PATIKAwes: A WEB SERVICE FOR
ACCESSING AND VISUALIZING PATHWAY
DATA IN PATIKA DATABASE

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

By
Emine Zeynep Erson

July, 2005

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Ugur Dogrusoz (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Ozgiir Ulusoy

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Uygar Tazebay

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

i

ABSTRACT

PATIKAwes: A WEB SERVICE FOR
ACCESSING AND VISUALIZING PATHWAY
DATA IN PATIKA DATABASE

Emine Zeynep Erson
M.S. in Computer Engineering
Supervisor: Asst. Prof. Dr. Ugur Dogruséz
July, 2005

After completion of Human Genome Project, there has been an exponential in-
crease in the available biological data. Although there has been an enormous ef-
fort for creating ontologies, standards and tools, current bioinformatics infrastruc-
ture is far from coping with this data. The PATIKA Project aims to provide the
community an integrated environment for modeling, analyzing and integrating
cellular processes.

PATIKA project develops software tools providing access, visualization and
analysis on the data in PATIKA database. In this thesis, we present analysis, de-
sign and implementation of PATIKAweb, a Web-service having a user-friendly in-
terface without requiring any registrations, installations. To achieve an enhanced
data analysis , PATIKAweb provides a multiple-view schema , compartments and
compound graphs for visualizing molecular complexes, pathways and black-box

reactions.

Querying component supports SQL-like queries and an array of graph-
theoretic queries for finding feedback loops, common targets and regulators, or
interesting subgraphs based on user’s genes of interest. Constructed models can
be saved in XML, exported to standard formats such as BioPAX, SBML or con-
verted to static images. A highly interactive and user friendly querying interface
is supported with PATIKAweb.

Visual representation of complex information in pathway research is very im-
portant. The information should be presented with high coverage, while providing
a user friendly interface. In this thesis we also present a new approach to visualize
complex pathway information coping with the limitations introduced by ontology
and graphical representation.

il

v

PATIKAweb ’s unique visualization and querying features fill an important gap
in the pool of currently available tools and databases.

Keywords: Bioinformatics, pathway visualization, complex view management,
Web service.

OZET

PATIKA wEB : PATIKA VERITABANINDAKI YOLAK VERISINE
ERISMEK VE GORUNTULEMEK ICIN AG HIZMETI

Emine Zeynep Erson
Bilgisayar Miihendisligi, Yiiksek Lisans
Tez Yoneticisi: Assist. Prof. Dr. Ugur Dogrusoz
Temmuz, 2005

Insan Genome Proje’sinin tamamlanmasinin ardindan, biyolojik sistem veri-
lerinde tstsel bir artig oldu. Fazla sayidaki ontoloji, standart ve arag yaratabilme
cabalarina ragmen, mevcut biyo-enformatik yapisi bu verilerin karmagikligi ile
miicadele etmekten ¢ok uzaktir. PATIKA Projesi topluluga hiicresel iglemleri mod-

ellemek, ¢oziimlemek ve birlegtirmek icin tiimlegik bir ortam saglamay1 amaclar.

PATIKA projesi PATIKA veritabanindaki veriye ulagilmasini, ¢oziimlenmesini
ve gorintilenmesini saglayan yazilim araclar1 saglamaktadir. Bu tezde,
PATIKAweb isimli ag tabanli, kullanigh, kayit, yiikleme gerektirmeyen yazilim
aracinin tasarim ve uygulanmasini sunmaktayiz. Gelismis veri c¢oziimleme
olanagini saglamak i¢in, PATIKAweb iki seviyede ¢oklu gortintii olanagi, molekiiler
komplekslerin, yolaklarin ve kara kutu reaksiyonlarin goriintiilenmesi icin bilegik
cizge saglamakta ve kompartmanlar: desteklemektedir.

Sorgulama bilegeni, geribildirimli dongtileri, ortak hedef ve diizenleyici veya
kullanicinin ilgili genine dayal ilgili alt ¢izgeleri bulmak i¢in hem SQL benzeri
sorgulart hem de gizge kuramsal sorgu dizilerini destekler. Olusturulan mod-
eller XML formatinda saklanabilir; BioPAX, SBML gibi standart bigimlere ak-
tarilabilir veya sabit goriintiilere gevirilebilir. PATIKAweb fazla etkilesimli ve

kullanigh sorgulama araytiziinii destekler.

Yolak aragtirmalarinda, karmagik bilginin gorsel olarak gosterimi kritik bir
rol oynamaktadir. Kullamigh bir arayliz olusturmaya calisirken bilgi dogru
olarak, miimkiin olan en genis kapsamla gosterilmelidir. Bu tezde, ayn1 zamanda
karmasgik yolak bilgisini gorsellestirmede ontoloji ve ¢izgesel gosterimden kay-

naklanan siirlamalarla miicadele eden yeni bir yaklagim sunmaktayiz.

PATIKAweb'in benzersiz gorsellestirme ve sorgulama olanaklar ile, su anda

v

vi

mevcut araclar ve veritabanlar1 havuzunda onemli bir bosluk doldurmaktadar.

Anahtar sozcikler: Biyo-enformatik, yolak gorsellenmesi, karmasik goriintii

idaresi, ag hizmeti.

Acknowledgement

I would like to express my deepest gratitudes to my supervisor Assist. Prof.
Ugur Dogrusoz, for his guidance and feedbacks during the preparation of this
thesis. It has been a great experience and privilege for me to work with him and

get benefit from his valuable mentorship.

I also would like to thank Prof. Ozgiir Ulusoy and Assist. Prof. Uygar
Tazebay for reviewing the manuscript of this thesis and spending their valuable

time.

During these two years I had the chance to work with a perfect team, PATIKA
team. Friendships and supports of Asli Ayaz, Ozgiin Babur, Ahmet Cetintas,
Emek Demir and Erhan Giral were very valuable for me. They are, and will

always be, more than friends for me.

Above all, I am very grateful for the endless love and support of my parents
Leyla and Metin Erson, and my dearest sister Elif Erson. I feel stronger and

happier with their love.

vil

Contents

1.1

1.2

2.1

3.1

3.2

3.3

Introduction

Motivation

Background Information

Related Work

PATIKA Project

Software System

Problem Statement 0oL
PATIKAweb Client
3.2.1 Analysis of Query Facility
3.2.2 Analysis of User Interface
3.2.3 Detailed Design of PATIKAweb Client
PATIKAweb Bridge
3.3.1 Analysis of Pathway Data Visualization and Editing
3.3.2 Detailed Design of PATIKAweb Bridge

viil

11

11

16

16

16

17

22

CONTENTS

3.4 PATIKA Server, Data Flow and Communication

3.5 Implementation Details

4 Conclusions
4.1 Contribution

4.2 Future Work

A Screenshots from PATIKA web

1X

40

40

46

47

48

51

List of Figures

1.1 Sample pathway: Valine Catabolism, from PATIKAweb 4
2.1 Screenshot from PATIKApro 10
3.1 Modular architecture of PATIKAweb 13
3.2 General use cases of PATIKAweb 14
3.3 Editing use cases of PATIKAweb 14
3.4 Deployment diagram of PATIKAweb 15
3.5 User interface of PATIKAweb. 18
3.6 Class diagram for query applet 21
3.7 Sequence diagram for a query execution. 22
3.8 Abstractions in Holo and Expanded states 25
3.9 Abstractions in Collapsed and Ezrpanded states. 26
3.10 Bridge design 28
3.11 Sequence diagram for node deletion in PATIKAweb 30
3.12 State-transition diagram of abstractions’ visual states 33

LIST OF FIGURES xi

3.13

3.14

3.15

3.16

Al

A2

A3

A4

A5

Design of abstraction view manager 39
Sequence of expanding a hidden abstraction 39
Architecture diagram of PATIKAweb and their communication

scheme oL 41
Screenshot for the signed applet jars 44
Welcome page of PATIKAweb 52
Query applet 52
Query is in progresso 53
Result report for the submitted query 54

Result of the query is visualized with the inspector window open

for pathway object 55

List of Tables

3.1 Summary of the valid options for all types of abstractions
3.2 Programmatic states for abstractions’ visual states

3.3 DBrowser statistics month by month from W3 Schools

x1i

Chapter 1

Introduction

Bioinformatics, which is a fast evolving field of modern science is defined as the
computational analysis and processing of biological information. Roots of bioin-
formatics date back to 1950’s, when the DNA structure was discovered by Watson
and Crick and the encoding of genetic information for proteins was studied by
Gamow [12]. Since then, high-throughput biological experiments caused accumu-
lation of information and huge amount of data. Moreover in molecular biology, the
discoveries are expressed in natural language rather than mathematical models as
in physics. Defining qualitative and quantitative functionalities in molecular level
presented computational challenges and that’s how importance of bioinformatics
is perceived [3]. Especially after 1990, when different types of high-throughput
data became available, analysis of this data and higher order functionalities in
cellular processes increased [7]. In parallel to these improvements, data access
and analysis problems in molecular biology started to enter the scope of computer

science approaches.

An era started in molecular biology, therefore in bioinformatics, when the
Genome Project began in 1996. By 2003, 160 genomes were completely se-
quenced, and a lot more sequencing projects were in progress. The available data
for DNA /protein sequences increased exponentially following these studies. The
produced data were stored in databases like GenBank, EMBL (European Molec-
ular Biology Laboratory nucleotide sequence database), DDBJ (DNA Data Bank

1

CHAPTER 1. INTRODUCTION 2

of Japan), PIR (Protein Information Resource) and SWISS-PROT [7]. Although
the sequence information is almost completely discovered, functional attributes of
genes are not fully understood. In other words, although we have the ingredients,
we still do not have the recipe of how an organism functions. Therefore, the next
logical step in Human Genome Project is discovering what these sequences mean
in terms of their functions and possible interactions [17]. Due to the complexity
of the problem, research on perceiving this information requires a different mod-
eling approach. Bioinformatics, presenting computer science approaches provides
the solution for this problem. Modeling the available data and its representation
is one of the essential purposes of bioinformatics. Presenting available informa-
tion with heterogeneous meta-data, especially for the functional genomics, is the
solution produced by bioinformatics research [17]. A level of abstraction is re-
quired to manage and perceive the data. Therefore pathways are used, as the
abstraction of molecular and cellular functional events, such as metabolic path-
ways and signaling transduction. Next step is to analyze this level of information
for more complicated interactions and pathways. Analyzing pathways, brought
new problems into consideration such as accessing and visualization of this data
in an effective way. We attack this problem in this thesis, with a new software

tool named PATIKAweb, a promising solution to some of these issues.

1.1 Motivation

Accessing, analyzing and editing available information for metabolic/signaling
pathway data became an important research in molecular biology. As new bioin-
formatics tools are developed, new requirements are emerged. The PATIKA
project has been developing integrated visual environments for collaborative con-
struction and analysis of various cellular pathways. These tools provided very ex-
tensive functionalities for data access, analysis and submission/integration. How-
ever even for the editing or the creation of a new pathway, the research process
requires to access the current available data and analyze this data. Therefore easy
access and enhanced analysis techniques like graphical visualization becomes a

key step in pathway informatics. When we analyzed the use cases of PATIKA, we

CHAPTER 1. INTRODUCTION 3

have observed that most frequent use cases are the data access and analysis as

opposed to data submission.

Another motivation of this research thesis is related to the preferences of the
users about the convenience of the tools. For accessing and analyzing a specific
gene or protein and related pathways, researchers do not want to spend time on
registering for, downloading and setting up software. With these observations
in mind, we have developed an easy-to-access tool PATIKAweb, which is a Web
based service. Main motivation for this tool is to provide a service to reach the
data in PATIKA database via an extensive querying interface and visualize this

data.

1.2 Background Information

A pathway is a network of interacting proteins to perform a specific metabolic
or signaling task in living systems (See Figure 1.1). Signal transduction is the
process converting one kind of signal into another by chemical modifications.
Series of biochemical reactions produce metabolic byproducts, end-products or
become part of other pathways themselves. Current knowledge in metabolic

pathways is deeper than the signaling pathways [1].

Since the completion of the Human Genome Project, scientists have been
generating huge amounts of data on cellular pathways. Therefore, many different
databases started to host such data to simplify such complicated information.
Although such databases contain different types of data, there is significant data
overlap problem in these sources. KEGG!, Enzymes and Metabolic Pathways
database (EMP)?, EcoCyc?, SWISS-PROT*, Gene Ontology (GO)®, ExPASY®

thttp://www.genome.jp/kegg/

http:/ /www.empproject.com/

3http://ecocyc.org/

4http:/ /www.expasy.org/sprot/
Shttp://www.geneontology.org/
Shttp://www.expasy.org/

CHAPTER 1. INTRODUCTION 4

1
i - §
4
4,
L o > @
L] co2[. ® isobutyryl-CoA de...
_ .:._ H+ [mi.. . EADH V.
2‘" propio
branched-chain Hg[
I MNAD+ [...
| o o bk
L I & HADH beta-h DL
rou | - e
s L
2 heth.. 4 metha...
4 il : @ 4
'. ! CoA [
o Lot -
L-¥alin 3-hydr .
alpha- '. 2
H+[mi... : 2-0Oxo '
Y 3
e \ L-Glut 1 s
\ o o o it
NACH.... 3 . @ branched-cha...
O L-valin
& 8 ‘a
3-hydro...
I Valine catabolism
I Mitochondna

Figure 1.1: Sample pathway: Valine Catabolism, from PATIKAweb

are only a few of examples. Some of these databases contain only metabolic path-
way information like EcoCyc and EMP. Some others contain both metabolic and
regulatory pathway data like KEGG. Researchers need to access the integrated
information from these databases, while conducting their research. Accessing
such data and integrating them will not be the feasible solution for most of the
scientist. Therefore we developed a knowledge base, where we perform the data
integration process and provide the integrated data from different databases. We
used many public databases while integrating data for PATIKA database, includ-
ing Entrez Gene, UniProt, PubChem, GO, Reactome and KEGG.

As sources available to reach data increased, the requirement for the portabil-
ity of the data became an important issue. A standard way should be developed
to exchange available data and newly produced data. BioPAX" and SBML (The
Systems Biology Markup Language)® are such efforts. We use these standards in

our software tools, to provide data portability.

"http:/ /www.biopax.org/
8http://sbml.org/index.psp

Chapter 2

Related Work

As biological pathway data started to accumulate, software tools to access and vi-
sualize this data became indispensable. Therefore both commercial and academic

research groups aimed to satisfy this requirement.

Initially the developed tools only presented still pictures of known pathways.
BioCarta', which is a commercial company founded in 2000, developed this kind
of a tool, where they provided still images of specific pathways. As new path-
ways are introduced into the knowledgebase of BioCarta, corresponding images
have to be created manually. The necessary description of the pathway is then
given by a summary text. ErPASy? is a similar tool providing a simple inter-
face for textual queries to match any of the available biochemical data. Data
is presented with map like still pictures. KEGG (Kyoto Encyclopedia of Genes
and Genomics) provides hand-drawn still images®. MetaCyc* provides access to
metabolic pathways for over than 300 organism. Similarly EcoCyc® is a database
providing genome, metabolic pathway information for the bacterium Escherichia
coli. Both MetaCyc and EcoCyc provide Web based tools for querying, editing

and visualization for the data in their database [9].

Thttp://www.biocarta.com/

Zhttp:/ /www.expasy.org/cgi-bin/search-biochem-index
3http://www.genome.jp/kegg/

4http://metacyc.org/

Shttp://ecocyc.org/

CHAPTER 2. RELATED WORK 6

One of the major drawbacks of all these tools is that it is required to create the
pathway drawings as new data is introduced. That means that the integration
of data and its representation in images require a significant amount of extra
effort. Moreover still images cannot be modified, therefore they are only used for
knowledge acquisition of one type. Research and development in this area started
to develop new tools to provide dynamic visualization of pathways and to be able

to integrate different databases at the same time.

Cytoscape® is a free, open source tool for general purpose modeling environ-
ment. The strongest point of Cytoscape compared to other tools is its plug-in
adaptable architecture. Especially for data analysis, they provide different plu-
gins like microarray data analysis. Integration of data, mainly annotations to
the available graph is strongly supported. However, as it is mainly designed as
a modeling tool, knowledge acquisition through Cytoscape is possible through
plugins to load some data. They introduce new plugins as new types of data to
load becomes available. For example, latest plugin release supports downloading
protein-protein interactions. Another way to analyze the current data in Cy-
toscape is to save the data in the acceptable format and to reload it. Different
layout algorithms are implemented to enhance the visualization quality. Cly-
toscape Core is implemented in Java with LGPL Open Source license. Graphical
component of Cytscape uses yFiles Graph Library (Java Graph Layout and Vi-
sualization Library)”. One potential downfall for users is that Cytoscape requires

a download and installation to run the software [14].

Another software tool for pathway visualization is VisANTS®, which is an
open-source, online tool for access and visualization of bimolecular interactions.
Currently VisANT obtains pathway data from KEGG database and draws infor-
mation from Predictome database. Annotation and cross references are obtained
by GenBank and SwissProt. The system provides navigation of data, manipula-
tion and expansion of visualized pathways by basic graph operations like degree

distribution, loop detection and shortest path identification [5].

Shttp://www.cytoscape.org/
"http://www.yworks.com
8http://visant.bu.edu/

CHAPTER 2. RELATED WORK 7

Users need to point their browsers to the provided Web page and, choose to
run the VisANT applet, run the ViSANT Java Web-Start Application or down-
load and install the stand-alone application. VisANT provides textual querying
facility, where the user can enter the ORF IDs, GI numbers, or KEGG pathway
IDs for an arbitrary number of genes. Saving the pathway locally or by protecting
password to reach later remotely is possible in a simple delimiter based format.
However not all the functionalities are available for the downloadable applet form.
Registration is required for save and load operations. The system provides online
structure by using J2EETM technology. They require a Web browser and Java
Runtime Engine (JRE).

Another academic group developed a similar tool for pathway visualization.
Center for Computational Genomics at the Case Western Reserve University,
developed a system called Pathways Database System [10]. This system is an
integrated system, composed of different software components. This system’s
database component provides pathway data extraction from different databases
such as SwissProt and GenBank. They also provide a querying component, to
access the data in their database. Their third main component is the visual-
ization component. To achieve the visualization of the pathway data, they use
their own graph editing library, PathwayViz in Java [13]. In their visualiza-
tion scheme, they allow multiple level of abstractions to visualize data. To get
full functionality for the system, users need to download different components,
like browser and the viewer independently. Currently available components are
metabolic/signaling pathway browsers, pathway viewers, pathway explorer, path-
way editor, Java based viewer and an XML based Web service to make queries.
Java based viewer component loads an applet from the Web site, and provides
a tree of pathways, processes and molecular entities to be visualized. There is
a limited number of entities provided to be visualized within this component.
Limited editing operations are provided , like move, expand/collapse and find

node/edge.

Observing the positive and negative points of these tools, Bilkent Univer-

sity Center for Bioinformatics started a project namely, PATIKA, which produce

CHAPTER 2. RELATED WORK 8

software tools containing workpackages like data integration, analysis and visu-

alization.

2.1 PATIKA Project

The PATIKA project aims to cope with the complex information in cellular
processes and provide an infrastructure for this information. Having this road
map, PATIKA project produces software tools with its own ontology, mapping to
the data in its knowledge base visualizable, editable and analyzable in an editor
[2]. Ontology is the formal specification of a concept, built to be portable among
applications with different domains [8]. PATIKA team developed its ontology en-
abling integration of incomplete, complex and fragmented pathway information
[1]. Throughout this thesis we will refer to the components of this ontology,

therefore we will briefly cover these components.

e States and Bioentities: Macromolecules, small molecules are the actors of
molecular level reactions. However these molecules have different states in
the cell based on the localization or chemical modifications. Therefore we
define these molecules as bioentities and define their states based on the

variable conditions.

e Transitions: It is modeling for a functional process. They provide as avoid-

ing hyper edges in graphical representation of a pathway.

e Compartments: Physical localizations of proteins play a significant role in
pathway analysis as a potential implication of function. Therefore graphi-

cally cell compartments must be modeled as well.

e Molecular Complexes: Molecules performing in structural or functional

groups are defined as complexes.

CHAPTER 2. RELATED WORK 9

e Abstractions: Incomplete and complex information contributing to the net-
work of higher level information must be represented. Abstracting a path-
way information as a single processes or grouping similar process are re-
quired for complexity management. Abstractions are basically composed
of states, transitions and possibly other abstractions. Visual representation
of abstractions with the limitations introduced by the compartments and
graphical invariants are also addressed in this thesis. We have five types
of abstractions defined in PATIKA ontology as Homology State, Homology
Transition, Incomplete State, Incomplete Transition and Regular Abstrac-

tion.

Considering the visualization of the pathway data specified with PATIKA on-
tology, we designed different levels of visualization. Analysis and representation of
different levels of data requires separate handling. Therefore we defined two views
as Mechanistic Level View and Bioentity Level View. Relations among bioentities,
such as protein-protein interactions, are represented in Bioentity view, whereas
data related to metabolic or signaling pathways are visualized in Mechanistic
view. Visual representation of the ontological components can be seen in Figure

2.1 in both Bioentity and Mechanistic levels.

Figure 2.1 is a screenshot from PATIKA pro showing all ontological components.

CHAPTER 2. RELATED WORK 10

= PATIKApro Prototype - stat3_pathwaybxtendedyv2
File Edit View Tools Insert Drawing Layout Actions Query Microarray Help

I@II = EREE] IKH%H%I (€= (%] v [~] [TQAI [/ @ [Sf[4L] o = [

E e e Vewz@omi . o o . i o o o o
TeeE v o
= Aftribute — Value o / N & = I\ e
Version o Slat View 2 =& E
Name RAS hee. [-
Description " il
CustomColor [| I\
30Terms Edit. - - R
s e 1 - -
.La o\..lrce' : it. o) / o
xperimental omplax 5 o @
GAP J
imported Biosarta - _ a8 -_ e
Bioentity RAS [l RAS GTP
BioentifyVariables Edit - FFoeTD LRI Mer|
Structure protein .- Ras-GTP J
Localization Cytoplazm O 1AL
Attachment Unattached RAS Phosphate
Owner Complex Ras & TF o Phosphate RAF1
Phosphate
o i
MEKK1 MEKKI MEKIﬂ
RAF1 /
<«
hosphate
& I
] ovenview / .
o P
MEK\ Fhosphate MEK WEKs
. T
T P £ EEEE——
. T . f \ e e
- ,7‘,_ - - -__)
- - = \ﬁ/ O /- e STAT3 Bk B2 Bl ez)
e o ERK1 | MBPK (Erki/Erk2) |_Prosphosyistod MAPK(ExcliEn2) | L
/e \
AK, /f
/STMJ\ "
P e e -
-’
Bl B
(| Phosphonyimot wAPK (e f
MAPK pathway L

Selecting

Figure 2.1: Screenshot from PATIKApro

Chapter 3

Software System

3.1 Problem Statement

As we have stated previously in Section 1, data available in cellular processes at
molecular level is accumulating very fast; and thus in parallel, researchers would
like to reach this information rapidly. Presentation of the information is at least
as important as the fast and rapid access to the data. Visual representation of
the pathway information is preferred over the textual representation of the data

by the researchers, due to the nature of the information.

We reconsidered these facts with the current user profile of PATIKA and other
pathway visualization tools. Most of the researchers need fast and easy access to
the metabolic/signaling pathway information to accelerate their research. Down-
loading, installing, executing a software tool, just to perform read only operations
on a pathway database is not desirable in terms of time and effort for most of the
researchers. We also foresee that, majority of the users will perform read-only
access to our database, rather than write operations such as data submission.
Therefore, we have decided to provide a Web service reachable through a Web

browser.

In PATIKA the problem of pathway visualization and tools having extensive

11

CHAPTER 3. SOFTWARE SYSTEM 12

visualization facilities had been attacked previously. For visualization compo-
nent in PATIKApro we have used Tom Sawyer Visualization Java Edition and

customized it for extensive pathway visualization [15].

We need to build a framework where we can reuse the previously built vi-
sualization component of PATIKApro and integrate it with the new Web based
service, PATIKAweb. Therefore our problem comes down to defining the require-
ments of PATIKAweb based on the so far defined use case, design the system so
that we can integrate the currently available approach to pathway visualization
and define the technology to apply these architectures. We will address these

issues in the next chapter.

Given the problem stated in Chapter 3.1, we have decided to build a Web-
based service providing a read-only access to the PATIKA database, an interface to
visualize this data and limited editing operations on the visualized data. However
when we considered the use cases, we concluded that there is a considerable
amount of memory and CPU requirement even for read only operations to be
serviced by PATIKAweb. Carrying the load of computationally heavy to the client
side was not desired, since we do not want to put any necessary requirements on
use of PATIKAweb like CPU power or memory. The other alternative was to
carry the logic that requires computation sensitive operations to the server side.

This idea led us to the thin client concept.

A thin client is defined as a front-end having minimal software requirements
and performing minimal computational operations. Internet and intranet are
fundamentally based on the thin client paradigm [6] .All resource-requiring oper-
ations are performed at the server side, and results of the computations are trans-
ferred back to the client. Properly partitioning the resource-requiring processes
between clients and servers is an effective way to distribute the computing re-
sources. Based on the domain of the application the resource requirements
change, but basic ones to consider are CPU cycles, memory, security, virtual
memory, and high-speed data storage, etc. [4]. Another major advantage of
thin clients is the concern for the developers and maintenance. Ability to have

both scalability and centralized administration with thin client architectures is a

CHAPTER 3. SOFTWARE SYSTEM 13

PATIKAweb | http g

client-1
PATIKAweb _ http & PATIKA
Bridge | | Server
PATIKAweb | NttP
client-1

Figure 3.1: Modular architecture of PATIKAweb

considerable benefit for fast changing resources and requirements [4].

Although thin-client architecture is advantageous for many perspectives, there
are some drawbacks to consider. Client/Server architecture, which use the thin
client approach rely on the bandwidth and network latency. It is experimentally
shown that network latency becomes the bottleneck in such applications [11]. On
the other hand, it is clear that network latency problem cannot be avoided for
most of the fat clients as well. Improvements in the Web technology also helped
to overcome these problems. Web components, plugins, like applets, JavaBeans,

dynamic HTML pages are the technologies used extensively.

Web services are defined as the services available through Internet, accessible
by standard Web protocols like http, using messaging data formats like XML!.
Web services have a self-containing and modular structure to provide any appli-
cation logic reachable through Internet?. Therefore we initially decided to define
the modular structure of our Web service, PATIKAweb and divide design steps

based on the application logic.

In Figure 3.1, we present the multi-tier architecture for our Web-service. In

this architecture, user, application and data components are tiered apart.

Lwww.w3.0rg/2003/glossary /subglossary /xkms2-req/

http:/ /www.ecots.org/

CHAPTER 3. SOFTWARE SYSTEM 14

Wisualize bionetity
mechanistic level results of
gueries in the display area

j): See multiple
— PATIKAweb User pathways

Expart pathway do othar

Make gueries to the database data formats

in hioentityimechanistic level

Layout the current
pathmvay

Savelload gqueties

Savefload the
pathway as image ar
as patika format

Figure 3.2: General use cases of PATIKAweb

Foom IniCut to the pathay —— PATIKAweb User Make queies on pathway ohjects
Delete pathway objects

See an overview of
the current pathway
See properties ofthe Coflndo operations
pathway ahjects

ExpandiCollapse
Figure 3.3: Editing use cases of PATIKAweb

campound pathway
ohjects

We have defined the functionalities of the components of the tiered architec-

ture based on the requirements. For the requirements analysis phase, initially we

have defined the use cases of PATIKAweb in Figures 3.2 and 3.3.

Analyzing the use cases presented in Figure 3.2 and Figure 3.3, we identified

the basic functionalities that we must provide as follows:

1. Pathway data model access by queries,

2. Visualization and editing of the current pathway model,

In the multi-tiered architecture, these functionalities are decomposed and de-

signed in different components and mentioned in the following sections.

CHAPTER 3. SOFTWARE SYSTEM 15

PATIKAweb Client-1 PATIKAweb Bridge
Application Server PATIKA Server
Applet
= QueryApplel <<t [~ PATIKAwsb Server <<http>>
[_l 1 = <<J5Pg>> (] PATIKA Database
——— 4 T [:[|

essionBeans

Use: es
PatikaSessionData-1 PatikaSessionData-2
PATIKAweb Client-2
<<http=>
[r] QueryApplet =

[:‘[I ? ?

] PatikaGraphManager-1 [] PatikaGraphManager-2

N\

[:‘[1

L
] =
-

Figure 3.4: Deployment diagram of PATIKAweb

We have decomposed our system according to the multi-tiered architecture
and considered the following components in the design process as seen in Figure
3.1

o PATiIKAweb Client Side Design: This component maps to the user tier in
our architecture. In the client side, we focused on the user interface design
of the Web page. Communication of the client to PATIKAweb bridge over

http is considered as well.

o PATIKAweb Bridge Design: This component maps to the application tier in
our architecture. In this part we designed the application logic. As we have
defined in Section 3.1, we aim to reuse the code base that we have developed
for previous pathway visualization tools, customized and integrated it with

the new design developed for PATIKAweb.

e PATIKA Server, Data Flow and Communication: This component maps to
the data tier in our architecture. This part also covers the communication

with PATIKA server.

Deployment of tiered architecture of PATIKAweb , is detailed in Figure 3.4. In
this figure we see that PATIKAweb client communicates with PATIKAweb bridge

over http. We use the Java Server Pages (JSP) technology to handle the dynamic

CHAPTER 3. SOFTWARE SYSTEM 16

web content. In the bridge, which behaves as the application server in the multi-
tier architecture, we host the JSP’s (Java Server Pages, see Section 3.5) and
implement the application logic. Each client’s session, in other words each client’s
application data is kept independently. The association of the user and the session
information is managed by JavaBeans. Details of the components and their

communication are given in the following sections.

3.2 PATIKAweb Client

3.2.1 Analysis of Query Facility

The only way to analyze data in PATIKAweb is by reaching data in PATIKA
database through submission of queries on this data. As we have mentioned in
Section 2.1, we support data in two levels, as mechanistic and bioentity levels.
Therefore to facilitate the access of data in both levels, PATIKAweb provides

mechanistic and bioentity levels in both querying and visualization interfaces.

The queries to be submitted to PATIKA database should be as extensive and
powerful as possible, to get full advantage of the integrated knowledgebase. In
addition to the basic textual queries, we should also provide graph theoretical
ones. Nesting of these queries is also critical, since the user may have a very
specific interest in the pathway data. Having created a complex, recursive query,
a user might like to save the query and load it later to continue working on it.
Considering all these requirements, we realized that we needed a very extensive

interface, where sophisticated user interaction is provided.

3.2.2 Analysis of User Interface

Considering the use cases mentioned in the Figures 3.2 and 3.3 and requirements
pointed in Section 3.2.1, Section 3.3.1 and Section 3.3.1.1, we developed a service,

where the users are able to reach an interface where they can query, visualize and

CHAPTER 3. SOFTWARE SYSTEM 17

edit pathway data with a few mouse clicks. User interface of PATIKAweb has the

following components to provide these functionalities:

1. A drawing area for displaying pathway graphs: Results of the queries are
displayed on this area. Only one pathway can be drawn at a time. We will

refer to this area as canvas, from now on.

2. An inspection area: This is where the selected object properties are dis-

played

3. A query dialog: This is where the queries are created and submitted. The
results are displayed either as a new drawing or merged into the existing

one.

4. Menus and toolbars: To provide the limited editing functions on the path-

way data, functional menus and toolbar components are provided.

To supply the requirements defined for the interface, we developed an inter-
face as in Figure 3.5. As you see in this figure, we provide a canvas where we
display the results of queries. This canvas displays both bioentity and mecha-
nistic level graphs. We provide an overview window for the graph displayed in
the canvas. Inspection of the pathway objects is facilitated with the inspector
window. Considering the limitation of a Web browser by space, we planned to
reserve the largest room for the the canvas (in the middle) , and located the
overview window and inspector window to the remaining places as seen in Figure
3.5.

3.2.3 Detailed Design of PATIKAweb Client

PATIKAweb clients access the service supplied via their Web browsers. In these
browsers, we provide highly dynamic visualization facilities over the displayed
pathway information. Therefore we designed a mechanism where we can manage
this dynamism both in the client side and at the server side. However we kept

in mind that, our aim is to build a thin client, where most of the computation

CHAPTER 3. SOFTWARE SYSTEM

PATIKAweb
File Edit

Wiew

Favorites

Tools

rosoft Internet Explorer

Help

18

EIE

O -0 6] &)] s yrwenw @[(2 L - I BE B

| &

Adhess [] hetpfneb, patika. org/PATIKAweD Jop

Links **

A8«

& snagtt |21

Google - [

| B seachwer -4k |52 B | © @ |5 site popups aloned | [options

PATIKA G omie e e G ook & foaemes] Web edition

File

Edit

Wigw

Tools | Actions | Layout | Help

waline catabolism

| -

o
R £ ST o ES]
X E?%/ﬁ =
a o L4 S #D
b N
. QoA L. coz [isobutyryil-CoA d £ i <
[J
- H+ [m...
z'. - p: ACH: 23 Pathway Properties - Web Page Dialog x|
Attributes Values
T NAD*... H20 [e} 68675
Y Y Fg verson 0
L J & nACH heta- a b Neme valing catabolism
#0xg alpha x - i 'S Description
et meth... et A oo
d . -t ‘ - | & Eesclome
s [J @ | CoA[
§ L-Glut 3-Hyd
Lvali.. 3-hydr...
L
He [m...
| L
& | NAD+
NADH. I\ 3,
I‘. | -
3, et/ fweb patica. [Internet
- -
Zhytro. branched-ch.
-hycra alpha
erM oyt
. — =l

distart| | & G (0] * | Byoascrant.., | (x| Bovisna To... | [O]nbox - Mie...| (3 PaTIkA sors | [T] Tebmiccen... |] Adobe acr... |]2 Mieroso... | [@ 3 ntern.. - | &2

R

| @ Intemet

Figure 3.5: User interface of PATIKAweb.

« 4% O] B 11:12am

CHAPTER 3. SOFTWARE SYSTEM 19

requiring operations will be performed on the server side. Consequently, what we

tried to manage at the client side required basic scripting.

Simply what we have been mentioning so far is a dynamically created html
page with client side scripting. Client side scripting is a strategy preferred lately,
used to reduce both the CPU requirement at the server and the communication

cost. JavaScript is the technology used for the specified cases.

We represent the pathway data as still images in .jpeg format in the canvas.
Creation of this still image and transmission of this image is provided by TSV
JSP Edition framework. We customized this functionality by adding limited
editing operations on the image. All editing actions performed on the canvas,
other operations like pathway object property requests are initially handled by
JavaScript, where we can perform primitive operations. Computation requiring

requests for the client action are submitted to the bridge.

The creation of the still jpg images are done by TSV JSP Edition tag libraries.

Similarly creation of the overview image is done with these libraries [16].

We also provide the utility to export the locally visualized data to other
exchange formats like BioPAX? and SBML*. Moreover the users are able to save
the current pathway in PATIKA model, as a pmdl file, which is the PATIKA
pathway model file in XML format, and load it later. All these use cases require,
the facility to load a file from PATIKA bridge. Therefore load/save actions, that
require access to the user’s local machine are designed to be part of the html
design. Since these operations are not part of the application logic, we considered

them as the client side programming and designed the JSP pages accordingly.

3.2.3.1 Detailed Design of Query Dialog in PATIKAweb client

Another component that we designed as part of the client side, is the query

dialog. Once we investigated the requirements of querying facility in Section

3http://www.biopax.org/
4http://sbml.org/index.psp

CHAPTER 3. SOFTWARE SYSTEM 20

3.2.1, we observed that the query interface required extensive capabilities such
as nesting, saving, loading, etc. One alternative was to build these facilities with
JSP technology, with a sacrifice in extensive user interface facilities. On the
other hand, we had an alternative that enabled us to reuse the existing querying
interface we have developed for PATIKApro. This alternative was implementing
the query dialog as an applet. By this way, we were able to adapt the old code
base with minimal modification and moreover, we got full advantage of applet
in interactive query creation and submission phase. However we admit that this
choice has a drawback. Downloading an applet over an internet connection may
be a slow operation, which is an issue we try to avoid. Considering the pros and
cons of this approach, we decided that sacrificing speed over extensive querying
facilities was feasible. Thus we designed query dialog as an applet and added the
facility that enabled the clients to download the JavaTM Archive (jar) files and
to execute the query applet at the client side.

In the query applet, we provide query saving, loading and executing actions.
Interface of the query applet was previously designed. We have customized the
design for PATIKAweb as in Figure 3.6. QueryApplet contains the interface com-
ponents for building the nested queries such as EditorPanel and QueryForest.
EditorPanel is an abstract editor panel class for handling different types of queries
such as field queries or neighborhood queries. The creation of the query object
is handled at the these editors. Functionalities of the QueryApplet is handled by
the QueryAppletManager. Saving, loading and execution of the queries are the
responsibilities of the QueryAppletManager.

Sample sequence for the execution of a query can be seen in Figure 3.7. In this
sequence diagram, the client executes the selected query, by sending the request to
the corresponding data, which we will refer as PatikaSessionData in the PATIKA
bridge with an http request. In this http request, PATIKAweb client sends the
composed query object in XML. PatikaSessionData receives the request for the
execution of a query action with the query as a stream and behaves like a pipe
and forwards the stream to Proxy. Proxy is responsible for the communications

with PATIKA server. Proxy sends the query to the PATIKA server and waits for

CHAPTER 3. SOFTWARE SYSTEM 21

|:':| QueryaAppletManager

Anplet
Actioniistener
Queryhipplet
USES +loadtiuery Query
———————— == | +saveQuershoolean
. +executeCueny:QueryResult
+load:waid
+5ave void

y instance:QuerppletManager
+executenaid

+showGuernResultrepotvaid
+initEditorPanelvoid
+initQuenTreevoid

¢ i

|:':| Keyl lsteher |:':| JTree
Mowselistanar TreeSelechonlistensr
TreeSelactionlistener Mousel Jstenar
ListSeiactionlistonar QuernyfForest
QuervEditorPanel

+rarmaovenaid
+agvaCurrentvold +adidvoid

queryauery selectedQuery.Quary

g A

FieldEditorPanel MeighborhoodEditorPanel

+saveCurrentvoid +saveCurrentvoid

Figure 3.6: Class diagram for query applet

the query result. Once the result is received from the PATIKA server, PatikaSes-
sionData informs the clients of the results and waits for a feedback. PATIKAweb
client may choose to see or ignore the query results. If the user wants to see the
query result in the browser window, then the visualizable graph for the query
result is processed. User has the option to merge the query result to the current
view or visualize it as a new graph. All these visualization related operations are
performed at the bridge and the graph is rendered as still image and sent to the
client side format via http. Creation of the still image in jpeg format is handled
by the TSV API.

CHAPTER 3. SOFTWARE SYSTEM 22

queryApplet patikaSessionData prozy
Gueryspplet PATIKASessionData P rosy

PATIKAweb Client

1: request Query Applet l l :

! 1.1: send Query Applet jars :

L] | |
2 execute(void l T :
Lo 2.1 executeQuerngdctionovoid | |

o= 211 sendQueryd) QueryResult |
2.1.2: showQueryResultreportdvaid Lr‘

|

e |

3 showQueryResultvoid Mprepafe the pathway graph | |

1 L I

| |

! 3.1 zend the image of the pathway graph :

[] | |
| - |

| | |

| | |

| | |

| | |

LI | | |

Figure 3.7: Sequence diagram for a query execution

3.3 PATIKAweb Bridge

3.3.1 Analysis of Pathway Data Visualization and Editing

Once the requested model is retrieved from the PATIKA database, the user at the
PATIKAweb client side is able to visualize the result. In other words, PATIKAweb

client behaves like a graph window for the PATIKAweb bridge.

Users are able to create and extend pathway models by performing queries
both through an interface given and also through the object interface in the
current view. As the obtained model gets complicated, the users want to save
the current model. We provide saving capability in PATIKA model language,
pmdl and allow loading it later. Moreover exporting the obtained graph to other
standard data formats like BioPax® and SBMLS are supported for enabling data
portability.

Considering the read-only structure of our tool, we provide mechanisms to

Shttp://www.biopax.org/
Shttp://sbml.org/index.psp

CHAPTER 3. SOFTWARE SYSTEM 23

increase quality of the visualization facility. We considered following components

to increase this quality:

e Bioentity and Mechanistic Levels: Pathway data in bioentity and
mechanistic levels should be visualized independently. We have to provide
a visual representation of the cell model, while visualizing the mechanistic

level data.

e Layout of the pathway data: Since we provide extensive querying facil-
ity, we need to present the result in the best possible way. Therefore, we
apply a layout process on the pathway data prior and during the visualiza-

tion.

¢ Editing Operations: Although we provide a read-only interface for path-
way data in PATIKA database, to provide better visualization, we facili-
tate operations like zoom in/out, delete, pan/scroll, hit testing, overview,
drag/drop, etc. Extending a pathway by submitting new queries are also

be provided.

e Complex pathway representation: As mentioned in Section 1.2, path-
way data can be hard to visualize in two dimensions with limited graphical
representation facility. We need to represent this information with maxi-
mum coverage. This requirement can be thought of an independent compo-
nent, therefore analysis and design of this component is studied separately

in the following section.

3.3.1.1 Analysis of Complex Pathway Visualization

Incomplete and complex information contributing to the network of higher level
information must be represented. Abstractions are introduced for this purpose in
PATIKA ontology. We represent abstractions graphically with compound nodes
having child graphs with the TSV API [15]. Compound nodes enable nesting
child graphs, in other words provides us the framework to represent the compound

pathway information for different levels of information.

CHAPTER 3. SOFTWARE SYSTEM 24

Graphical representation of abstractions in PATIKA ontology is an impor-
tant task. Since abstractions represent a cellular events/pathways, a molecular
component can be part of two different cellular pathways. Representing two dif-
ferent pathways sharing an element, either requires making multiple copies of a
molecule, or introducing a new graphical representation technique. Representing
a molecule multiple times in a cell, within different pathways is misleading by
giving wrong quantitative information. Therefore, we proposed different visual

states of pathways, or abstractions as in our ontology.

We visualize abstractions as compound graphs with different visual states in
our graphical representation scheme. These states and their meanings in graphs

are as follows:

e Expanded: The default view of a compound graph is its expanded state.

The child graph of the expanded node is visualized.

e Collapsed: A Collapsed compound node is represented as a single black-
box like node, with the child graph folded. Collapsing a compound node

conceals its child graph.

e Hidden: We define this state, as the abstraction being not visible. However
in this state, we sill represent the members of the abstraction. Only we hide
the information of abstraction owning the members. When an abstraction
is hidden, its child graph becomes part of the parent graph and can be

visualized.

e Holo: In this state we represent the pathway information without the
compound node and child graph components. We present this information
by adding a color information to the member of the abstraction. When an
abstraction is in holo state, its child graph becomes part of the parent graph,
as in hidden state; however we present the information of the abstraction

with color coding.

You can visualize the abstractions in Fxpanded and Holo states in Figure 3.8.

States with a green holo color are members of another abstraction. In Figure 3.9,

CHAPTER 3. SOFTWARE SYSTEM 25

Figure 3.8: Abstractions in Holo and Expanded states

we can see the abstractions in Collapsed and Ezpanded states. Abstractions in
the cytoplasm, drawn as black nodes are abstractions in collapsed state and the
abstraction in the nucleus is in expanded state, where we can see its members in
the child graph.

We define a concept of relationship among abstractions in terms of the rela-
tions among the members of the abstraction. Abstraction A and abstraction B,
may share a subset of their elements. In this case we define these abstraction A
and abstraction B as having improper inclusion relationship. On the other hand,
abstraction A may contain completely abstraction B itself as a sub-component.
In this case we define these abstraction A and abstraction B as having proper
inclusion relationship. These definitions are critical when we try to find the best

possible visual state in a pathway and present it.

As we have stated earlier in Section 2.1, we have five types of abstractions
which are Regular Abstraction, Homology State, Homology Transition, Incom-
plete State and Incomplete Transition. We can represent all of these abstractions

in expanded form. However due to the restrictions introduced by the cell model

CHAPTER 3. SOFTWARE SYSTEM 26

L

a PATIKAweb - Microsoft Internet Explorer

File Edit Wew Favortes Tools Help

@Eack o @ " @ @ (h|p5earch *Favnmtes @| B' &, w -) E B s
Address I@http:#web‘patlka‘urngATIKAweb‘]sp = Go |Unk5 > © snaglt '
Google - | =] Bpseachwen - 4% |2 B - © © |5 ste popups slowed | [options 8 |& -

Transc ﬂ

ER ER M Cytoplasm

MNuclear Membrane

phospho.

Phu- |

~— phospho

ATP [n...

Stabilization of p53

v -
4 | _"_I
@] Done [0 T[T [ntemet

Figure 3.9: Abstractions in Collapsed and Ezrpanded states

CHAPTER 3. SOFTWARE SYSTEM 27

’ \ Hidden \ Collapsed \ Holo \ Expanded ‘

Regular Abstraction

(Spanning 1 compartment) + + + +
Regular Abstraction

(Spanning many compartments) + + + -
Incomplete State + + - +
Homology State + + + +
Complex State - + - +

Table 3.1: Summary of the valid options for all types of abstractions

and biological constraints, not all visual states are applicable for all abstraction
types. Allowed visual states for abstraction and complexes can be seen in Table
3.1.

3.3.2 Detailed Design of PATIKAweb Bridge

PATiKAweb bridge is the tier, where the application logic is implemented. Data
access and visualization are the basic functionalities of our application. As we
have mentioned earlier, we have a visualization approach for pathway visualiza-
tion, developed earlier for other PATIKA tools. We have customized this code

base to integrate it with the visualization scheme of PATIKAweb.

28

SOFTWARE SYSTEM

CHAPTER 3.

USIsop 98pLIg :(O[°¢ 9INSI]

haBeuepydeinfinuaoigp Jebeueyydeigansiueyasyp

¥y

1afeL nsy W WP Anueoig
sabeuepypuewuog3s) safeuepypuewuon3s |
= 1eBeuepydeigeynedn
B - 1efeuepydein3s)
: T
i o

PIOABAOLIS14

Ydeineyneds

foroegexneds

ploaapsiueyoayousBeuepyydeIDyIumMSs

PIOA UORIYMAAYIUMEMIU
ploafnusoigousbeuepydeIDYIIMES
uonoysioqybisypu 4-usgoysiogybiaypu ymaus
PIOAYNSEYAIINDMOLSH
pionydeineyiedatiows

uonayAIanD e e uoia IS NDEYIEYMAU
LONIYINoAEENNE S UONIYINOAETENIESMEUL
Iojoadsu|BYN B4 I0]02dE U MaUY

UONIYSpoN S18[20EYIE 4 U0 YSPONSI|SOMaU+
1aBeuepyydeigeynegaiabeuepydeigmauy
PIOALUORoYAISND BN 8K

EJEQUOISSOSYHILY D

y

safievepyydeing | uebeuepyydelf

EjEQuo|ssags)

CHAPTER 3. SOFTWARE SYSTEM 29

In Figure 3.10, the architecture of the session data can be seen. Session data,
which is PatikaSessionData for our case, is instantiated as JavaBean, in the jsp
file. As the user requests for the jsp file, this bean is instantiated in the bridge with
the scope of session. This session bean keeps the data for that session, containing
the current pathway data, query results and visual properties. Therefore, any
action requiring a modification on any of these data, and consequently on the

still image displayed on the canvas, is handled by the session data.

PatikaSessionData, is extended from TSESessionData, to customize it accord-
ing to our preferences. Concept of two graph managers per session data, display-
ing query results, expanding/collapsing and performing other editing operations
on the graph data are achieved with PatikaSessionData. Fach PatikaSessionData,
has one BioentityGraphManager and one MechanisticGraphManager. We carry
the subject-view mechanism of PATIKA visualization scheme to PATIKAweb as
well. That’s why each PatikaSessionData has one subject graph, SPatikaGraph
instance (See Figure 3.10).

Although we limit the editing operations on the visualized pathway graph in
PATIKAweb , we allow operations like delete, expand/collapse, merge graphs and
layout. Since these operations modify the graph topologically or visually, undo
operations must be provided. However due to our one subject and multiple view
mechanism, one operation in one view may require a modification in the other
view. For example, deletion of a bioentity in the bioentity view causes removal of
all of its states in the mechanistic view. If we want to perform an undo operation
on bioentity view, we need to perform the corresponding undo operations on the
mechanistic view. Command structure provided by T'SV JSP Edition [16], does
not provide this type of control. Therefore, we extended TSECommandManager
into to sub-command managers as BioentityCommandManager and Mechanisti-

CommmandManager (See Figure 3.10).

30

CHAPTER 3. SOFTWARE SYSTEM

QoM VMILLVJ Ul UOIJO[OP 9pPOoU I0J WeISeIp aouanbog :11°¢ oInsI

—————— e ——————— e
L

ydeioexneds
ydeigs

plon{gz L apous)asowal iz g g

plon{juonayop (L LVEE

—

-]

1afieuepypuewwoDS)
19BEUBPUEWIWOD

T ploAd{ pUBLILIO)3PONBEACBIIWISUES 1) 'E'T g

|
I
|
I
|
|
|
|
il

r (£z | opous)ayean igg

SpONEHEdS!

(hoslangieb iz g

=

(}peojas :g

—

..|
apoNexned £z L apoujaponab iz

puewwogioalgnswolJepoNanoway
PUBLIIOD)@poNaACLIal

apoNExnEdn,
£T}apouA

uoHoYapoNElARgErIEd
uojlayapoNaaap

(gz}spoujuni iz |

——— —— }————_—_——————d

—

a1eslo 'L 1 <}
| uopayapoNeisiaQesRed:(|uonayapoNEiaagmaL)

EleQuoISSag I LVYd
elEQUOjSSaseyied

CHAPTER 3. SOFTWARE SYSTEM 31

In our design every interactive operation requiring process on the pathway
data, requires access to the PATIKA bridge. All of these editing operations has a
corresponding action class (e.g. PatikaEzpandAction, PatikaLayoutAction, etc.)
at the bridge. As the user performs any of these editing operations, the request to
perform that action at the session data is sent to the bridge. For example, in Fig-
ure 3.11, we see a sample sequence of a node deletion action. PATIKAweb client
performs the action on the browser, by calling the corresponding JavaScript. This
script makes a request to the jsp file. As the jsp is compiled and the Java code
is executed, PatikaSessionData, calls the corresponding method, newDeleteN-
odeAction(). This method creates and returns an instance of the action object.
PatikaDeleteNodeAction transmits the command for the deletion of the node. As
we are dealing with deletion of view-level objects and the command for node dele-
tion requires the subject-level node, we need to access the node’s subject at this
point. We transmit the command to the correct command manager based on the
type of the node, either MechanisticCommandManager or BioentityCommand-
Manager. This command removes the node from the graph and adds the com-

mand to the undo stack, for enabling undo operations.

3.3.2.1 Complex Pathway Visualization Design

In PATIKAweb the results of queries are visualized in the best possible way. While
preparing the visual representation of the query result, one issue that we need to
consider is the abstractions. As mentioned in Section 3.3.1.1,we allow abstractions
to be visualized in four different visual states. Some of these visual states are not
applicable for all abstractions, based on their relationships as defined in Section
3.3.1.1.

Visual state of an abstraction to be visualized in PATIKAweb is decided in the
PATIKA bridge and visualized in that state. Limited visual state transitions are
allowed by user’s choice. A PATIKAweb user can only change an abstraction’s
visual state between expanded and collapsed. On the other hand an abstraction
can be visualized in any of the visual states applicable for that abstraction, when

it is initially visualized in the graph. The selection of the proper visual state of the

CHAPTER 3. SOFTWARE SYSTEM 32

State in Editor Programmatic State
Hidden ReadyToViz or NotReadyToViz
Holo Visible_Holo or Invisible_Holo
Expanded Visible_ Expanded or Invisible_Expanded
Collapsed Visible_Collapsed or Invisible_Collapsed

Table 3.2: Programmatic states for abstractions’ visual states

abstraction is done automatically. Based on the relationship of the abstraction
with the other abstraction in the current graph, its visual state is decided. The

order of visual state tested is like this: expanded, collapsed, holo and hidden state.

Programmatically, visual state transitions for an abstraction depends on the
other associated abstractions in the view. We defined low level visual states
matching with the user perceived visual states. User perceived visual states for
abstractions correspond to the programmatic visual states of an abstraction as
in Table 1. Complex molecules are compound molecules, although they are not
abstractions ontologically and not all the visual states are allowed for complexes.

Correspondences among them can be seen in Table 3.2.

33

SOFTWARE SYSTEM

CHAPTER 3.

S9Je)S TeNSIA STUOT}ORIISCR JO WIRISRTP UOIJISURI}-0IRIG (g ¢ oINSI]

[ex] =

qeujsuopdoalels|erpuedsgualed

pely

T alge

sigsuondoalels|efas || oolualed

papuedsg 8| qIsIA, 3

geujsuojdosielg|eipuedgiualed
[t1] [ET]

asde|oa puEdxa

al
geugsuondoalels)|e/puedsgualed

ojoH”algIsel) | Esigsundoalelsieasdejooualed

. [Wappyun

ale slaguiall ([elojoHaxew _M_

Cll

aloH A,)

papuedx3 T agisiau) |

DjoHasoLLal

andlh LU0 aaoleal

pasde|02”8|qIs1A _m_ ajne

sigsuondoalels|easae|ooualed

M [UappIyun

1B S180QLUSL [|ElMELA O) LasUu

geudsuondoalels| eRpUedxIUaled .
_ pajge

[pasdey oo™ s qiss W u;qacﬂmwr.

Jaupad oadwiliaalgn guing Jasaual

| zin0ipeamon s1gsundoaels|easde|oojualed

M0 ApEa |

i

12algngLuaod 4aaal

pasde|oo 8|qIStAu] |

CHAPTER 3. SOFTWARE SYSTEM 34

Possible dependencies among abstractions are explained in the state-transition
diagram (see Figure 3.12). As can be seen from the diagram, every user perceived
state is divided into two sub states to manage the dependencies. One important
design decision to point out is the order of transitions. An abstraction cannot
pass directly from holo state to expanded state. Abstraction must first pass to

hidden state, then to collapsed state and then to expanded state.

Dependencies among abstractions affect the visual state transitions of indi-
vidual abstractions. There are two basic dependencies among abstractions in the
same view: proper and improper intersection dependencies. In the proper inter-
section, members of one abstraction is a proper subset of members of another
abstraction. We will refer the abstraction which contains all the members of
another abstraction as the parent abstraction of the other. In the improper inter-
section dependency, two (or more abstractions) share one or more members but
neither contains all members of the other. State transitions according to these
dependencies are as in Figure 3.12. Each transition is labeled with a number and
events that trigger these transitions, conditions that control these transitions and

actions taken with these transitions are explained in detail below:

1. Event: Insert to view occurs.
Condition: If abstraction A has an improper intersection with some other

abstraction B and abstraction B is in wvisible collapsed state.

2. Event: Insert to view occurs.
Condition: If there is no such dependency as in (1) in the view.
Action: Disable collapsed state if another abstraction B having an im-
proper intersection with current abstraction is in holo state.
Action: Disable collapsed /expanded states if another abstraction B having
an improper intersection with current abstraction is in ezpanded state.
Action: Enable collapsed/expanded/holo states if all members are in un-
hidden states.

3. Event: Parent abstraction of abstraction A changes to wisible collapsed

state.

CHAPTER 3. SOFTWARE SYSTEM 35

Event: Abstraction B having improper intersection with abstraction A

changes to visible collapsed state.

4. Event: Parent abstraction of abstraction A changes to visible expanded or
ready to visualize state from wvisible collapsed state.
Event: Abstraction B (having improper intersection with abstraction A)
changes to wisible expanded or ready to visualize state from wvisible collapsed
state.
Action: Disable collapsed state if another abstraction B having an im-
proper intersection with current abstraction is in holo state.
Action: Disable collapsed/expanded states if another abstraction B having
an improper intersection with current abstraction is in expanded state.
Action: Enable collapsed/expanded/holo states if all members are in un-
hidden states.

5. Event: Visual state of abstraction A is set to collapse.
Condition: All members of abstraction A must be in unhidden states.
Action: insert() into the view is performed.
Action: Enable all state options for this abstraction.
Action: All member abstractions change their visible states to correspond-
ing invisible states. If in ready to visualize state, changes to not ready to
wvisualize state. Disable hidden state for member abstractions.
Action: All abstractions having improper intersection with abstraction A,
change their states to not ready to visualize state from ready to visualize

state. Disable collapsed /expanded /holo state options for these abstractions.

6. Event: Visual state of abstraction A is set to hidden.
Action: All member abstractions change invisible states to corresponding
visible states. Remove from the view is performed.
Action: All abstractions having improper intersection with abstraction A,
change their states to ready to visualize state from not ready to visualize
state. Remove from the view is performed.
Action: Disable collapsed state if another abstraction B having an im-
proper intersection with current abstraction is in holo state.

Action: Disable collapsed/expanded states if another abstraction B having

CHAPTER 3. SOFTWARE SYSTEM 36

10.

an improper intersection with current abstraction is in expanded state.
Action: Enable collapsed/expanded/holo states if all members are in un-
hidden states.

Event: Visual state of abstraction A is set to hidden.

Action: Disable collapsed state if another abstraction B having an im-
proper intersection with current abstraction is in holo state.

Action: Disable collapsed /expanded states if another abstraction B having
an improper intersection with current abstraction is in expanded state.
Action: Enable collapsed/expanded/holo states if all members are in un-
hidden states.

Event: Parent abstraction of abstraction A changes state to wisible col-
lapsed.

Action: All state options for this abstraction are disabled.

Event: Parent abstraction of abstraction A changes state to wisible ex-
panded or ready to visualize.

Action: Enable all state options for this abstraction.

Action: All member abstractions change their visible states to correspond-
ing invisible states. If in ready to visualize state, changes to not ready to
wisualize state. Disable hidden state for member abstractions.

Action: All abstractions having improper intersection with abstraction A,
change their states to not ready to visualize state from ready to visualize

state. Disable collapsed /expanded /holo state options for these abstractions.

Event: Parent abstraction of abstraction A changes state to wisible ex-
panded or ready to visualize.

Action: All state options for this abstraction are enabled.

Action: All member abstractions change invisible states to corresponding
visible states. hidden state is disabled for member abstractions.

Action: For abstractions having improper intersection:

e If they are in not ready to visualize state, change to ready to visualize
state, disable collapsed state option, enable expanded, hidden and holo

state option for these abstractions.

CHAPTER 3. SOFTWARE SYSTEM 37

11.

12.

13.

e If they are in visible holo state, for current abstraction disable collapsed
and expanded state options; enable hidden and holo state options.

Disable collapsed state for improper intersecting abstractions.

Event: Parent abstraction of abstraction A changes state to wisible ex-
panded or ready to visualize.

Action: All state options for this abstraction are enabled.

Action: All member abstractions change invisible states to corresponding
visible states. hidden state is disabled for member abstractions.

Action: For abstractions having improper intersection:

e If they are in not ready to visualize state, change to ready to visualize
state, disable collapsed state option, enable expanded, hidden and holo

state option for these abstractions.

e If they are in wisible holo state, for current abstraction disable collapsed
and expanded state options; enable hidden and holo state options.

Disable collapsed state for improper intersecting abstractions.

Event: Parent abstraction of abstraction A changes state to wvisible col-
lapsed.

Action: All state options for this abstraction are disabled.

Event: Visual state of abstraction A is set to expanded.

Condition: All members of abstraction A must be in unhidden states.
Action: All member abstractions change invisible states to corresponding
visible states. hidden state is disabled for member abstractions.

Action: For abstractions having improper intersection:

e If they are in not ready to visualize state, change to ready to visualize
state, disable collapsed and expanded state option, enable hidden and

holo state option for these abstractions.

e If they are in visible holo state, for current abstraction disable collapsed
state option; enable expanded, hidden and holo state options. Disable

collapsed state for improper intersecting abstractions.

CHAPTER 3. SOFTWARE SYSTEM 38

14. Event: Visual state of abstraction A is set to collapse.
Condition: All members of abstraction A must be in unhidden states.
Action: Enable all state options for this abstraction.
Action: All member abstractions change their visible states to correspond-
ing invisible states. If they are in ready to visualize state, change their state
to not ready to visualize state. Disable hidden state for member abstrac-
tions.
Action: All abstractions having improper intersection with abstraction A,
change their states to not ready to visualize state from ready to visualize

state. Disable collapsed /expanded /holo state options for these abstractions.

15. Event: Parent abstraction of abstraction A changes state to wvisible col-
lapsed.

Action: All state options are disabled for this abstraction.

16. Event: Parent abstraction of abstraction A changes state to wvisible ez-
panded or ready to visualize.
Action: Disable hidden state for all member abstractions .
Action: All abstractions having improper intersection with abstraction A,

must disable their collapsed state option.

Once we have identified the flow of the states and transitions, we have de-
signed the system and integrated it within the existing view design as in Figure
5.13. As seen in this figure management of the visual states of each abstrac-
tion is handled by its view manager. State transition requests are handled in

Abstraction ViewMgr.

Each view manager of an abstraction keeps the lists of abstractions having
improper relation or proper relations with itself. Upon changing a visual state of
an abstraction, its view manager iterates over its dependency list, makes required
modifications. Based on the limitations and relations, some visual states for the
abstractions in the dependency lists are enabled or disabled. A sample sequence

for expanding a hidden abstraction can be seen in Figure 3.14.

CHAPTER 3. SOFTWARE SYSTEM 39

PatikablodeviewMgr

L:'j AbstractionviewhMor

+onAddhemberyoid
+onRemavelemberyaid
+setyisualStatevoid
+makehotReadyTovizvoid
+makeR eadyTovizyaoid
+makelnvisibleExpandednvoid
+makevisibleExpandedvoid

impraperntersectingibs:List
praperintersectingParents:List
properintersectingChildrens;Lig

YReqgulardbstraction VHomologyTransition VYHomaologyState VincompleteState VincompleteTransition

Figure 3.13: Design of abstraction view manager

ExpandAbstractionCommand VRegularAbstraction AbstractionviewMgr
et | | |
1: expand hidden abstraction A | | |
T 11: aetviewntgr | |
Be=- |
2L |
== I |
3 makeExpanded |_| |
.1: makevisibleCollapsed
- akeWisibleExpanded
.2 maintainDependencylList

T

I

I

I

I

I

T |
| I
| I
| I
| I
| |

Figure 3.14: Sequence of expanding a hidden abstraction

CHAPTER 3. SOFTWARE SYSTEM 40

3.4 PATIKA Server, Data Flow and Communi-

cation

PATIKAweb server currently is the tier keeping the data. In PATIKA database
we have pathway data integrated from different databases. We access to PATIKA
server with PATIKApro clients, in other words with fat clients and PATIKAweb
clients via the bridge. Therefore the interface and the protocols for data access are
designed to be exactly same. Considering the modular structure for PATIKAweb,
the PATIKAweb bridge as explained in Section 3.3.2; is designed to have the
interface of a fat client for PATIKA server. Besides reusability, this modular
and scalable architecture provided us the flexibility to modify the client or the

application module, without the consideration of PATIKA server.

Communication of the PATIKAweb bridge to the PATIKA database is done over
http. Since read-only operations are allowed in PATIKAweb this communication
is basically required for data access. As the user sends the query to the bridge via
http in XML, the bridge behaves like a pipe and forwards the XML representation
to the PATIKA database using the http protocol again. At this point, bridge knows
nothing about the query, as it only transfers the XML file. Up to this point, the
client and the bridge together behaves like a fat client. When the server performs
the query and returns the query result over http to PATIKAweb bridge in XML
file, bridge itself behaves like a fat client for the representation of the query. The
query result object is extracted from the XML and then is processed to represent
it with a pathway graph. Once the graphical representation of the query result
is finished, only the still image is passed back to the client side via http.

3.5 Implementation Details

We have used different technologies in the implementation of PATIKAweb. As we
have implemented a three-tier architecture, each tier uses different components

to achieve its task (See Figure 3.15). In the client side, we use JavaScript, HTML

CHAPTER 3. SOFTWARE SYSTEM 41

http-
request
JAVAscript —— = Commands Patika
JAVA Graph
DHTMLIHTML| http- —— Manger
response raph data %-
Hibernate
http- :. : Spring MVC
Commancl Patika Graph Patika Griaph
request Bl in XM PostgreSQL
JAVAscript |- atika
JAVA <I:_r:i — Graph
DHTMLIHTML raph data Manager
http-
response PATIKA
DATABASE
TSVY-JSP EDITICN
PATIKA SERVER

Figure 3.15: Architecture diagram of PATIKAweb and their communication
scheme

and DHTML to build the Web pages. These technologies provide us the dynamic
content creation and limited event handling. We us DHTML for creating the
menu and toolbar. In PATIKAweb server, we use JSP technology within the
TSV JSP Edition framework containing the graph editing toolkit. For the data
flow, we use the XML format. We transfer queries from query applet at the
client side to PATIKAweb server and receive query results in XML format from
PATIKA server. To handle marshaling and unmarshaling of these XML files we
use Java Architecture for XML Binding (JAXB)? technology. In the PATIKA
server PostgreSQL is used as the Database management system. For the object-
relational mapping, Hibernate® is used. Control of the components in the server

with MVC and managing the Hibernate are handled with Spring framework®.

Prior to the design process, we investigated the Tom Sawyer Software, JSP
Edition. This edition provided us the framework for a thin client, where we can

present any graph visualization facility at a Web page. In this framework JSP

Thttp://java.sun.com/developer/technical Articles/WebServices /jaxb/
8http://www.hibernate.org/
9http://www.springframework.org/

CHAPTER 3. SOFTWARE SYSTEM 42

(Java Server Pages) technology is used. JSP technology facilitates the creation
of dynamic Web pages!®, which is crucial in our service. JSP technology is an
extension to the Servlet Technology, which are server side modules for interactive
Web applications!!. Moreover in the framework provided by TSV JSP Edition,

t'2 which we can integrate with our Web ap-

JavaBeans, a reusable componen
plication to represent objects mapped to the clients’ at the server side is also

used.

Using these technologies, TSV JSP Edition provided us the basic skeleton that
we will customize extensively for our Web service. Below is the sketch of TSV
JSP FEdition covering both the mentioned technology details and the provided

framework :

1. Addressing the browser to main page, makes the request to the correspond-
ing jsp page. This jsp page is first converted to Java code, compiled and

loaded in the browser.

2. In the main jsp page loaded, there is html code and JavaScript and jsp code
embedded.

3. When the main page is being loaded, an instance of the object is created
that is defined as session bean in the jsp code part. The session bean
instantiated in this framework is mapped with the graph that the user will

be dealing with through out the session.

4. Every action on the main page is associated with a separate page, i.e has
separate .jsp for every action. (Such as graph editing actions or file loading

actions)

5. Every component that requires an action to be performed and be reflected

to the browser, is linked to a JavaScript code.

6. Upon a click on a component on main page, corresponding JavaScript code

forwards the browser to the corresponding jsp page.

Ohttp://java.sun.com/products/jsp/
Hhttp://java.sun.com/products/servlet /overview.html
2http://java.sun.com/products/javabeans/

CHAPTER 3. SOFTWARE SYSTEM 43

7. In each of these .jsp pages, the session bean is used to perform corresponding
actions. For example in TSLoadFileAction.jsp, loadgraph() operation is
called on canvas with the given file name. (This filename is carried from

the selection on the main page).

8. Every .jsp page includes other .jsp references to maintain other required
actions. For example, TSLoadFileAction after loading the graph on canvas,
needs to call TSFitInCanvas.jsp to fit the created image of the drawing in
the drawing area. After the completion of the load action, main page must
be reloaded. To be able to do this, TSGoToMainPage.jsp action page is

included in all proper action pages.

9. For some actions such as zoom, scroll, or selection of ”fit In canvas” explic-
itly, only the image displayed in the main page is changed. The whole page

is not reloaded.

As we have been using Tom Sawyer Software’s visualization tools, we choose
to use the same framework to increase the development time. This choice has
also served our strategy to reuse the previous visualization solutions developed
in Tom Sawyer Software’s Graph Editing Toolkits. Therefore we have built our
design on top of the skeleton provided by TSV, JSP Edition. However due to
the license agreements of TSV JSP FEdition, we could not provide an open source
or non-limited license agreement tool. We warn the users of PATIKAweb with
an opening page about the license agreements. PATIKAweb is a freely available

software through Internet for non commercial uses only.

We can think of the Query Applet as an independent component within
PATiIKAweb. Therefore we considered different implementation issues for the
query applet. As seen in the use cases specified in Section 3.2, PATIKAweb clients
should be able to save the queries that they have built in the query interface
provided. Loading of these queries should be allowed as well. These scenarios
require that a downloaded applet performs an access to the client’s local ma-
chine. For obvious security reasons, any downloaded applet cannot perform a
read or write access to the local machine. Only trusted applets can perform such

operations. JDK 1.3 or higher provide the technology to create trusted applets.

CHAPTER 3. SOFTWARE SYSTEM 44

Warning - Security il

' Do wou want to trust the signed applet distributed by "Bilkent Center Far
M Bioinformatics {BCEIY'?

Publisher authenticity can not be verified,

! } The security certificate was issued by a company that is nok trusted,
L

.
\'5]) The security certificate has not expired and is still valid.

More Details

[Yes H Mo][Always]

Figure 3.16: Screenshot for the signed applet jars

Therefore we used the keytool to manage the keystores, certificates and jarsigner
to sign the applet archives. These tools are available with JDK 1.3 or higher.
When a PATIKAweb client, downloads the query applet, a warning window pops
up (See Figure 3.16) and asks the user whether they want to trust the application
provider, ”‘Bilkent Center for Bioinformatics”’. If the user trusts the provider,
the client downloads the applet jars, which is in total approximately 3MB, and

then read and write operations to the client machine can be performed.

To access PATIKAweb users should have one of the following browsers:

e Microsoft Internet Explorer 5.5 or more : It is the most frequently used

browser among average Internet users.
e Mozilla Firefox 1.0 or more : Its usage ratio increased immensely lately.

e Apple Safari 1.0 or more: It is very popular in the biological community.

We considered the domain and the target user profile, deciding on the browsers
that we will support. Biological community generally uses Apple Computers,
which uses MAC OS and Safari Web browser. We decided on the browsers to
support based on this fact and the statistics in Table 3.3 taken from W3 Schools3.

Bhttp: / /www.w3schools.com. W3Schools is a website for people with an interest for web
technologies. These people are more interested in using alternative browsers than the average
user

CHAPTER 3. SOFTWARE SYSTEM

’ 2005 \ TEG6 \ IE5 \ Firefox \ Mozilla \ NN 7 ‘

July 67.0% | 6.7% | 19.7% 2.6% 0.5%
June 65.0% | 6.8% | 20.7% 2.9% 0.6%
May 64.8% | 6.8% | 21.0% 3.1% 0.7%
April 63.5% | 7.9% | 20.9% 3.1% 0.9%
March | 63.6% | 8.9% | 18.9% 3.3% 1.0%
February | 63.9% | 9.5% | 17.9% 3.3% 1.0%
January | 64.8% | 9.7% | 16.6% 3.4% 1.1%

Table 3.3: Browser statistics month by month from W3 Schools

Chapter 4

Conclusions

Development of PATIKAweb started with the realization of the requirement of an
easy-to-access tool facilitating analysis on the pathway data. Then we clearly
identified the requirements and use cases for this tool. Prior to the design step,
based on the requirements we decided that we will build a Web based service
with TSV, JSP Edition. In the design step, the biggest challenge was integrating
the available design and codebase for pathway visualization to the new design of
PATIKAweb. In the implementation process, we have clearly split the components

based on the multi-tier architecture and thus can be developed independently.

PATIKAweb is now available for non commercial use through the address
http://web.patika.org, where users can access to pathway data in PATIKA data-
base and analyze this data with the unique and highly extensive visualization
capabilities. Every non-commercial oriented researcher can access PATIKAweb

via their web browsers and get advantage of its functionalities.

PATIKAweb currently serves the community with its unique and extensive

capabilities, through an easy-to-access user friendly interface.

46

CHAPTER 4. CONCLUSIONS 47

4.1 Contribution

Once we have decided on developing a thin client, we initially did some search
on the available free graph editing packages like GraphViz!, GINY?2, GVF3, etc.
Later we have decided on using TSV, JSP Edition. Unfortunately TSV, JSP
Edition final release was not available those days and documentation was not
complete. Therefore we analyzed the package and tried to understand their
architecture. Once the structure of TSV, JSP FEdition was clearly perceived,
the next step was to design PATIKAweb. Having discussed the requirement of
PATIKAwebwith the team, we did the design to integrate the current architecture
of PATIKApro with the new architecture of PATIKAweb. In the implementation
step, we basically implemented the bridge side, where the main integration oc-
curred. In the client side, we implemented the framework for the web service.
Once the basic skeleton was ready, implementation of editing operations was
much easier. We implemented some basic functionalities for the editing opera-
tions like save, load, export, etc. We had a senior project team responsible for
the creation of the dynamic content of the PATIKAweb at the client side. Rest of
the PATIKA team also contributed to functionalities, which were to be imported
from PATIKApro or to be implemented specifically for the web service . During
the development process, we continued to the development of PATIKApro in par-
allel. Therefore, we did the integration of latest improvements in PATIKApro to

PATIKAwWeb periodically.

We also managed the complex pathway visualization design and implementa-
tion. We have discussed and designed the visualization scheme and implemented
the design for PATIKApro. Later, the logic is imported to PATIKAweb, with some

minor modifications.

http://www.graphviz.org/
Zhttp://csbi.sourceforge.net/
3http://gvf.sourceforge.net/

CHAPTER 4. CONCLUSIONS 48

4.2 Future Work

Due to the incompatibility of the browsers in handling some scripts, PATIKAweb
is currently stable on IE 5.5 or higher. With some minor bugs related to the
DHTML’s, users can also use PATIKAweb with full functionality in Mozilla Firefox
1.0 or more. For both IE and Safari working on Mac OS, PATIKAweb does not
work properly either for the time being. The problems related to the operating
system and the browsers must be considered to PATIKAweb stable and consistent
with all the browsers mentioned above. To be able to handle the inconsistency in
browsers, failing functions must be implemented with browser dependent scripts.
Although this is not a desirable solution for software development, inconsistency

among the frequently used browsers force this approach.

Another problem, that we need to solve prior to the final release is related to
the command structure. Since we have two different views, affecting each other
with the editing operations, we want to supply a very strong do/undo mechanism.
Currently we fail in performing do/undo operations in some specific scenarios.
The design and implementation should be revisited to solve these problems and

make the mechanism stable.

As the currently accessible version of PATIKAweb is a beta release, for the ver-
sion 1.0 release we aim to add some new functionalities like microarray support.
Considering the modular architecture, any improvements and additional func-
tionalities should be easy to integrate. One of the future improvements currently
considered is adding a microarray analysis module to PATIKAweb. The multi-tier
architecture of PATIKAweb, allows also any major changes and improvements,
like the changes at the graph editing framework. In the future, we may build our
own layout server with another third party graph editing toolkit and embed this

structure within PATIKAweb.

Bibliography

1]

E. Demir, O. Babur, U. Dogrusoz, A. Gursoy, A. Ayaz, G. Gulesir, G. Ni-
sanci, and R. Cetin-Atalay. An ontology for collaborative construction and

analysis of cellular pathways. Bioinformatics, 20:349-356, 2004.

E. Demir, O. Babur, U. Dogrusoz, A. Gursoy, G. Nisanci, R. Cetin-Atalay,
and M. Ozturk. Patika: an integrated visual environment for collaborative

construction and analysis of cellular pathways. Bioinformatics, 18:996-1003,
2002.

D. Endy and R. Brent. Modelling cellular behaviour. Nature, 18:391-396,
2001.

J. Fulton and E. Kramer. Can you ever be too thin? mnetWorker, 1:19-23,
1997.

7. Hu, J. Mellor, J. Wu, and C. DelLisi. Visant: an online visualization and
analysis tool for biological interaction data. BMC Bioinformatics, 5:17-25,
2004.

M. Jern. 7‘thin”’ vs. 7‘fat”’ visualization clients. In Proceedings of the

working conference on Advanced visual interfaces. ACM Press, 1998.

M. Kanehisa and P. Bork. Bioinformatics in the post-sequence era. Nature
Genetics, 33:305-310, 2003.

P. D. Karp. An ontology for biological function based on molecular interac-
tions. Bioinformatics ONTOLOGY, 16:269-285, 2000.

49

BIBLIOGRAPHY 20

[9]

[10]

[15]

[16]

P. D. Karp, M. Riley, M. Saier, I. T. Paulsen, S. M. Paley, and A. Pellegrini-
Toole. The ecocyc and metacyc databases. Nucleic Acids Research, 28:56-59,
2000.

L. Krishnamurthy, J. Nadeau, G. Ozsoyoglu, M. Ozsoyoglu, G. Schaeffer,
M. Tasan, and W. Xu. Pathways database system: An integrated set of
tools for biological pathways. Bioinformatics, 19:930-937, 2003.

A. Lai and J. Nieh. Limits of wide-area thin-client computing. In Proceedings
of the 2002 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems. ACM Press, 2002.

C. A. Ouzounis and A. Valencia. Early bioinformatics: the birth of a disci-

plinea personal view. Bioinformatics, Review, 19:2176-2190, 2003.

G. Schaeffer and Z. Ozsoyoglu. Pathwayviz visualizing biological pathways
through an interactive graph. Technical report, CWRU, 2002.

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage,
N. Amin, B. Schwikowski, and T. Ideker. Cytoscape: A software environ-
ment for integrated models of biomolecular interaction networks. Genome
Research, 13:2498-2504, 2003.

Tom Sawyer Software Corporation. Tom Sawyer Software Visualization Ver-
sion 6.0 JSP Edition Developer’s Guide.

Tom Sawyer Software Corporation. Tom Sawyer Software Visualization Ver-
sion 7.0 JSP Edition Developer’s Guide.

G. Vernikos, C. Gkogkas, V. Promponas, and S. Hamodrakas. Genevito:
Visualizing gene-product functional and structural features in genomic
datasets. BMC' Bioinformatics, 4:53-68, 2003.

Appendix A

Screenshots from PATIK A web

51

APPENDIX A. SCREENSHOTS FROM PATIKA WEB

'ATIKAweb

crosoft Internet Explarer

52

1Bl

File Edt View Favorites Tools Help

|

@Back Q- B @ <b|pSearch \',‘,F\'\Y'Favnmtes @‘ Bvﬁ; -]) E Bl 3

Acdress [] httpfweb.patica crafPATIRAWsb sp

B |Lm>s »

& snagtt |2t

Google - | =] Epsearchwen - 4% |52 ¥ - | O @ |Brstepopupsaloned | [options A

®-

IPA']I'ﬁ]KA File | Edit | Wiew |Tools |Actions | Layout | Help
=

0B o o [] O @65 w0 [100w =] || [Mechanistio =]

Web edition

rN

4 PATIKA MNodes 48412
Interactions 13146
Transitions 1175
Bigentities 41762
States 5089
Complex States a74
Complex Members 2366
Homology States 245
Regular Abstractions 388

Current statistics from PATIKA Database:

Welcome to PATIKAweb, Web edition of PATIKA!

“fou may load sample models from “File | Sample Models™ or perform a guery from “View | Query Dialog™ to get started.
The User Manual can be accessed via "Help | How to Use”

v

Figure A.1: Welcome page of PATIKAweb

eb.patika.org - PATIKAweb Query Applet - Microsoft Internet Explarer

2} PATIKAweb - Microsoft Internat Explorer]

B sl o5
BN | Links * | & snagit |27
Gc (B name of RegularAbstraction start name of RegularAbstraction starts with valine e popups sllowed | E Optians 4 |@ =
= i [Patika Object : name =
¢ Paika Mode D Web edition
| Binentity author
¢ Mechanistic Mode description
Regular Abstraction e
o Transition Got
o Etate erms
o= Interaction
plog™ to get started.
4 m D [Mot | Starts With ‘vlva\me
| &] Applet org.patika.pro.client.edtor.gui.query.Queryapplet started | | || | |4 Internet 4

States 5088

Complex States 574

Complex Members 2366

Homology States 245

Regular Abstractions 389

A d

|&] pone [@[[[[mtemet

Fstar| | @ @ 0] > | |0 tnbex - Microsc. . | B Jasc Paink shop ... | 5 Temmuz11 | 7] reniccenter -fi..| [Adobe pcrobat ... |[783 Internet Ex... - | &

Figure A.2: Query applet

E

SR B A aderm

APPENDIX A. SCREENSHOTS FROM PATIKA WEB 33

2} PATIKAweb - Microsoft Internet Explorer D {8 x|

File gy = Eo 2
E eb.patika.org - PATIKAweb Query Applet - Microsoft Internet Explorer i B [59 | L
i @ El B ks ? G snagre 1
Ge (& name of RegularAbstraction starts | name of RegularAbstraction starts with valine e popups alowed | [options 8 |@ i
= Patika Object : name =
9 Patika Mode ID Web edition
[Eioernitity author
¢ Mechanistic Mode description
Regular Abstraction L
& Transition GOt
o State erms
& Interaction
plog™ to get started.
y i . T DNm|stans\Mm ‘vlva\me :
[&] Applet org.patika. pra client editor gul.query QueryApplet started. | | ||| |4 Internet)

States 5088

Complex States 574

ComplexMembers 2368

Hormology States 245

Regular Abstractions 389

v

@] Dene [TBRIT [[[meeme

Inbos - Microsof. . | &% Jasc Paint Shop.... |) Temmuz11 | [E] rericcenter - ... | [adsbe acrabat ... ||§3 Internet Ex... - | &)

distart| | & (G A

«ODeRB S a7

Figure A.3: Query is in progress

APPENDIX A. SCREENSHOTS FROM PATIKA WEB o4

2} PATIKAweb - Microsoft Internet Explorer 7 {8 x|

Fil = Eo 2
°F . .org - PATIKAweb Query Applet - Microsoft Internet Explorer B [59
i @ IE' B ks ? G snagre 1
Ge| [®mname ot Recui E] fts with valine = popups clowed | [options & -
[: name =
Mechanistic nodes: 43 Bioentity nodes: 31 (] veb edilim
Mechanistic edges: 37 Binentity edges: 0 author
View Choices R
version
GO terms
plog™ to get started.
T ot | Starts wth | = Joaline
7 I — [~}
| b
[&] Applet org.patika. pra client editor gul.query QueryApplet started. | | ||| |4 Internet)
States 5088
Complex States 574
ComplexMembers 2368
Hormology States 245
Regular Abstractions 389
v

|

@] Dene [TBRIT [[[meeme
distart| | @ (G (0] | Otmbox- Miroso.. | & 325c Paint shop... | 5 Temmuztt | [T Tesriccenter - .. | [Adobe acrobat .. |[& 3 ntemet E... - | &) |« A0 e d S 4 zsem

Figure A.4: Result report for the submitted query

APPENDIX A. SCREENSHOTS FROM PATIKA WEB 35

2 pATIKAwWe osoft Internet Explorer] |8 x|
Fle Edt View Favortes Todls Help | aw
eﬁack - @ - @ @ (b|p5earch *Favnmtas ®| Bv & o -) a3

Adress [&] hitpfneb, patika. org/PATIKAWED J5p = |Unks > snaglt L'

Google - | =] Bpsearhwen - & |52 B - © © |5 ste popups clawed | [Fd options 8 & -

m Edit | Wiew |Tools |Actions | Layout |Help | =
PA ‘B- ‘ [gltoad Madel Q ®Ew] [isw =] |7?g;‘ [Mechanistic <] Web edition

wve Model
Query: nare of RegularAbstraction stalRename Model -~
Save as Imade b
xport to BioPAX
Printable View BML
Sample Models »
H2O [CoA[
L 4 x|
R bata-h. Attributes Values
) L 4 X [} 59577
tha...
s LGlhit.. — L f==] “ersion o
L= Fhydt branched-chain amino acid
Al Name aminotrarsterase, mitochondrial,
L J holoenzyme [mitochondrial matrix]
EACH. Description
q - o e e B
L-Vali... 2-0xo, Source
Rl B Ertrez putien
Fhydo branched-chain amin acid
Complex aminotransterase, mitochondrial,
& oo apoenzyme [mitochondrial matrix]
alpha. Pyridozal phosphate [mitochondrisl matrix]
branched-chain \
\
‘. L 8. P |nttp:ffweb patika, |4 Internst
2
ety IR &)
branched-chain

&oane BRI T T @ e
djstart| | & G 0] > | 5] 1o - Microsc... | 8 Jasc Paint Shop.... | () Temmuz11 | [Tl resriecenter -[i...| [Adabe nerabat ... |[183 mternet Ex... - = GHL R A s

<

Figure A.5: Result of the query is visualized with the inspector window open for
pathway object

