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Learning Robotic Manipulation of Natural Materials
With Variable Properties for Construction Tasks

Nicolas Kubail Kalousdian , Grzegorz Łochnicki , Valentin N. Hartmann , Samuel Leder ,
Ozgur S. Oguz , Achim Menges , and Marc Toussaint

Abstract—The introduction of robotics and machine learning to
architectural construction is leading to more efficient construction
practices. So far, robotic construction has largely been implemented
on standardized materials, conducting simple, predictable, and
repetitive tasks. We present a novel mobile robotic system and cor-
responding learning approach that takes a step towards assembly of
natural materials with anisotropic mechanical properties for more
sustainable architectural construction. Through experiments both
in simulation and in the real world, we demonstrate a dynamically
adjusted curriculum and randomization approach for the problem
of learning manipulation tasks involving materials with biological
variability, namely bamboo. Using our approach, robots are able
to transport bamboo bundles and reach to goal-positions during
the assembly of bamboo structures.

Index Terms—AI-enabled robotics, hardware-software
integration in robotics, robotics and automation in construction.
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I. INTRODUCTION

THERE is an indisputable need for a more sustainable built
environment [1]. Enabling robotic construction systems to

build with a wide range of materials is a critical step in that
direction [2]. Over the past decade, research on robotic con-
struction with standardized materials has led to more efficient
construction processes [3]. Natural materials, which are often
heterogeneous, deformable, and/or anisotropic, have largely
been phased out in favor of highly processed materials. Enabling
usage of such non-standard materials increases the range of
feasible materials in the construction industry, thus forging new
paths towards more diverse, and sustainable processes [4].

Natural materials are difficult to physically handle and a
challenge to digitally model due to the fact that their mechanical
properties and dynamics vary within and across samples. There-
fore, robotic construction with such materials requires planning
and control strategies that generalize to uncertain properties
of a single element and continuously adapt to unpredictable
deformations inherent to natural materials in the real world.
Research on the topic of robotic construction thus tends to
focus on building with idealized and predictable materials [5],
are cast as purely geometrical problems [6], or are planned
completely in advance leaving no room for adaptation [7]. Such
assumptions rarely hold in real-world settings, where varying
material properties and environment conditions need to be taken
into account. Recent research in machine learning indicates that
the challenges of dealing with irregular materials can be tackled
with reinforcement learning (RL). RL has been widely used in
training control policies for dynamic tasks that can be transferred
to real-world robots [8]–[10]. Although robots are increasingly
utilized in the architectural construction process [11], and RL has
proven robust in training robots for real world applications [12],
[13], an approach to training robots to perform construction tasks
using materials with biological variability is missing. This work
explores the feasibility of combining methods from the fields
of machine learning, robotics, and construction from a systems-
oriented perspective on the problem of robotically manipulating
materials with variable properties in dynamic construction tasks
in both simulation and the real world. In doing so, the feasibility
of the proposed methods is evaluated, aiming to contribute, as
fundamental research, to the eventual transition of research from
laboratory settings to real-world applications.

As a case study, we chose the task of assembling bamboo
structures with a team of custom mobile robots. Bamboo is
an irregular material that is deformable and anisotropic, which
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Fig. 1. Left: Custom mobile robot climbing a bamboo structure, Right: Agent
learning how to reach the goal (red) by bending bamboo bundles in simulation
by swinging.

adds to the complexity of working both physically and com-
putationally with the material. Bamboo is a rapid-renewable
plant with a much shorter crop-cycle than wood making it a
particularly important inroad to more sustainable construction
[14]. A similar demonstration can be done with other naturally
renewable construction materials, such as wood, which exhibits
natural variability if it is unprocessed.

The mobile robot was custom-designed to deal with the vary-
ing properties of bamboo and to perform two tasks involved in as-
sembling bamboo elements: namely transporting and reaching.
Our aim is to show that the robots can learn to use their weight,
movement, and momentum to swing and bend bamboo elements
into designed configurations while hanging on to unstable and
partially observable structures (Fig. 1). In pursuing this goal, our
contributions are:
� We co-design both hardware, and learning and control

software for a novel mobile robotic system that can be
employed in bamboo construction.

� We present a dynamically adjusted curriculum approach
for the problem of learning manipulation of natural mate-
rials with variable properties for building construction.

� We extend the application of automatic domain random-
ization (ADR) to model and compensate for uncertainty in
material parameters during domain transfer.

� We demonstrate that ADR can serve as an exploratory
method for identifying the feasible parameter space of the
robot-policy pairing.

II. RELATED WORK

There is a growing interest in robotics in construction, mainly
due to the possibilities of increasing efficiency and sustainability,
and decreasing cost. We discuss relevant work in construction
robotics, particularly distributed robotic systems, and learning
for material manipulation.

a) Robots in Construction: While brick-laying robots [15],
robots to extrude concrete to build houses [16], or robotic
excavators and bulldozers [17] were deployed on real construc-
tion sites, and some even integrated in standardized processes
such as BIM [18], [19], most ongoing research is acting in
laboratory-environments, such as drones used for assembly of a
foam tower [20] or assembly of a timber structure [21].

Additionally, most work is focused on highly regular building
materials, such as bricks, or standardized wooden struts [21].
Conversely, the work presented in [22] uses stones to build
a tower, however, only demonstrates the concept on a simple

stacking task. The potential of digital building tools with respect
to highly amorphous materials is investigated in [23], and [24]
gives a more exhaustive review on the possibilities of collective
robotic construction.

Other work in building construction and digital fabrication
focuses on the robotic planning aspect for co-design, by attempt-
ing to evaluate feasibility of a robotic building process [7]. The
project presented in [25] specifically designs timber structures
to enable a team of distributed robots to efficiently fabricate
them. The review in [26] notes that while various use-cases
for prefabrication (such as [27], [28]) and mobile robotics in
construction exist, few of them are economically viable due to
their required supervision, and high specialization. Instead of
fitting the material to our expectations, we enable the usage of
irregular building materials by explicitly accounting for uncer-
tainty in material parameters, and by doing so enable a less
wasteful construction process.

b) Learning for Material Manipulation: In most manipulation
research (such as [7], [29]), the assumption is made that the
robots deal with rigid bodies, and do not modify the structure
and shape of the objects itself. It is then possible to leverage
trajectory optimization algorithms to synthesize a motion for the
manipulation tasks. The work in [30] deals with learning motion
primitives to e.g. pour fluids reliably, and to enable common task
and motion planning approaches to use these primitives. This
work does however not explicitly represent the fluid, and rather
hides the actual material manipulation in a black-box primitive.
If manipulation of the material into a certain shape is the goal,
this approach does not work.

More recent work used deep reinforcement learning to ma-
nipulate non-rigid bodies [31], [32], which requires efficient
simulation tools, and usually intricate prior knowledge of the
models, and involved actions. Previous work on learning ma-
terial manipulation was applied on amorphous materials in a
kitchen scenario [33], with the purpose of character-animation
(e.g. to spread rice on a cooking surface). As such, it is possible
to separate the consideration of the body from the motion of the
tool. Another approach to increase efficiency of the learning
process is the use of differentiable (learned) models [34] or
to introduce physics into the model [35]. In the construction
setting, a similar approach was followed in [36] to learn how to
deform sheet metal. In digital fabrication, a common approach
to deal with irregular materials is to extensively scan the avail-
able natural, irregular materials, and use traditional construction
processes based on the generated model of the material [4]. This
approach is time-consuming and not scalable.

Contrary to the previously mentioned work, we propose
jointly learning the behavior of the material and the motion of
the agent to influence the behavior of the material in a single
policy. While there are similarities to [31], [32], our work deals
with deformable, not amorphous materials, and is transferred to
real hardware.

III. PROBLEM DESCRIPTION

Robotic construction of bamboo structures requires many
tasks, and thus various skills to be planned for. We tackle two of
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Fig. 2. Transportation task: the robot begins the episode holding a rod at a random position, and has to reach the sphere with the tip of the rod, while accounting
for the deformation in the root bundle caused by the shifting center of gravity.

these tasks: reaching towards, and transportation of bamboo
bundles. Both tasks can be described as stochastic, partially
observable Markov Decision Processes (POMDPs).
� Reaching: the robot has to reach a goal with its end-effector

(Fig. 1, right).
� Transportation: the robot holds a bamboo element in its

free end-effector, and has to reach a goal position with the
tip of the bamboo element (Fig. 2).

We describe the motion each task deals with: Reaching in-
volves bending of the bamboo bundle that the robot is holding
on to, i.e. the goal positions might be out of reach if the bamboo-
bundle which the robot holds on would be static. Transportation
involves reacting to the deformations and spring-back of the root
bundle as the held bamboo element is manipulated in addition to
the bending behaviour described above. In both cases, the goal is
stationary, and is sampled depending on the allowable bending
radius of the bamboo, and the robot morphology.

For real world tasks, the robot does not have access to the
full state information, but just relies on its observations. We can
then formally define a POMDP as a six-tuple (S,A,P,R,Ω,O),
representing states, actions, transitions, rewards (as in an MDP),
and finite set of observations, and observation dynamics, re-
spectively. Given such a POMDP, we employ RL methods,
in particular domain randomization and curriculum learning
(Section VI), to find a policyπ that fulfills the task. The observed
features ot are taken from internal and external sensor readings,
and describe the environment’s state st at time t (see (1)). The
feature vector ot is then used to build the observation history
o1:t = {o1, ..., ot} from the start time, to the current time t.
The policy’s outputs at are joint position targets. Rewards are
calculated cumulatively in each training episode as described
in (2). To simulate the transition function p∗(st+1|st, at) of
the real environment, we describe the bamboo material system
as a discrete chain of rigid-bodies connected by damped har-
monic oscillators. Together with a Featherstone solver to simu-
late the robotic hardware, this describes the transition function
p′(st+1|st, at) of the training environment. Thus, the goal is to
train the policies in p′ such that they can be transferred to p∗.

IV. MATERIAL DESCRIPTION

Bamboo rods are the base element of the construction system.
The physical setup of the bamboo structure consists of the
bamboo bundles, connection mechanisms, and the anchoring
system. The bamboo rods are joined together with metal zip-ties
into short bundle assembly groups of 1.8 meters length. In order

TABLE I
MECHANICAL PROPERTIES (M ) OF ARUNDINARIA AMABILIS SAMPLES

to achieve longer lengths we shift bundle assembly groups half
of their length apart and join them further with metal zip ties
(Fig. 4). The difference in rod count of each bundle assembly
group is described by the bundle density discretization (a full
bundle may be made up of 3 assembly groups, containing 8,
5, and 3 rods, respectively, and is thus tapering towards its
tip). Bundles are attached to the ground with steel anchors and
clamps.

a) Mechanical Parameters: We describe the space of mechan-
ical parametersM of Arundinaria Amabilis bamboo rods, the
species we use in this work, in Table I.

b) Geometric Parameters: The space of geometric parameters
B is a set of parameter-ranges that describe possible material
configurations. This space is defined by the inclination or pitch
of the bundle, the rotation around the world z vector (yaw), the
total bundle length (as a multiple of single rod lengths l), and the
bundle density discretization (Fig. 4). Thus, the set of possible
configurations is C =M×B.

V. HARDWARE SYSTEM DESIGN

For this work we developed a mobile robot for brachiation
on the bamboo, which was co-designed relative to the material
system described in Section IV.

a) Hardware: Fig. 3 illustrates the mechatronic design of
the robot, including its actuators, controllers, and sensors. The
robot’s state is estimated with a combination of internal and
external sensors: Internally, the robot keeps track of its ori-
entation as a quaternion q, using an accelerometer, a gyro-
scope, and a magnetometer embedded in each end-effector. The
joints’ positions θi are monitored through the servos’ built-in
encoders. Externally, a multi-camera tracking system localizes
the robot root link position pr, in the construction site. The
end-effector claws have interlocking fingers and are controlled
with a force-feedback strategy. This helps the robot to maintain
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Algorithm 1: ADR for Variable Materials.
Require:M,B �Mechanical and geometric param.
Require: D,K �Robotic dynamics and kinematics
Require: φM , φB , d �Initial param. values, and count
Require: m,n �Buffer size, sample boundary (%)
Require: Δ, � �Expansion rate, expansion start
Require: σL, σH �Expansion thresholds
Require: {rLi , rHi }di=1 �High and Low Reward Buffers
Require: π �Policy in training
Require: E, i �Episodes per epoch, current episode
μ←M(φM ),B(φB)
for i = 1, .., E do
ci ∼ U(μH , μL)
Ri ← EvaluateModel(ci, D,K, π)
if max(Ri, Ri−1...R0) ≥ � then

for j = 1, .., |ci| do
if cji >= nμH

j then
append Ri to rHj

if cji <= (1− n)μL
j then

append Ri to rLj
if length(rLj ) ≥ m then
ravg = 1

m

∑m
t=0 r

L
j [t]

clear buffer rLj
if ravg ≥ σH then
μL
j ← μL

j −Δ

else if ravg ≤ σL then
μL
j ← μL

j +Δ

if length(rHj ) ≥ m then
ravg = 1

m

∑m
t=0 r

H
j [t]

clear buffer rHj
if ravg ≥ σH then
μH
j ← μH

j +Δ

else if ravg ≤ σL then
μH
j ← μH

j −Δ

a tight grip on the bamboo bundles while allowing it to adapt
its grip to various bundle cross-section geometries that result
from the unpredictable arrangement of rods within a bundle,
and the varying cross-section of each rod. The inside of each
claw is equipped with a limit switch to detect contact. Thus, the
robot hardware state Ohw

t at time t is the concatenation of all
sensor-readings from above.

The joints are actuated by a series of chained Dynamixel
motors. Motor torque requirements were derived from a Newton-
Euler formulation in worst case loading scenarios. The shoulder
and elbow joints experience the most torque requirements, and
use the MX64 model with a 2 to 1 and 3 to 1 gear ratio
respectively. The wrist joints and claws require less force, and
are actuated by XL430-W250-T motors with a 2 to 1 gear
ratio. Furthermore the claws contain a pawl and ratchet safety
mechanism to mechanically lock the grip around the bamboo in
case of motor failure.

Fig. 3. Kinematic and hardware design of the robot, and gear ratios for each
joints. The claws can act both as base link or end effector.

Fig. 4. Example of bamboo bundle assembly, and geometric parameters
visualization for reaching task.

b) Kinematics Model: The robot has five degrees of freedom
(see Fig. 3 ). Fig. 5(b) lists the kinematic constraints for each
joint, with axis vectors described in relation to the parent joint.
The kinematic chain, K ∈ R5, was designed to allow for a
motion space that matches the complexity induced by the geo-
metric and mechanical parameters of the material specifications
(Section IV). We aimed to minimize the motor count while
still keeping the DoFs required by the assembly tasks. The
morphology is symmetrical: two axial joints on the bases (wrists
θ1 and θ5), connect to two revolute joints, (elbows θ2 and θ4),
that meet at a central revolute joint (shoulder, θ3).
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Fig. 5. (a) System architecture for problems of learning manipulation of materials with variable properties in construction. Learning in simulation pipeline is
shown in blue, and the real world execution pipeline is shown in red. (b) Kinematic description of the robot and constraints for each joint.

VI. LEARNING SYSTEM ARCHITECTURE

The proposed system architecture consists of three intercon-
nected parts: simulation, controller, and environment. They in-
teract within the learning- and the execution-pipeline (Fig. 5(a)).
For training we opt to implement and use Proximal Policy Op-
timization as in [37], since it’s a robust and efficient model-free
RL algorithm.

a) Domain Randomization (DR): RL algorithms are often
sample inefficient and the costs of training policies on real robots
too expensive and time consuming. Therefore training is usually
conducted in simulation. Furthermore, transferring a policy from
simulation to a real-world robot, known as sim-to-real, often fails
due to inconsistencies between the models and calibration used
to simulate a training environment and the physical world [10].

As one of our aims is to show the proposed system physically,
we employ domain randomization in order to overcome the sim-
to-real gap. Domain randomization is a technique used in RL
problems where a model or policy trained in a source domain,
the dynamics denoted by the environment transition function p′,
is made transferable to a target domain, the real world denoted
by p∗, by randomizing parameters of the source domain during
training [38].

To do this, we generate instances ci ∈ C by sampling from a
uniform distribution ci ∼ U(μL, μH) defined by high threshold
μH and low threshold μL, with μH , μL ∈ R|C| (line 3). This
causes the policy to adapt to variability in the the training
environment, and changes the learning goal to maximize the
expected return across a distribution of environments C [10].

b) Curriculum Learning: When applying DR to the problem
of building using materials with variable properties we quickly
face the challenge of manually tuning randomization ranges that
meaningfully capture the space of environments C. Furthermore,
we must ensure that the agent is still able to learn a successful
policy in a reasonable amount of time without getting stuck in
local minima within such a large variation of training environ-
ments.

In order to overcome this challenge we drive domain random-
ization with a curriculum. Curriculum Learning is a strategy for
policies to progressively learn from simple tasks to more difficult
problems. This is done by gradually increasing the difficulty of
training samples in relation to agent performance. In our case
the difficulty is defined as the size of the configuration space

that we are sampling from. First, we initialize each randomized
parameter with a corresponding low variance μ (line 1), then
the agent performance is evaluated in line 4 based on a training
environment defined by the sampled parameters in line 3. Once
the reward reaches a minimum threshold of � (line 5) the expan-
sion algorithm kicks in. Line 6 iterates through each parameter
in M,B, and checks whether it was boundary sampled (lines
7 and 9), if so then it adds the reward of the current episode to
that parameter’s buffer rHj and rLj . Lines 11 and 18 check if the
buffers are full, and if so we take the average reward and extend or
contract the variance of the parameter’s distribution in relation
to the policy’s performance that was accumulated during the
learning process (lines 12–17, and 19–24). With each increase
in variance the task gets harder, because the policy needs to
generalize to a larger distribution of randomized environments.
The goal is to have a policy which can incrementally generalize
across a large distribution of parameter configurations.

VII. EXPERIMENTS AND RESULTS

We conduct a series of experiments and ablation studies to
evaluate the learned reaching and transportation policies. These
experiments aim to i) evaluate the ability of the proposed system
to learn two different tasks with bamboo, ii) test the ability of the
learned policies to generalize to unseen material and geometric
configurations, iii) compare these policies’ generalization ability
to a baseline DR method, and iv) evaluate the performance of
the hardware, and learning and control software design of our
novel mobile robotic system.

a) Training Details: In order to achieve the high level of
interactivity and stability required for reinforcement learning,
simulations of material-robot interactions are conducted within
the PhysX 4 engine. The physical setup follows the description
in Section IV. All policies are feed-forward networks with three
layers of 128 units each, and they are trained using asynchronous
gradient descent [39] to keep training stable.

b) Input: The policy’s input at timestep t consists of the history
o1:t of the observation vectors which are computed from Ohw

t :

Ot = (n ∈ R3, q ∈ SO(3), θ ∈ R5, ω ∈ R3, v ∈ R3), (1)

where n is a vector from the free end-effector (respectively from
the tip of the bundle) to the goal, q is the orientation of the
robot’s base link as a quaternion, θ are the joint angles, ω is the
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Fig. 6. (a) Snapshots of the robot bending the bamboo bundle in the reaching task. (b) Performance of the ADR-policies compared against the DR-policies.

angular velocity of the base link, and v is the linear velocity of
the base link.1 In order to better represent motion information
to the policy, the past l observations (i.e. the truncated history
ot−l+1:t) at each time step are fed to the policy. To reduce the
sim-to-real gap, Gaussian noise is applied to each feature in
order to model uncertainty in the hardware sensors, as shown
in [10].

c) Actions: The policy outputs position targets described in
degrees as offsets from the current joint rotations. This results
in a 5D action space. Valid actions are constrained to be within
the ranges specified in the corresponding joints in Fig. 5(b).
Furthermore, we apply a phase shift τ to the control signal
coming from the policy during training. This serves to further
reduce the sim-to-real gap by modelling the latency present in
the physical controller [10].

d) Reward: The reward is a function of the distance between
the end-effector position pt (respectively bundle tip for the
transp. task) at time t, and the goal position g (2). We use an
intermittent reward strategy, accumulating the reward at each
timestep t until we reach an end condition of f(t) = 0 or the
maximum amount of steps per episode T in contrast to only
rewarding the agent when the goal is reached to compensate
for learning difficulties in problems with sparse-reward envi-
ronments. Thus, the total reward is R = Ri +Rg −Rp, where
Rg = 1 is added once the goal was reached,2 andRp is a penalty
that is added at each step to encourage shorter solutions.

Ri =

T∑

t=0

max (0,min (f(t0), . . . , f(t− 1))− f(t)) ,

with f(t) =
||g − pt||2
||g − p0||2 . (2)

e) Transfer to Unseen Configurations: In the first ablation study
we compare the performance of policies trained with ADR
against those trained with DR. The unseen configurations we
test this on are parameter sets that were not encountered before
(i.e. during training). Both the low reward threshold σL and
expansion start � are set to 0.9, in order to keep the policy
achieving a minimum of 90% accuracy during ADR expansion.
Policies trained with ADR outperformed those trained with DR
when transferring to unseen configurations. The ADR policies
achieved a success rate above 80% on both seen and unseen
configurations. In the reaching task the ADR policy had a 7.5%

Fig. 7. Learning curves with different ADR expansion rates.

Fig. 8. Feasible parameter space of the learned transportation policy. Numbers
are the percentage of expansion in relation to the starting range.

drop in performance, whereas the DR policy had a 16.7% drop.
In the transportation task the performance drops were 4.0% and
9.6% respectively (Fig. 6(b)). This confirms our contribution of
extending the application of automatic domain randomization
to compensate for uncertainty in material parameters.

f) Sample Efficiency and Motion: In the second ablation study
we compare two network architectures for the ADR policy,
one that observes temporally stacked frames, and one that only
observes single instances in time. When comparing sample
efficiency of the two network architectures, we observe that

1Note that we do not need any explicit estimation of the state of the bamboo
bundle in our formulation.

2Shaping the reward function like this is necessary due to the intermittent
reward: If f(t) is used as reward directly, the agent can exploit this by ‘not
quite’ reaching the goal, thus accumulating reward until the end.
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Fig. 9. (a) Decay of the learning rate as the expansion curve starts to stabilize (reaching task). Learning curves for (b) reaching and (c) transportation tasks using
ADR policies. Vertical lines denote the point which training crosses the initial ADR threshold � and the expansion begins.

the temporally stacked frames approach has the least variance
across the two tasks (Fig. 9). In the reaching task, temporal
stacks train almost twice as fast as the single frame variant. In
transportation, temporal stacks are also more efficient. Therefore
we can conclude that the more a task is time dependent and
impacted by nonlinear motion, the more useful stacked frames
becomes. This suggests that motion history representation is
a key feature in the observation space of deformable material
manipulation problems.

g) ADR Expansion Rate and Learning Decay: The learning
rate is kept constant during training to prevent the policy from
overfitting to the initial un-expanded local minimum. As the
expansion curve stabilizes (i.e., reward increase is marginal),
we also decay the learning rate to let the policy converge to a
stable state (Fig. 9(a)). We observed a sharp drop in performance
when the expansion rate was set above 2% (see Fig. 7).

h) Feasible parameter space: The resulting parameter space
Cfeas defined by the upper and lower thresholds from each learn-
ing session represents the feasible permutations of mechanical
and geometric parameters that the resulting robot-policy pairing
can solve at the 90% success rate (Fig. 8). This space can be used
as a feasibility check when designing structures to be built by this
system, thus serving as a valuable tool in co-design pipelines.

i) Proof of Concept Hardware Evaluation: Experiments were
conducted to determine the performance of the hardware using
policies from various stages of development and demonstrate a
proof of concept of the system.

The robot was able to transport bamboo pieces successfully
while hanging on to various parts of the demonstrator structure
(see supplementary video). The cantilever formed by denser
bundle assembly-groups was bigger than the simulated coun-
terpart, and led to some discrepancies between simulation and
real tests. Reaching was also possible, and the robot reacted
quickly to material deformations. However the amplitude of the
deformations caused by the robot’s swinging was smaller than
those seen in simulation Fig. 6(a). The sizing of the bamboo
rods acquired caused excessive damping when bundled, and the
imperfections in the printed body of the robot caused greater
friction in the joints than anticipated. Subsequent prototypes will
be made of aluminum parts and tests will be conducted on rods
with various diameters to determine appropriate robot-material
hardware pairings.

We also show locomotion across a 9 meter long bundle. In this
case, a learned policy was not needed, as an inverse kinematics
algorithm was able to accomplish the task (see supplementary

video), since the goal for the next step can always be described
relative to the base link of the robot, and thus the dynamics of
the bamboo do not matter as much.

VIII. DISCUSSION AND CONCLUSION

We have presented a novel mobile robotic system that con-
tributes to transition experimentation towards assembly of nat-
ural materials with variable mechanical properties for architec-
tural construction. We conducted experiments both in simulation
and in the real world to demonstrate the feasibility of our system
architecture in learning manipulation tasks involving bamboo, a
material with biological variability. Using our approach, robots
are able to reach towards and transport bamboo bundles for
the assembly of bamboo structures. We also show successful
initial experiments for more complex behaviours involving two
collaborating robots (see supplementary video). Once a larger
range of behaviors is developed, we can start evaluating more
global metrics such as effective time for constructing a structure.

Although our work is specific to architectural construction
with the aim of enabling the use of natural building materials
for construction, we hope that our system serves as a guide
for successful robotic manipulation of irregular and variable
materials in other domain-specific use cases. We believe that
construction site related challenges, such as weather related
external disturbances, could also be accounted for using sim-
ilar methods in future work. Additionally, we want to study
multi-robot collaboration with naturally variable materials, and
analyze the complex relationships between multiple robots and
materials. Initial results on such complex, collaborative tasks
can be seen in the supplementary video.
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