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It is well known that, for a system of atomic (molecular) gases both kinds of processes, isentropic 
as well as isenthalpic are realizable and widely used in refrigeration technique. Particularly, magnetic 
refrigeration exploits always isentropic process, characterized by Grüneisen parameter �H = (∂T /∂ H)S/T . 
We propose that, for quantum magnets an isenthalpic (Joule-Thomson) process, characterized by Joule-
Thomson coefficient κT = (∂T /∂ H)W may be also available. We considered this effect for a simple 
paramagnetic and dimerized spin-gapped quantum magnets at low temperatures. We have shown that 
for both kind of materials refrigeration by using Joule-Thomson effect is more effective than by using 
ordinary isentropic process, i.e. κT > T �H at low temperatures. For dimerized spin-gapped magnets, 
where Bose–Einstein condensation of triplon gas may take place, the Joule-Thomson temperature 
corresponds to the maximal temperature of liquefaction of the triplon system, which is compared with 
recent experimental observations performed by Dresden group (Wang et al. (2016) [21]). The inversion 
temperature, where reverse of cooling and heating up regimes takes place, found to be finite for triplons, 
but infinite for magnons in a simple paramagnetic.

© 2020 Published by Elsevier B.V.
1. Introduction

The properties of dimer spin systems at low temperatures have 
been intensively investigated in the last two decades. These mag-
netic systems, e.g., TlCuCl3, Sr3Cr2O8, etc. [1] consist of weakly 
coupled dimers with strong antiferromagnetic interaction between 
spins within a dimer. The ground state in such components is sin-
glet and it is separated from the first exited triplet state by a gap 
at zero magnetic field at zero temperature that may be interpreted 
as a liquid behavior characterized by a finite correlation length 
[2]. When an external magnetic field H is applied, the gap can be 
closed due to the Zeeman effect, resulting in the generation of a 
macroscopic number of triplet excitations (triplons) and the tran-
sition to a magnetically ordered phase takes place at H = Hc . This 
transition has been observed by studying the magnetization M of 
e.g., TlCuCl3 nearly 20 years ago [3]. Further, it was shown that it 
may be effectively described in terms of Bose–Einstein condensa-
tion (BEC) of quasi-particles of triplons [4,5], which mathematically 
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can be introduced by a generalized Schwinger representation in 
the bond-operator formalism [6,7]. In a constant external magnetic 
field and zero temperature the number of triplons is conserved in 
the thermodynamic limit and controlled by an effective chemical 
potential μ defined as [7–9]

μ = g f μB(H − Hc), (1)

where g f is electron Lande factor and μB is the Bohr magneton.
A triplon does not carry mass or electric charge, but a magnetic 

moment. Thus, it can be easily understood that the total density of 
triplons, ρ defines the uniform magnetization M , while the num-
ber of condensed triplons N0 defines the staggered magnetization 
Mstag , namely [3]

M = g f μB N, (2)

Mstag = g f μB

√
N0

2
. (3)

Here it should be noted that, in the thermodynamic limit, BEC is 
accompanied by spontaneous breaking of global gauge symmetry, 
which is a necessary and sufficient condition [7]. But in real mate-
rials, e.g. in TlCuCl3, this symmetry can be explicitly broken due to 
anisotropy. As a result, instead of a phase transition one has to deal 
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with a crossover where the staggered magnetization is renormal-
ized [10–12]. In the present work, for simplicity we shall neglect 
such effects and exploit Eqs. (2) and (3).

At zero temperature T = 0, BEC is considered as a quantum 
phase transition (QPT), which occurs upon tuning an external pa-
rameter. For ordinary gases this parameter is, naturally, the gas 
pressure, P , while for the system of triplons it may be identified 
as the external magnetic field. Pursuing the analogy between these 
two systems one may arrive at many interesting universal conclu-
sions. For instance, recently, Garst et al. [13] have considered the 
Grüneisen parameter � and the magnetocaloric effect (MCE) near 
a pressure (for gases) and magnetic field controlled QPT, respec-
tively. Using scaling analysis they have shown that the Grüneisen 
parameter defined as

� =

⎧⎪⎨
⎪⎩

1
C P V

(
∂V
∂T

)
P = 1

V T

(
dT
dP

)
S
≡ �P , gases

− 1
C H

(
∂M
∂T

)
H = 1

T

(
dT
dH

)
S
≡ �H , magnets

(4)

(where V is volume, C P is heat capacity at constant pressure and 
C H is heat capacity at constant H) changes its sign near generic 
quantum critical points. Recently, we have shown that [14] for spin 
gapped dimerized magnets this characteristic point coincides with 
the critical temperature of triplon condensation Tc . The position of 
such a point indicates the accumulation of entropy in the phase di-
agram. From the definition in Eq. (4) it is understood that �P and 
�H correspond to pressure-caloric and magneto-caloric isentropic 
effects at constant entropy, S = const., for gases and for paramag-
nets, respectively. Here, it should be underlined that �H is one of 
the key parameters of magnetic refrigeration at cryogenic temper-
atures and a highly topical area of research has been triggered by 
the observation of a giant MCE around room temperature [15,16].

The investigation of analogy between ordinary gases and the 
system of magnons has been further advanced by Bovo et al. [17]. 
Studying frustrated ferromagnets, they have found that analogous 
to gases, magnets have at least two kinds of critical tempera-
ture, namely Joule T J and Joule-Thomson T J T temperatures. By 
definition T J corresponds to the temperature for which the sys-
tem is quasi-ideal and the internal energy E is independent of 
the extensive parameters such as volume (cf. Table I of Ref. [17]), 
(∂ E/∂V )T = 0, or magnetization (∂ E/∂M)T = 0. As to the T J T , it 
is related to the well known Joule-Thomson isenthalpic process 
which is characterized by the following coefficient

κ J T =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
∂T
∂ P

)
W = 1

C P

[
T

(
∂V
∂T

)
P − V

]
,

gases(
∂T
∂ H

)
W = 1

C H

[
M − T

(
∂M
∂T

)
H

]
.

paramagnets

(5)

The sign of κ J T indicates whether the system heats up (κ J T > 0) or 
cools (κ J T < 0) during the process when the intensive parameter, 
P or H is increased. By definition the Joule-Thomson temperature, 
referred in literature also as an inversion temperature, is the tem-
perature when κ J T changes its sign i.e., κ J T (T = T J T ) = 0. Note 
that for a classical ideal gas κ J T = 0 at any temperature whereas 
ideal quantum gases have non-zero κ J T at low temperature [18]. 
Such a quantum isenthalpic process has been recently observed in 
a saturated homogeneous Bose gas [19].

In practice T J T shows the starting of the regime below which 
a gas may be liquefied by the Linde-Hampson isenthalpic process. 
For example for helium T J T = 34 K, which means that one has 
to cool helium down to 34 K to obtain liquid helium using the 
Joule-Thomson effect. In Refs. [20,21] it has been argued that a 3D 
spin-dimerized quantum magnet exhibits a triplon liquid phase be-
tween Hc1 and Hc2 (saturation field). As to the superfluid phase it 
is embedded in a dome-like phase diagram of triplon liquid ex-
tending up to T max

c , maximum temperature of the magnetically 
ordered regime [21–23], as it is illustrated in Fig. 4 of Ref. [21]. 
Particularly, T max

c ≤ 9 K both for Sr3Cr2O8 and TlCuCl3.
As discussed by Wang et al. [21] the ground-state of such a 

system is a quantum disordered paramagnet with a spin gapped 
elementary excitation, triplon. When Zeeman energy compensates 
the intra-dimer interaction, a QPT from quantum disordered (QD) 
phase to a spin aligned state can be induced. The paramagnetic 
and ferromagnetic states are separated by a canted-XY antiferro-
magnetic phase, which can be viewed as a triplon superfluid. The 
superfluid fraction survives up to T max

c ≈ 8 K and the triplon ex-
hibit liquid-like behavior up to some temperature denoted by T ∗
(T ∗ ∼ 18 K), as it was confirmed by analyzing the sound veloc-
ity measurements. Now, coming back to the analogy with ordinary 
atomic systems, we may argue that in spin-dimerized magnets 
Tc corresponds to the critical temperature of BEC, while T J T be-
ing the maximal temperature of liquefaction corresponds to T ∗ of 
Ref. [21], i.e., to the temperature below which triplons may be con-
sidered to be in the liquid phase. In other words, we assume that 
similarly to ordinary gases, T J T is the temperature above which 
the triplon gas can not be “liquefied”. Therefore, the main purpose 
of the present work is to study possible Joule-Thomson effect on 
dimerized spin-gapped quantum magnets and to estimate its inver-
sion temperature T J T . As to the temperature T J , which has rather 
academic interest, a reader may refer to our previous work [24].

The rest of the paper is organized as follows. In Sect. 2 we 
present general analytical expressions of magnetic thermodynam-
ics. Then in Sect. 3 we consider the case of quantum magnets and 
derive equations for main thermodynamic quantities. Having per-
formed numerical study which we present in Sect. 4 we discuss 
our predictions concerning the inversion temperature T J T and ef-
ficiency of isenthalpic MCE. The main conclusions are drawn in 
Sect. 5. The details of some calculations are moved to the Appen-
dices A and B.

2. Basic relations of magnetic thermodynamics

Generally speaking, the total Hamiltonian (or energy) of a mag-
netic substance is usually assumed to consist of several contribu-
tions: the crystalline lattice (Ĥ L ), the conducting electrons (Ĥe), 
the magnetic moments (Ĥm) and the atomic nucleus (Ĥn). So are 
the thermodynamic potentials, e.g. the grand potential � and the 
entropy, S .

For the sake of simplicity, we assume that �L and �e do not 
depend on the applied magnetic field but only on the temperature, 
and hence the total changes induced by the magnetic field varia-
tion are attributed to the changes of only the magnetic part. Below 
we concentrate only on the magnetic part, denoting it �M = �. In 
the next section we derive � explicitly for spin gapped magnets 
while here we present some general relations, assuming that � is 
known.

We have the following relations for main thermodynamic po-
tentials [25]

F = � + μN, E = F + T S, � = W − T S = μN

W = E + P V − H M = μN + T S,
(6)

where E , F , W and � are internal energy, Gibbs free energy, en-
thalpy and Helmholtz potential, respectively. The total differentials 
are [26,27]

d� = −SdT − PdV − Ndμ − MdH,

dF = −SdT − PdV + μdN + HdM,

dE = T dS − PdV + μdN + HdM, (7)
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d� = −SdT + V dP + μdN − MdH,

dW = T dS + V dP + μdN − MdH .

Now passing to the discussion of the Joule-Thomson tempera-
ture T J T we lay out some equivalent relations for the magnetic 
Grüneisen parameter which characterizes the isentropic (�S = 0) 
process

�H = 1

T

(
∂T

∂ H

)
S
= − 1

C H

(
∂M

∂T

)
H

= − 1

C H

(
∂ S

∂ H

)
T

(8)

where C H is defined as C H = T
(

∂ S
∂T

)
H = (

∂W
∂T

)
H . These equa-

tions can be derived easily using Eqs. (6) and (7) and well-known 
Maxwell relations.

An isenthalpic process (W = const.) being the main part of 
Joule-Thomson effect is characterized by the Joule-Thomson coef-
ficient κ J T ≡ (∂T /∂ H)W (similar to κ J T ≡ (∂T /∂ P )W for atomic 
gases). As it was shown in Appendix A, κ J T can be represented as

κ J T = 1

C H

[
M − T

(
∂M

∂T

)
H

]

= M

C H
+ T �H . (9)

Finally, the inversion temperature T J T is the solution of κ J T (T =
T J T ) = 0, which leads to

d(χ/T )

dT

∣∣∣
T =T J T

= 0, (10)

where we defined the susceptibility χ(T , H) as1

χ ≡ M

H
. (11)

Using Eqs. (9)–(11) we can see that at the inversion tempera-
ture T J T the quantity χ/T has a local extremum, i.e., d(χ/T )/dT
changes its sign. Equations (6)-(10) are general for any paramag-
netic material. In the next section we derive thermodynamic quan-
tities specifically for spin gapped dimerized quantum magnets.

3. Magnetic thermodynamics of spin gapped antiferromagnets

Microscopically, properties of any magnetic material may be de-
scribed by a Heisenberg-like Hamiltonian [27]. However, Giamarchi 
and Tsvelik [28] have shown that the Hamiltonians of quantum 
antiferromagnets and BECs are directly related to each other by a 
mapping transformation. In fact, using the bond operator formal-
ism [6] the Hamiltonian of the triplon gas may be simplified to the 
following semi-phenomenological Hamiltonian [1]

H =
∫

d�r
{

†

[
K̂ − μ

]

 + U

2
(
†
)2

}
(12)

where 
 is the bosonic field, μ is the chemical potential given in 
Eq. (1), and U is a coupling constant of triplon-triplon contact in-
teraction, which is usually considered as a fitting parameter. The 
kinetic energy operator, K̂ gives rise to the bare disperison εk as 
defined, for example, in the bond operator representation [29,30]. 
As to the integration in coordinate space, it should be taken within 
the crystal unit cell, though some authors take the integration 
within a sphere of infinite radius [4,31].

1 The Eq. (11) should be considered just as a notation, not a linear approximation, 
which holds for a weak magnetic field.
Applying the concept of BEC to the system of triplons, we have 
recently obtained [14] an explicit expression for � in the Hartree-
Fock-Bogoliubov approximation, which gives the following equa-
tions for physical quantities under consideration:

• Critical temperature of BEC Tc is given by the equation

∑
k

1

eεk/Tc − 1
= μ

2U
(13)

Here and what follows the summation over �k,

(1/V )
∑

k

=
∫

d3�k/(2π)3

implies the integration over the first Brilloin zone: B =
{−π ≤ kα ≤ π} with α = x, y, z. As to εk – bare dispersion of 
triplons, strictly speaking, one should use a realistic dispersion, 
taking into account possible anisotropies, [5,30]. However, for 
qualitative analysis a simple ansatz [2,4]

εk = J0(3 − cos akx − cos aky − cos akz) (14)

is also good, where m = 1/ J0 is an effective mass of triplon. 
Note that, the ordinary spherical symmetric bare dispersion, 
εk = �k2/2m, which is used for atomic gases, leads to the well-
known result

T 0
c = 2π

m

(
ρc

ζ(3/2)

)2/3

(15)

where ρc is critical density which can be experimentally mea-
sured and ζ(x) is the Riemann zeta function.

• Entropy, specific heat and Grüneisen parameter are given by 
the following expressions

S = −
(

∂�

∂T

)
H

= −
∑

k

ln
[

1 − e−βEk

]

+β
∑

k

Ek

eβEk − 1
(16)

C H = T

(
∂ S

∂T

)
H

= β2
∑

k

Ek(Ek − TE ′
k,T )eβEk(

eβEk − 1
)2

(17)

�H = − g f μB

C H

(
∂ S

∂μ

)
T

= g f β
2μB

C H

∑
k

EkE ′
k,μeβEk(

eβEk − 1
)2

(18)

where β = 1/T and �, E ′
k,T = (∂Ek/∂T )H , E ′

k,μ = (∂Ek/∂μ)T
are given explicitly in Appendix B. In the above equations Ek

corresponds to the quasiparticle dispersion

Ek =
{

ωk = εk − μef f for T ≥ Tc

Ek = √
εk

√
εk + 2� for T < Tc

(19)

with μef f = μ − 2Uρ .
• The total number of triplons and the number of condensed 

ones are given as
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N =
⎧⎨
⎩

∑
k

1
eβωk −1

for T > Tc

(�+μ)
2U for T ≤ Tc

(20)

N0 =
⎧⎨
⎩

0 for T > Tc

N − ∑
k

[
Wk(εk+�)

Ek
− 1

2

]
for T ≤ Tc

(21)

where � is the anomalous self-energy �an in the BEC phase. It 
can be evaluated as the physical solution (� ≥ 0) of following 
algebraic equation [31]

� = μ − 2
∑

k

[
W (βEk)(εk + 2�)

Ek
− 1

2

]
(22)

where W (x) = coth(x/2)/2 = 1/2 + 1/(exp(x) − 1). It is seen 
from Eq. (19) that in the BEC phase the dispersion is gapless 
and defines the sound velocity c as c = √

�/m due to the low 
momentum expansion Ek = ck + O (k2).

It should be noted that in this section and below we adopt the 
units kB = 1 for the Boltzmann constant, h̄ = 1 for the Planck con-
stant, and V=1 for the unit cell volume.

4. Results and discussions

To perform numerical calculations we adopt commonly used set 
of realistic parameters g f , Hc , U and J0, which have been fitted 
to experimental data for Sr3Cr2O8 and TlCuCl3 [20,32,33], as pre-
sented in Table 1.

As it was mentioned in the Introduction section, we assume 
that besides the well known adiabatic (isentropic) MCE, there can 
be another version of MCE, which exploits an isenthalpic process. 
In the present section we first compare them with each other and 
then pass to discuss the inversion temperature.

For simplicity we start with a paramagnetic material whose 
magnetization is given as [34]

M = g f μB tanh(x) (23)

where x = g f μB H/T . Now,(
∂T

∂ H

)
S
= T �H = g f μB x

C H cosh2(x)
, (24)

for isentropic and(
∂T

∂ H

)
W

= κ J T = g f μB

C H

[
tanh(x) + x

cosh2(x)

]
(25)

for isenthalpic processes, respectively. Their ratio may simply be 
represented as

rSW ≡
(

∂T
∂ H

)
S(

∂T
∂ H

)
W

= x

tanh(x) cosh2(x) + x
. (26)

The function rSW (x) is plotted in Fig. 1. It is seen that for rea-
sonable values of the x = 0 ÷ 5, this quantity is less than unity, 
i.e., rSW < 1, which means that isentropic process is less effec-
tive than isenthalpic one for a paramagnet. Here the influence of 
other parameters of MCE are neglected. From Eq. (24) one may 
note that �H ≥ 0 and �H (x = 0) = 0. So is the Joule-Thomson co-
efficient given by Eq. (25) and hence, T J T (paramagnetic) → ∞.

Now, we pass to dimerized quantum magnets. In Fig. 2 (a) 
and Fig. 2 (b) we present (∂T /∂ H)S = T �H vs temperature for 
Sr3 Cr2O8 and TlCuCl3. As it is expected �H changes its sign at 
T = Tc which means that in the isentropic process the regime 
of heating (T < Tc, �H > 0) changes by the regime of cooling 
Table 1
Material parameters used in our numerical calculations. From the experimental in-
put parameters g f and Hc we derived J0 and coupling constant U by fitting the 
experimental phase boundary Tc(H) to Eqs. (1) and (13) (see Ref. [14] for the de-
tails).

g f Hc (T) J0 (K) U (K)

Sr3Cr2O8 1.95 30.4 15.86 51.2
TlCuCl3 2.06 5.1 50 315

Fig. 1. The ratio rSW = (dT /dH)S /(dT /dH)W vs the parameter x = g f μB H/T for a 
simple paramagnet. As it is seen rSW < 1 for moderate values of x.

(T > Tc, �H < 0) at the critical temperature with increasing mag-
netic field.2

On the other hand, the changing of the temperature as the 
magnetic field varies in the isenthalpic process (∂T /∂ H)W = κ J T

is presented in Fig. 3(a,b) for Sr3Cr2O8 and TlCuCl3, respectively. 
Comparing the absolute values of (∂T /∂ H)S and (∂T /∂ H)W for 
the same values of T and H (e.g., Fig. 2(a) with Fig. 3(a)) one may 
note that especially, at low temperatures∣∣∣ (∂T /∂ H)S

∣∣∣
T ≤3K

<

∣∣∣ (∂T /∂ H)W

∣∣∣
T ≤3K

(27)

i.e., isenthalpic preocess is more effective than isentropic one. 
Moreover, as it is seen from Figs. 3, κ J T diverges at low temper-
ature, which is caused by the divergence of Grüneisen parameter 
[13,14] and 1/C H term in Eq. (9).

Now we discuss the inversion temperature T J T of these com-
pounds. As it is seen from Figs. 3(a,b) magnetic Joule-Thomson 
coefficient κ J T crosses the abscissa at a moderate value of the 
temperature. Therefore, in contrast to a simple paramagnet, the in-
version temperature for dimerized magnets is finite. To study this 
point in more detail we shall look for a possible extremum of the 
function χ(T , H)/T , in accordance with the Eq. (10).

In Fig. 4(a,b) we present d(χ/T )/dT vs temperature for Sr3Cr2O8
(H = 33 T ) and TlCuCl3, (H = 6 T ), respectively. It is seen that 
d(χ/T )/dT changes its sign at temperatures higher than critical 
one, T J T > Tc . This can be easily understood from Eq. (9) and 
Fig. 2: for T < Tc the parameter �H is positive, and hence κ J T (T )

may not reach zero.
We address the question of information that can be extracted 

from experiments, say, from the extremum of the function χ/T , 
which is related to M(T , H). Unfortunately, there is no experimen-
tal data on M(T ) available for Sr3Cr2 O 8, but there is a plenty of 

2 In the present work we are dealing with only magnetic contribution, so the 
terms “heating” or “cooling” mean the changing of the temperature only due to the 
spins.
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Fig. 2. The Gruneisen parameter multiplied by temperature, T �H = (dT /dH)S in 
units of KT −1 for various magnetic fields and for compounds (a) Sr3Cr2O8 and (b) 
TlCuCl3.

data on M(T ) for T lCuCl3 [4,32]. Thus, we have explored the ex-
isting data on M(T , H) for this material, e.g., given in Ref. [32] and 
using Eq. (11), constructed the dependence of d(χ/T )/dT on tem-
perature. From Fig. 4b we see that the experimental value of T J T

for TlCuCl3 at H = 6T is T exp
J T (H = 6T ) ≈ 3.9K . This fact confirms 

the existence of a finite inversion temperature for the compound 
TlCuCl3, which has no frustration. As to our theoretical prediction, 
it is seen that, the solid line in Fig. 4(b) (inset) crosses the abscissa 
at a larger temperature, approximately at T H F B

J T (H = 6T ) ≈ 5K . It 
appears that our estimate is in good qualitative agreement with 
the experiment. As it is seen from Figs. 4, at low temperatures, 
d(χ/T )/dT < 0 and divergent. This can be easily understood from 
its equivalent expression as d(χ/T )/dT = −(�H C H + MT −1)/H T .

Similarly to the inversion temperature of atomic gases, which 
depends on pressure, the inversion temperature of a magnetic 
Joule-Thomson process depends on the external magnetic field, 
which is presented in Figs. 5(a,b). As it is seen, for both materials 
this temperature is larger than the critical temperature of BEC, and 
the dependence of the dimensionless ratio T J T /Tc on the magnetic 
field is rather small.

As it is mentioned in the Introduction the Dresden group [21]
have performed measurements for Sr3Cr2O8 in the temperature re-
gion T > Tc . Particularly, they have observed that in the region of 
temperatures 8 K ≤ T < 18 K the sound velocity, and hence bulk 
modulus have an anomaly which disappears at T = T ∗ ∼ 18 K [22].

Following their interpretation this fact may provide experimen-
tal evidence of the existence of a field induced triplon liquid in 
Fig. 3. The temperature dependence of the Joule-Thomson coefficient for Sr3Cr2O8

(a) and TlCuCl3 (b) The point where κ J T crosses abscissa corresponds to inversion 
temperature for each magnetic field. Inset: κ J T at low temperatures.

the 3D spin-dimerized quantum antiferromagnet Sr3Cr2O8 and the 
maximal temperature of liquefaction, T ∗ . Thus, proceeding with 
the analogy of atomic and triplon gases one may come to the con-
clusion that the inversion temperature T J T under consideration is 
nothing but the temperature T ∗ found in their work. Actually, as 
it is seen from Fig. 5(a) the predicted Joule-Thomson temperature 
is T max

J T = 17.5 K (at H = 36 T), which in good agreement with the 
experimental T ∗ ∼ 18 K.

5. Conclusion

We have utilized the BEC analogy to study magnetic thermody-
namics of dimerized s = 1/2 quantum magnets. For this purpose 
we derived explicit expressions for the main thermodynamic quan-
tities within the Hartree-Fock-Bogoliubov approximation. These 
equations, as well as experimental data, have shown that when 
the external magnetic field exceeds a critical one, H > Hc the sys-
tem of triplons has at least two finite characteristic temperatures: 
T J T and Tc . The former presents a signature of the liquid state 
in a temperature region T ≤ T J T , while the latter which corre-
sponds to the critical temperature of BEC, Tc < T J T shows also 
the point when in the triplon liquid a finite superfluid compo-
nent arises. In this sense, the present work gives an additional 
argument in order to affirm that the field induced triplons in 3D 
spin-dimerized antiferromegnets could be in the liquid state in the 
range of temperatures T ≤ T J T , where the Joule-Thomson temper-
ature T J T is finite and of the order of the critical temperature of 
BEC, T J T ∼ 1.8Tc .

Comparing commonly used isentropic (adiabatic) MCE with a 
proposed isenthalpic process we have shown that the latter is 
more powerful both for simple paramagnetics as well as dimerized 
magnets. We hope that such a process can be realized in pressure 
and field induced magnetic experiments.
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Fig. 4. The quantity d(χ/T )/dT vs temperature for (a) Sr3Cr2O8 and (b) TlCuCl3. The 
point where it changes its sign corresponds to the inversion temperature. The insets 
show the same quantity around T ∼ T J T . The triangles correspond to d(χ/T )/dT
extracted from the experimental data on M(T ) for TlCuCl3 from Ref. [32].

Unfortunately, the present simple approach cannot describe 
saturation effects, since they are not included in the effective 
Hamiltonian (12) properly. Besides, for simplicity anisotropic ef-
fects, which are essential [10,11] for TlCuCl3 due to Dzyaloshinsky-
Moriya (DM) or exchange anisotropy (EA) interactions are ne-
glected. Nevertheless, our predictions on the inversion temperature 
are in a good qualitative agreement with the existing experimental 
observations. As to the isenthalpic magneto-caloric effect, proposed 
in present work, more experimental studies on the thermodynamic 
properties of field or pressure induced phase transitions should be 
performed. The situation may be the similar with high temper-
ature superconductors, whose critical temperature changes under 
high pressure [35]. Here it is worth to underline that the ther-
modynamics of pressure and field induced phase transitions in 
spin-dimerized magnets have not been fully explored [36].
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Appendix A

Here we derive explicit expression for κ J T given by Eq. (9). In-
deed, starting from

κ J T =
(

∂T

∂ H

)
W

(A.1)

=
∂(T ,W )
∂(H,T )

∂(H,W )
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(
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(
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∂ H

)
T(

∂ H
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C H
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, (A.2)

and using Eq. (7) it is easy to show that(
∂W

∂ H

)
T

= T

(
∂ S

∂ H

)
T

− M (A.3)

and(
∂ S

∂ H

)
T

= − ∂

∂ H

(
∂�

∂T

)
H

= − ∂

∂T

(
∂�

∂ H

)
T

=
(

∂M

∂T

)
H

. (A.4)

Inserting (A.3) and (A.4) into (A.2) finally gives κ J T in (9).

Appendix B

Here we present explicit expressions for the free energy, ob-
tained in our earlier work [14] using a variational perturbative 
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theory [37,38]. In the normal T > Tc and ordered T ≤ Tc phases 
it is given by

�(T > Tc) = −U N2 + T
∑

k

ln(1 − e−βωk ) (B.1)

and

�(T ≤ Tc) = 1

2

∑
k

(Ek − εk) + T
∑

k

ln(1 − e−βEk )

+ Uρ1(ρ1 − 2N) − �2

2U
(B.2)

where

� = μ + 2U (σ − ρ1), (B.3)

σ = −�
∑

k

Wk

Ek
, (B.4)

ρ1 =
∑

k

[
Wk(εk + �)

Ek
− 1

2

]
, (B.5)

with Wk = 1
2 coth

(
βEk

2

)
, Ek = √

εk(εk + 2�).

Now we bring explicit expressions for E ′
k,T = (∂Ek/∂T )H and 

E ′
k,μ = (∂Ek/∂μ)T which were used to calculate C H and �H in the 

Section 3.
In the normal phase when Ek = ωk = εk −μ + 2Uρ , the density 

of particles is given by

ρ =
∑

k

f B(ωk) (B.6)

where f B(x) = 1/(eβx − 1). Clearly,

dωk

dT
= 2U

dρ

dT
(B.7)

which does not depend on momentum k. Differentiating both sides 
of the equation (B.6) with respect to T and solving by dp/dT , we 
find

dρ

dT
= β S1

(2S2 − 1)
,

(B.8)

S1 = −β
∑

k

ωk f 2
B (ωk)eωkβ,

S2 = −Uβ
∑

k

f 2
B (ωk)eωkβ. (B.9)

Taking the derivative with respect to μ gives

dωk

dμ
= 2U

dρ

dμ
− 1,

dρ

dμ
= S2

U (2S2 − 1)
. (B.10)

In the condensed phase, T ≤ Tc , Ek = Ek = √
εk(εk + 2�), and 

hence we have

dEk

dT
= εk

Ek
�′

T ,

dEk

dμ
= εk

Ek
�′

μ. (B.11)

To find, e.g., �′
T we can differentiate both sides of the equation 

(B.3) with respect to T and solve it for �′ .
T
The results are

�′
T = d�

dT
= g S4

2T (2S5 + 1)
,

�′
μ = d�

dμ
= 1

2S5 + 1
,

S4 =
∑

k

W ′
k(εk + 2�), (B.12)

S5 = U
∑

k

4Wk + Ek W ′
k

4Ek
,

where

W ′
k = β(1 − 4W 2

k ). (B.13)
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