
POLYGON PACKING APPROACH
TO DISCONNECTED GRAPH LAYOUT

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING

AND INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

by

Cihad Başköy

January, 2003

ii

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in

quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Uğur Doğrusöz (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in
quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Özgür Ulusoy

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in
quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Uğur Güdükbay

Approved for the Institute of Engineering and Science

Prof. Dr. Mehmet Baray

Director of Institute of Engineering and Science

iii

ABSTRACT

POLYGON PACKING APPROACH

TO DISCONNECTED GRAPH LAYOUT

Cihad Başköy

M.S. in Computer Engineering

Supervisor: Asst. Prof. Uğur Doğrusöz

January, 2003

Graph layout has become an important area of research in Computer Science for the last couple of

decades. There is a wide range of applications for graph layout including data structures, databases,

software engineering, VLSI technology, electrical engineering, production planning, chemistry, and

biology. Most layout algorithms assume the graph to be connected. However, most graphs are

disconnected and a method for putting the disconnected graph objects together is needed.

Two-dimensional packing algorithms have wide area of application such as in the steel and textile

industry. In steel industry, problems frequently occur when the need to stamp polygonal figures from a

rectangular board arises. In the textile industry, similar problems exist. The aim is same: to maximize the

use of the contiguous remainder of the board.

Recently, two-dimensional packing has also been used in disconnected graph layout yielding algorithms

that ‘tile’ the disconnected graph objects, which are represented by rectangles. These algorithms are also

required to respect the specified aspect ratio for the final layout. A more recent approach to disconnected

graph layout has been the use of polyominoes for representing the graph objects resulting in more

accurate packings at the cost of increased execution times.

In this thesis, we use polygons for a more accurate representation of graph objects and present new

algorithms for disconnected graph layout. Specifically, we apply the No-Fit Polygon approach in two-

dimensional packing to disconnected graph layout. We present and analyze the graph layouts resulting

from our new approach and contrast the new approach with previous ones.

Keywords: Graph Layout, Disconnected Graph Layout, Two-Dimensional Packing.

iv

ÖZET

AYRIŞIK ÇİZGE YERLEŞTİRİMİNDE POLİGON PAKETLEME

YAKLAŞIMI

Cihad Baskoy

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Uğur Doğrusöz

Ocak, 2003

Çizge yerleştirimi konusu, Bilgisayar Bilimlerinde son birkaç on yıl içerisinde önem kazanmıştır.

Kullanım alanları oldukça geniş olmak ile beraber, veri yapıları, veritabanları, yazılım mühendisliği,

VLSI teknolojileri, elektrik mühendisliği, üretim planlaması, kimya ve biyoloji örnek olarak verilebilir.

Yerleştirme algoritmalarının bir çoğu, çizgenin bağlaşık olduğunu varsayarak işlem yapmaktadır.

Bununla birlikte, karşılaşılan çizgelerin ayrık olması durumunda kullanılabilecek algoritmalara ihtiyaç

duyulmaktadır. İki boyutlu kap içerisine paketleme problemleri tekstil ve çelik endüstrilerinde geniş

uygulama alanına sahiptir. Örneğin çelik endüstrisinde, dikdörtgen plakalar üzerinde poligonsal şekillerin

işaretlenmesi ve kesilmesi önemli bir problemdir. Bütün bu uygulamalardaki ana amaç, kullanılmayan

alanın en aza indirimesi olarak özetlenebilir.

Son zamanlarda, iki boyutlu paketleme algoritmaları, ayrık çizge yerleştirimi araştırmalarında,

dikdörtgenler şeklinde tanımlanan ve bağlantılı olmayan çizge elemanlarını yüzey üzerine kaplamak için

kullanılmaya başlanmıştır. Bu algoritmaların gereklerinde birisi, oluşturulacak yerleştirimde önceden

tanımlanan boyut oranının korunmasıdır. Çizge yerleştirimi konusunda, elemanların polyomino’lar

kullanılarak tanımlanması, hesaplama zamanlarını artırmakla birlikte daha doğru sonuçlar elde edilmesini

sağlayan, yeni bir yaklaşımdır. Çizim performansı ve hesaplama zamanı arasındaki denge önemlidir.

Bu çalışmada, çizge elemanlarının detaylı olarak tanımlanabilmesi için poligonlar kullanılmakta ve ayrık

çizge yerleştirimini gerçekleştiren yeni bir algoritma sunulmaktadır. Özetle, ayrık çizge yerleştirimlerinin

iki boyutlu paketlenmesi için No-Fit poligon yaklaşımı uygulanmaktadır. Bu yeni yaklaşım kullanılarak

elde edilen sonuçlar sunulmakta ve değerlendirilmektedir. Ayrıca bu sonuçların, önceki yaklaşımların

sonuçları karşılaştırılması yapılmaktadır.

Anahtar Sözcükler: Çizge yerleştirimi, Ayrık çizge yerleştirimi, İki boyutlu paketleme.

v

ACKNOWLEDGMENTS

I would like to express my gratitude to Dr. Uğur Doğrusöz, from whom I have learned

a lot, due to his supervision, suggestions, support, and patience during this research.

I would like to thank to my friend Emre Erdoğan for his improvements and ideas on this

research.

And finally, I would like to thank to my wife for her support.

vi

Contents
CONTENTS ..VI

TABLE OF CONTENTS ...VII

LIST OF FIGURES.. VIII

vii

Table of Contents
1. INTRODUCTION... 1

1.1 OVERVIEW... 1
1.2 DEFINITIONS AND BASICS ... 4

2. RELATED WORK ... 6

2.1 STRIP PACKING ... 6
2.2 TILING PACKING ... 9
2.3 ALTERNATE-BISECTION PACKING ... 11
2.4 POLYOMINO PACKING .. 12

2.4.1 Parameters of Polyomino Packing... 14
2.5 COMPARISON OF PACKING ALGORITHMS.. 14

3. NO-FIT POLYGON PACKING APPROACH .. 16

3.1 NO-FIT POLYGON ... 16
3.1.1 Calculating NFP .. 17
3.1.2 Calculating NFP for Convex-Convex Polygons... 19
3.1.3 Calculating NFP for Concave-Convex Polygons... 19

3.2 NFP PACKING BY CONVEX-CONVEX APPROACH.. 22
3.3 NFP PACKING BY CONCAVE-CONVEX APPROACH ... 25

3.3.1 Concave-Connector Method .. 27
3.4 TIME COMPLEXITY ANALYSIS OF NFP APPROACHES .. 35

4. IMPLEMENTATION AND DISCUSSION.. 36

4.1 IMPLEMENTATION PLATFORM AND ENVIRONMENT.. 36
4.2 IMPLEMENTATION INTERFACE ... 36
4.3 IMPLEMENTATION RESULTS... 38
4.4 DISCUSSION ... 41

5. CONCLUSION AND FUTURE WORK... 43

BIBLIOGRAPHY... 45

viii

List of Figures
FIGURE 1.1: AN EXAMPLE OF A DISCONNECTED GRAPH... 1
FIGURE 1.2 : HOW A NAIVE DISCONNECTED GRAPH LAYOUT ALGORITHM CAN MAKE INEFFICIENT USE OF THE ARE

(LEFT), AND WHY THE ASPECT RATIO OF THE REGION IN WHICH THE GRAPH IS TO BE DRAWN SHOULD BE
TAKEN INTO ACCOUNT DURING DIXCONNECT GRAPH LAYOUT (MIDDLE AND RIGHT). 2

FIGURE 1.3 : A GRAPH OBJECT REPRESENTED BY POLYOMINOES... 5
FIGURE 1.4 : THE LOCUS OF THE REFERENCE POINT ON B MAPS OUT THE NOFIT POLYGON AS B TRACES AROUND A.

.. 5
FIGURE 2.1 : NFDH (LEFT) AND FFDH (RIGHT) ALGORITHMS APPLIED TO THE LIST OF RECTANGLES L. NFDH(L)

= 3/4 AND FFDH(L) = 13/20. .. 8
FIGURE 2.2 : CHOICE OF THE STRIP WIDTH OR THE SCALING FACTOR FOR RECTANGLE DIMENSIONS AFFECT THE

ASPECT RATIO OF THE RESULTING PACKING. THE RECTANGLES ON THE LEFT ARE STRIP-PACKED USING THE
FFDH ALGORITHM. IN THE MIDDLE, THE SAME SET OF RECTANGLES ARE AGAIN PACKED WITH FFDH BUT
USING A STRIP THAT IS NOT AS WIDE. ON THE RIGHT ARE SAME RECTANGLES, BUT THIS TIME SCALED TO BE
LARGER, PACKED WITH FFDH USING A STRIP SAME WIDTH AS THE ONE LEFT. .. 9

FIGURE 2.3 : AN EXAMPLE OF THE APPLICATION OF THE TILING ALGORITHM.. 10
FIGURE 2.4 : AN EXAMPLE OF TILING PACKING PRODUCED BY THIS ALGORITHM WITH DESIRED ASPECT RATIO 2.0

(LEFT) AND DESIRED ASPECT RATIO 0.5 (RIGHT) OF SAME GRAPH OBJECTS.. 10
FIGURE 2.5: AN EXAMPLE OF THE APPLICATION OF ALTERNATE-BISECTION PACKING METHOD; ON ONE THREAD OF

THE RECURSION, ALTERNATELY PARTIONED OBJECTS ARE SHOWN WITH SEPERATING LINES AND COLORS
(LEFT). AN ILLUSTRATION OF HOW THE FOUR PARTITIONS OF THE OBJECTS RECURSIVELY PACKED ARE PUT
TOGETHER; AI = WI⋅HI, I = 1,…,4, AND A DENOTE THE AREAS OF THE FOUR PARTITIONS, AND THE AREA OF
THE COMBINED PACKING, RESPECTIVELY (RIGHT). .. 11

FIGURE 2.6: THE SAME SET OF OBJECTS PACKED WITH ALTERNATE-BISECTION; ORDERED ONE DIMENSIONAL
PACKING IS NOT USED IN THE LEFT ONE.. 12

FIGURE 2.7 : AN EXAMPLE OF PACKING PRODUCED BY THIS ALGORITHM WITH DESIRED ASPECT RATIO 1.0. THE
RESULTING GRAPH LAYOUT WITH CALCULATED GRIDS ARE ALSO GIVEN (RIGHT). 13

FIGURE 2.8 : A SAMPLE FROM THE RANDOM SET OF OBJECTS LAID OUT WITH THREE METHODS: TILING (UPPER
LEFT), ALTENATE-BISECTION (UPPER RIGHT), AND POLYOMINO (BOTTOM).. 15

FIGURE 2.9 : COMPARISON OF THE POLYOMINO APPROACH WITH PREVIOUS ONES. ... 15
FIGURE 3.1 : AN EQUILATEREAL TRIANGLE AND ITS SLOPE DIAGRAM WHERE POINTS REPRESENT EDGES AND ARCS

REPRESENT THE TURN OF VERTICES. .. 17
FIGURE 3.2 : SLOPE DIAGRAM OF A CONVEX POLYGON BY DEFINING THE LINES OF POLYGON ON A UNIT CIRCLE..18
FIGURE 3.3 : THE SLOPE ORDER OF A POLYGON WITH CONCATIVITIES DOES NOT PRESERVE THE EDGE ORDER...... 18
FIGURE 3.4 : THE NFP OF TWO CONVEX POLYGONS IS CONVEX AND THEREFORE CAN BE FOUND BY SORTING THE

EDGES INTO SLOPE ORDER.. 19
FIGURE 3.5 : A NON-CONVEX POLYGON AND ITS SLOPE DIAGRAM WHERE THE CLOCKWISE TRAVERSAL

REPRESENTS CONCAVITY. .. 21
FIGURE 3.6 : CONVEX POLYGON AND ITS SLOPE DIAGRAM.. 21
FIGURE 3.7 : MINKOWSKI DIFFERENCE OF A CONVEX AND NON-CONVEX POLYGON USING BOUNDARY ADDITION

THEOREM. MERGED LIST OF ADDITION IS CALCULATED AS B1, B4, A7, B3, A1, A2, B2, A3, B1, A4, -B1, A5,
A6 .. 22

FIGURE 3.8 : AFTER NFP OF TWO POLYGONS IS CALCULATED, REPLACED POLYGONS USUALLY FORM A NON-
SIMPLE POLYGON NAMED ADDITION-POLYGON. .. 23

FIGURE 3.9 : ADDITION-POLYGON (LEFT) IS CONVEXED FOR NEXT ITERATION. CONVEXED ADDITION-POLYGON
AFTER CONVEX HULL ALGORITHM (RIGHT). ... 23

FIGURE 3.10 : A GRAPH LAYOUT CONSTRUCTED BY NO-FIT POLYGON PACKING BY CONVEX-CONVEX APPROACH.
GRAPH LAYOUTS ARE GENERATED FOR 30-40 POLYGONS. DESIRED ASPECT RATIO IS 1.0 (LEFT) AND 2.0
(RIGHT) .. 24

FIGURE 3.11 : A GRAPH LAYOUT CONSTRUCTED BY NO-FIT POLYGON PACKING BY CONCAVE-CONVEX
APPROACH. .. 26

FIGURE 3.12 : TWO CASES OF ONE INTERSECTION POINT. A VERTEX-VERTEX INTERSECTION (LEFT) AND VERTEX-
LINE INTERSECTION (RIGHT)... 27

FIGURE 3.13 : THE TRIANGLES OF VERTEX-VERTEX INTERSECTION. A1 = {C2, C3 = R2, R1} AND A2 = {C4, C3 =
R2, R3}... 28

ix

FIGURE 3.14 : THE ADDITION-POLYGON OF TWO INTERSECTED POLYGONS (RIGHT) BECOMES A SIMPLE POLYGON
(LEFT). ... 29

FIGURE 3.15 : ADDING IMTERSECTION POINT {C5} TO THE POLYGON A AS A NEW VERTEX CONVERTS THE CASE TO
THE CASE DESCRIBED EARLIER... 30

FIGURE 3.16 : TWO EXAMPLES FOR COMPLEX INTERSECTION CASE: TWO VERTEX INTERSECTION (LEFT), AND TWO
LINE INTERSECTION AT (RIGHT). .. 31

FIGURE 3.17 : THE APPLICATION OF ALGORITHM TO THE ADDITION-POLYGON IN FIGURE 26(A). 32
FIGURE 3.18 : ADDITION-POLYGON OF POLYGONS IN FIGURE 29(A) ... 33
FIGURE 3.19 : THE APPLICATION OF ALGORITHM TO THE ADDITION-POLYGON IN FIGURE 26(B). 33
FIGURE 3.20 : ADDITION-POLYGON OF POLYGONS IN FIGURE 26(B) ... 33
FIGURE 4.1 : THE USER INTERFACES: MAIN WINDO (LEFT) AND LAYOUT WINDOW (RIGHT). 37
FIGURE 4.2 : COMPARISON OF PACKING METHODS WITH DESIRED ASPECT RATIO 1.0, AND MAXIMUM NUMBER OF

CORNERS PER OBJECT IS 5. TIME IN MILISECONDS VERSUS NUMBER OF OBJECTS (LEFT) AND ADJUSTED
FULLNESS PERCENTAGE VERSUS NUMBER OF OBJECTS (RIGHT). .. 39

FIGURE 4.3 : COMPARISON OF PACKING METHODS WITH DESIRED ASPECT RATIO 1.0, AND MAXIMUM NUMBER OF
CORNERS PER OBJECT IS 10. TIME IN MILISECONDS VERSUS NUMBER OF OBJECTS (LEFT) AND ADJUSTED
FULLNESS PERCENTAGE VERSUS NUMBER OF OBJECTS (RIGHT). .. 39

FIGURE 4.4 : COMPARISON OF PACKING METHODS WITH DESIRED ASPECT RATIO 1.5, AND MAXIMUM NUMBER OF
CORNERS PER OBJECT IS 5. TIME IN MILISECONDS VERSUS NUMBER OF OBJECTS (LEFT) AND ADJUSTED
FULLNESS PERCENTAGE VERSUS NUMBER OF OBJECTS (RIGHT). .. 400

FIGURE 4.5 : COMPARISON OF PACKING METHODS WITH DESIRED ASPECT RATIO 2.0, AND MAXIMUM NUMBER OF
CORNERS PER OBJECT IS 5. TIME IN MILISECONDS VERSUS NUMBER OF OBJECTS (LEFT) AND ADJUSTED
FULLNESS PERCENTAGE VERSUS NUMBER OF OBJECTS (RIGHT). .. 400

FIGURE 4.6 : COMPARISON OF POLYOMINO PACKING WITH NFP PACKING CONCAVE-CONVEX APPROACH.
DESIRED ASPECT RATIO 1.0, AND MAXIMUM NUMBER OF CORNERS PER OBJECT IS 5, GRID SIZE OF THE
POLYOMINOES IS 5, HALF OF THE VALUE OF IN FIGURE 4.2. TIME IN MILISECONDS VERSUS NUMBER OF
OBJECTS (LEFT) AND ADJUSTED FULLNESS PERCENTAGE VERSUS NUMBER OF OBJECTS (RIGHT)..……...….41

FIGURE 4.7 : COMPARISON OF POLYOMINO PACKING WITH NFP PACKING CONCAVE-CONVEX APPROACH.
DESIRED ASPECT RATIO 1.0, AND MAXIMUM NUMBER OF CORNERS PER OBJECT IS 5, GRID SIZE OF THE
POLYOMINOES IS 20, DOULBE OF THE VALUE OF IN FIGURE 4.2. TIME IN MILISECONDS VERSUS NUMBER OF
OBJECTS (LEFT) AND ADJUSTED FULLNESS PERCENTAGE VERSUS NUMBER OF OBJECTS (RIGHT)..……...….41

1.INTRODUCTION

1

1. Introduction

11..11 OOvveerrvviieeww

Graph drawings model and help us visualize the complex information in a system of discrete objects

and their relationship. Graph layout is the automatic positioning of the nodes and edges of a graph

in order to produce an aesthetically pleasing drawing that is easy to comprehend.

Many graph layout and editing systems have been developed in the past [1,2]. One essential aspect

that has not been addressed sufficiently, is the layout of disconnected graph; that is, the placement

of the components of a disconnected graph. Disconnected graphs occur rather frequently in real life

applications either during the construction of the nature of application (Figure 1.1).

Figure 1.1: An example of a disconnected graph

Most graph layout algorithms assume a graph to be connected and try to minimize the area

needed for the resulting drawing. No matter how effective such an algorithm is, the space

wasted overall could be arbitrarily large if the relative locations of disconnected objects of a

graph are chosen by a naïve, inefficient method.

1.INTRODUCTION

2

Another key parameter here is the aspect ratio of the region (e.g., a window) within which

the graph is to be displayed (Figure 1.2). When displaying a graph, the larger the wasted

space is, the less visible objects will be, making the visualization process more difficult.

Thus, a disconnected graph layout algorithm must strive for a packing of disconnected

objects which respects the aspect ratio of the region in which it is to be displayed.

Figure 1.2 : How a naive disconnected graph layout algorithm can make inefficient use of the
are (left), and why the aspect ratio of the region in which the graph is to be drawn should be
taken into account during dixconnect graph layout (middle and right).

Packing problems have been topics of extensive study in both operations research and

computer science because of their extremely wide application areas and their great

theoretical challenge [3]. Some of the well-known packing problems include:

• One-dimensional Bin Packing The problem of putting variable sized items (the sizes

are represented as integers) into bins of the same capacity and minimizing the number

of bins used, subject to the condition that the total size in each bin does not exceed

the capacity.

• Cutting Stock An extension of one-dimensional bin packing problem. Instead of

having the same capacity, the bins have k different capacities, where k is fixed. There

are unlimited supplies of bins for each capacity. Bins of the same capacity are

assigned the same cost. The objective is to minimize the total cost while packing the

items into these different sized bins. This problem is also called variable sized bin

packing when the cost of a bin is proportional to its capacity.

1.INTRODUCTION

3

• Two-dimensional Bin Packing The problem of packing a set of rectangles of

different height and width into rectangular bins such that the rectangles do not

overlap with each other. The bins are of the same width and height. Usually there are

additional restrictions on the orientation of the rectangles, such as such as the edges

of a rectangle must be parallel to those of the bin that contains it and no rotation of a

rectangle is allowed. The objective is to use the minimal number of bins to pack all

the rectangles. Variations of the problem is called :

• Strip Packing Instead of using many bins of the same size, a bin of fixed

width and unlimited length is used and the objective is to pack all the

rectangles using minimum length.

• Tiling Packing Elimination of the to ‘guess’ the right size strip by

maintaining a bin whose width dynamically changes (i.e. increases). Tiling

packing is also called as Strip-Packing with Variable Width Strip.

• Alternate-Bisection Packing A method based on an alternate-bisection

technique used in floorplanning in integrated circuit layout. This divide-and-

conquer method works by bisecting disconnected objects of a graph

alternately.

• Two-dimensional Packing Generalizations of two-dimensional bin packing in which

the objects being packed can be non-rectangular and the restrictions on the orientation

can also be lifted. Variations of the problem is called :

• Polyomino Packing Each graph object represented by a polyomino and by

using this polyomino, placing each object one by one, finding the optimal

place for the new object, one at a time, with respect to the already placed

ones.

• No-Fit Polygon Packing Placing each object one by one by using No-Fit

polygon concept that is determining all the arrangements that two arbitrary

objects may assume such that the shapes do not overlap. The objects are

1.INTRODUCTION

4

assumed to have fixed absolute orientations but are free to move anywhere on

the 2-D plane. [4,5,6]

A specified aspect ratio can be applied to two-dimensional algorithms for the layout of

disconnected graphs for based on strip packing, tiling packing, alternate-bisection packing,

polyomino packing and no-fit polygon packing.

The contribution of this thesis is to contrast no-fit polygon packing with tiling, alternate-

bisection and polyomino packings. Using no-fit polygon packing at two-dimensional packing

is an important approach to contrast the graph layout performance and time performance

against tiling, alternate-bisection and polyomino packings since these algorithms simulate

polygons as rectangles or polyominoes. No-fit polygon packing approach is direct calculation

of the layout of the graph with given polygons, without describing them to something else.

Expected result from this contrast is no-fit polygon packing shall have better graph-layout

performance, but worse time-complexity against other approaches.

11..22 DDeeffiinniittiioonnss aanndd BBaassiiccss

From now on, the terms ‘graph object’, or simply ‘object; are used interchangeably to denote

a component or an isolated node of the graph to be laid out.

The tightest rectangle bounding the drawing of a graph object or the entire graph is said to be

its bounding rectangle. The aspect ratio of a rectangle R = (W, H) is equal to W/H.

Most layout algorithms represent graph objects with either points or rectangles in the plane.

A polyomino is a geometric figure formed by joining unit squares at the edges. For

polyomino packing algorithm, polyominoes are used to represent graph objects. (Figure 1.3)

1.INTRODUCTION

5

Figure 1.3 : A graph object represented by polyominoes.

No-fit polygon (NFP) is all the arrangements that two polygons may assume without

overlapping. Given two polygons A and B such that the position of A, the orientation of A,

and the orientation of B are all fixed, then the NFP of B relative to A completely describes all

those positions where the reference point of B may be placed in order to have B touching A

without overlapping it. (Figure 1.4) [7]

Figure 1.4 : The locus of the reference point on B maps out the nofit polygon as B traces
around A.

2. RELATED WORK

6

2. Related Work

The related work for constructing a graph layout from objects in our thesis can be divided

into four parts: Strip packing, Tiling packing, Alternate-bisection packing and, Polyomino

packing. Technical details of these packing methods will be given at this chapter.

22..11 SSttrriipp PPaacckkiinngg

In strip packing, given list of n ≥ 1 rectangles Ln = (R1, R2, …, Rn), each having dimensions

(Wi, Hi), are to be packed into a semi-infinite strip of unit width so that :

 (i) Rectangles do not overlap each other or the edges of the strip,

 (ii) The rectangles must be packed with their sides parallel to the edges of the strip (no

rotations from the given orientations are allowed),

 (iii) The height of the packing is minimized. [2]

It is assumed that the rectangles in the list Ln are ordered by decreasing (actually,

nonincreasing) height, and they pack the rectangles in the order given by Ln so as to form a

sequence of levels. A packing of Ln is a level packing if there exists a sequence of horizontal

cuts at heights C0 = 0 < C1 < C2 < … < Ck, 1 ≤ k ≤ n, such that:

 (i) First level is simply the bottom of the bin,

 (ii) No cut passes through any rectangle,

 (iii) The total width of rectangles between Ci-1 and Ci, 1 ≤ i ≤ k, is at most 1, the strip width.

An algorithm that produces only level packings is called a level algorithm [8]. Following two

level algorithms are most popular ones:

2. RELATED WORK

7

• Next-Fit Decreasing-Height (NFDH) With this algorithm, rectangles are packed left-

justified on a level until there is insufficient space at the right to accommodate the next

rectangle. At that point, the next level is defined, packing on the current level is

discontinues, and packing proceeds on the new level.

• First-Fit Decreasing-Height (FFDH) At any point in the packing sequence, the next

rectangle to be packed is placed left justified on the first (i.e., lowest) level on which it

will fit. If none of the current levels will accommodate this rectangle, a new level is

started as in the NFDH algorithm.

For L an arbitrary list of rectangles, all assumed to have width no more than 1, let OPT(L)

denote the minimum possible bin height within which the rectangles in L can be packed, and

let A(L) denote the height actually used by a particular algorithm when applied to L. The

wasted space WSA(L) is the unoccupied area of the packing:

WSA(L) = A(L) - ∑
=

n

i
ii HW

1

Similarly, fullness of packing FA(L) expresses, in percentage, how effectively the area is used

by the packing algorithm [2]:

FA(L) = 100⋅)(/
1

LAHW
n

i
ii

∑
=

The results in [8,9] are concerned primarily with demonstrating absolute performance bounds

for various algorithms A, i.e., bounds of the form

A(L) ≤ α⋅OPT(L) + β

for all lists. Moreover, by modifying the above algorithms, it is stated at [10] that asymptotic

bound α may be decreased to 5/4 and this bound is tight.

2. RELATED WORK

8

Figure 2.1 : NFDH (left) and FFDH (right) algorithms applied to the list of rectangles L.
NFDH(L) = 3/4 and FFDH(L) = 13/20.

Figure 2.1 shows the results of applying the two packing rules to the same list. The essential

difference between them is that wheras FFDH can always return to a previous level for

packing a new rectangle, NFDH always place subsequent rectangles at or above the current

level.

When concerning aspect ratio, the width of the strip based on the desired aspect ratio is

calculated by using the theoratical performance of the strip-packing algorithm. In other

words, the width of the strip should be such that the resulting packing yields an aspect ratio

close to desired one. Notice that the desired aspect ratio will be achieved only when the

worst-case performance is hit; otherwise, the aspect ratio will be larger than the desired

aspect ratio. Figure 2.2 illustrates how the size of the strip can be set or the dimensions of the

rectangles can be scaled to obtain an aspect ratio closer to the desired one upon application of

the FFDH algorithm with an example. Notice that both kinds of adjustments result in the

same packing.

The algorithm is of O(n log n) time complexity.

2. RELATED WORK

9

Figure 2.2 : Choice of the strip width or the scaling factor for rectangle dimensions affect the
aspect ratio of the resulting packing. The rectangles on the left are strip-packed using the
FFDH algorithm. In the middle, the same set of rectangles are again packed with FFDH but
using a strip that is not as wide. On the right are same rectangles, but this time scaled to be
larger, packed with FFDH using a strip same width as the one left.

22..22 TTiilliinngg PPaacckkiinngg

The tiling packing eliminates the need to ‘guess’ the right size strip by maintaining a bin

whose width dynamically changes (i.e., increases) [1,2,3]. The algorithm starts by creating an

initial level and placing the first rectangle in this level. It proceeds by determining whether

the next rectangle in line should be added to one of the existing levels (the one, which is the

least utilized at moment) or to a newly created level. The rectangle is tiled on one of the

existing levels if there is enough room. Otherwise, a decision is made on whether the current

strip width should be enlarged or a new level should be formed to keep the aspect ratio closer

to the desired one.

In general, the tiling algorithm does not assume any particular ordering of the objects.

However, experiments show that when graph objects are sorted in nonincreasing height, most

compact drawings are obtained. Notice that when objects are processed in order of

nonincreasing height, the algorithm turns into a variation of a strip-packing algorithm, FFDH

to be more specific, where the strip width is dynamically increased as necessary to better

fulfill the aspect ration constraint.

2. RELATED WORK

10

Figure 2.3 shows an example application of the tiling algorithm. The rectangles are processed

in the ascending order of their labels in this particular example. For instance when placing

object ‘2’, an existing level is used, and the bin width is enlarged; whereas, when placing

object ‘3’, a new level is rather created.

Figure 2.3 : An example of the application of the tiling algorithm

Figure 2.4 illustrates an example of tiling packing algorithm described above with 30-40

graph objects. Graph layout at the left has desired aspect ratio 2.0 and actual aspect ratio

1.9807693, and by the same graph objects, the graph layout at the right has desired aspect

ratio 0.5 and actual aspect ratio 0.49834436.

Figure 2.4 : An example of tiling packing produced by this algorithm with desired aspect
ratio 2.0 (left) and desired aspect ratio 0.5 (right) of same graph objects.

The algorithm is of O(n log n) time complexity [1].

2. RELATED WORK

11

22..33 AAlltteerrnnaattee--BBiisseeccttiioonn PPaacckkiinngg

This is a divide-and-conquer method works by bisecting the disconnected objects of a graph

alternately as follows [1,2]. The objects are bipartioned using a metric such as total area and

objects in each partition are recursively laid out. The recursion continues until a partition

consists of a small, constant number of objects (e.g, one) whose optimal layout becomes easy

if not trivial. At the end of each recursive step, when placing the two embedded partitions

relatively, the orientation is alternated. For instance, the last step would place the two already

positioned partitions side by side (horizontally) if the four partitions in the previous step were

placed one on top of the other (vertically) pairwise.

Figure 2.5 illustrates this method with an example.

Figure 2.5: An example of the application of alternate-bisection packing method; on one
thread of the recursion, alternately partioned objects are shown with seperating lines and
colors (left). An illustration of how the four partitions of the objects recursively packed are
put together; Ai = Wi⋅Hi, i = 1,…,4, and A denote the areas of the four partitions, and the area
of the combined packing, respectively (right).

Total area wasted by the algorithm for n objects W(n), is roughly O(n1.41) [1,2], which is

quite inefficient. However, when simple alternating ordered one-dimensional packings are

applied in each recursive step, much more compact results are obtained as the experimental

results show. Figure 2.6 shows the same set of objects packed without and with the use of

ordered one-dimensional packings; clearly make a positive difference.

2. RELATED WORK

12

Figure 2.6: The same set of objects packed with alternate-bisection; ordered one dimensional
packing is not used in the left one.

22..44 PPoollyyoommiinnoo PPaacckkiinngg

In this approach, each graph object is represented by a polyomino. A polyomino is defined as

a finite set of k ≥ 1 cells of infinite planar square grid G that are fully or partially covered by

the drawing of the object. If the case that an object is placed completely inside another one is

not desirable, the definition can be modified and the uncovered grid cells that are completely

bounded by the covered ones can be included as well.

According to [1], given a set of polyominoes Pi, 1 ≤ i ≤ n, packing them into a minimum area

is NP-hard even if the polyominoes are restricted to rectangles. The heuristic algorithm for

polyomino packing given at [1] is a greedy algorithm: it places the objects one-by-one,

finding the optimal place for the new object, one at a time, with respect to the already placed

ones. The optimal place for a polyomino is simply calculated as the grid cell Gxy located at

(x,y) where the function max(|x|,|y|) is minimized over all grid cells. The cost function defines

the order in which the cells are examined and this order is the same for all polyominoes.

To find the best place for graph object represented by polyominoes, algorithm looks

sequentially through all cells in the increasing order of the cost function defined as

max(|x|,|y|). If an available spot is found, it is placed there and the corresponding grid cells are

2. RELATED WORK

13

marked as occupied. To find intersections, algorithm go through all polyomino cells and test

each of the polyomino can be placed in a free grid cell.

The pseudo code of algorithm shall be given as:

algorithm PolyominoPacking (Pi, 1 ≤ i ≤ n)
(1) sort Pi, 1 ≤ i ≤ n in the order of nonincreasing size

(2) initialize the grid G using the sizes of Pi, 1 ≤ i ≤ n

(3) foreach polyomino Pi do
(4) calculate (x,y) such that the cost function is minimized

(5) while cannot place Pi in G centered (x,y) do
(6) calculate next (x,y) using the cost function

(7) end while
(8) mark the cells in G covered by Pi as occupied

(9) end foreach

Figure 2.7 illustrates an example drawing produced by using above algorithm with cost

function equals to minimizing absolute value of aspect ratio minus desired aspect ratio by 30-

40 graph objects.

Figure 2.7 : An example of packing produced by this algorithm with desired aspect ratio 1.0.
The resulting graph layout with calculated grids are also given (right).

2. RELATED WORK

14

22..44..11 PPaarraammeetteerrss ooff PPoollyyoommiinnoo PPaacckkiinngg

Grid step (i.e., grid size) is the most significant parameter of polyomino packing. To

guarantee the avarage polyomino size s is constant, the grid step l is calculated from the

following quadratic equation:

where A is the avarage area of the polyomino bounding rectangles, P is the avarage half

perimeter of the polyomino bounding rectangles, and c is a constant to specify the

approximation quality [1]. Then the avarage polyomino size is s = O(c) and the total area of

all polyominoes is O(n⋅s).

The complexity of the algorithm is O(n2⋅s2). Since c and consequently s are constants, this

yields an O(n2) time overall [1].

To satisfy the desired aspect ratio, simply take desired aspect ratio as the unit grid step in x

direction and 1 as the unit step in y direction.

22..55 CCoommppaarriissoonn ooff PPaacckkiinngg AAllggoorriitthhmmss

In [1], the comparison of tiling, alternate-bisection and polyomino packing approaches is

given. Graphs that contained up to a thousand disconnected objects were user where each

object was assumed to be a polygon with random number of corners in [3…8]., each with

random integer coordinates in [1…100], all independent and uniformly distributed. The value

for the approximation quality constant c (a parameter for polyomino packing) was taken to be

100. For the tiling and alternate-bisection methods the tighest rectangles bounding these

polygons were used, whereas for polyomino packing the smallest polyomino bounding the

polygons were used. Figure 2.8 show a sample set of drawings produced by these methods

for the same set of objects. The performance comparison is presented in Figure 2.9.

02 =−− APlcl

2. RELATED WORK

15

Figure 2.8 : A sample from the random set of objects laid out with three methods: tiling
(upper left), alternate-bisection (upper right), and polyomino (bottom).

Figure 2.9 : Comparison of the polyomino approach with previous ones.

Polyomino packing approach results in much more compact drawings. In terms of execution

time, it is slower but still easily within acceptable bounds given the fact that it is highly rare

that a graph contains more than a few hundred disconnected objects [1].

3. NO FIT POLYGON PACKING APPROACH

16

3. No-Fit Polygon Packing
Approach

Polyomino packing yields good results for disconnected graph layout if polygons are used for

representing graph objects. Whether this method wastes considerably amount of area since

the grids of polyomino may not be covered by a polygon fully. Therefore, if a polygon is not

defined by polyominoes (i.e., dividing the polygon into grids), a better performance can be

reached.

Recently, in [4], No-Fit Polygon (NFP) is used for two-dimensional bin packing problem. In

this research, only convex polygons are considered but NFP brings out a solution for two-

dimensional bin packing problem. In this method, pieces are placed into a bin one at a time.

The location of the next piece is calculated using the NFP. Once the best placement is found,

the piece is added to the partial solution moving on to the next piece is placed [4,5,6,7].

33..11 NNoo--FFiitt PPoollyyggoonn

The term NFP was firstly introduced in [11]. NFP determines all arrangements that two

arbitrary polygons may assume such that the shapes do not overlap or that they cannot be

moved closer together without intersecting. The NFP of two polygons A and B, denoted as

NFPAB is the polygon that results from a sliding operation in which A and B have specific

roles. The first polygon in the subscript is defined as the fixed (constant) polygon whose

origin is assumed to be at point (0,0). The second polygon is called the tracing (rotating)

polygon and is moved to perform the sliding operation [7,13].

Given a physical representation of the two objects, NFPAB can be obtained by placing B in a

touching position with A and marking the locus of a reference point on B as it traces around

the boundary of A. The tracing motion of B is performed in such a way that B does not rotate

3. NO FIT POLYGON PACKING APPROACH

17

and A and B always touch, but never overlap. The locus of the reference point forms a closed

path that is NFPAB. Figure 1.4 illustrates this tracing movement [7].

If the roles are reversed then the resulting NFP, NFPBA, is NFPAB, rotated by 180°. The

relevant property of NFPAB with respect to the interaction between A and B is as follows: if A

is placed at (0,0) and B is positioned with its reference point inside NFPAB, then A and B

intersect; and if B is positioned with its reference point on the boundary of NFPAB, then A and

B touch. Thus the interior of NFPAB represents all intersecting positions of A and B and the

boundary represents all touching positions.

33..11..11 CCaallccuullaattiinngg NNFFPP

Slope diagram is a key aspect of an NFP so it may be useful to make a definition of slope

diagram before starting calculation of an NFP.

Slope Diagram

At [12], Ghosh calls a slope diagram as extracting the relevant information by summarizing

the polygon diagrammatically. The edges are represented as points on the circumference of a

circle, so that the slope of a line from the center of the circle to the point is equal to the slope

of the edge in question. Such a single point represents the tanget of the supporting line of the

edge. These edge points are then labelled according to their counter clockwise ordering (or

clockwise ordering) in the polygon as in Figure 3.1.

Figure 3.1 : An equilateral triangle and its slope diagram where points represent edges and
arcs represent the turn of vertices.

3. NO FIT POLYGON PACKING APPROACH

18

As the edges are represented by points, the arcs between consequently labelled points

represent vertices, and the angle subtended by such an arc is simply the range of tangents of

the set of supporting lines that represent the vertex. Thus the slope diagram for Figure 3.1

consists of 3 points seperating 3 arcs each turning through 120°. The slope diagram can also

be found as, after defining the direction of lines of a polygon, putting all lines at (0,0) point of

a unit circle and marking the intersecting points of lines with this unit circle. Figure 3.2

illustrates an example of finding a slope diagram of polygon by this method [7].

Figure 3.2 : Slope diagram of a convex polygon by defining the lines of polygon on a unit
circle.

Slope diagram of a convex polygon preserves the order of edges. But if given polygon is non-

convex (i.e., concave), the order of the edges at slope diagram does not preserve the order.

There exists a jump to other points at the concave parts of the polygon. Figure 3.3 illustrates

an example of a slope diagram for a non-convex polygon [7].

Figure 3.3 : The slope order of a polygon with concativities does not preserve the edge order.

3. NO FIT POLYGON PACKING APPROACH

19

33..11..22 CCaallccuullaattiinngg NNFFPP ffoorr CCoonnvveexx--CCoonnvveexx PPoollyyggoonnss

Assume that the NFP represents the motion of a reference point on polygon B moving around

polygon A in a counterclockwise direction. Its edges will be copies of the edges of polygon A

oriented in a counter-clockwise direction, and copies of the edges of polygon B oriented in a

clockwise direction. This gives an intuitive explanation of the algorithm. It starts by orienting

polygon A counter-clockwise and polygon B clockwise, as shown in Figure 3.4(a). All the

edges are then placed with their origin at (0,0) retaining their original direction and

magnitude, as shown in Figure 3.4(b). Then, starting at an arbitrary point, the vectors are

ordered according to their counter-clockwise order in the diagram and are joined end to end

resulting in Figure 3.4(c). Note that the edges from each individual polygon maintain their

ordering within the diagram [7,12]. This is a property of the convexity of the polygons, and

ensures that each edge of the NFP is either the next edge encountered on polygon A or the

next edge on polygon B as the sliding operation takes place.

Figure 3.4 : The NFP of two convex polygons is convex and therefore can be found by
sorting the edges into slope order.

33..11..33 CCaallccuullaattiinngg NNFFPP ffoorr CCoonnccaavvee--CCoonnvveexx PPoollyyggoonnss

If A and B are two arbitrary sets of points in n-dimensional space, then the Minkowski sum of

A and B is given by [7,12]:

3. NO FIT POLYGON PACKING APPROACH

20

A ⊕ B = { a + b : a ∈ A, b ∈ B}

In [12], Ghosh suggested using Minkowski sums for calculating NFP for non-convex, convex

polygon pairs. It is pointed out that simple vector algebra can be used to show that A ⊕ -B,

known as the Minkowski difference of A and B is equivalent to NFPAB. –B at the sum shows

us that B is with clockwise direction where positive sets describe counter-clockwise direction.

Ghosh’s method is based on the result that the Minkowski sum of any two polygons can be

obtained as a function of their boundary edges. In the convex case described at previous

section, the algorithm is quite simple as ordering the slopes of polygons. However for the

non-convex case, some edges will appear several times in both their positive and negative

orientations.

Ghosh shows that the Minkowski sum of two polygons can be obtained by merging their

slope diagrams. (Where edge points from different polygons occur in the same place we will

adopt the convention of letting those from B precede those from A in the subsequent ordered

list). For the convex-convex case, this leads to exactly the same process as that given in the

previous section. In the case where one polygon, say polygon A, is non-convex, the algorithm

is still applicable as long as the slope diagram is traversed so that the edges of polygon A are

visited in the correct order, and those edges of polygon B are included every time they are

passed in the traversal. A counter-clockwise pass is interpreted as adding the edge in its given

direction, and a clockwise pass as traversing the edge in the in the opposite direction.

In order to traverse the slope diagram of a non-convex polygon so that the edges are visited in

the correct order, it is necessary to make several passes over some regions of the diagram,

changing direction between each pass. This illustrated in Figure 3.5, where to maintain the

ordering of a3 to a4, it is necessary to pass a5 and a6. To move on to a5, it is necessary to

turn at a4 and move in a clockwise direction as far as a6 when another turn is necessary in

order to reach a7. As all the angles between successive edge-points must be less than 180°,

there is never any ambiguity as to the correct direction of travel between edge-points. Note

also that the clockwise traversal represents the concavity [7].

3. NO FIT POLYGON PACKING APPROACH

21

Figure 3.5 : A non-convex polygon and its slope diagram where the clockwise traversal
represents concavity.

Let the polygon A given in Figure 3.5 be the constant polygon and, polygon B given in Figure

3.6 be the rotating polygon.

Figure 3.6 : Convex polygon and its slope diagram.

In Figure 3.7, the slope diagrams of non-convex polygon A and rotating polygon B is merged.

Edge b1 is traversed 3 times, twice in the positive direction and once in the negative

direction. The Minkowski difference A ⊕ -B is given by the sequence of edges listed as:

Merged List: b1, b4, a7, b3, a1, a2, b2, a3, b1, a4, -b1, a5, a6

3. NO FIT POLYGON PACKING APPROACH

22

NFPAB will be constructed from the lines in the merged list by simply adding each line to

other as vector sum [7].

Figure 3.7 : Minkowski difference of a convex and non-convex polygon using boundary
addition theorem. Merged list of addition is calculated as b1, b4, a7, b3, a1, a2, b2, a3, b1, a4,
-b1, a5, a6

33..22 NNFFPP PPaacckkiinngg bbyy CCoonnvveexx--CCoonnvveexx AApppprrooaacchh

With this approach, only convex polygons are considered. Polygons are replaced one by one

by a cost function f(A,B). In our case, this cost function is given desired aspect ratio. After

replacing the first two polygons according to cost function f(A,B) by constructing NFP, a new

polygon named Addition-Polygon is constructed from the replaced polygons which becomes

the next constant polygon. Combining Addition-Polygon as constant polygon and next

polygon as rotating polygon according to cost function f(A,B), a new Addition-Polygon from

these polygons is constructed and this iteration goes on until last polygon is replaced. After

the last polygon is replaced, packing is completed.

NFP of two polygons during iteration is constructed as described in section 3.1.2. But,

considering the Addition-Polygon after combining the two polygons, it can be found that

Addition-Polygon does not form a convex polygon anymore. Addition-Polygon is usually a

concave polygon but sometimes a non-simple polygon. Figure 3.8 illustrates the situation

3. NO FIT POLYGON PACKING APPROACH

23

with an example. Assume that Addition-Polygon of P1 and P2 in Figure 3.8 are replaced with

the polygon in the right side of

Figure 3.8 according to cost function. The Addition-Polygon to be used as constant polygon

of next iteration is therefore a non-simple polygon.

Figure 3.8 : After NFP of two polygons is calculated, replaced polygons usually form a non-
simple polygon named Addition-Polygon.

However our assumption at convex-convex packing approach is that all the polygons are

convex, therefore Addition-Polygon must be converted to a convex one. This is done by

using a convex hull algorithm illustrated at Figure 3.9.

Figure 3.9 : Addition-Polygon (left) is convexed for next iteration. Convexed Addition-
Polygon after convex hull algorithm (right).

P2P2

P2

3. NO FIT POLYGON PACKING APPROACH

24

After obtaining the convexed Addition-Polygon, the next polygon is taken and processed

resulting in our desired graph layout with a cost function defined using aspect ratio. Figure

3.10 shows a graph layout constructed by this approach.

Figure 3.10 : A graph layout constructed by No-Fit Polygon Packing by Convex-Convex
Approach. Graph layouts are generated for 30-40 polygons. Desired aspect ratio is 1.0 (left)
and 2.0 (right)

As seen fromFigure 3., there is a large area wasted in the layout. Converging the Addition-

Polygon to a convex polygon causes huge gaps between polygons. Preventing these gaps

from resulting graph layout, converging Addition-Polygon to a convex polygon must be

avoided. Next section describes how the converging Addition-Polygon to a convex polygon

problem can be avoided to obtain a better results with NFP packing by using concave

polygons for Addition-Polygon.

algorithm NoFitPackingConvexConvexApproach (Pi, 1 ≤ i ≤ n)
(1) sort Pi, 1 ≤ i ≤ n in the order of nonincreasing size

(2) foreach polygon Pi (1 ≤ i ≤ n)do
(3) if i = 1 then
(4) constantPolygon <- P1
(5) else
(6) constantPolygon <- Addition-Polygon

3. NO FIT POLYGON PACKING APPROACH

25

(7) end if
(8) rotatingPolygon <- Pi+1
(9) merge the lines of constantPolygon and rotatingPolygon in a

slope diagram

(10) construct NFP from the merge list

(11) find position of rotatingPolygon by minimizing the cost

function.

(12) Construct and convex the Addition-Polygon.

(13) end foreach

33..33 NNFFPP PPaacckkiinngg bbyy CCoonnccaavvee--CCoonnvveexx AApppprrooaacchh

In this approach, constant polygons may be concave but rotating polygons are still convex

polygons. Polygons are replaced one by one by a cost function f(A,B). In our case, this cost

function is solely based on desired aspect ratio.

NFP of two polygons during iteration is constructed as described in section 3.1.3. But,

considering the Addition-Polygon after combining the two polygons, it can be founded that

Addition-Polygon may not form a simple polygon anymore. Addition-Polygon becomes at

least a concave polygon but usually a non-simple polygon after the combination. Figure 3.11

illustrates the situation briefly.

The assumption of this approach is that constant polygons must be at least concave polygons.

But, as seen in Figure 3.11, the Addition-Polygon may be a non-simple polygon, therefore we

have to convert the non-simple polygon to a simple concave polygon or to a simple convex

polygon. To do this, a Concave-Connector method is designed and applied to Addition-

polygons.

After obtaining the Addition-Polygon by using Concave-Connector method, iteration on

next polygon until last polygon results our desired graph layout with cost function based on

aspect ratio. Figure 3.11 shows a graph layout constructed by this approach.

3. NO FIT POLYGON PACKING APPROACH

26

Figure 3.11 : A graph layout constructed by No-Fit Polygon Packing by Concave-Convex
Approach.

As seen from Figure 3.11, the graph layout is better than Convex-Convex approach.

Constructing Addition-Polygon by using Concave-Connector algorithm saves considerably

wasting area.

algorithm NoFitPackingConcaveConvexApproach (Pi, 1 ≤ i ≤ n)
(1) sort Pi, 1 ≤ i ≤ n in the order of nonincreasing size

(2) foreach polygon Pi (1 ≤ i ≤ n) do
(3) if i = 1 then
(4) constantPolygon <- P1
(5) else
(6) constantPolygon <- Addition-Polygon

(7) end if
(8) rotatingPolygon <- Pi+1
(9) merge the lines of constantPolygon and rotatingPolygon in a

slope diagram by using Concave-Convex approach.

(10) construct NFP from the merge list

(11) find position of rotatingPolygon by minimizing the cost

function.

(12) Addition-Polygon <- Concave-Connector(ConstantPolygon,

rotatingPolygon)

(13) end foreach

3. NO FIT POLYGON PACKING APPROACH

27

33..33..11 CCoonnccaavvee--CCoonnnneeccttoorr MMeetthhoodd

This algorithm connects two polygons and forms a concave or convex Addition-Polygon. It is

a recursive algorithm not taking into account the following two specified cases: These simple

cases occur when there exist only one intersection point:

a) The intersection point may be a vertex of each polygon (vertex-vertex intersection),

b) The intersection point may be a vertex on one of the polygons and this vertex lies on a

line of other polygon (vertex-line intersection).

Figure 3.12 illustrates these two cases with examples.

Figure 3.12 : Two cases of one intersection point. A vertex-vertex intersection (left) and
vertex-line intersection (right).

Below is the pseudocode for the algorithm to Concave-connector:

algorithm ConcaveConnector Constant = {C1,…, Cs}, Rotating = {R1,…, Rt}
(1) Find intersection vertice(s).

(2) if a vertex of Constant intersects a vertex of Rotating then
(3) VertexVertexIntersection(Constant, Rotating)

(4) else if a line of Constant intersects a vertex of Rotating OR a

vertex of Constant intersects a line of Rotating then
(5) LineVertexIntersection(Constant, Rotating)

(6) else
(7) ComplexIntersection(Constant, Rotating)

(8) end if

A B A
B

3. NO FIT POLYGON PACKING APPROACH

28

Vertex-Vertex Intersection Method

NFP calculation assumes that the rotation of the constant polygon is in counter-clockwise

direction, and the rotating polygon moves in clockwise direction. We mark each points of the

polygons according to their direction. We add label ‘C’ before the vertex for the constant

polygon, and label ‘R’ before the vertex for the rotating polygon. Now our polygons are

labelled as ConstantPolygon = {C1,…, Cs}, and RotatingPolygon = {R1,…, Rt} where s is the

number of vertices of constant polygon and t is the size of rotating polygon. Assume kth

vertex of constant polygon and lth vertex of rotating polygon is the intersecting vertex. Then,

since orientations of each polygon is different, {Ck-1, Ck = Rl, Rl-1} and {Ck+1, Ck = Rl, Rl+1}

form triangles as illustrated in Figure 3.13.

Figure 3.13 : The triangles of vertex-vertex intersection. A1 = {C2, C3 = R2, R1} and A2 =
{C4, C3 = R2, R3}

After finding the triangles A1 and A2, we calculate the area of these triangles and connect the

polygons from the vertices of the minimum area triangle that is new Addition-Polygon

becomes either Addition-Polygon = {C1, C2, …, Ck = Rl, Rl-1, …, R1, Rt, …, Rl+1, Ck+1, …,

Cs}, or Addition-Polygon = {C1, C2, …, Ck = Rl, Rl+1, …, Rt, R1, …, Rl-1, Ck+1, …, Cs}.

Assume that the given example at Figure 23 has the minimum area triangle as A1. Then the

Addition-Polygon becomes Addition-Polygon = {C1, C2, C3 = R2, R1, R3, C4, C5} as

illustrated in Figure 3.14.

A B
C4

C5

C1

C2

C3 = R2

R1

R3

Intersecting vertex

A B

A1

A2

3. NO FIT POLYGON PACKING APPROACH

29

Figure 3.14 : The Addition-Polygon of two intersected polygons (right) becomes a simple
polygon (left).

Below is the pseudocode for the algorithm to Vertex-Vertex intersection:

algorithm VertexVertexIntersection Constant = {C1,…,Cs},Rotating = {R1,…,Rt}
(1) Label all the points of each polygon according to their orientation.

(2) Find the intersection point.

(3) Get the two triangles around the intersection point formed by {Ck-1,

Ck = Rl, Rl-1} and {Ck+1, Ck = Rl, Rl+1} where Ck = Rl is the intersection

point.

(4) Calculate the area of each triangle.

(5) Connect the vertices according the minimum area triangle as forming

Addition-Polygon = {C1, C2, …, Ck = Rl, Rl-1, …, R1, Rt, Rt-1,…, Rl+1, Ck+1,

…, Cs}, or Addition-Polygon = {C1, C2, …, Ck = Rl, Rl+1, …, Rt, R1, …, Rl-1,

Ck+1, …, Cs}

Vertex-Line Intersection Method

This case is an extension of the vertex-vertex algorithm. If the intersection point is on the line

of a polygon, then adding this intersection point as a vertex to the polygon which is

intersected on line converts this case to the vertex-vertex algorithm case described earlier.

Figure 3.15 illustrates this situation. Then, applying the same steps applied at vertex-vertex

intersection algorithm gives the Addition-Polygon.

A B
C4

C5

C1

C2

C3 = R2

R1

R3

A B
C4

C5

C1

C2

C3 = R2

R1

R3

3. NO FIT POLYGON PACKING APPROACH

30

Figure 3.15 : Adding imtersection point {C5} to the polygon A as a new vertex converts the
case to the case described earlier.

Below is the pseudocode for the algorithm to Vertex-Line intersection:

algorithm VertexLineIntersection Constant = {C1,…,Cs}, Rotating = {R1,…,Rt}
(1) Label all the points of each polygon according to their orientation.

(2) Add intersecting point as a new vertex to the polygon where

intersecting point is on a line of this polygon and relabel.

(3) VertexVertexIntersection(Constant, Rotating).

Complex Intersection Method

If the Addition-Polygon does not fit one of the cases described above, then we apply an

algorithm called Comlex Intersection. This case occurs when more than one intersection

occurs, or when line intersections occur. Figure 3.16 illustrates two examples of such kind of

Addition-Polygons. In this algorithm, all vertices are labelled from 1 to s+t where s is the

number of vertices of constant polygon, and t is the number of vertices of rotating polygon.

Intersecting
Point

A
B

C1

C2

C3

C4

C5

C6

R1

R2

R3

A
B

C1

C2

C3

C4

C6

C7

R1

R2

R3

C5

3. NO FIT POLYGON PACKING APPROACH

31

Figure 3.16 : Two examples for Complex Intersection case: two vertex intersection (left),
and two line intersection at (right).

The algorithm is a recursive one that finds all the paths from a non-complex vertex to itself.

Non-complex vertex is a vertex of constant polygon that does not intersect with a line or a

vertex of rotating point. Polygon A of Figure 3.16(a) has all vertices as non-complex vertex

but Poygon B of Figure 3.16(b) has only vertex 1 as non-complex vertex. If a vertex of

constant polygon and a vertex of rotating polygon intersects, then connecting the labels of

this vertex and considering it as one vertex will solve the problem. In Figure 3.16(b), vertex

2 of constant polygon and vertex 5 of rotating polygon intersects so considering this vertex as

vertex (2,5) will solve this problem.

Also, finding and adding the vertices that are on any line of the other polygon (if vertex is

element of rotating polygon, other polygon is constant polygon, or if vertex is element of

constant polygon, other polygon is rotating polygon) to this polygon, will result as finding all

the consequent vertecies of this vertex. In Figure 3.16(a), if vertex 11 is not added to constant

polygon, then its consequent vertices will only be vertex 10 and 12. If we add this vertex to

constant polygon, then consequent vertices will be vertices 5, 6, 10 and 12.

Another important definition of algorithm is First Branching Vertex (FBV). This means the

vertex on the path where the first branching occurs. In Figure 3.16(b), FBV is vertex (2,5).

The algorithm starts from a non-complex vertex and finds its consequent vertex or vertices.

The direction can not return back to its previous vertex. If FBV is met, then starts branching

1

2 3

4

5

67

8 9

10 11

12

A

B

(a)

1

2

3

4

7

5

6
A B

(b)

3. NO FIT POLYGON PACKING APPROACH

the path. All the paths is found after branching. If any path after FBV meets FBV (itself) on

its way, this branch is killed. Remaining paths include a path of starting polygon so kill this

path too. If there exists more than one path at remaining paths, kill paths that does not include

all non-cutting vertices. If there still exists more than one path, construct the polygons from

the paths, calculate the areas and the maximum area path is the path of Addition-Polygon.

Figure 3.17 illustrates an example of finding Addition-Polygon of Figure 3.16(a) and Figure

3.19 illustrates an example of finding Addition-Polygon of Figure 3.16(b).

Figure 3.17 : The application of algorithm to the Addition-Polygon in Figure 26(a).

Therefore, we obtain three paths as result of algorithm. These paths are:

(a) {1,2,3,4,5,11,6,7,10,9,8,1}

(b) {1,2,3,4,5,11,12,9,8,1}

(c) {1,2,3,4,5,11,10,9,8,1}

Path (a) is the starting polygons itself, so it must be killed. There is only one non-cutting

vertex of second polygon, vertex 12, and path (c) does not include this vertex so kill it too.

Then, only path (b) remains, and it is the path of Addition-Polygon as seen at Figure 3.18.

8

1 2 3 4

6

115

7 10
11 (Kill)

FBV
9

12 11 (Kill)

1 (a)

12 9 10 11 (Kill)

7 6 11 (Kill)8

1 (b)

10

7

6 11 (Kill)
9

8 1 (c)
12

11 (Kill)
32

3. NO FIT POLYGON PACKING APPROACH

33

Figure 3.18 : Addition-Polygon of polygons in Figure 3.16(a)

Figure 3.19 : The application of algorithm to the Addition-Polygon in Figure 3.16(b).

Therefore, we obtain two paths as result of algorithm. These paths are:

(a) {1,(2,5),(3,6),(4,7),1}

(b) {1,(2,5),(4,7),1}

Path (a) is the starting polygons itself, so it must be killed. Then, only path (b) remains, and it

is the path of Addition-Polygon as seen in Figure 3.20.

Figure 3.20 : Addition-Polygon of polygons in Figure 3.16(b)

Below is the pseudocode for the algorithm to Complex intersection:

1 2,5
3,6 4,7 1 (a)

4,7
3,6

FBV

2,5 (Kill)

1 (b)

1

2,5

4,7

3. NO FIT POLYGON PACKING APPROACH

34

algorithm ComplexIntersection Constant = {C1,…, Cs}, Rotating = {R1,…, Rt}
(1) Find intersection points.

(2) Combine vertices if they intersects.

(3) Add vertices to the appropriate polygon if a vertex is on the line of

this polygon.

(4) Find a non-complex vertex as startingVertex.

(5) Define a set of paths as Paths

(6) Paths <- FindPath (startingVertex).

(7) foreach path in Paths do
(8) if path is starting polygon path then
(9) remove this path from paths

(10) else if path does not have any of the non-cutting vertices then
(11) remove this path from paths

(12) end if
(13) end foreach
(14) if there exists more than one path in Paths then
(15) Construct the polygons

(16) return the path of the polygon that has maximum area

(17) else
(18) return the path

(19) end if

algorithm FindPath (Vertex startingVertex)
(1) Get next vertex of startingVertex as nextVertex.

(2) if nextVertex is branching then
(3) if FBV is null then
(4) FBV <- nextVertex

(5) FindPath(nextVertex)

(6) else if nextVertex = FVB then
(7) return

(8) else if nextVertex = startingVertex then
(9) return path

(10) else
(11) FindPath(nextVertex)

(12) end if
(13) else
(14) add nextVertex to path

3. NO FIT POLYGON PACKING APPROACH

35

(15) end if

33..44 TTiimmee CCoommpplleexxiittyy AAnnaallyyssiiss ooff NNFFPP AApppprrooaacchheess

Let the number of graph objects given as polygons be n and the average number of corners

per object be m.

In No-Fit Polygon Packing Convex-Convex approach, we pass over each polygon and merge

slope diagrams of these polygos. To merge the created slope diagrams, we pass for each

corner of two objects, one is the no fit polygon and the other is the iterated polygon. Also, we

re-calculate all the positions of polygons. Therefore, the complexity of algorithm becomes

O(n⋅m2⋅n+(n+m)⋅m⋅n) which can be stated as O(n2⋅m2), which is quadratic in the number of

objects.

In No-Fit Polygon Packing Concave-Convex approach, we pass over each polygon and create

NFP of these polygons. To create NFP, we pass for each corner constant object and may pass

for the rotating polygons corners c⋅m, where c is the constant number of concavities of the

constant polygon. Note that c < m. Also, we re-calculate all the positions of polygons. The

Concave-Connector method has complexity O(m) and is calculated for each pass of polygons.

Therefore, the complexity of algorithm becomes O(n⋅c⋅m2⋅n⋅m +(c⋅m2)⋅m) which can be stated

as O(n2⋅m3), which is again quadratic in the number of disconnected objects to be laid out.

4. IMPLEMENTATION AND DISCUSSION

36

4. Implementation and Discussion
In this chapter, implementation details and results will be given.

44..11 IImmpplleemmeennttaattiioonn PPllaattffoorrmm aanndd EEnnvviirroonnmmeenntt

Java Development Kit 1.3.1 is used for implementation.

Implementation is done on a machine that has the following hardware devices:

• AMD Athlon XP 1700+,

• 256 MB DDR Ram,

• 40 GB HD,

• 32 Mb Nvidia Riva TNT2 Model 64 Graphic Adapter.

Minimum requirements to run the implementation may be given as:

• Pentium II 300 MHz or compatible processors,

• 32 MB SD Ram,

• 1 GB HD free space,

• 1 MB graphic adapter.

44..22 IImmpplleemmeennttaattiioonn IInntteerrffaaccee
Implementation consists of two user interfaces. A main window where the user enters the

required parameters such as aspect ratio, minimum and maximum number of objects to be

created, the maximum number of object corners, etc. The second window consists of the

output screen of resulting layout. User can return to main interface and continue to generate

objects and their graph layouts. For displaying the polygons, all the polygons are repositioned

and scaled to fit into the frame [14] . Figure 4.1 describes these interfaces.

4. IMPLEMENTATION AND DISCUSSION

37

Figure 4.1 : The user interfaces: main windo (left) and Layout window (right).

The description of the components of the Main window is as follows:

• Enter Min. and Max number of objects:

Left TextBox : Minimum number of objects to be created.

Right TextBox : Maximum number of objects to be created.

• Enter Max. width and height of each object:

Left TextBox : Maximum width of objects to be created.

Right TextBox : Maximum height of objects to be created.

• Enter desired aspect ratio: The desired aspect ratio.

• Enter max. no. of corners per object: The maximum number of corners of objects to be

created

4. IMPLEMENTATION AND DISCUSSION

38

• Enter no. of runs: How many number of runs to be done for obtaining test results

• “Create Objects” Button: Creates the objects according to given parameters above.

• “Start Batch” Button: Runs the application for given number of runs for test results.

• “Quit” Button: Quits the application.

After objects are created, the following buttons are displayed for obtaining graph layout for

created disconnected objects:

• “Apply Tiling” Button: Applies tiling packing approach to created objects.

• “Apply Alternate-Bisection Button”: Applies alternate-bisection packing approach

to created objects.

• “Apply Polyomino Packing” Button: Applies polyomino packing approach to created

objects.

• “Apply No Fit Packing” Button: Applies no fit packing approach to created objects.

• “Apply Convex No Fit Pack…” Button: Applies no fit packing convex-convex

approach to created objects.

The description of the components of the Layout window inteface is as follows:

• “Show/Hide Grid” Button: For the polyomino packing approach, it toggles showing or

hiding the grid of polyominos.

• “Return Main” Button: Returns the main interface.

• “Fill/No Fill Objects” Button: Fills or removes the fills inside the graph objects.

• “Quit” Button: Quits the application.

44..33 IImmpplleemmeennttaattiioonn RReessuullttss
The adjusted fullness of a packing expresses the fillness of packing, in percentage, with

respect to the desired aspect ratio. To be precise, it considers the additional area wasted when

the final drawing is displayed in a region of desired aspect ratio.

4. IMPLEMENTATION AND DISCUSSION

39

We have performed a number of executions to compare tiling, alternate-bisection, polyomino,

NFP Convex-Convex approach and NFP Concave-Convex approach packings. Graphs that

contained up to thirty disconnected objects were used where each object was assumed to be a

polygon with random number of corners in {5,10}, each with random integer coordinates in

[1…100], all independent and uniformly distributed. For the tiling and alternate-bisection

methods the tightest rectangles bounding these polygons were used, for polyomino packing

the smallest polyomino bounding the polygons were used. For each parameter change, the

results were calculated for 5 times and average of the time and adjusted fullness is taken.

Same graph objects are used for each set of the experiment. The performance comparison is

presented in Figure 4.2 through 4.5

Figure 4.2 : Comparison of packing methods with Desired Aspect Ratio 1.0, and maximum
number of corners per object is 5. Time in miliseconds versus number of objects (left) and
Adjusted Fullness percentage versus number of objects (right).

Figure 4.3 : Comparison of packing methods with Desired Aspect Ratio 1.0, and maximum
number of corners per object is 10. Time in miliseconds versus number of objects (left) and
Adjusted Fullness percentage versus number of objects (right).

Contrast of the Methods

0
50

100
150
200
250
300
350

5 10 15 20 25 30

of Objects

Ti
m

e
in

 m
se

c Tiling
AB
Polyomino
NoFit
Convex

Contrast of the Methods

0
5

10
15
20
25
30
35
40
45

5 10 15 20 25 30

of Objects

A
dj

us
te

d
Fu

ln
es

s
(%

)

Tiling
AB
Polyomino
NoFit
Convex

Contrast of the Methods

0
50

100
150
200
250
300
350
400
450

5 10 15 20 25 30

of Objects

Ti
m

e
in

 m
se

c Tiling
AB
Polyomino
NoFit
Convex

Contrast of the Methods

0
5

10
15
20
25
30
35
40
45

5 10 15 20 25 30

of Objects

A
dj

us
te

d
Fu

ln
es

s
(%

)

Tiling
AB
Polyomino
NoFit
Convex

4. IMPLEMENTATION AND DISCUSSION

40

Figure 4.4 : Comparison of packing methods with Desired Aspect Ratio 1.5, and maximum
number of corners per object is 5. Time in miliseconds versus number of objects (left) and
Adjusted Fullness percentage versus number of objects (right).

Figure 4.5 : Comparison of packing methods with Desired Aspect Ratio 2.0, and maximum
number of corners per object is 5. Time in miliseconds versus number of objects (left) and
Adjusted Fullness percentage versus number of objects (right).

The following figures contrast NFP packing Concave-Convex approach by Polyomino

packing when the grid size is half of the size (Figure 4.6) of the one in Figure 4.2 and when

the grid size is double the size (Figure 4.7) of the one in Figure 4.2. As it is clear from the

figures, the NFP Concave-Convex approachs perform better in terms of the quality of the

layout even when the grid is quite fine.

Contrast of the Methods

0

50

100

150

200

250

300

5 10 15 20 25 30

of Objects

Ti
m

e
in

 m
se

c Tiling
AB
Polyomino
NoFit
Convex

Contrast of the Methods

0

50

100

150

200

250

300

5 10 15 20 25 30

of Objects

Ti
m

e
in

 m
se

c Tiling
AB
Polyomino
NoFit
Convex

Contrast of the Methods

0

10

20

30

40

50

5 10 15 20 25 30

of Objects

A
dj

us
te

d
Fu

ln
es

s
(%

)

Tiling
AB
Polyomino
NoFit
Convex

Contrast of the Methods

0
5

10
15
20
25
30
35
40

5 10 15 20 25 30

of Objects

A
dj

us
te

d
Fu

ln
es

s
(%

)

Tiling
AB
Polyomino
NoFit
Convex

4. IMPLEMENTATION AND DISCUSSION

41

Figure 4.6 : Comparison of Polyomino packing with NFP Packing Concave-Convex
approach. Desired Aspect Ratio 1.0, and maximum number of corners per object is 5, grid
size of the Polyominoes is 5, half of the value of in Figure 4.2. Time in miliseconds versus
number of objects (left) and Adjusted Fullness percentage versus number of objects (right).

Figure 4.7 : Comparison of Polyomino packing with NFP Packing Concave-Convex
approach. Desired Aspect Ratio 1.0, and maximum number of corners per object is 5, grid
size of the Polyominoes is 20, double of the value of in Figure 4.2. Time in miliseconds
versus number of objects (left) and Adjusted Fullness percentage versus number of objects
(right).

44..44 DDiissccuussssiioonn
As seen from in Figure 4.2, through 4.5, No-Fit Polygon packing Concave-Convex approach

results in the most compact drawings, about more than 35% adjusted fullness. The best graph

layout after our new approach is Polyomino packing approach. No-Fit Polygon packing

Concave-Convex approach sometimes (≈5%) draw worst graph layout than polyomino

Contrast of the Methods

0
50

100
150
200
250
300
350
400

5 10 15 20 25 30

of Objects

Ti
m

e
in

 m
se

c.

Polyomino
NoFit

Contrast of the Methods

0

10

20

30

40

50

5 10 15 20 25 30

of Objects

A
dj

us
te

dF
ul

ln
es

s
(%

)

Polyomino
NoFit

Contrast of the Methods

0

10

20

30

40

50

5 10 15 20 25 30

of Objects

A
dj

us
te

d
Fu

ln
es

s
(%

)

Polyomino
NoFit

Contrast of the Methods

0
50

100
150
200
250
300
350
400

5 10 15 20 25 30

of Objects

Ti
m

e
in

 m
se

c.

Polyomino
NoFit

4. IMPLEMENTATION AND DISCUSSION

42

packing but these cases rises from the fact that most of the polygon shapes in sorted order

does not completment each other.

The time complexity of No-Fit Polygon packing Concave-Convex approach is more than

other algorithms so it uses more execution time, it is slower than other algorithms. But this

execution time is still in acceptable bounds for practical purposes

No-Fit Polygon packing Convex-Convex approach gives almost the worst adjusted fullness.

Since this approach converts the Addition-Polygon to a convex polygon, lots of space is

waste. Sometimes, the adjusted fullness is lower than the tiling algorithm. In addition to this

fact, it has the second highest execution time after No-Fit Polygon packing Concave-Convex

approach.

Increasing the number of corners per object rises the execution time of No-Fit Polygon

packing Concave-Convex approach, but changing aspect ratio, does not seem to affect the

execution time since it always tries all the possible places of each polygon.

Decreasing the grid size of the Polyomino packing, increses the adjusted fullness of graph

layout but costs to a higher execution time. Increasing the grid size of Polyomino packing,

decrases the adjusted fullness of graph layout but the execution time is much better in this

case. This comparison can be seen by Figure 4.6 and 4.7 according to Figure 4.2. In both

experiments, it is observed that NFP Packing Concave-Convex approach still have better

adjusted fullness on same set of objects againist Polyomino Packing, but still costs to a higher

execution time.

Therefore, No-Fit Polygon packing Concave-Convex approach can be used for two-

dimensional packing problems as it results in best graph layouts with acceptable execution

time.

5. CONCLUSION AND FUTURE WORK

43

5. Conclusion and Future Work
In this thesis, we have aimed to show that No-Fit Polygon Packing can be used for two

dimensional packing. This approach is compared with existing packing algorithms.

Comparison is done through adjusted fullness and time analysis. We have developed and

implemented all the algorithms described in the thesis. For implementing No-Fit Packing,

several methods including Concave-Connector method is designed and implemented as

helper methods.

The contribution of this thesis was the design of a new approach and the analysis to contrast

it with tiling, alternate-bisection and polyomino packings. The previous algorithms

approximate polygons with rectangles or polyominoes whereas the new No-fit polygon

packing approach calculates the graph layout directly with given polygons. Expected result

from this contrast was No-Fit Polygon packing shall have better graph-layout performance,

but worse time-complexity against other approaches. The experiment results verify these

predictions.

Calculating NFP of two polygons is a time consuming operation, hence improving this

calculation may decrease the execution time of the algorithm. For future work of No-Fit

Polygon Concave-Convex approach, optimizing the implementation may reduce execution

time.

After the resulting graph layouts are examined, we found that using No-Fit Polygon Concave-

Concave approach described in [7] can increase the adjusted fullness of graph layout. In this

method, there will be no restrictions if given graph objects are convex polygons. Also, by

removing the sorting operation before packing the initial graph objects, we can obtain better

graph layouts whereas this causes slower execution time.

5. CONCLUSION AND FUTURE WORK

44

To conclude, No-Fit Polygon packing Concave-Convex approach can be used for

disconnected graph layout resulting in more compact drawings with slower but acceptable

execution times.

BIBLIOGRAPHY

45

BIBLIOGRAPHY

[1] Freivalds, K., Dogrusoz, U., and Kikusts. P., Disconnected Graph Layout and The

Polyomino Packing Approach, Proceedings of Graph Drawing 2001, Lecture Notes in

Computer Science, vol. 2265, 378-391, 2002.

[2] Dogrusoz, U., Two-Dimensional Packing Algorithms For Layout of Disconnected

Graphs, Information Sciences, vol. 143/1-4, 147-158, 2002.

[3] Li, Z., Compaction Algorithms For Non-Convex Polygons, PhD thesis, Department of

Computer Sciences, University of Harvard, Cambridge, Massachusetts, May 1994.

[4] Burke, E., and Kendall, G., Evaluation of Two Dimensional Bin Packing Using The No

Fit Polygon, Computers and Industrial Engineering, vol. 26, December 1999.

[5] Burke, E., and Kendall, G., Implementation and Performance Improvement of the

Evaluation of Two-Dimensional Bin Packing Problem Using The No Fit Polygon,

University of Nottingham, Technical Report # ASAP99001, 1999.

[6] Burke, E., and Kendall, G., Applying Ant Algorithms and the No Fit Polygon to the

Nesting Problem, Lecture Notes in Artificial Intelligence, 1747, 453-464, December

1999

[7] Bennel, J.A., Dowsland, K.A., and Dowsland, W.B., The Irregular Cutting Stock

Problem-A New Procedure For Deriving The No-Fit Polygon, Computers and

Operations Research, vol. 28, 271-287, 2001.

BIBLIOGRAPHY

46

[8] Coffman, G.G., Garey, M.R., Johnson, D.S., and Tarjan R.E, Performance Bounds For

Level-Oriented Two-Dimensional Packing Algorithms, Society for Industrial and

Applied Mathematics, vol.9: No 5, 808-826, November 1980.

[9] Baker, B.S., Coffman, E.G., JR and Rivest, R.L., Orthogonal Packings in two

Dimensions, Society for Industrial and Applied Mathematics, vol. 9, no.4, pp. 846-855,

November 1980.

[10] Baker, B.S., Brown, D.J., and Katseff, H.P., A 5/4 Algorithm for Two-Dimensional

Packing, Journal of Algorithms, vol. 2, 348-368, 1981.

[11] Adamowicz, M., and Albano, A., Nesting Two Dimensional Shapes In Rectangular

Modules, Computer Aided Design, vol. 8, No. 1: 27-33, 1976.

[12] Ghosh, P. K., A Unified Computational Framework For Minkowski Operations,

Computers and Graphics, 17, 4: 357-378, 1993.

[13] Albano, A., and Sapuppo, G., Optimal Allocation of Two-Dimensional Irregular Shapes

Using Heuristic Search Methods, IEEE Transactions on Systems Man. And Cybernetics,

SMC-10, 5, 242-248, May 1980.

[14] U. Dogrusoz, Q. Feng, B. Madden, M. Doorley, and A. Frick, Graph Visualization
Toolkits, IEEE Computer Graphics and Applications, vol. 22, No. 1: 30-37,
January/February 2002.

	Contents
	Table of Contents
	List of Figures
	Introduction
	1.1 Overview
	1.2 Definitions and Basics

	Related Work
	2.1 Strip Packing
	2.2 Tiling Packing
	2.3 Alternate-Bisection Packing
	2.4 Polyomino Packing
	2.4.1 Parameters of Polyomino Packing

	2.5 Comparison of Packing Algorithms

	No-Fit Polygon Packing Approach
	3.1 No-Fit Polygon
	3.1.1 Calculating NFP
	3.1.2 Calculating NFP for Convex-Convex Polygons
	3.1.3 Calculating NFP for Concave-Convex Polygons

	3.2 NFP Packing by Convex-Convex Approach
	3.3 NFP Packing by Concave-Convex Approach
	3.3.1 Concave-Connector Method

	3.4 Time Complexity Analysis of NFP Approaches

	Implementation and Discussion
	4.1 Implementation Platform and Environment
	4.2 Implementation Interface
	4.3 Implementation Results
	4.4 Discussion

	Conclusion and Future Work
	BIBLIOGRAPHY

