on the visualized data. However

when we considered the use cases, we concluded that there is a considerable

amount of memory and CPU requirement even for read only operations to be

serviced by Patikaweb. Carrying the load of computationally heavy to the client

side was not desired, since we do not want to put any necessary requirements on

use of Patikaweb like CPU power or memory. The other alternative was to

carry the logic that requires computation sensitive operations to the server side.

This idea led us to the thin client concept.

A thin client is defined as a front-end having minimal software requirements

and performing minimal computational operations. Internet and intranet are

fundamentally based on the thin client paradigm [6] .All resource-requiring oper-

ations are performed at the server side, and results of the computations are trans-

ferred back to the client. Properly partitioning the resource-requiring processes

between clients and servers is an effective way to distribute the computing re-

sources. Based on the domain of the application the resource requirements

change, but basic ones to consider are CPU cycles, memory, security, virtual

memory, and high-speed data storage, etc. [4]. Another major advantage of

thin clients is the concern for the developers and maintenance. Ability to have

both scalability and centralized administration with thin client architectures is a

CHAPTER 3. SOFTWARE SYSTEM 13

Figure 3.1: Modular architecture of Patikaweb

considerable benefit for fast changing resources and requirements [4].

Although thin-client architecture is advantageous for many perspectives, there

are some drawbacks to consider. Client/Server architecture, which use the thin

client approach rely on the bandwidth and network latency. It is experimentally

shown that network latency becomes the bottleneck in such applications [11]. On

the other hand, it is clear that network latency problem cannot be avoided for

most of the fat clients as well. Improvements in the Web technology also helped

to overcome these problems. Web components, plugins, like applets, JavaBeans,

dynamic HTML pages are the technologies used extensively.

Web services are defined as the services available through Internet, accessible

by standard Web protocols like http, using messaging data formats like XML1.

Web services have a self-containing and modular structure to provide any appli-

cation logic reachable through Internet2. Therefore we initially decided to define

the modular structure of our Web service, Patikaweb and divide design steps

based on the application logic.

In Figure 3.1, we present the multi-tier architecture for our Web-service. In

this architecture, user, application and data components are tiered apart.

1www.w3.org/2003/glossary/subglossary/xkms2-req/
2http://www.ecots.org/

CHAPTER 3. SOFTWARE SYSTEM 14

Figure 3.2: General use cases of Patikaweb

Figure 3.3: Editing use cases of Patikaweb

We have defined the functionalities of the components of the tiered architec-

ture based on the requirements. For the requirements analysis phase, initially we

have defined the use cases of Patikaweb in Figures 3.2 and 3.3.

Analyzing the use cases presented in Figure 3.2 and Figure 3.3, we identified

the basic functionalities that we must provide as follows:

1. Pathway data model access by queries,

2. Visualization and editing of the current pathway model,

In the multi-tiered architecture, these functionalities are decomposed and de-

signed in different components and mentioned in the following sections.

CHAPTER 3. SOFTWARE SYSTEM 15

Figure 3.4: Deployment diagram of Patikaweb

We have decomposed our system according to the multi-tiered architecture

and considered the following components in the design process as seen in Figure

3.1:

• Patikaweb Client Side Design: This component maps to the user tier in

our architecture. In the client side, we focused on the user interface design

of the Web page. Communication of the client to Patikaweb bridge over

http is considered as well.

• Patikaweb Bridge Design: This component maps to the application tier in

our architecture. In this part we designed the application logic. As we have

defined in Section 3.1, we aim to reuse the code base that we have developed

for previous pathway visualization tools, customized and integrated it with

the new design developed for Patikaweb.

• Patika Server, Data Flow and Communication: This component maps to

the data tier in our architecture. This part also covers the communication

with Patika server.

Deployment of tiered architecture of Patikaweb , is detailed in Figure 3.4. In

this figure we see that Patikaweb client communicates with Patikaweb bridge

over http. We use the Java Server Pages (JSP) technology to handle the dynamic

CHAPTER 3. SOFTWARE SYSTEM 16

web content. In the bridge, which behaves as the application server in the multi-

tier architecture, we host the JSP’s (Java Server Pages, see Section 3.5) and

implement the application logic. Each client’s session, in other words each client’s

application data is kept independently. The association of the user and the session

information is managed by JavaBeans. Details of the components and their

communication are given in the following sections.

3.2 PATIKAweb Client

3.2.1 Analysis of Query Facility

The only way to analyze data in Patikaweb is by reaching data in Patika

database through submission of queries on this data. As we have mentioned in

Section 2.1, we support data in two levels, as mechanistic and bioentity levels.

Therefore to facilitate the access of data in both levels, Patikaweb provides

mechanistic and bioentity levels in both querying and visualization interfaces.

The queries to be submitted to Patika database should be as extensive and

powerful as possible, to get full advantage of the integrated knowledgebase. In

addition to the basic textual queries, we should also provide graph theoretical

ones. Nesting of these queries is also critical, since the user may have a very

specific interest in the pathway data. Having created a complex, recursive query,

a user might like to save the query and load it later to continue working on it.

Considering all these requirements, we realized that we needed a very extensive

interface, where sophisticated user interaction is provided.

3.2.2 Analysis of User Interface

Considering the use cases mentioned in the Figures 3.2 and 3.3 and requirements

pointed in Section 3.2.1, Section 3.3.1 and Section 3.3.1.1, we developed a service,

where the users are able to reach an interface where they can query, visualize and

CHAPTER 3. SOFTWARE SYSTEM 17

edit pathway data with a few mouse clicks. User interface of Patikaweb has the

following components to provide these functionalities:

1. A drawing area for displaying pathway graphs: Results of the queries are

displayed on this area. Only one pathway can be drawn at a time. We will

refer to this area as canvas, from now on.

2. An inspection area: This is where the selected object properties are dis-

played

3. A query dialog: This is where the queries are created and submitted. The

results are displayed either as a new drawing or merged into the existing

one.

4. Menus and toolbars: To provide the limited editing functions on the path-

way data, functional menus and toolbar components are provided.

To supply the requirements defined for the interface, we developed an inter-

face as in Figure 3.5. As you see in this figure, we provide a canvas where we

display the results of queries. This canvas displays both bioentity and mecha-

nistic level graphs. We provide an overview window for the graph displayed in

the canvas. Inspection of the pathway objects is facilitated with the inspector

window. Considering the limitation of a Web browser by space, we planned to

reserve the largest room for the the canvas (in the middle) , and located the

overview window and inspector window to the remaining places as seen in Figure

3.5.

3.2.3 Detailed Design of PATIKAweb Client

Patikaweb clients access the service supplied via their Web browsers. In these

browsers, we provide highly dynamic visualization facilities over the displayed

pathway information. Therefore we designed a mechanism where we can manage

this dynamism both in the client side and at the server side. However we kept

in mind that, our aim is to build a thin client, where most of the computation

CHAPTER 3. SOFTWARE SYSTEM 18

Figure 3.5: User interface of Patikaweb.

CHAPTER 3. SOFTWARE SYSTEM 19

requiring operations will be performed on the server side. Consequently, what we

tried to manage at the client side required basic scripting.

Simply what we have been mentioning so far is a dynamically created html

page with client side scripting. Client side scripting is a strategy preferred lately,

used to reduce both the CPU requirement at the server and the communication

cost. JavaScript is the technology used for the specified cases.

We represent the pathway data as still images in .jpeg format in the canvas.

Creation of this still image and transmission of this image is provided by TSV

JSP Edition framework. We customized this functionality by adding limited

editing operations on the image. All editing actions performed on the canvas,

other operations like pathway object property requests are initially handled by

JavaScript, where we can perform primitive operations. Computation requiring

requests for the client action are submitted to the bridge.

The creation of the still jpg images are done by TSV JSP Edition tag libraries.

Similarly creation of the overview image is done with these libraries [16].

We also provide the utility to export the locally visualized data to other

exchange formats like BioPAX3 and SBML4. Moreover the users are able to save

the current pathway in Patika model, as a pmdl file, which is the Patika

pathway model file in XML format, and load it later. All these use cases require,

the facility to load a file from Patika bridge. Therefore load/save actions, that

require access to the user’s local machine are designed to be part of the html

design. Since these operations are not part of the application logic, we considered

them as the client side programming and designed the JSP pages accordingly.

3.2.3.1 Detailed Design of Query Dialog in PATIKAweb client

Another component that we designed as part of the client side, is the query

dialog. Once we investigated the requirements of querying facility in Section

3http://www.biopax.org/
4http://sbml.org/index.psp

CHAPTER 3. SOFTWARE SYSTEM 20

3.2.1, we observed that the query interface required extensive capabilities such

as nesting, saving, loading, etc. One alternative was to build these facilities with

JSP technology, with a sacrifice in extensive user interface facilities. On the

other hand, we had an alternative that enabled us to reuse the existing querying

interface we have developed for Patikapro. This alternative was implementing

the query dialog as an applet. By this way, we were able to adapt the old code

base with minimal modification and moreover, we got full advantage of applet

in interactive query creation and submission phase. However we admit that this

choice has a drawback. Downloading an applet over an internet connection may

be a slow operation, which is an issue we try to avoid. Considering the pros and

cons of this approach, we decided that sacrificing speed over extensive querying

facilities was feasible. Thus we designed query dialog as an applet and added the

facility that enabled the clients to download the JavaTM Archive (jar) files and

to execute the query applet at the client side.

In the query applet, we provide query saving, loading and executing actions.

Interface of the query applet was previously designed. We have customized the

design for Patikaweb as in Figure 3.6. QueryApplet contains the interface com-

ponents for building the nested queries such as EditorPanel and QueryForest.

EditorPanel is an abstract editor panel class for handling different types of queries

such as field queries or neighborhood queries. The creation of the query object

is handled at the these editors. Functionalities of the QueryApplet is handled by

the QueryAppletManager. Saving, loading and execution of the queries are the

responsibilities of the QueryAppletManager.

Sample sequence for the execution of a query can be seen in Figure 3.7. In this

sequence diagram, the client executes the selected query, by sending the request to

the corresponding data, which we will refer as PatikaSessionData in the Patika

bridge with an http request. In this http request, Patikaweb client sends the

composed query object in XML. PatikaSessionData receives the request for the

execution of a query action with the query as a stream and behaves like a pipe

and forwards the stream to Proxy. Proxy is responsible for the communications

with Patika server. Proxy sends the query to the Patika server and waits for

CHAPTER 3. SOFTWARE SYSTEM 21

Figure 3.6: Class diagram for query applet

the query result. Once the result is received from the Patika server, PatikaSes-

sionData informs the clients of the results and waits for a feedback. Patikaweb

client may choose to see or ignore the query results. If the user wants to see the

query result in the browser window, then the visualizable graph for the query

result is processed. User has the option to merge the query result to the current

view or visualize it as a new graph. All these visualization related operations are

performed at the bridge and the graph is rendered as still image and sent to the

client side format via http. Creation of the still image in jpeg format is handled

by the TSV API.

CHAPTER 3. SOFTWARE SYSTEM 22

Figure 3.7: Sequence diagram for a query execution

3.3 PATIKAweb Bridge

3.3.1 Analysis of Pathway Data Visualization and Editing

Once the requested model is retrieved from the Patika database, the user at the

Patikaweb client side is able to visualize the result. In other words, Patikaweb

client behaves like a graph window for the Patikaweb bridge.

Users are able to create and extend pathway models by performing queries

both through an interface given and also through the object interface in the

current view. As the obtained model gets complicated, the users want to save

the current model. We provide saving capability in Patika model language,

pmdl and allow loading it later. Moreover exporting the obtained graph to other

standard data formats like BioPax5 and SBML6 are supported for enabling data

portability.

Considering the read-only structure of our tool, we provide mechanisms to

5http://www.biopax.org/
6http://sbml.org/index.psp

CHAPTER 3. SOFTWARE SYSTEM 23

increase quality of the visualization facility. We considered following components

to increase this quality:

• Bioentity and Mechanistic Levels: Pathway data in bioentity and

mechanistic levels should be visualized independently. We have to provide

a visual representation of the cell model, while visualizing the mechanistic

level data.

• Layout of the pathway data: Since we provide extensive querying facil-

ity, we need to present the result in the best possible way. Therefore, we

apply a layout process on the pathway data prior and during the visualiza-

tion.

• Editing Operations: Although we provide a read-only interface for path-

way data in Patika database, to provide better visualization, we facili-

tate operations like zoom in/out, delete, pan/scroll, hit testing, overview,

drag/drop, etc. Extending a pathway by submitting new queries are also

be provided.

• Complex pathway representation: As mentioned in Section 1.2, path-

way data can be hard to visualize in two dimensions with limited graphical

representation facility. We need to represent this information with maxi-

mum coverage. This requirement can be thought of an independent compo-

nent, therefore analysis and design of this component is studied separately

in the following section.

3.3.1.1 Analysis of Complex Pathway Visualization

Incomplete and complex information contributing to the network of higher level

information must be represented. Abstractions are introduced for this purpose in

Patika ontology. We represent abstractions graphically with compound nodes

having child graphs with the TSV API [15]. Compound nodes enable nesting

child graphs, in other words provides us the framework to represent the compound

pathway information for different levels of information.

CHAPTER 3. SOFTWARE SYSTEM 24

Graphical representation of abstractions in Patika ontology is an impor-

tant task. Since abstractions represent a cellular events/pathways, a molecular

component can be part of two different cellular pathways. Representing two dif-

ferent pathways sharing an element, either requires making multiple copies of a

molecule, or introducing a new graphical representation technique. Representing

a molecule multiple times in a cell, within different pathways is misleading by

giving wrong quantitative information. Therefore, we proposed different visual

states of pathways, or abstractions as in our ontology.

We visualize abstractions as compound graphs with different visual states in

our graphical representation scheme. These states and their meanings in graphs

are as follows:

• Expanded: The default view of a compound graph is its expanded state.

The child graph of the expanded node is visualized.

• Collapsed: A Collapsed compound node is represented as a single black-

box like node, with the child graph folded. Collapsing a compound node

conceals its child graph.

• Hidden: We define this state, as the abstraction being not visible. However

in this state, we sill represent the members of the abstraction. Only we hide

the information of abstraction owning the members. When an abstraction

is hidden, its child graph becomes part of the parent graph and can be

visualized.

• Holo: In this state we represent the pathway information without the

compound node and child graph components. We present this information

by adding a color information to the member of the abstraction. When an

abstraction is in holo state, its child graph becomes part of the parent graph,

as in hidden state; however we present the information of the abstraction

with color coding.

You can visualize the abstractions in Expanded and Holo states in Figure 3.8.

States with a green holo color are members of another abstraction. In Figure 3.9,

CHAPTER 3. SOFTWARE SYSTEM 25

Figure 3.8: Abstractions in Holo and Expanded states

we can see the abstractions in Collapsed and Expanded states. Abstractions in

the cytoplasm, drawn as black nodes are abstractions in collapsed state and the

abstraction in the nucleus is in expanded state, where we can see its members in

the child graph.

We define a concept of relationship among abstractions in terms of the rela-

tions among the members of the abstraction. Abstraction A and abstraction B,

may share a subset of their elements. In this case we define these abstraction A

and abstraction B as having improper inclusion relationship. On the other hand,

abstraction A may contain completely abstraction B itself as a sub-component.

In this case we define these abstraction A and abstraction B as having proper

inclusion relationship. These definitions are critical when we try to find the best

possible visual state in a pathway and present it.

As we have stated earlier in Section 2.1, we have five types of abstractions

which are Regular Abstraction, Homology State, Homology Transition, Incom-

plete State and Incomplete Transition. We can represent all of these abstractions

in expanded form. However due to the restrictions introduced by the cell model

CHAPTER 3. SOFTWARE SYSTEM 26

Figure 3.9: Abstractions in Collapsed and Expanded states

CHAPTER 3. SOFTWARE SYSTEM 27

Hidden Collapsed Holo Expanded

Regular Abstraction
(Spanning 1 compartment) + + + +
Regular Abstraction
(Spanning many compartments) + + + -
Incomplete State + + - +
Homology State + + + +
Complex State - + - +

Table 3.1: Summary of the valid options for all types of abstractions

and biological constraints, not all visual states are applicable for all abstraction

types. Allowed visual states for abstraction and complexes can be seen in Table

3.1.

3.3.2 Detailed Design of PATIKAweb Bridge

Patikaweb bridge is the tier, where the application logic is implemented. Data

access and visualization are the basic functionalities of our application. As we

have mentioned earlier, we have a visualization approach for pathway visualiza-

tion, developed earlier for other Patika tools. We have customized this code

base to integrate it with the visualization scheme of Patikaweb.

CHAPTER 3. SOFTWARE SYSTEM 28

F
ig

u
re

3.
10

:
B

ri
d
ge

d
es

ig
n

CHAPTER 3. SOFTWARE SYSTEM 29

In Figure 3.10, the architecture of the session data can be seen. Session data,

which is PatikaSessionData for our case, is instantiated as JavaBean, in the jsp

file. As the user requests for the jsp file, this bean is instantiated in the bridge with

the scope of session. This session bean keeps the data for that session, containing

the current pathway data, query results and visual properties. Therefore, any

action requiring a modification on any of these data, and consequently on the

still image displayed on the canvas, is handled by the session data.

PatikaSessionData, is extended from TSESessionData, to customize it accord-

ing to our preferences. Concept of two graph managers per session data, display-

ing query results, expanding/collapsing and performing other editing operations

on the graph data are achieved with PatikaSessionData. Each PatikaSessionData,

has one BioentityGraphManager and one MechanisticGraphManager. We carry

the subject-view mechanism of Patika visualization scheme to Patikaweb as

well. That’s why each PatikaSessionData has one subject graph, SPatikaGraph

instance (See Figure 3.10).

Although we limit the editing operations on the visualized pathway graph in

Patikaweb , we allow operations like delete, expand/collapse, merge graphs and

layout. Since these operations modify the graph topologically or visually, undo

operations must be provided. However due to our one subject and multiple view

mechanism, one operation in one view may require a modification in the other

view. For example, deletion of a bioentity in the bioentity view causes removal of

all of its states in the mechanistic view. If we want to perform an undo operation

on bioentity view, we need to perform the corresponding undo operations on the

mechanistic view. Command structure provided by TSV JSP Edition [16], does

not provide this type of control. Therefore, we extended TSECommandManager

into to sub-command managers as BioentityCommandManager and Mechanisti-

CommmandManager (See Figure 3.10).

CHAPTER 3. SOFTWARE SYSTEM 30

F
ig

u
re

3.
11

:
S
eq

u
en

ce
d
ia

gr
am

fo
r

n
o
d
e

d
el

et
io

n
in

P
a
t
ik

a
w
eb

CHAPTER 3. SOFTWARE SYSTEM 31

In our design every interactive operation requiring process on the pathway

data, requires access to the Patika bridge. All of these editing operations has a

corresponding action class (e.g. PatikaExpandAction, PatikaLayoutAction, etc.)

at the bridge. As the user performs any of these editing operations, the request to

perform that action at the session data is sent to the bridge. For example, in Fig-

ure 3.11, we see a sample sequence of a node deletion action. Patikaweb client

performs the action on the browser, by calling the corresponding JavaScript. This

script makes a request to the jsp file. As the jsp is compiled and the Java code

is executed, PatikaSessionData, calls the corresponding method, newDeleteN-

odeAction(). This method creates and returns an instance of the action object.

PatikaDeleteNodeAction transmits the command for the deletion of the node. As

we are dealing with deletion of view-level objects and the command for node dele-

tion requires the subject-level node, we need to access the node’s subject at this

point. We transmit the command to the correct command manager based on the

type of the node, either MechanisticCommandManager or BioentityCommand-

Manager. This command removes the node from the graph and adds the com-

mand to the undo stack, for enabling undo operations.

3.3.2.1 Complex Pathway Visualization Design

In Patikaweb the results of queries are visualized in the best possible way. While

preparing the visual representation of the query result, one issue that we need to

consider is the abstractions. As mentioned in Section 3.3.1.1,we allow abstractions

to be visualized in four different visual states. Some of these visual states are not

applicable for all abstractions, based on their relationships as defined in Section

3.3.1.1.

Visual state of an abstraction to be visualized in Patikaweb is decided in the

Patika bridge and visualized in that state. Limited visual state transitions are

allowed by user’s choice. A Patikaweb user can only change an abstraction’s

visual state between expanded and collapsed. On the other hand an abstraction

can be visualized in any of the visual states applicable for that abstraction, when

it is initially visualized in the graph. The selection of the proper visual state of the

CHAPTER 3. SOFTWARE SYSTEM 32

State in Editor Programmatic State
Hidden ReadyToViz or NotReadyToViz
Holo Visible Holo or Invisible Holo

Expanded Visible Expanded or Invisible Expanded
Collapsed Visible Collapsed or Invisible Collapsed

Table 3.2: Programmatic states for abstractions’ visual states

abstraction is done automatically. Based on the relationship of the abstraction

with the other abstraction in the current graph, its visual state is decided. The

order of visual state tested is like this: expanded, collapsed, holo and hidden state.

Programmatically, visual state transitions for an abstraction depends on the

other associated abstractions in the view. We defined low level visual states

matching with the user perceived visual states. User perceived visual states for

abstractions correspond to the programmatic visual states of an abstraction as

in Table 1. Complex molecules are compound molecules, although they are not

abstractions ontologically and not all the visual states are allowed for complexes.

Correspondences among them can be seen in Table 3.2.

CHAPTER 3. SOFTWARE SYSTEM 33

F
ig

u
re

3.
12

:
S
ta

te
-t

ra
n
si

ti
on

d
ia

gr
am

of
ab

st
ra

ct
io

n
s’

v
is

u
al

st
at

es

CHAPTER 3. SOFTWARE SYSTEM 34

Possible dependencies among abstractions are explained in the state-transition

diagram (see Figure 3.12). As can be seen from the diagram, every user perceived

state is divided into two sub states to manage the dependencies. One important

design decision to point out is the order of transitions. An abstraction cannot

pass directly from holo state to expanded state. Abstraction must first pass to

hidden state, then to collapsed state and then to expanded state.

Dependencies among abstractions affect the visual state transitions of indi-

vidual abstractions. There are two basic dependencies among abstractions in the

same view: proper and improper intersection dependencies. In the proper inter-

section, members of one abstraction is a proper subset of members of another

abstraction. We will refer the abstraction which contains all the members of

another abstraction as the parent abstraction of the other. In the improper inter-

section dependency, two (or more abstractions) share one or more members but

neither contains all members of the other. State transitions according to these

dependencies are as in Figure 3.12. Each transition is labeled with a number and

events that trigger these transitions, conditions that control these transitions and

actions taken with these transitions are explained in detail below:

1. Event: Insert to view occurs.

Condition: If abstraction A has an improper intersection with some other

abstraction B and abstraction B is in visible collapsed state.

2. Event: Insert to view occurs.

Condition: If there is no such dependency as in (1) in the view.

Action: Disable collapsed state if another abstraction B having an im-

proper intersection with current abstraction is in holo state.

Action: Disable collapsed/expanded states if another abstraction B having

an improper intersection with current abstraction is in expanded state.

Action: Enable collapsed/expanded/holo states if all members are in un-

hidden states.

3. Event: Parent abstraction of abstraction A changes to visible collapsed

state.

CHAPTER 3. SOFTWARE SYSTEM 35

Event: Abstraction B having improper intersection with abstraction A

changes to visible collapsed state.

4. Event: Parent abstraction of abstraction A changes to visible expanded or

ready to visualize state from visible collapsed state.

Event: Abstraction B (having improper intersection with abstraction A)

changes to visible expanded or ready to visualize state from visible collapsed

state.

Action: Disable collapsed state if another abstraction B having an im-

proper intersection with current abstraction is in holo state.

Action: Disable collapsed/expanded states if another abstraction B having

an improper intersection with current abstraction is in expanded state.

Action: Enable collapsed/expanded/holo states if all members are in un-

hidden states.

5. Event: Visual state of abstraction A is set to collapse.

Condition: All members of abstraction A must be in unhidden states.

Action: insert() into the view is performed.

Action: Enable all state options for this abstraction.

Action: All member abstractions change their visible states to correspond-

ing invisible states. If in ready to visualize state, changes to not ready to

visualize state. Disable hidden state for member abstractions.

Action: All abstractions having improper intersection with abstraction A,

change their states to not ready to visualize state from ready to visualize

state. Disable collapsed/expanded/holo state options for these abstractions.

6. Event: Visual state of abstraction A is set to hidden.

Action: All member abstractions change invisible states to corresponding

visible states. Remove from the view is performed.

Action: All abstractions having improper intersection with abstraction A,

change their states to ready to visualize state from not ready to visualize

state. Remove from the view is performed.

Action: Disable collapsed state if another abstraction B having an im-

proper intersection with current abstraction is in holo state.

Action: Disable collapsed/expanded states if another abstraction B having

CHAPTER 3. SOFTWARE SYSTEM 36

an improper intersection with current abstraction is in expanded state.

Action: Enable collapsed/expanded/holo states if all members are in un-

hidden states.

7. Event: Visual state of abstraction A is set to hidden.

Action: Disable collapsed state if another abstraction B having an im-

proper intersection with current abstraction is in holo state.

Action: Disable collapsed/expanded states if another abstraction B having

an improper intersection with current abstraction is in expanded state.

Action: Enable collapsed/expanded/holo states if all members are in un-

hidden states.

8. Event: Parent abstraction of abstraction A changes state to visible col-

lapsed.

Action: All state options for this abstraction are disabled.

9. Event: Parent abstraction of abstraction A changes state to visible ex-

panded or ready to visualize.

Action: Enable all state options for this abstraction.

Action: All member abstractions change their visible states to correspond-

ing invisible states. If in ready to visualize state, changes to not ready to

visualize state. Disable hidden state for member abstractions.

Action: All abstractions having improper intersection with abstraction A,

change their states to not ready to visualize state from ready to visualize

state. Disable collapsed/expanded/holo state options for these abstractions.

10. Event: Parent abstraction of abstraction A changes state to visible ex-

panded or ready to visualize.

Action: All state options for this abstraction are enabled.

Action: All member abstractions change invisible states to corresponding

visible states. hidden state is disabled for member abstractions.

Action: For abstractions having improper intersection:

• If they are in not ready to visualize state, change to ready to visualize

state, disable collapsed state option, enable expanded, hidden and holo

state option for these abstractions.

CHAPTER 3. SOFTWARE SYSTEM 37

• If they are in visible holo state, for current abstraction disable collapsed

and expanded state options; enable hidden and holo state options.

Disable collapsed state for improper intersecting abstractions.

11. Event: Parent abstraction of abstraction A changes state to visible ex-

panded or ready to visualize.

Action: All state options for this abstraction are enabled.

Action: All member abstractions change invisible states to corresponding

visible states. hidden state is disabled for member abstractions.

Action: For abstractions having improper intersection:

• If they are in not ready to visualize state, change to ready to visualize

state, disable collapsed state option, enable expanded, hidden and holo

state option for these abstractions.

• If they are in visible holo state, for current abstraction disable collapsed

and expanded state options; enable hidden and holo state options.

Disable collapsed state for improper intersecting abstractions.

12. Event: Parent abstraction of abstraction A changes state to visible col-

lapsed.

Action: All state options for this abstraction are disabled.

13. Event: Visual state of abstraction A is set to expanded.

Condition: All members of abstraction A must be in unhidden states.

Action: All member abstractions change invisible states to corresponding

visible states. hidden state is disabled for member abstractions.

Action: For abstractions having improper intersection:

• If they are in not ready to visualize state, change to ready to visualize

state, disable collapsed and expanded state option, enable hidden and

holo state option for these abstractions.

• If they are in visible holo state, for current abstraction disable collapsed

state option; enable expanded, hidden and holo state options. Disable

collapsed state for improper intersecting abstractions.

CHAPTER 3. SOFTWARE SYSTEM 38

14. Event: Visual state of abstraction A is set to collapse.

Condition: All members of abstraction A must be in unhidden states.

Action: Enable all state options for this abstraction.

Action: All member abstractions change their visible states to correspond-

ing invisible states. If they are in ready to visualize state, change their state

to not ready to visualize state. Disable hidden state for member abstrac-

tions.

Action: All abstractions having improper intersection with abstraction A,

change their states to not ready to visualize state from ready to visualize

state. Disable collapsed/expanded/holo state options for these abstractions.

15. Event: Parent abstraction of abstraction A changes state to visible col-

lapsed.

Action: All state options are disabled for this abstraction.

16. Event: Parent abstraction of abstraction A changes state to visible ex-

panded or ready to visualize.

Action: Disable hidden state for all member abstractions .

Action: All abstractions having improper intersection with abstraction A,

must disable their collapsed state option.

Once we have identified the flow of the states and transitions, we have de-

signed the system and integrated it within the existing view design as in Figure

5.13. As seen in this figure management of the visual states of each abstrac-

tion is handled by its view manager. State transition requests are handled in

AbstractionViewMgr.

Each view manager of an abstraction keeps the lists of abstractions having

improper relation or proper relations with itself. Upon changing a visual state of

an abstraction, its view manager iterates over its dependency list, makes required

modifications. Based on the limitations and relations, some visual states for the

abstractions in the dependency lists are enabled or disabled. A sample sequence

for expanding a hidden abstraction can be seen in Figure 3.14.

CHAPTER 3. SOFTWARE SYSTEM 39

Figure 3.13: Design of abstraction view manager

Figure 3.14: Sequence of expanding a hidden abstraction

CHAPTER 3. SOFTWARE SYSTEM 40

3.4 PATIKA Server, Data Flow and Communi-

cation

Patikaweb server currently is the tier keeping the data. In Patika database

we have pathway data integrated from different databases. We access to Patika

server with Patikapro clients, in other words with fat clients and Patikaweb

clients via the bridge. Therefore the interface and the protocols for data access are

designed to be exactly same. Considering the modular structure for Patikaweb,

the Patikaweb bridge as explained in Section 3.3.2, is designed to have the

interface of a fat client for Patika server. Besides reusability, this modular

and scalable architecture provided us the flexibility to modify the client or the

application module, without the consideration of Patika server.

Communication of the Patikaweb bridge to the Patika database is done over

http. Since read-only operations are allowed in Patikaweb this communication

is basically required for data access. As the user sends the query to the bridge via

http in XML, the bridge behaves like a pipe and forwards the XML representation

to the Patika database using the http protocol again. At this point, bridge knows

nothing about the query, as it only transfers the XML file. Up to this point, the

client and the bridge together behaves like a fat client. When the server performs

the query and returns the query result over http to Patikaweb bridge in XML

file, bridge itself behaves like a fat client for the representation of the query. The

query result object is extracted from the XML and then is processed to represent

it with a pathway graph. Once the graphical representation of the query result

is finished, only the still image is passed back to the client side via http.

3.5 Implementation Details

We have used different technologies in the implementation of Patikaweb. As we

have implemented a three-tier architecture, each tier uses different components

to achieve its task (See Figure 3.15). In the client side, we use JavaScript, HTML

CHAPTER 3. SOFTWARE SYSTEM 41

Figure 3.15: Architecture diagram of Patikaweb and their communication
scheme

and DHTML to build the Web pages. These technologies provide us the dynamic

content creation and limited event handling. We us DHTML for creating the

menu and toolbar. In Patikaweb server, we use JSP technology within the

TSV JSP Edition framework containing the graph editing toolkit. For the data

flow, we use the XML format. We transfer queries from query applet at the

client side to Patikaweb server and receive query results in XML format from

Patika server. To handle marshaling and unmarshaling of these XML files we

use Java Architecture for XML Binding (JAXB)7 technology. In the Patika

server PostgreSQL is used as the Database management system. For the object-

relational mapping, Hibernate8 is used. Control of the components in the server

with MVC and managing the Hibernate are handled with Spring framework9.

Prior to the design process, we investigated the Tom Sawyer Software, JSP

Edition. This edition provided us the framework for a thin client, where we can

present any graph visualization facility at a Web page. In this framework JSP

7http://java.sun.com/developer/technicalArticles/WebServices/jaxb/
8http://www.hibernate.org/
9http://www.springframework.org/

CHAPTER 3. SOFTWARE SYSTEM 42

(Java Server Pages) technology is used. JSP technology facilitates the creation

of dynamic Web pages10, which is crucial in our service. JSP technology is an

extension to the Servlet Technology, which are server side modules for interactive

Web applications11. Moreover in the framework provided by TSV JSP Edition,

JavaBeans, a reusable component12 which we can integrate with our Web ap-

plication to represent objects mapped to the clients’ at the server side is also

used.

Using these technologies, TSV JSP Edition provided us the basic skeleton that

we will customize extensively for our Web service. Below is the sketch of TSV

JSP Edition covering both the mentioned technology details and the provided

framework :

1. Addressing the browser to main page, makes the request to the correspond-

ing jsp page. This jsp page is first converted to Java code, compiled and

loaded in the browser.

2. In the main jsp page loaded, there is html code and JavaScript and jsp code

embedded.

3. When the main page is being loaded, an instance of the object is created

that is defined as session bean in the jsp code part. The session bean

instantiated in this framework is mapped with the graph that the user will

be dealing with through out the session.

4. Every action on the main page is associated with a separate page, i.e has

separate .jsp for every action. (Such as graph editing actions or file loading

actions)

5. Every component that requires an action to be performed and be reflected

to the browser, is linked to a JavaScript code.

6. Upon a click on a component on main page, corresponding JavaScript code

forwards the browser to the corresponding jsp page.

10http://java.sun.com/products/jsp/
11http://java.sun.com/products/servlet/overview.html
12http://java.sun.com/products/javabeans/

CHAPTER 3. SOFTWARE SYSTEM 43

7. In each of these .jsp pages, the session bean is used to perform corresponding

actions. For example in TSLoadFileAction.jsp, loadgraph() operation is

called on canvas with the given file name. (This filename is carried from

the selection on the main page).

8. Every .jsp page includes other .jsp references to maintain other required

actions. For example, TSLoadFileAction after loading the graph on canvas,

needs to call TSFitInCanvas.jsp to fit the created image of the drawing in

the drawing area. After the completion of the load action, main page must

be reloaded. To be able to do this, TSGoToMainPage.jsp action page is

included in all proper action pages.

9. For some actions such as zoom, scroll, or selection of ”fit In canvas” explic-

itly, only the image displayed in the main page is changed. The whole page

is not reloaded.

As we have been using Tom Sawyer Software’s visualization tools, we choose

to use the same framework to increase the development time. This choice has

also served our strategy to reuse the previous visualization solutions developed

in Tom Sawyer Software’s Graph Editing Toolkits. Therefore we have built our

design on top of the skeleton provided by TSV, JSP Edition. However due to

the license agreements of TSV JSP Edition, we could not provide an open source

or non-limited license agreement tool. We warn the users of Patikaweb with

an opening page about the license agreements. Patikaweb is a freely available

software through Internet for non commercial uses only.

We can think of the Query Applet as an independent component within

Patikaweb. Therefore we considered different implementation issues for the

query applet. As seen in the use cases specified in Section 3.2, Patikaweb clients

should be able to save the queries that they have built in the query interface

provided. Loading of these queries should be allowed as well. These scenarios

require that a downloaded applet performs an access to the client’s local ma-

chine. For obvious security reasons, any downloaded applet cannot perform a

read or write access to the local machine. Only trusted applets can perform such

operations. JDK 1.3 or higher provide the technology to create trusted applets.

CHAPTER 3. SOFTWARE SYSTEM 44

Figure 3.16: Screenshot for the signed applet jars

Therefore we used the keytool to manage the keystores, certificates and jarsigner

to sign the applet archives. These tools are available with JDK 1.3 or higher.

When a Patikaweb client, downloads the query applet, a warning window pops

up (See Figure 3.16) and asks the user whether they want to trust the application

provider, ”‘Bilkent Center for Bioinformatics”’. If the user trusts the provider,

the client downloads the applet jars, which is in total approximately 3MB, and

then read and write operations to the client machine can be performed.

To access Patikaweb users should have one of the following browsers:

• Microsoft Internet Explorer 5.5 or more : It is the most frequently used

browser among average Internet users.

• Mozilla Firefox 1.0 or more : Its usage ratio increased immensely lately.

• Apple Safari 1.0 or more: It is very popular in the biological community.

We considered the domain and the target user profile, deciding on the browsers

that we will support. Biological community generally uses Apple Computers,

which uses MAC OS and Safari Web browser. We decided on the browsers to

support based on this fact and the statistics in Table 3.3 taken from W3 Schools13.

13http://www.w3schools.com. W3Schools is a website for people with an interest for web
technologies. These people are more interested in using alternative browsers than the average
user

CHAPTER 3. SOFTWARE SYSTEM 45

2005 IE6 IE5 Firefox Mozilla NN 7

July 67.0% 6.7% 19.7% 2.6% 0.5%
June 65.0% 6.8% 20.7% 2.9% 0.6%
May 64.8% 6.8% 21.0% 3.1% 0.7%
April 63.5% 7.9% 20.9% 3.1% 0.9%
March 63.6% 8.9% 18.9% 3.3% 1.0%

February 63.9% 9.5% 17.9% 3.3% 1.0%
January 64.8% 9.7% 16.6% 3.4% 1.1%

Table 3.3: Browser statistics month by month from W3 Schools

Chapter 4

Conclusions

Development of Patikaweb started with the realization of the requirement of an

easy-to-access tool facilitating analysis on the pathway data. Then we clearly

identified the requirements and use cases for this tool. Prior to the design step,

based on the requirements we decided that we will build a Web based service

with TSV, JSP Edition. In the design step, the biggest challenge was integrating

the available design and codebase for pathway visualization to the new design of

Patikaweb. In the implementation process, we have clearly split the components

based on the multi-tier architecture and thus can be developed independently.

Patikaweb is now available for non commercial use through the address

http://web.patika.org, where users can access to pathway data in Patika data-

base and analyze this data with the unique and highly extensive visualization

capabilities. Every non-commercial oriented researcher can access Patikaweb

via their web browsers and get advantage of its functionalities.

Patikaweb currently serves the community with its unique and extensive

capabilities, through an easy-to-access user friendly interface.

46

CHAPTER 4. CONCLUSIONS 47

4.1 Contribution

Once we have decided on developing a thin client, we initially did some search

on the available free graph editing packages like GraphViz1, GINY2, GVF3, etc.

Later we have decided on using TSV, JSP Edition. Unfortunately TSV, JSP

Edition final release was not available those days and documentation was not

complete. Therefore we analyzed the package and tried to understand their

architecture. Once the structure of TSV, JSP Edition was clearly perceived,

the next step was to design Patikaweb. Having discussed the requirement of

Patikawebwith the team, we did the design to integrate the current architecture

of Patikapro with the new architecture of Patikaweb. In the implementation

step, we basically implemented the bridge side, where the main integration oc-

curred. In the client side, we implemented the framework for the web service.

Once the basic skeleton was ready, implementation of editing operations was

much easier. We implemented some basic functionalities for the editing opera-

tions like save, load, export, etc. We had a senior project team responsible for

the creation of the dynamic content of the Patikaweb at the client side. Rest of

the Patika team also contributed to functionalities, which were to be imported

from Patikapro or to be implemented specifically for the web service . During

the development process, we continued to the development of Patikapro in par-

allel. Therefore, we did the integration of latest improvements in Patikapro to

Patikaweb periodically.

We also managed the complex pathway visualization design and implementa-

tion. We have discussed and designed the visualization scheme and implemented

the design for Patikapro. Later, the logic is imported to Patikaweb, with some

minor modifications.

1http://www.graphviz.org/
2http://csbi.sourceforge.net/
3http://gvf.sourceforge.net/

CHAPTER 4. CONCLUSIONS 48

4.2 Future Work

Due to the incompatibility of the browsers in handling some scripts, Patikaweb

is currently stable on IE 5.5 or higher. With some minor bugs related to the

DHTML’s, users can also use Patikaweb with full functionality in Mozilla Firefox

1.0 or more. For both IE and Safari working on Mac OS, Patikaweb does not

work properly either for the time being. The problems related to the operating

system and the browsers must be considered to Patikaweb stable and consistent

with all the browsers mentioned above. To be able to handle the inconsistency in

browsers, failing functions must be implemented with browser dependent scripts.

Although this is not a desirable solution for software development, inconsistency

among the frequently used browsers force this approach.

Another problem, that we need to solve prior to the final release is related to

the command structure. Since we have two different views, affecting each other

with the editing operations, we want to supply a very strong do/undo mechanism.

Currently we fail in performing do/undo operations in some specific scenarios.

The design and implementation should be revisited to solve these problems and

make the mechanism stable.

As the currently accessible version of Patikaweb is a beta release, for the ver-

sion 1.0 release we aim to add some new functionalities like microarray support.

Considering the modular architecture, any improvements and additional func-

tionalities should be easy to integrate. One of the future improvements currently

considered is adding a microarray analysis module to Patikaweb. The multi-tier

architecture of Patikaweb, allows also any major changes and improvements,

like the changes at the graph editing framework. In the future, we may build our

own layout server with another third party graph editing toolkit and embed this

structure within Patikaweb.

Bibliography

[1] E. Demir, O. Babur, U. Dogrusoz, A. Gursoy, A. Ayaz, G. Gulesir, G. Ni-

sanci, and R. Cetin-Atalay. An ontology for collaborative construction and

analysis of cellular pathways. Bioinformatics, 20:349–356, 2004.

[2] E. Demir, O. Babur, U. Dogrusoz, A. Gursoy, G. Nisanci, R. Cetin-Atalay,

and M. Ozturk. Patika: an integrated visual environment for collaborative

construction and analysis of cellular pathways. Bioinformatics, 18:996–1003,

2002.

[3] D. Endy and R. Brent. Modelling cellular behaviour. Nature, 18:391–396,

2001.

[4] J. Fulton and E. Kramer. Can you ever be too thin? netWorker, 1:19–23,

1997.

[5] Z. Hu, J. Mellor, J. Wu, and C. DeLisi. Visant: an online visualization and

analysis tool for biological interaction data. BMC Bioinformatics, 5:17–25,

2004.

[6] M. Jern. ”‘thin”’ vs. ”‘fat”’ visualization clients. In Proceedings of the

working conference on Advanced visual interfaces. ACM Press, 1998.

[7] M. Kanehisa and P. Bork. Bioinformatics in the post-sequence era. Nature

Genetics, 33:305–310, 2003.

[8] P. D. Karp. An ontology for biological function based on molecular interac-

tions. Bioinformatics ONTOLOGY, 16:269–285, 2000.

49

BIBLIOGRAPHY 50

[9] P. D. Karp, M. Riley, M. Saier, I. T. Paulsen, S. M. Paley, and A. Pellegrini-

Toole. The ecocyc and metacyc databases. Nucleic Acids Research, 28:56–59,

2000.

[10] L. Krishnamurthy, J. Nadeau, G. Ozsoyoglu, M. Ozsoyoglu, G. Schaeffer,

M. Tasan, and W. Xu. Pathways database system: An integrated set of

tools for biological pathways. Bioinformatics, 19:930–937, 2003.

[11] A. Lai and J. Nieh. Limits of wide-area thin-client computing. In Proceedings

of the 2002 ACM SIGMETRICS international conference on Measurement

and modeling of computer systems. ACM Press, 2002.

[12] C. A. Ouzounis and A. Valencia. Early bioinformatics: the birth of a disci-

plinea personal view. Bioinformatics, Review, 19:2176–2190, 2003.

[13] G. Schaeffer and Z. Ozsoyoglu. Pathwayviz visualizing biological pathways

through an interactive graph. Technical report, CWRU, 2002.

[14] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage,

N. Amin, B. Schwikowski, and T. Ideker. Cytoscape: A software environ-

ment for integrated models of biomolecular interaction networks. Genome

Research, 13:2498–2504, 2003.

[15] Tom Sawyer Software Corporation. Tom Sawyer Software Visualization Ver-

sion 6.0 JSP Edition Developer’s Guide.

[16] Tom Sawyer Software Corporation. Tom Sawyer Software Visualization Ver-

sion 7.0 JSP Edition Developer’s Guide.

[17] G. Vernikos, C. Gkogkas, V. Promponas, and S. Hamodrakas. Genevito:

Visualizing gene-product functional and structural features in genomic

datasets. BMC Bioinformatics, 4:53–68, 2003.

Appendix A

Screenshots from PATIKAweb

51

APPENDIX A. SCREENSHOTS FROM PATIKAWEB 52

Figure A.1: Welcome page of Patikaweb

Figure A.2: Query applet

APPENDIX A. SCREENSHOTS FROM PATIKAWEB 53

Figure A.3: Query is in progress

APPENDIX A. SCREENSHOTS FROM PATIKAWEB 54

Figure A.4: Result report for the submitted query

APPENDIX A. SCREENSHOTS FROM PATIKAWEB 55

Figure A.5: Result of the query is visualized with the inspector window open for
pathway object

