
INVESTIGATION OF FINITE PHASED
ARRAYS OF PRINTED ANTENNAS ON

PLANAR AND CYLINDRICAL GROUNDED
DIELECTRIC SLABS

a thesis

submitted to the department of electrical and

electronics engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Onur Bakır

August, 2006



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Vakur B. Ertürk(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Ayhan Altıntaş
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ABSTRACT

INVESTIGATION OF FINITE PHASED ARRAYS OF
PRINTED ANTENNAS ON PLANAR AND

CYLINDRICAL GROUNDED DIELECTRIC SLABS

Onur Bakır

M.S. in Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Vakur B. Ertürk

August, 2006

Printed structures, in the form of a single printed antenna (printed dipole, patch,

etc.) or an array of printed antennas on planar and cylindrical grounded dielectric

slabs, are investigated. Full-wave solutions based on the hybrid method of mo-

ments (MoM)/Green’s function technique in two different domains, the spectral

and the spatial domains are used to analyze these types of geometries. Several nu-

merical problems, encountered in the evaluation of both the spectral and spatial

domain integrals are addressed and solutions for these problems are presented.

Among them the two important ones are: (1) The infinite double integrals which

appear in the asymptotic parts of the spectral domain MoM impedance matrix

and the MoM excitation vector elements for planar grounded dielectric slabs are

evaluated in closed-form in this thesis, resulting an improved efficiency and accu-

racy for the rigorous investigation of printed antennas. (2) In the space domain

MoM solution of printed structures on planar grounded dielectric slabs, an ac-

curate way of treating the singularity problem of the self-term and overlapping

terms as well as the MoM excitation vector is presented along with a way to halve

the order of space domain integrals by employing a proper change of variables

and analytical evaluation of one of the integrals for each double integral.

Finally two different studies which use these improved methods are presented

in order to asses their accuracy and efficiency: (1) Investigation of scan blindness

phenomenon for finite phased arrays of printed dipoles on material coated electri-

cally large circular cylinders, and its comparison with the same type of arrays on

planar platforms. In this study effects on the scan blindness mechanism of sev-

eral array and supporting structure parameters, including curvature effects, are

discussed. (2) A discrete Fourier transform (DFT) based acceleration algorithm

is used in conjunction with the generalized forward backward method (GFBM)

iv



v

to reduce the computational complexity and memory storage requirements of the

aforementioned full-wave solution method for the fast analysis of electrically large

finite phased arrays of microstrip patches. As a result both the computational

complexity and memory storage requirements are reduced to O(N) (of order N),

where N is the number of unknowns.

Keywords: Microstrip antennas and antenna arrays, Method of moments, Green’s

function, Scan blindness.



ÖZET

TOPRAKLANMIŞ DÜZLEMSEL VE SİLİNDİRSEL

DİELEKTRİK YÜZEYLER ÜZERİNDEKİ FAZ
DİZİLİMLİ VE SONLU BASKI DEVRE ANTENLERİN

İNCELENMESİ

Onur Bakır

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Vakur B. Ertürk

Ağustos, 2006

Düzlemsel ve silindirsel yüzeyler üzerine basılmış, tek bir anten veya anten dizileri

şeklindeki baskı devre yapıları, bir tam dalga çözümü olan Momentler Metodu

(MoM), Green fonksiyonu karma tekniği kullanılarak incelenmiştir. Bu tezde

hem spektral hem uzamsal bölgede kullanılan bu tekniğin uygulanışındaki sorun-

lar ele alınmış ve bu sorunlara yönelik çözümler sunulmuştur. Bunlar arasında

göze çarpan iki tanesi: (1) Topraklanmış düzlemsel dielektrik materyaller üzerine

basılmış, baskı devre yapıları için, spektral bölgede yazılmış MoM empedans

matrisi ve MoM voltaj vektörü elemanlarının asimptotik kısımlarını oluşturan

iki katlı integrallerin kapalı formlarının bulunması ve böylelikle verimlilik ve

doğrulukta bir artış elde eldilmesi. (2) Yine aynı geometrideki yapılar için uzam-

sal bölgede yazılan MoM çözümünde, temel fonksiyonlar tam ya da yarım olarak

üst üste geldiği zaman, MoM empedans matrisi ve MoM voltaj vektorü ele-

manlarında meydana gelen tekillik problemine, doğru bir çözüm bulunmuş ve

yine bu elemanlardaki katlı integrallerin sayısını yarıya indirmek için bir yol öne

sürülmüştür.

Son olarak bu geliştirilmiş metodların verimliliğini ve doğruluğunu göstermek

için, bunların kullanıldığı iki ayrı çalışma sunulmuştur: (1) Dielektrik kapı büyük

metal silindirler üzerindeki faz dizilimli, sonlu baskı dipol antenlerde tarama

körlüğü olgusunun incelenmesi ve topraklanmış düzlemsel dielektrik yüzeylerdeki

anten dizilerindeki durumla karşılaştırılması. Bu çalışmada anten dizileriyle il-

gili bir çok parametrenin ve yüzey eğiminin tarama körlüğü mekanizması üzerine

etkileri incelenmiştir. (2) Ayrık Fourier dönüşümü tabanlı bir hızlandırma algo-

ritmasının, genel ileri-geri metodu ile birlikte kullanılmasıyla, elektriksel olarak

büyük faz dizilimli sonlu baskı anten dizilerinin tam dalga çözümünde hesaplama
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karmaşıklığı ve hafıza gereksinimlerinin azaltılmasına yarayan hızlı bir metod

geliştirilmesi. Bu sayede hesaplama karmaşıklığı ve hafıza gereksinimleri O(N)

(N. dereceden) bir seviyeye düşürülmüştür. N bilinmeyenlerin sayısıdır.

Anahtar sözcükler : Mikroşerit antenler ve anten dizileri, Momentler metodu,

Green fonksiyonu, Tarama körlüģü.
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x̂-ŷ Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6.3 Evaluation of V x,y
m in Spatial Domain . . . . . . . . . . . . 63

4 Green’s Function Representations for Cylindrical Grounded Di-

electric Slab 65

4.1 Spectral Domain Representation of Green’s Function for Cylindri-

cal Grounded Dielectric Slabs . . . . . . . . . . . . . . . . . . . . 65

4.2 Spatial Domain Representation of Green’s Function for Cylindrical

Grounded Dielectric Slabs . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Steepest Descent Path (SDP) Representation of the Green’s

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



CONTENTS xi

4.2.2 Numerical evaluation of the Integrals for the SDP Repre-

sentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.3 Fourier Series Representation of Green’s Functions . . . . 77

4.3 Limitations of the Green’s Function Representations for Cylindri-

cal Grounded Dielectric Slab and the Switching Algorithm . . . . 82

5 Scan Blindness Phenomenon in Finite Phased Arrays of Printed

Dipoles 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Some Definitions and Far-field Patterns . . . . . . . . . . . . . . . 88

5.3 Numerical Results and Discussion . . . . . . . . . . . . . . . . . . 91

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Efficient Analysis of Large Printed Arrays 105

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Conclusions 117

A Integral Formulas I 127

B Integral Formulas II 130



List of Figures

2.1 A Microstip patch antenna on planar host platform. . . . . . . . . 7

2.2 A Microstip patch antenna on cylindrical host platform. . . . . . . 8

2.3 Geometries of periodic arrays of (2N + 1) × (2M + 1) (a) axially,

(b) circumferentially oriented printed dipoles on dielectric coated,

electrically large circular cylinders. (c) Geometry of a periodic,

planar array of (2N + 1) × (2M + 1) printed dipoles. (d) Dipole

connected to an infinitesimal generator with a voltage Vnm and a

terminating impedance ZT . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 (a) Geometry of periodic array of (2N + 1)× (2M + 1) microstrip

rectangular patch antennas on a dielectric coated, electrically large

circular cylinder. (b) Geometry of a periodic, planar array of (2N+

1)×(2M+1) microstrip rectangular patch antennas on a grounded

dielectric slab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 A couple of x̂-directed RT basis functions . . . . . . . . . . . . . . 24

3.2 Comparison among the infinite 2-D integral, the finite 1-D integral

and the closed-form expressions. . . . . . . . . . . . . . . . . . . . 29

3.3 Magnitude and phase of mutual impedance Zxx
12 between two iden-

tical x̂−directed current modes on a th = 0.057λ0 thick grounded

dielectric slab with ǫr = 2.33. . . . . . . . . . . . . . . . . . . . . 30

xii



LIST OF FIGURES xiii

3.4 Input impedance data of a probe-fed, L = 2 cm by W = 3 cm

rectangular antenna on a h = 0.127 cm thick grounded dielectric

slab with ǫr = 10.2. Frequency = 2.2-2.4 GHz. . . . . . . . . . . 31

3.5 Input impedance data of a probe-fed, L = 49.91 mm by W = 39.52

mm rectangular antenna on a h = 6.3 mm thick grounded dielectric

slab with ǫr = 2.484. Frequency = 1.72-2.10 GHz. . . . . . . . . . 32

3.6 Mapping from the y-y′ plane to τ -ψ plane . . . . . . . . . . . . . 38

3.7 Mapping from the x-x′ plane to ν-υ plane . . . . . . . . . . . . . 40

3.8 Mapping from the x-x′ plane to ν-υ plane . . . . . . . . . . . . . 46

3.9 Mapping from the y-y′ plane to τ -ψ plane . . . . . . . . . . . . . 51

3.10 Mapping from the x-x′ plane to ν-υ plane . . . . . . . . . . . . . 52

3.11 Mapping from the y-y′ plane to τ -ψ plane . . . . . . . . . . . . . 57

3.12 Mapping from the x-x′ plane to ν-υ plane . . . . . . . . . . . . . 58

3.13 Mapping from the x-x′ plane to ν-υ plane . . . . . . . . . . . . . 61

3.14 Mapping from the y-y′ plane to τ -ψ plane . . . . . . . . . . . . . 63

4.1 The cylindrical geometry . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 SDP path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Integration contour in the ν-domain . . . . . . . . . . . . . . . . . 75

4.4 Integration contours in the τ -domain . . . . . . . . . . . . . . . . 76

4.5 Integration contour in the τ -domain . . . . . . . . . . . . . . . . 77



LIST OF FIGURES xiv

4.6 Magnitude of the mutual coupling, |Z12|, between two identical ẑ-
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Chapter 1

Introduction

Printed antennas and arrays are preferred over the conventional antennas and

arrays in a wide range of applications starting from military systems like air-

borne, ship borne, space borne systems, naval or aircraft radar applications to

the civilian systems like wireless or satellite communications, mobile base stations,

cellular phones, remote sensing and biomedical applications. This is due to their

advantages over conventional antennas and arrays such as low fabrication costs,

light-weight, direct integrability with the solid state and other microwave devices,

and conformity to the surface where they can be mounted on planar grounded

dielectric slabs or conform to the coated convex perfectly electric conducting

(PEC) structures like circular, elliptical cylinders, spheres etc. However, the ma-

jority of the computer-aided design (CAD) tools, which are developed to perform

the full-wave analysis of these structures exhibit memory storage and computing

time problems when these structures are electrically large. Furthermore, when

the printed arrays on coated convex bodies are considered, available tools are

scant, and results obtained from these tools yield accuracy problems, in particu-

lar if the arrays and/or array supporting structures are electrically large. There-

fore, a great number of studies using the integral equation (IE) based method

of moments (MoM) solutions, which use the appropriate Green’s function repre-

sentations, have been directed toward the development of efficient and accurate

methods that can be implemented in CAD packages to investigate printed arrays

1



CHAPTER 1. INTRODUCTION 2

mounted on various shaped coated host platforms [1]-[17].

In the light of above discussion, in this thesis a hybrid method based on the

combination of MoM with special Green’s function representations is used to in-

vestigate printed antennas/arrays on planar and cylindrical grounded dielectric

slabs in both spatial and spectral domains. These Green’s function representa-

tions include all the effects of the grounded dielectric slabs and they are specific to

the geometry that is being analyzed. In the spectral domain, an infinitesimal cur-

rent source on the air-dielectric interface is assumed and then the corresponding

Green’s function representation, which might involve Fourier integrals or Fourier

summations, is found by applying the boundary conditions for the electric and

magnetic fields. However, to obtain the spatial domain Green’s function repre-

sentations, we usually start with the spectral domain representations and perform

several asymptotic techniques and various approximations to evaluate the afore-

mentioned integrals and summations.

On the other hand MoM is used to convert an integral equation, which is the

electric field integral equation (EFIE) in our case, to a system of linear equations.

In this method currents on the surface of PEC are modeled as a sum of known

entire-domain or sub-domain basis functions with unknown coefficients written

in the form of a vector (MoM current vector) and found by solving the system of

linear equations. The most important element of this system of linear equations is

the MoM impedance matrix whose elements denote the self and mutual couplings

between the basis functions. Accurate evaluation of these elements can be carried

out both in spatial and spectral domains, which is explained in Chapter 2. Finally,

the right hand side of this matrix equation is the voltage (excitation) vector

whose elements represent the interaction between the feeding mechanism and the

testing functions. It is important to note that the accuracy and efficiency of this

hybrid MoM/Green’s function technique depends on the accurate and efficient

evaluation of the MoM impedance matrix entries, which strongly depend on the

Green’s function representations. When the spectral domain calculations are

considered for planar and cylindrical geometries, each has a single representation,

which is the eigenfunction solution for the corresponding geometry. Besides, each

solution is used as a reference solution in many studies. However, mutual coupling
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calculations in this domain has severe convergence issues especially for electrically

large lateral separations between the source and observation points. Therefore,

several techniques are used to improve their efficiency and accuracy. On the

other hand, in the spatial domain, more than one representation is used for both

planar and cylindrical geometries based on where each representation yields the

most accurate results and where each representation is the most efficient [18],

[19].

In this thesis Chapter 3 and 4 present the evaluation of the MoM impedance

matrix and the voltage vector entries both in spectral and spatial domains for

planar and cylindrical geometries, respectively, in a detailed way. During the

evaluation of these entries, encountered difficulties and methods to handle these

difficulties as well as several methods to improve both the efficiency and accuracy

are explained. Among them a noticeable one is related to the spectral domain

mutual coupling calculations for planar structures. Mutual coupling expressions

involve the evaluation of infinite double integrals in the spectral domain, which

have severe convergence issues. In previous studies [20] and [21], an asymptotic

extraction method is applied to these integrals along with some integration for-

mulas to decrease the computation time. As a result, the asymptotic parts of

both the impedance matrix and the voltage vector are transformed to finite one-

dimensional integral, which are evaluated using a highly specialized commercial

package ’International Mathematics and Statistics Library’ (IMSL). Note that

these 1-D integrals may posses integrable singularities. In Chapter 3, we provide

closed-form solutions to these 1-D integrals.

However, due to the limited usage of spectral domain solutions (convergence

problems for electrically large geometries), more emphasis is given to the spatial

domain calculations both in Chapter 3 and Chapter 4. In the spatial domain cal-

culations the main problem is handling the singularities when two basis functions

overlap with each other completely or partially. In this thesis we explain how

to treat these singularities for co- and cross-coupling cases as well as probe-basis

function interactions using mappings and change of variable methods in a simi-

lar fashion to [22]. Besides, apart from the singularity treatments, same change
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of variables are used to reduce the order of integrations. Finally, the remain-

ing integrals are numerically calculated using an adaptive Gaussian integration

scheme, which increases the number of points adaptively until a level where the

convergence of the integral is achieved for a desired accuracy.

Finally these improved methods are incorporated into two different studies

to asses their accuracy and efficiency. First study is the investigation of the

scan blindness phenomenon for finite arrays of printed dipoles on material coated

electrically large circular cylinders, and its comparison with the same type of

arrays on planar platforms. Scan blindness phenomenon which is investigated

previously for infinite [23]- [24], [25] and finite [4]-[26] printed antenna arrays

on planar grounded dielectric slabs, are investigated for cylindrical ones and the

results are published in [27]. These foundings are restated in this thesis in Chapter

5.

The second study is a method to reduce the computational time and memory

costs of the aforementioned full-wave solution for the analysis of electrically large

finite phased arrays of printed dipoles and patches on planar grounded dielectric

slabs. In this thesis a generalized forward backward method (GFBM) [28] based

on a discrete Fourier transform (DFT) based acceleration algorithm ([8], [9]) is

used in order to achieve this goal. The computational complexity of the problem

which is originally O(N2
tot) (order of N2

tot) for each iteration can be reduced to

O(Ntot) (Ntot is the total number of unknowns) using this method. The result is

remarkably fast and accurate as it is shown in Chapter 6.

Chapter 7 concludes this thesis and explains the importance of the work in

the view of presented results. In Appendix A some integral formulas are given

which are used in this thesis. An ejωt time dependence is assumed and suppressed

throughout this work.



Chapter 2

The Hybrid MoM/Green’s

Function Solution

2.1 Introduction

In this chapter a hybrid technique is explained, which is used to analyze the

printed circuit structures. This technique is called the hybrid MoM/Green’s func-

tion method [29]. It is a combination of the conventional Method of Moments

(MoM) solution with a special Green’s function. The special Green’s functions

are specific to the medium that is being analyzed and they are given for planar

and circularly cylindrical grounded dielectric slabs in Chapter 3 and Chapter 4,

respectively. In hybrid MoM/Green’s function technique, an electric field integral

equation (EFIE), whose kernel is the special Green’s functions that include the

presence of the dielectric layer(s) (by satisfying the appropriate boundary condi-

tions), is formulated for the unknown equivalent currents, representing the printed

elements on the dielectric substrate. These currents are then approximated as

a finite sum of known expansion functions multiplied by unknown coefficients.

Finally by taking the moments of the approximated integral equation using the

same expansion functions as weighting functions (Galerkin’s Method), the inte-

gral equation is converted into a matrix equation. Coefficients of the expansion

5
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functions are the unknowns in this matrix equation. Once we solve for these

unknowns, we can express the current distribution on the dielectric substrate.

Formulation of this matrix equation is given in Section 2.2. Calculation of the

entries of this matrix can be done in spectral or spatial domains and Section 2.3

explains these methods.

2.2 MoM Formulation

In Figure 2.1(a) and 2.2(a) basic geometries for printed circuit structures are

given for planar and cylindrical dielectric slabs, respectively. Although rectangu-

lar microstrip patch antennas are given as an example in these figures, any shape

of a printed structure can be analyzed using the hybrid MoM/Green’s function

technique. These antennas are excited by a probe which is assumed to be ideal in

the rest of the work. Using the Schelkunoff’s surface equivalence principle [30],

these geometries can be analyzed using an equivalent problem as illustrated in

Figure 2.1(b) and Figure 2.2(b), respectively. In the equivalent problem, con-

ducting patch surfaces are replaced with the equivalent induced surface currents

which are unknown and are to be solved via MoM.

In order to write the EFIE, we start by writing the total electric field in

free-space denoted as ~E0(~r), given by

E0(r) = Ei(r) + Es(r) . (2.1)

In this equation Es(r) is the scattered electric field created by the induced

surface currents whereas the Ei(r) is the incident field which can be a plane

wave incident on the patch (scattering problem) or a field generated by the probe

current density (radiation and/or mutual coupling problem). We are assuming

the latter case in this thesis. Es(r) and Ei(r) are formulated using the special

Green’s function and the corresponding current densities such that

Ei(r) =
∫ ∫

Ssource

G(r, r′) · Ji(r′) ds′ (2.2)
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Conducting Patch

probe

Dielectric: t ,h re PEC

(a) Original Problem (b) Equivalent Problem

Dielectric: t ,h re PEC

W

L

Figure 2.1: A Microstip patch antenna on planar host platform.

Es(r) =
∫ ∫

Sconductor

G(r, r′) · Js(r′) ds′ (2.3)

where G is the Green’s dyad involving the appropriate components of the electric

field related to the surface currents on the conducting patch in the existence of

the grounded dielectric slab. These equations are valid for both cylindrical (Gcyl)

and planar geometries (Gpl). Finally in (2.2) and in (2.3) r and r′ denote the

cylindrical or the cartesian coordinate system position vectors according to the

geometry that is being analyzed, and the primed coordinates denote the source

points whereas unprimed coordinates denote the field points.

Using the boundary condition, that the tangential component of the total

electric field is zero on the surface of the conducting patch, one obtains the EFIE

given by

n̂×
(

Ei(r) + Es(r)
)

= 0 on Sconductor , (2.4)

which can be expressed as (using (2.2) & (2.3))
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a
d a

d

th

er

th

er

Conducting Patch

probe

(a) Original Problem
(b) Equivalent Problem

PEC

PEC

Figure 2.2: A Microstip patch antenna on cylindrical host platform.

∫ ∫

Spatch

n̂× G(r, r′) · Js(r′) ds′ = −
∫ ∫

Ssource

n̂× G(r, r′) · Ji(r′) ds′ (2.5)

where r and r′ ∈ Sconductor and n̂ is the unit vector normal to the conductor

surface. Then, the MoM procedure starts with the expansion of the unknown

surface current in terms of known basis functions

Js(r) =
N
∑

n=1

InJn(r) (2.6)

where In represents the unknown current coefficients which are to be found. Us-

ing (2.6) in (2.5) and taking the moments of this integral equation using the same

basis functions as weighting functions (Galerkin procedure) we obtain a matrix

equation given by

Z · I = V (2.7)
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where

Zmn =
∫ ∫

Sm

dsJm(r) ·
(∫ ∫

Sn

ds′ G(r, r′) · Jn(r′)
)

(2.8)

Vm = −
∫ ∫

Sm

dsJm(r) · Ei(r) . (2.9)

Zmn is the mutual coupling between mth and nth basis functions. (2.9) is a general

equation for the voltage vector. Specifically for a radiation problem with an ideal

probe excitation it can be written as

Vm = −
∫ ∫

Sm

dsJm(r) · Gu
n(r) (2.10)

where Gu
n represents a modified version of the special Green’s dyad involving the

normal components of the electric field related to the surface currents on the

conducting patch as

Gu
n =

∫ d

0
Gn dz , (2.11)

with Gn representing the normal components of Green’s function for either the

cylindrical (Gcyl
n ) or planar (Gpl

n ) geometries. In (2.10) Vm can be considered as a

mutual coupling between the mth basis function on the conducting patch and the

feeding probe, which is assumed to be a unit current source at the probe position

(ideal probe). Gu
n is the special Green’s function for this kind of feeding source.

Solution of the matrix equation (2.7) will give us the current coefficients which

define the surface current distribution on the conducting patch. The inversion

of the MoM matrix can be done using standard routines. For very large arrays

iterative methods like generalized forward backward method (GFBM) can be

necessary to reduce the computational complexity of this solution (as will be

briefly explained in Chapter 6).
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There are different types of basis functions used in this thesis for comparison

reasons. For planar dielectric slabs 3 types of basis functions are used. These are

entire basis (EB) functions (of order m):

JEBx (x, y) =
1

W
rect

(

y − yn
W

)

sin
(

mπ

L

[

x−
(

xn −
L

2

)])

, (2.12)

piecewise sinusoidal (PWS) basis functions:

JPWS
x (x, y) = rect

(

y − yn
2ya

)

sin [ke (xa − |x− xn|)]
2ya sin(kexa)

, (2.13)

and roof-top (RT) basis functions:

JRTx (x, y) =
1

2ya
rect

(

y − yn
2ya

)(

1 − |x− xn|
xa

)

. (2.14)

where the “rect” function is defined as:

rect(x/2a) =







1, |x| < a

0, otherwise
. (2.15)

The EB function is defined over the entire domain of the rectangular conduct-

ing patch whereas the PWS and the RT basis functions are sub-sectional basis

functions and they are defined over the sub-section

(xn − xa) ≤ x ≤ (xn + xa)

(yn − ya) ≤ y ≤ (yn + ya)
. (2.16)

In (2.16), xa and ya denote the half-length and the half-width of the basis func-

tions, respectively. xn and yn are the center points of the nth basis function. Note

that basis functions (2.12)-(2.15) are directed in the x̂ direction. The ŷ-directed

basis functions can be written similarly by interchanging the x and y variables.

Also note that the EB function is defined over the entire patch surface of length
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L and width W . In (2.13) ke is the effective wavenumber of the substrate given

in [31] as

ke = ω
√
µ0ǫe (2.17)

ǫe =
ǫr + 1

2
+
ǫr − 1

2

(

1 +
10th
W

)

. (2.18)

For cylindrical dielectric slabs only PWS basis functions are considered. ẑ

and φ-directed PWS basis functions are given by

Jzn(z, φ) = rect

(

dφ− dφn
2rla

)

sin [ke (za − |z − zn|)]
2rla sin (keza)

(2.19)

Jφn (z, φ) = rect
(

z − zn
2za

)

sin [ke (rla − |dφ− dφn|)]
2za sin (kerla)

, (2.20)

respectively, where za and rla denote the half-length and the half-width of the ẑ-

directed basis functions, respectively. These basis functions are located at (zn, φn)

and they are sinusoidal in the direction of current and constant in the orthogonal

direction.

2.3 Spectral and Spatial Domain Methods

Equations (2.8) and (2.9) are two spatial domain representations of the impedance

matrix and voltage vector entries, which involve the special Green’s functions

in the spatial domain. However, analytically exact expressions for the Green’s

functions which include the effects of planar and cylindrical dielectric slabs are

available only in the spectral domain. Therefore, in the spatial domain these

Green’s functions are represented as the inverse Fourier transform (IFT) of their

spectral domain counterparts, and the MoM matrix and the voltage vector entries

are given by
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Zmn =
∫ ∫

Sm

dsJm(x, y) ·
[∫ ∫

Sn

ds′

(∫ ∫

∞
dky dkx G̃(kx, ky)e

jkx(x−x′)ejky(y−y′)
)

· Jn(x′, y′)
]

(2.21)

and

Vm = −
∫ ∫

Sm

ds
(∫ ∫

∞
dky dkx G̃n(kx, ky)e

jkx(xp−x)ejky(yp−y)
)

· Jm(x, y) , (2.22)

respectively for a planar geometry. In (2.21) and (2.22) G̃ and G̃n represent

the appropriate components of the spectral domain Green’s function, Jm and Jn

are the same type of basis functions chosen from the list of basis functions dis-

cussed in the previous section. Jm and Jn are centered at (xm, ym) and (xn, yn),

respectively. Finally (xp, yp) denotes the coordinates of the probe feeding the

microstrip patch antenna. However, in (2.21) and (2.22) the IFT of the spectral

domain Green’s function can not be taken, since G̃ and G̃n are not absolutely

integrable. Therefore, in (2.21) and (2.22) first the order of integrals are changed

by taking the finite integrals inside the IFT integrals. Then these finite integrals

are evaluated in closed-form by recognizing the Fourier transforms (FT) of Jm

and Jn. As a results (2.21) and (2.22) become

Zmn =
∫ ∫

∞
dkx dky J̃

∗
m(kx, ky) · G̃(kx, ky) · J̃n(kx, ky) (2.23)

and

Vm = −
∫ ∫

∞
dkx dky J̃m(kx, ky) · G̃n(kx, ky)e

jkxxpejkyyp (2.24)

which are called the spectral domain representation of the MoM matrix and

voltage vector entries. Note that Jm and Jn should be chosen carefully so that

their FT, denoted by J̃m and J̃n (with their complex conjugates J̃∗
m, J̃∗

n), will

make the integrands of (2.23) and (2.24) absolutely integrable.

For cylindrical geometries, equations (2.23) and (2.24) are written as (except

the factor 1/2π)[32]



CHAPTER 2. THE HYBRID MOM/GREEN’S FUNCTION SOLUTION 13

Zmn =
∞
∑

n=−∞

{∫ ∞

∞
J̃∗
m(n, ξ)G̃(n, ξ)J̃n(n, ξ) dξ

}

(2.25)

Vm =
∞
∑

n=−∞

{∫ ∞

−∞
J̃∗
m(n, ξ)G̃n(n, ξ) dξ

}

. (2.26)

Although the spectral domain method saves us from the integration along

the domain of the basis and testing functions and automatically handles the

singularity problem, it is extremely inefficient for small basis functions and large

separations. Integrands in (2.23) and (2.24) are slowly convergent and highly

oscillatory especially for small basis functions and large separations. This is even

worse for cylindrical geometries where (2.25) and (2.26) are used. Because of the

need for efficient solvers for electrically large structures, there are efficient spatial

domain methods developed by Barkeshli et al. [22] and Erturk et al. [33] for

planar and cylindrical dielectric slabs, respectively. These methods utilize some

high frequency based asymptotic approximations in order to calculate the Green’s

function representations in the spatial domain efficiently.

2.4 Array Geometry

In this subsection we present several geometries (Fig. 2.3 and Fig. 2.4) where the

hybrid MoM/Green’s function technique is used. Fig. 2.3(a) and (b) show the

geometries of finite, periodic arrays of (2N + 1) × (2M + 1) axially (ẑ-directed)

and circumferentially (φ̂-directed) oriented printed dipoles, respectively. The

arrays are mounted on the dielectric-air interface of dielectric coated, perfectly

conducting, circular cylinders, which are assumed to be infinitely long along the

z-direction. The coated cylinders have an inner radius denoted by a, outer radius

denoted by d, and hence the coating thickness th = d−a. The relative permittivity

of the coating is ǫr > 1. The geometry of a finite, planar, periodic array of

(2N + 1) × (2M + 1) printed dipoles is also given in Fig. 2.3(c). In all three

geometries, the dipoles are assumed to be center-fed with infinitesimal generators

with impedance ZT as depicted in Fig. 2.3(d). Each dipole has a length L, width
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W , and is uniformly spaced from its neighbors by distances drl = d∆φ and dz

in the rl− (rl = dφ) and z−directions, respectively. Similarly for the planar

case, each dipole is uniformly spaced from its neighbors by distances dy and dz

in the y− and z−directions, respectively. Similar to the the dipole array case,

microstrip patch antenna arrays of (2N+1)×(2M+1) rectangular patch antennas

on cylindrical and planar grounded dielectric slabs are depicted in Fig. 2.4 (a)

and (b), respectively. These antennas are excited with coaxial-probes which are

modeled as ideal probes.

In order to analyze these structures, which are shown in Fig. 2.3 and Fig.

2.4, we developed a general code which implements MoM in spectral and spatial

domains (which is selected by the user). This code is fully capable of simulating

these geometries with arbitrary parameters. Key features of our code are:

(i) Several types of basis functions are supported in the modeling of patch

surface currents. For the planar geometries entire basis functions (2.12),

PWS basis functions (2.13) and RT basis functions (2.14) are all available

in the spectral domain. In the spatial domain, basis function selection is

limited to PWS and RT basis functions. For the cylindrical geometries the

only available type is PWS basis functions (2.19) both in the spectral and

spatial domain solutions.

(ii) User selects the number of sub-domains or the number of modes in the

orthogonal directions which is identical on each element (uniform array).

Virtually there is no limit to how dense the discretization can be. However

the accuracy of the solution is obviously limited by the accuracy of the

Green’s function representations.

(iii) For these types of geometries the impedance matrix is a block toeplitz

matrix with toeplitz blocks. By exploiting these properties the fill-time of

the matrix is reduced tremendously.

(iv) Our code can simulate a single antenna or an arbitrarily sized array of

antennas. However only the sub-domain basis functions (PWS and RT

basis functions) can be used for an array of antennas.
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(v) After the solution of current coefficients several antenna and antenna array

performance metrics can be calculated such as input impedance of a sin-

gle antenna, active reflection coefficient of an element of the array, active

element gain patterns.

(vi) The code features a frequency sweep option where start and stop frequencies

and the step size can be selected. In the simulation of a single antenna, feed

position sweep option is also available.
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Figure 2.3: Geometries of periodic arrays of (2N + 1)× (2M + 1) (a) axially, (b)
circumferentially oriented printed dipoles on dielectric coated, electrically large
circular cylinders. (c) Geometry of a periodic, planar array of (2N+1)×(2M+1)
printed dipoles. (d) Dipole connected to an infinitesimal generator with a voltage
Vnm and a terminating impedance ZT .
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Figure 2.4: (a) Geometry of periodic array of (2N + 1) × (2M + 1) microstrip
rectangular patch antennas on a dielectric coated, electrically large circular cylin-
der. (b) Geometry of a periodic, planar array of (2N + 1)× (2M + 1) microstrip
rectangular patch antennas on a grounded dielectric slab.



Chapter 3

Green’s Function

Representations for Planar

Grounded Dielectric Slab

3.1 Introduction

In the previous chapter spectral and spatial domain methods in the calculation

of MoM matrix and voltage vector entries are explained. This chapter gives a

detailed explanation on the Green’s function representations of planar grounded

dielectric slab for spectral and spatial domain methods. There are some estab-

lished formulations for these functions in the literature which will be restated

in this chapter. Spectral domain expressions for the planar geometries will be

presented in Section 3.2. Our improvements in the spectral domain for the calcu-

lation of self and mutual couplings as well as voltage vector entries for ideal probe

excitation using roof-top sub-sectional basis functions are explained in detail in

Section 3.3. Briefly, using asymptotic extraction techniques convergence of the

numerical integration is accelerated and closed-form expressions are developed

for the asymptotic part of the integral. Consequently, the final form of the spec-

tral domain solution becomes faster and more accurate compared to the previous

17
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studies. In Section 3.4, we briefly explain the spatial domain expressions of the

Green’s function representations for planar geometries. These expressions require

the calculation of two double integrals for the MoM matrix entries and a single

double integral for the voltage vector entries. Spatial domain calculation of the

mutual coupling between two basis functions must be carried out with extra care

if they overlap because of the 1/s type singularity where s is the lateral separa-

tion between the source and field points. We present an asymptotic solution to

this problem in section 3.5. Using a proper change of variables, order of these

integrals can be reduced to one by taking one of the integrals in closed-form which

is explained in detail in Section 3.6. As a result computational burden is reduced

in the computation of these integrals.

3.2 Spectral Domain Green’s Function for

Planar Grounded Dielectric Slabs

Spectral domain Green’s function representation for the planar grounded dielec-

tric slab geometries can be expressed in the form of [21], [31]:

G̃xx(kx, ky) = −jZ0

k0

(ǫrk
2
0 − k2

x)k2 + jk1(k
2
0 − k2

x) tan(k1d)

TeTm
tan(k1d) (3.1)

G̃yy(kx, ky) = −jZ0

k0

(ǫrk
2
0 − k2

y)k2 + jk1(k
2
0 − k2

y) tan(k1d)

TeTm
tan(k1d) (3.2)

G̃yx(kx, ky) = G̃xy(kx, ky) = j
Z0

k0

kxky tan(k1d) [k2 + jk1 tan(k1d)]

TeTm
(3.3)

G̃xz(kx, ky) = G̃zx(kx, ky) = j
Z0

k0

kxk2 tan(dk1)

k1Tm
(3.4)
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G̃yz(kx, ky) = G̃zy(kx, ky) = j
Z0

k0

kyk2 tan(dk1)

k1Tm
(3.5)

with

Te = k1 + jk2 tan(k1d) (3.6)

Tm = ǫrk2 + jk1 tan(k1d) (3.7)

k2
1 = ǫrk

2
0 − k2

x − k2
y, Im(k1) ≤ 0 (3.8)

k2
2 = k2

0 − k2
x − k2

y, Im(k2) ≤ 0 (3.9)

β2 =
√

k2
x + k2

y (3.10)

k0 = ω
√
µ0ǫ0 (3.11)

where Z0 =
√

µ0

ǫ0
is the intrinsic impedance of the free space. Note that G̃zz(kx, ky)

is not used in this study.

3.3 Closed Form Solution to the Asymptotic

Part of the MoM Impedance Matrix and the

MoM Excitation Vector

Spectral domain MoM solution to the EFIE given by (2.23) requires the compu-

tation of the spectral domain integrals which has to be done numerically. These

double integrals have limits extended to infinity. Unfortunately, the integrands

have slowly convergent and highly oscillatory behaviors which make the compu-

tation of the impedance matrix elements as the most time consuming part of

the MoM solution. Besides, such behaviors can create accuracy problems. These

problems also occur in the computation of the excitation vector elements. Thus,

various techniques have been developed related to the spectral domain evaluation

of the matrix and the excitation vector entries [34]-[35]. Among them, in [20] and

[21], the authors have successfully derived an analytical technique for the fast and

accurate evaluation of the asymptotic part of the impedance matrix when trian-

gular edge mode and roof-top subdomain basis functions are used in the spectral

domain MoM solution for printed narrow strips and antennas. Basically, they
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provide an analytical transformation from an infinite double integral to a finite

one-dimensional (1-D) integral for the asymptotic part of the impedance matrix,

thereby reducing the CPU time dramatically and improving the accuracy regard-

less of the lateral separation between the basis and testing functions. Recently,

the same method has been applied to the MoM excitation vector for probe-fed

planar microstrip antennas [35].

In all these three studies ([20], [21] and [35]), the resulting 1-D finite inte-

grals are computed using the ’International Mathematics and Statistics Library

(IMSL)’ subroutines DQDAGP (if there is a singularity) or DQDAGS, which are

high-quality adaptive integral routines. Unfortunately, these routines are highly

specialized and may not be available on all platforms. Moreover, using standard

numerical integration techniques instead of these IMSL routines may yield accu-

racy problems. In subsection 3.3.1 we will provide closed-form results for these

1-D integrals. Consequently, the asymptotic parts of both the impedance matrix

and the excitation vector are evaluated completely in closed-form, which results

a further reduction in the CPU time and a further improvement in the accuracy

for the evaluation of the MoM matrix and the excitation vector entries. Be-

sides, these closed-form expressions eliminate the need for such highly specialized

subroutines for this problem. In order to asses the accuracy of the closed-form

expressions several numerical results are given in subsection 3.3.2.

3.3.1 Formulation

In the spectral domain MoM solution of printed structures on planar grounded

dielectric slabs, using (2.23) and employing the asymptotic extraction technique,

the impedance matrix elements can be expressed in the form of
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Zpq
mn

= − 1

4π2

∫ ∞

−∞

∫ ∞

−∞
J̃p

∗

m (kx, ky)
[

G̃pq(kx, ky) − G̃∞
pq(kx, ky)

]

J̃qn(kx, ky)dkxdky

− 1

4π2

∫ ∞

−∞

∫ ∞

−∞
J̃p

∗

m (kx, ky)G̃
∞
pq(kx, ky)J̃

q
n(kx, ky)dkxdky (3.12)

(p = x or y, and q = x or y) where Zpq
mn represents the self and mutual interactions

between the roof-top sub-domain current basis functions Jpm and Jqn. In (3.12)

J̃pm is the Fourier transform of the p-directed basis function (i.e., Jpm). Basically,

when p = x we have

J̃xm =
8

∆x∆y

sin2
(

kx
∆x
2

)

k2
x

sin
(

ky
∆y
2

)

ky
e−j(kxxm+kyym) (3.13)

and when p = y we have

J̃ym =
8

∆x∆y

sin
(

kx
∆x
2

)

kx

sin2
(

ky
∆y
2

)

k2
y

e−j(kxxm+kyym) . (3.14)

Also in (3.12) J̃q
∗

m is the complex conjugate of the Fourier transform of the q-

directed basis function and finally G̃pq is the appropriate dyadic Green’s function

component in the spectral domain (given in (3.1)-(3.3)) with G̃∞
pq being its as-

ymptotic value for large β =
√

k2
x + k2

y values, given by [21]

G̃∞
xx(kx, ky) = −jZ0

k0

{

k2
0

2β
− k2

x

(ǫr + 1)β

}

(3.15)

G̃∞
yy(kx, ky) = −jZ0

k0

{

k2
0

2β
− k2

y

(ǫr + 1)β

}

(3.16)

G̃∞
xy(kx, ky) = G̃∞

yx(kx, ky) = j
Z0

k0

kxky
(ǫr + 1)β

. (3.17)

In a similar fashion, the MoM excitation vector elements (for probe-fed structures)

are expressed as
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V q
m =

1

4π2

∫ ∞

−∞

∫ ∞

−∞

[

G̃zq(kx, ky) − G̃∞
zq(kx, ky)

]

J̃qm(kx, ky)e
j(kxxp+kyyp)dkxdky

+
1

4π2

∫ ∞

∞

∫ ∞

∞
G̃∞
zq(kx, ky)J̃

q
m(kx, ky)e

j(kxxp+kyyp)dkxdky (3.18)

where (xp, yp) is the coaxial probe attachment position on the patch surface and

G̃zq is appropriate dyadic Green’s function component in the spectral domain

((3.4) and (3.5)) with G̃∞
zq being its asymptotic value for large β values given by

[35]

G̃∞
zx = −Z0

k0

kx
β(1 + ǫr)

(3.19)

G̃∞
zx = −Z0

k0

ky
β(1 + ǫr)

. (3.20)

In the first terms of (3.12) and (3.18), the infinite double integrals converge

rapidly to zero. However, the second terms in (3.12) and (3.18) (called as the

asymptotic part of the impedance matrix element and the MoM excitation vector

element) also contain the infinite double integrals which exhibit slowly convergent

and highly oscillatory behavior. Therefore, in [20] and [21] an analytical technique

has been derived for the fast and accurate evaluation of the asymptotic part of

the impedance matrix elements, and then this technique has been applied to

the MoM excitation vector elements in [35]. Consequently, the infinite double

integrals in the asymptotic part of (3.12) and (3.18) are analytically transformed

to 1-D integrals given by

ZxxAsy

mn = − j

π2

(

8

∆x∆y

)2 {

−k
2
0

2
Ixx

a

mn +
1

ǫr + 1
Ixx

b

mn

}

(3.21)

ZxyAsy

mn = ZyxAsy

mn =
j

π2

Z0

k0

(

64

∆x2∆y2

)

1

ǫr + 1
Ixymn (3.22)
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V xAsy

m = − j

π2

Z0

k0

(

8

∆x∆y

)

1

ǫr + 1
Izxm (3.23)

where

Ixx
a

mn =
1

π

∫ 2∆x

−2∆x
A(χ− xs)ℑa(χ)dχ (3.24)

Ixx
b

mn =
1

π

∫ 2∆x

−2∆x
A(χ− xs)ℑb(χ)dχ (3.25)

Ixymn =
1

π

∫ 3∆x
2

+xs

− 3∆x
2

+xs

B(χ)T (χ− xs)dχ (3.26)

Izxm = − 1

π

∫ xA+∆x

xA−∆x
C(χ) Γ(χ− xA)dχ . (3.27)

A(χ− xs), ℑa(χ), ℑb(χ), B(χ), T (χ), C(χ) and Γ(χ) are the integrals evalu-

ated in closed-form in [21] and [35], and they are given by (A.1) through (A.7),

respectively, in Appendix A. Similar expressions can be formed for Iyy
a

mn , Iyy
b

mn , Iyxmn

and Izymn by interchanging ∆x ↔ ∆y, xs ↔ ys and xA ↔ yA where xs and ys are

the lateral separation between the basis and testing functions (i.e., xs = xm−xn;

ys = ym−yn), and xA and yA are the separation between the basis function under

analysis and the probe location (i.e., xA = xp − xm; yA = yp − ym).

In [20], [21] and [35], the 1-D integrals given in (3.24)-(3.27) were computed nu-

merically using the the International Mathematics and Statistics Library (IMSL)

subroutines. During the computation of these integrals, if there is a singularity

at the integration interval, then the IMSL routine DQDAGP was used, which can

handle interior and endpoint singularities. If there is no singularity, the IMSL

routine DQDAGS was used. Unfortunately, these routines are highly specialized

and may not be available on all platforms. Besides, it is observed that using

standard numerical integration techniques instead of these IMSL routines yields

accuracy problems. In this thesis we are providing closed-form expressions. The

key steps in arriving these closed-form expressions are:

(i) The analytic evaluation of the following type integrals:



CHAPTER 3. PLANAR GROUNDED DIELECTRIC SLABS 24

2Dx

x

y

Dy

ys

xs

Figure 3.1: A couple of x̂-directed RT basis functions

fi(a, x1, x2) =
∫ x2

x1

xi
√
x2 + a2 dx , (3.28)

Fi(a, x1, x2, xs) =
∫ x2

x1

xi
√

(x− xs)
2 + a2 dx , (3.29)

gi(a, x1, x2) =
∫ x2

x1

xi ln
(

a+
√
x2 + a2

)

dx , (3.30)

Gi(a, x1, x2, xs) =
∫ x2

x1

xi ln
(

a+
√

(x− xs)
2 + a2

)

dx , (3.31)

with i = 0, 1, 2, 3. Analytical expressions to the results of the integrals (3.28),

(3.29), (3.30) and (3.31) are given by (B.1)-(B.4), (B.5)-(B.8), (B.9)-(B.12) and

(B.13)-(B.16), in Appendix B. It is important to notice that Fi(a, x1, x2, xs) and

Gi(a, x1, x2, xs), are expressed in terms of fi(a, x1, x2) and gi(a, x1, x2), respec-

tively.

(ii) Recognizing that the closed-form expressions to the integrals given by

(3.24)-(3.27) can be obtained as a combination of (3.28)-(3.31).
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Consequently, the closed-form expressions for the 1-D integrals given by (3.24)-

(3.27) are found as follows:

Ixx
a

mn =
π

768

2
∑

q=1

3
∑

p=1

3
∑

i=0

{

cs1i (∆x, q)
[

cg(p)Gi(a
xx
p , χ

xx
3q−2, χ

xx
3q−1, xs)

+ cf (p)Fi(a
xx
p , χ

xx
3q−2, χ

xx
3q−1, xs)

]}

+
π

768

2
∑

q=1

3
∑

p=1

3
∑

i=0

{

cs2i (∆x, q)
[

cg(p)Gi(a
xx
p , χ

xx
q+1, χ

xx
q+2, xs)

+ cf (p)Fi(a
xx
p , χ

xx
q+1, χ

xx
q+2, xs)

]}

(3.32)

Ixx
b

mn =
π

16

2
∑

q=1

3
∑

p=1

1
∑

i=0

{

cs3i (∆x, q)
[

cg(p)Gi(a
xx
p , χ

xx
3q−2, χ

xx
3q−1, xs)

+ cf (p)Fi(a
xx
p , χ

xx
3q−2, χ

xx
3q−1, xs)

]}

+
π

16

2
∑

q=1

3
∑

p=1

1
∑

i=0

{

cs4i (∆x, q)
[

cg(p)Gi(a
xx
p , χ

xx
q+1, χ

xx
q+2, xs)

+ cf (p)Fi(a
xx
p , χ

xx
q+1, χ

xx
q+2, xs)

]}

, (3.33)

Ixymn =
4
∑

q=1

3
∑

p=1

{

dxy(q)
[

cxy(2p− 1)
(

f0(a
xy
q , χ

xy
p , χ

xy
p+1) − axyq g0(a

xy
q , χ

xy
p , χ

xy
p+1)

)

+ cxy(2p)
(

f1(a
xy
q , χ

xy
p , χ

xy
p+1) − axyq g1(a

xy
q , χ

xy
p , χ

xy
p+1)

)]}

, (3.34)

Izxm = g0(a
zx
1 , χ

zx
1 , χ

zx
2 ) − g0(a

zx
2 , χ

zx
1 , χ

zx
2 )

− g0(a
zx
1 , χ

zx
2 , χ

zx
3 ) + g0(a

zx
2 , χ

zx
2 , χ

zx
3 ) . (3.35)

In (3.32) and (3.33), the constants and the coefficients are given in Table 3.1 and

Table 3.2. Similarly, in (3.34) and (3.35), the constants and the coefficients are

given in Tables 3.3-3.5.
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cs10 = 8∆x3 cs20 = −4∆x3 cs30 = −∆x
4

cs11 = 12∆x2(−1)q+1 cs21 = 0 cs31 = 1
8
(−1)q

cs12 = 6∆x cs22 = −6∆x cs40 = ∆x
4

cs13 = (−1)q+1 cs23 = 3 (−1)q cs41 = 3
8
(−1)q+1

axx1 = ys + ∆y cg(1) = ys + ∆y cf (1) = −1

axx2 = ys − ∆y cg(2) = ys − ∆y cf (2) = −1

axx3 = ys cg(3) = −2ys cf (3) = 2

Table 3.1: Constants I

χxx1 = −2∆x

χxx2 = −∆x

χxx3 = 0

χxx4 = ∆x

χxx5 = 2∆x

Table 3.2: Constants II

3.3.2 Numerical Results

To assess the accuracy of the closed-form expressions presented in (3.32)-(3.35)

with the related parameters given by Table 3.1-3.5, several numerical results in

the form of mutual impedance between two expansion functions and the input

impedance of several probe-fed microstrip patch antennas are obtained and com-

pared with the simulation and measurement results available in the literature.

The first numerical example is the duplication of Fig. 2 in [21], where the finite

1-D integrals are compared with the double infinite integrals using ∆x = ∆y = 1

and ys = 2∆y for 0 ≤ xs ≤ 10 for (3.24) and (3.25), and using ∆x = ∆y = 1

and ys = 3
2
∆y for 0 ≤ xs ≤ 10 for (3.26). We also evaluated the same integrals,
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χxy1 = −1.5∆x+ xs axy1 = −1.5∆y + ys dxy(1) = − 1
16

χxy2 = −0.5∆x+ xs axy2 = −0.5∆y + ys dxy(2) = 3
16

χxy3 = 0.5∆x+ xs axy3 = 0.5∆y + ys dxy(3) = − 3
16

χxy4 = 1.5∆x+ xs axy4 = 1.5∆y + ys dxy(4) = 1
16

Table 3.3: Constants III

cxy(1) = −π
8
(1.5∆x−xs) cxy(4) = π

4
χzx1 = xp − ∆x

cxy(2) = −π
8

cxy(5) = π
8
(1.5∆x+ xs) χzx2 = xp

cxy(3) = −π
4
xs cxy(6) = −π

8
χzx3 = xp + ∆x

Table 3.4: Constants IV

(3.24)- (3.26), using the closed-form expressions. As depicted in Fig. 3.2, excellent

agreement is obtained.

As a second example, the mutual interaction between two x̂-directed current

modes, which are defined to be roof-top functions (2.14), are evaluated along

the H-plane (i.e., along the y-axis). These current modes are on a grounded

dielectric slab with a thickness, th = 0.057λ0 (λ0 is the free-space wavelength)

and ǫr = 2.33, and the size of each current mode is selected to be ∆x = 0.05λ0 and

∆y = 0.025λ0. Since IMSL routines are highly specialized and are not available

on our platforms, we used the standard Gaussian quadrature algorithm in the

following way: For the integration limits from −2∆x to 2∆x, we divided the

integration interval to subintervals with subinterval length being ∆x/8. In each

subinterval we used an 8-point Gaussian quadrature algorithm. As seen in Fig.

3.3, we have an excellent agreement both in magnitude and phase except for

relatively large separations, where the finite 1-D integration method yields some

numerical problems. As a result, we believe this result illustrates the importance

of the closed-form expressions that we provide for the 1-D integrals.
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azx1 = yp + ∆y
2

azx2 = yp − ∆y
2

Table 3.5: Constants V

The last two numerical examples, shown in Fig. 3.4 and Fig. 3.5, provide the

Smith Chart plots of the input impedance of two probe-fed microstrip antennas,

where the closed-form expressions for both the impedance matrix and the exci-

tation vector are used. Results are also compared with the previously published

results as well as the results of a software package ENSEMBLE [36]. Fig. 3.4

is given for a rectangular microstrip patch antenna on a grounded dielectric slab

with ǫr = 10.2 and thickness, th = 0.127 cm. The length of the patch L is 2 cm,

the width of the patch W is 3 cm, and the feed is located 1 cm from the long

edge (i.e., from the W edge) and 0.65 cm from the short edge (i.e., from the L

edge) as explained in [37]. The frequency is varied from 2.2 GHz to 2.4 GHz, and

9 roof-top basis functions are used along the width of the patch. As seen in Fig.

3.4, very good agreement is obtained with both the measured results given in [37]

and the results obtained from the ENSEMBLE software [36].

In a similar fashion Fig. 3.5 is given for W = 39.52 mm by L = 49.91 mm

rectangular antenna with a coaxial feed located at W/2 from the long side (i.e.,

from the L edge) and 15.36 mm from the short side (i.e., from the W edge)

as depicted in [38]. The antenna is located on a grounded dielectric slab with

ǫr = 2.484 and h = 6.3 mm. The frequency is varied from 1.72 GHz to 2.10 GHz,

and 5 roof-top basis functions are used along the length of the patch. Similar

to the previous case, very good agreement is obtained with both the measured

and the simulated results given in [38] as well as the results obtained from the

ENSEMBLE software [36]. Note that to account the self inductance of the probe

we added jXpr to the input impedance given by

Xpr = −ηkth
2π

[

ln

(

kdp
4

)

+ 0.577

]

(3.36)

where η is the intrinsic impedance of the dielectric medium, k is the wave number



CHAPTER 3. PLANAR GROUNDED DIELECTRIC SLABS 29

Figure 3.2: Comparison among the infinite 2-D integral, the finite 1-D integral
and the closed-form expressions.
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Figure 3.3: Magnitude and phase of mutual impedance Zxx
12 between two identical

x̂−directed current modes on a th = 0.057λ0 thick grounded dielectric slab with
ǫr = 2.33.

of the dielectric medium, dp is the diameter of the feed probe and th is the

thickness of the substrate [39].
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Figure 3.4: Input impedance data of a probe-fed, L = 2 cm by W = 3 cm
rectangular antenna on a h = 0.127 cm thick grounded dielectric slab with ǫr =
10.2. Frequency = 2.2-2.4 GHz.
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Figure 3.5: Input impedance data of a probe-fed, L = 49.91 mm by W = 39.52
mm rectangular antenna on a h = 6.3 mm thick grounded dielectric slab with
ǫr = 2.484. Frequency = 1.72-2.10 GHz.
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3.4 Space Domain Green’s Function for

Planar Grounded Dielectric Slabs

Space domain representations of the Green’s function is obtained by transform-

ing the double IFT integrals into a Fourier-Bessel integral and employing some

parameter transformations. This is also called the Sommerfeld integral type rep-

resentation of the Green’s function. The detailed derivation and computation of

the Sommerfeld integral type representation of the Green’s function is explained

in a detailed way in [22]. In this section, we briefly review it and highlight the

important steps. The evaluation of these integrals starts by considering the two

dimensional (2-D) IFT of the spectral domain Green’s function which is given by

Gpq(x, y) =
1

4π2

∫

−∞

∞
∫

G̃pq(kx, ky) e
j[kx(x−x′)+ky(y−y′)] dkx dky (3.37)

(p = x, y or z and q = x or y). The integral in (3.37) can be written as a Fourier

Bessel integral given by

Gpq(ρ, ρ
′, φ, φ′) =

1

2π

∞
∑

n=−∞
e−jn(φ−φ′)

∫ ∞

0
G̃pq(ξ, α)Jn(ξρ)Jn(ξρ

′)ξ dξ (3.38)

where the following transformations have been used:

kt =
√

k2
x + k2

y = ξ (3.39)

kx = ξ cos(α) (3.40)

ky = ξ sin(α) (3.41)

x− x′ = ρ cos(φ) − ρ′ cos(φ′) (3.42)

y − y′ = ρ sin(φ) − ρ′ sin(φ′) . (3.43)

If we choose the coordinate system in such a way that ρ′ = 0, (3.38) becomes

(using the fact that J0(0) = 1, Jm(0) = 0;m 6= 0)

Gpq(ρ) =
1

2π

∫ ∞

0
G̃pq(ξ)J0(sξ)ξ dξ (3.44)

where
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s = ρ− ρ′ =
√

(x− x′)2 + (y − y′)2. (3.45)

As a result the components of the Sommerfeld integral type representation of the

Green’s function can be written as

Gxx(s) = − Z0

2πk0

[

k2
0U +

∂2

∂x2

(

U − ǫr − 1

ǫr
W
)

]

(3.46)

Gyy(s) = − Z0

2πk0

[

k2
0U +

∂2

∂y2

(

U − ǫr − 1

ǫr
W
)

]

(3.47)

Gxy(s) = − Z0

2πk0

[

∂2

∂x∂y

(

U − ǫr − 1

ǫr
W
)

]

(3.48)

Gzx(s) =
Z0

2πk0

[

∂P

∂x

]

(3.49)

Gzy(s) =
Z0

2πk0

[

∂P

∂y

]

. (3.50)

In (3.46)-(3.50), P , U and W are the Sommerfeld type integrals given by

P =
∫ ∞

0
ζp(ξ)J0(sξ) dξ (3.51)

U =
∫ ∞

0
ζu(ξ)J0(sξ) dξ (3.52)

W =
∫ ∞

0
ζw(ξ)J0(sξ) dξ (3.53)

where the functions ζp, ζu and ζw are defined as

ζp(ξ) =
βz0 ξ

βz1[jβz1 + ǫrβz0 cot(thβz1)]
(3.54)

ζu(ξ) =
ξ

βz0 − jβz1cot(thβz1)
(3.55)

ζw(ξ) =
βz0ξ

[βz0 − jβz1cot(thβz1)] [βz0 + βz1tan(thβ1)/ǫr]
(3.56)
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with J0(sξ) being the Bessel function of the first kind of order 0 with the argument

sξ. Finally βz0 and βz1 are defined as

βz0 =







√

k2
0 − ξ2 if k2

0 ≥ ξ2

−j
√

ξ2 − k2
0 if k2

0 < ξ2
(3.57)

βz1 =
√

ǫrk2
0 − ξ2 . (3.58)

Note that during the evaluation of these Sommerfeld type integrals (i.e., P , U

and W ), the envelope extraction technique is used to speed up the computation

of these integrals. Briefly,

(i) the limiting values of ζp, ζu and ζw are found when ξ → ∞. These values

are

lim
ξ→∞

ζp(ξ) = ζ∞p =
1

ǫr + 1
(3.59)

lim
ξ→∞

ζu(ξ) = ζ∞u = j(0.5) (3.60)

lim
ξ→∞

ζw(ξ) = ζ∞w = j
(0.5)ǫr
ǫr + 1

. (3.61)

(ii) These limiting values are subtracted from the integrands and added as a

separate integral as follows:

P =
∫ ∞

0

[(

ζp(ξ) − ζ∞p
)

J0(sξ)
]

dξ +
∫ ∞

0
ζ∞p J0(sξ) dξ (3.62)
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U =
∫ ∞

0
[(ζu(ξ) − ζ∞u ) J0(sξ)] dξ +

∫ ∞

0
ζ∞u J0(sξ) dξ (3.63)

W =
∫ ∞

0
[(ζw(ξ) − ζ∞w ) J0(sξ)] dξ +

∫ ∞

0
ζ∞w J0(sξ) dξ (3.64)

The first integrals in (3.62)-(3.64) are now rapidly decaying and hence are com-

puted efficiently. On the other hand, the second integrals in (3.62)-(3.64) are

evaluated analytically recognizing the fact that ζ∞p , ζ∞u and ζ∞w are constants and

∫ ∞

0
Constant · J0(sξ) dξ =

Constant

s
. (3.65)

Finally, in the numerical computation of the first integrals given in (3.62)-

(3.64) special care is given to the pole singularities which exist in the interval

k0 < ξ <
√
ǫrk0. These singularities are treated using the singularity extrac-

tion method which is different than the singularity removal procedure for the self

and overlapping terms explained in the following sections. For the details of this

singularity extraction method reader is referred to [22].

3.5 Singularity Removal in the Spatial Domain

for Overlapping Basis Functions

When calculating the mutual couplings for the MoM analysis, analytically eval-

uated asymptotic parts of the integrals, explained in the previous section, cause

a singularity problem in the spatial domain integrals when the basis functions

overlap (i.e. s = 0). This singularity must be removed for the efficient calcula-

tion of the MoM matrix entries in the space domain. This section describes the

procedure for the singularity removal when we use PWS basis functions.

3.5.1 Zxx Component Self-Term

Calculation of the coupling of the x̂-directed PWS basis function with itself (self-

term) in the spatial domain for planar dielectric slabs requires the computation
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of the integral

Zxx
nn =

ya
∫

−ya

ya
∫

−ya

xa
∫

−xa

xa
∫

−xa

GxxJn(x, y)Jn(x
′, y′) dxdx′dydy′ (3.66)

where Gxx is the electric field of an x̂-directed infinitesimal source given by (3.46)

and Jn is the aforementioned PWS basis function given in (2.13). In the view

of (3.63) and (3.64), the self-term can be separated into two parts. Namely the

proper part (denoted by Zxxproper

nn ) and the singular part (denoted by Zxxsingular

nn ).

Hence Zxx
nn is written as

Zxx
nn =Zxxproper

nn + Zxxsingular

nn

=

ya
∫

−ya

ya
∫

−ya

xa
∫

−xa

xa
∫

−xa

(

Gproper
xx +Gsingular

xx

)

Jn(x, y)Jn(x
′, y′) dx dx′dy dy′. (3.67)

Making use of (3.63) and (3.64), Gproper
xx and Gsingular

xx are defined as

Gproper
xx = − Z0

2πk0

[

k2
0Unum +

∂2

∂x2

(

Unum − ǫr − 1

ǫr
Wnum

)

]

(3.68)

Gsingular
xx = − Z0

2πk0

[

k2
0Uanalytic +

∂2

∂x2

(

Uanalytic −
ǫr − 1

ǫr
Wanalytic

)

]

(3.69)

Proper part of the integral (3.67) is carried out numerically whereas the singular

part is treated carefully using some variable changes and approximate analytic

formulas. By employing integration by parts in x and x′ variables in order to

transfer the derivatives onto the basis and testing functions as explained in [32]

and using (3.63) and (3.64), we can write Zxxsingular

nn as

Zxxsingular

nn =− Z0

2πk0

ya
∫

−ya

ya
∫

−ya

xa
∫

−xa

xa
∫

−xa

1

s

{

ζ∞u k
2
0 sin [ke(xa − |x|)] sin [ke(xa − |x′|)]

−
(

ζ∞u − ǫr + 1

ǫr
ζ∞w

)

k2
e cos [ke(xa − |x|)] cos [ke(xa − |x′|)]

×sign(x)sign(x′)

}

1

4y2
a sin2(kexa)

dx dx′ dy dy′ (3.70)
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where s is given in (3.45). Note that since the singular point s = 0 is in the inte-

gration surface, standard numerical techniques can not be used for this integral.

First step to attack this integral is to reduce the order of integration. This is

achieved by using the following the change of variables:

τ =
1√
2
(y′ − y) (3.71)

ψ =
1√
2
(y′ + y) (3.72)

dy′ dy = dτ dψ (3.73)

12

3 4

1

2

3

4

Figure 3.6: Mapping from the y-y′ plane to τ -ψ plane

By doing that the y-y′ integrals are converted to τ and ψ domain integrals as

it is shown in Fig. 3.6. However, the resultant integrands are only a function

of τ . That is, τ and ψ domain integrations can be carried out analytically by

employing the following integration formulas:

∫ τ2

τ1

τ√
a2 + τ 2

dτ =
√

a2 + τ 2
2 −

√

a2 + τ 1
2 (3.74)

∫ τ2

τ1

1√
a2 + τ 2

dτ = ln
(

a+
√

τ 2
2 + a2

)

− ln
(

a+
√

τ 2
1 + a2

)

. (3.75)
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As a result (3.70), which was initially a four-fold integral, is reduced into a double

integral given by

Zxxsingular

nn =

xa
∫

−xa

xa
∫

−xa

{

c1(x, x
′) cos [ke(2xa − |x′| − |x|)] + c2(x, x

′) cos [ke(|x′| − |x|)]
}











4ya





ln





ya
√

2 +

√

√

√

√

(

x′ − x√
2

)2

+ 2y2
a





 − ln

∣

∣

∣

∣

∣

x′ − x√
2

∣

∣

∣

∣

∣







−2
√

2







√

√

√

√

(

x′ − x√
2

)2

+ 2y2
a −

∣

∣

∣

∣

∣

x′ − x√
2

∣

∣

∣

∣

∣

















dx dx′ (3.76)

where the functions c1(x, x
′) and c2(x, x

′) are defined as

c1(x, x
′) = − Z0

16πk0y2
a sin2(kexa)

×
{

k2
esign(x)sign(x′)

(

ζ∞u − ǫr − 1

ǫr
ζ∞w

)

+ k2
0ζ

∞
u

}

c2(x, x
′) = − Z0

16πk0y2
a sin2(kexa)

×
{

k2
esign(x)sign(x′)

(

ζ∞u − ǫr − 1

ǫr
ζ∞w

)

− k2
0ζ

∞
u

}

. (3.77)

There are two possible values of each c1(x, x
′) and c2(x, x

′) based on the value of

sign(x)sign(x′) which will be called c1± and c2±. We use c1+ and c2+ when the

sign(x)sign(x′) product is positive, and we use c1− and c2− otherwise.

A similar change of variables is used on the x, x′ variables as follows:

ν =
x′ − x√

2
(3.78)

υ =
x′ + x√

2
(3.79)

dx dx′ = dν dυ (3.80)
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Figure 3.7: Mapping from the x-x′ plane to ν-υ plane

which is depicted in Fig. 3.7. Integration on the variable υ can be done analyt-

ically. Finally for the resultant ν domain integral we perform a final change of

variable given by

α =
ν

xa
√

2
(3.81)

dα =
dν

xa
√

2
(3.82)

in order to normalize the integration interval to (0, 1). After arranging and re-

grouping the resultant terms the final integral is in the form of

Zxxsingular

nn =

0.5
∫

0

dα
{

c3 sin [kexa(1 − 2α)] + c4α cos [ke2xa(1 − α)]

+c5(1 − 2α) cos(2kexaα) + c6 sin(2kexaα)
}

H(α) dα

+

1
∫

0.5

{

c4(1 − α) cos[2kexa(1 − α)]

+c6 sin[2kexa(1 − α)]
}

H(α) dα (3.83)
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where H(α) is defined as

H(α) = ya
√

2
[

ln
(

ya +
√

x2
aα

2 + y2
a

)

− ln(xaα)
]

−
√

2
[

√

x2
a + α2 − xaα

]

(3.84)

and the constants c3 to c6 are given by

c3 =
xa16

√
2

ke
cos(kexa)c1+ (3.85)

c4 = x2
a16

√
2c1− (3.86)

c5 = x2
a16

√
2c2+ (3.87)

c6 =
xa8

√
2

ke
c2− . (3.88)

Numerical integration of the 1-D integral given in (3.83) is significantly more ef-

ficient compared to the original four-fold integral given in (3.70). However, still a

careful evaluation is required for this integral when α is close to 0 because of the

term ln(xaα). The best solution to this problem is to use the asymptotic values

of the sine and cosine functions in the interval (0, δ1) and integrate this part of

the integral analytically. This δ1 parameter is chosen to be 2kexaδ1 ≪ 1. Using

the series expansion of sine and cosine functions and ignoring the higher order

terms one can write:

lim
α→0

cos(2kexaα) ≈ 1 (3.89)

lim
α→0

sin(2kexaα) ≈ 2kexaα (3.90)

lim
α→0

sin[kexa(1 − 2α)] ≈ 2 sin(kexa) − kexa cos(kexaα) (3.91)

lim
α→0

cos[2kexa(1 − α)] ≈ 2 cos(2kexa) + 2kexa sin(2kexaα) . (3.92)
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As a result, the problematic part of (3.83) (denoted by Ip1) can be written as

Ip1 = −ya
√

2

δ1
∫

0

(d1 + d2α+ d3α
2) ln(α)dα

−ya
√

2

0.5
∫

δ1

dα
{

c3 sin [kexa(1 − 2α)] + c4α cos [ke2xa(1 − α)]

+c5(1 − 2α) cos(2kexaα) + c6 sin(2kexaα)
}

ln(α) dα (3.93)

where the ln(xa) part is left out. Now the first integral in (3.93) (denoted by

Isingularp1 ) can be evaluated in closed-form as

Isingularp1 = −ya
√

2

δ1
∫

0

(d1 + d2α+ d3α
2) ln(α)dα

= −ya
√

2

{

d1(δ1 ln(δ1) − δ1) + d2

(

δ2
1

2
ln(δ1) −

δ2
1

4

)

+ d3

(

δ3
1

3
ln(δ1) −

δ3
1

9

)}

(3.94)

where the constants d1, d2 and d3 are given by

d1 = c3 sin(kexa) + c5 (3.95)

d2 = −2c3kexa cos(kexa) + c4 cos(2kexa) − 2c5 + 2c6kexa (3.96)

d3 = 2c4kexa sin(2kexa) . (3.97)

Finally (3.83) is expressed in its numerically efficient form as

Zxxsingular

nn =

0.5
∫

0

dα
{

c3 sin [kexa(1 − 2α)] + c4α cos [ke2xa(1 − α)]

+c5(1 − 2α) cos(2kexaα) + c6 sin(2kexaα)
}

Hr(α) dα
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+

1
∫

0.5

{

c4(1 − α) cos[2kexa(1 − α)]

+c6 sin[2kexa(1 − α)]
}

H(α) dα+ Ip1 (3.98)

where

Hr(α) = ya
√

2
[

ln
(

ya +
√

x2
aα

2 + y2
a

)

− ln(xa)
]

−
√

2
[

√

x2
a + α2 − xaα

]

. (3.99)

Equation (3.98) can be evaluated using a simple Gaussian quadrature scheme

except the Isingularp1 part which is found in closed-form. The evaluation of the

proper part of the self-term Zxxproper

nn is explained in Section 3.6.1 .

Note that self-term (Zyy
mm) for the ŷ-directed basis functions can be evaluated

using the same expressions (3.98) and (3.84) by simply interchanging the half-

length (xa) and half-width (ya) of the x̂-directed basis function with those of the

ŷ-directed one.

In order to asses the accuracy of this method, we compare the singularity

removed self-term results with the spectral domain method results for different

sets of geometric parameters given in Table 3.6.

ǫr th xa ya

Case 1 3.25 0.06λ0 0.195λ0 0.005λ0

Case 2 2.59 0.02λ0 0.05λ0 0.05λ0

Case 3 2.59 0.003λ0 0.05λ0 0.01λ0

Table 3.6: Geometric Parameters

The spectral domain solution to the mutual coupling calculation is pretty accurate

for the self-term. Hence, we use it as a reference solution to check the accuracy of

the space domain solution. Table 3.7 shows that the results are in good agreement
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Spectral Domain (Zxx
nn) Spatial Domain (Zxx

nn)

Case 1 −16.14 − j141.87 −16.14 − j141.7

Case 2 −0.046 + j82.1 −0.046 + j82.11

Case 3 −0.001 + j98.6 −0.001 + j98.9

Table 3.7: Spectral and Spatial Domain Self-Term Results

with the spectral domain solution. Spatial domain solution to the self-term is

generally faster than the spectral domain counter part except for electrically very

thin substrates. For electrically thin substrates, convergence of the numerical

evaluation of integrals in the proper part of the self-term occupies most of the

computation time. CPU time1 is 11.3sec. for the spectral solution of Case 1

where as the spatial domain solution takes only 1.58sec. However, for Case 3 the

spectral domain solution (2.5sec.) is faster compared to the spatial domain CPU

time which is found to be 17.0sec.

3.5.2 Zxx

n (n+1) (or Zyy

n (n+1)) Component Overlapping-Term

In the previous subsection singularity treatment for the self-term is explained. In

the analysis of microstrip antennas and antenna arrays using the spatial domain

MoM, another case where singularity occurs is the overlapping (not entirely) basis

functions (both x̂-directed or ŷ-directed) case where s = xa. In this situation,

the mutual coupling between two overlapping basis functions can be written as

Zxx
n(n+1) =

ya
∫

−ya

ya
∫

−ya

2xa
∫

0

xa
∫

−xa

Gxx
sin [ke(xa − |x|)]

2ya sin(kexa)

×sin [ke(xa − |x′ − xa|)]
2ya sin(kexa)

dx dx′ dy dy′ . (3.100)

1Intel 2.6GHz Pentium 4 CPU with HT and 1GB RAM
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Similar to the self-term singularity removal procedure explained in the previ-

ous subsection in the view of (3.66), (3.68) and (3.69) we can write the singular

part of the mutual coupling (3.100) as

Zxxsingular

n(n+1) =

ya
∫

−ya

ya
∫

−ya

2xa
∫

0

xa
∫

−xa

1

s

{

t3(x, x
′) cos [ke(2xa − |x| − |x′ − xa|)]

+t4(x, x
′) cos [ke(|x′ − xa| − |x|)]

}

dx dx′ dy dy′ (3.101)

where t3(x, x
′) and t4(x, x

′) are defined as

t3(x, x
′) = −t1sign(x′ − xa) sign(x) + t2

2
(3.102)

t4(x, x
′) =

t2 − t1sign(x′ − xa) sign(x)

2
(3.103)

(3.104)

with the constants t1 and t2 given by

t1 = − Z0

2πk0

{

ζ∞u − ǫ− 1

ǫ
ζ∞w

}

k2
e

4y2
a sin2(kexa)

(3.105)

t2 = −
(

Z0

2πk0

)

k2
0ζ

∞
u

4y2
a sin2(kexa)

. (3.106)

There are two possible values of each t3(x, x
′) and t4(x, x

′) based on the value

of sign(x′ − xa) sign(x) which will be called t3±(x, x′) and t3±(x, x′). When the

sign(x′ − xa) sign(x) product is positive we use t3+ and t4+, and we use t3− and

t4− otherwise

Equation (3.101) can be reduced to a 2-D integral by carrying out the y and y′

integrals analytically, in a similar fashion how (3.76) is derived. Briefly, using the

same change of variables and integration formulas given by (3.71)-(3.75), (3.101)

can be expressed as
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Zxxsingular

n(n+1) =

2xa
∫

0

xa
∫

−xa

{

t3 cos [ke(2xa − |x′ − xa| − |x|)] + t4 cos [ke(|x′ − xa| − |x|)]
}











4ya





ln





ya
√

2 +

√

√

√

√

(

x′ − x√
2

)2

+ 2y2
a





 − ln

∣

∣

∣

∣

∣

x′ − x√
2

∣

∣

∣

∣

∣







−2
√

2







√

√

√

√

(

x′ − x√
2

)2

+ 2y2
a −

∣

∣

∣

∣

∣

x′ − x√
2

∣

∣

∣

∣

∣

















dx dx′ . (3.107)

Transformation from the integration domain of x-x′ integrals to the ν-υ domain

integrals, based on the change of variables denoted in (3.78)-(3.80), are shown

in Fig. 3.8. Applying this last change of variables (3.81)-(3.82) to this integral

to normalize the integration limits, the resultant one-dimensional integral is ob-

tained as

12

3 4
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3

4

Figure 3.8: Mapping from the x-x′ plane to ν-υ plane

Zxxsingular

n(n+1) =

0.5
∫

0

{

t5 sin(2kexaα) + t6(1 − 2α) cos(2kexaα)

+t7α cos[kexa(1 − 2α)] + t8 sin[kexa(1 − 2α)]
}

H(α) dα
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+

1
∫

0.5

{

t5 sin[2kexa(1 − α)] − t9(1 − 2α) cos[kexa(3 − 2α)]

+t7(1 − α) cos[kexa(1 − 2α)] − t10 sin[kexa(1 − 2α)]
}

H(α) dα

+

1.5
∫

1

{

t9(3 − 2α) cos[kexa(3 − 2α)]

+t10 sin[kexa(3 − 2α)]
}

H(α) dα (3.108)

where

t5 = 8
√

2xa
cos(kexa)

ke
t3+ (3.109)

t6 = 8
√

2x2
a cos(kexa)t3− (3.110)

t7 = 16
√

2x2
at4+ (3.111)

t8 = 8
√

2xa
1

ke
t4− (3.112)

t9 = 4
√

2x2
at3− (3.113)

t10 = 4
√

2xa
1

ke
t4− (3.114)

and H(α) is given by (3.84). Similar to the evaluation of (3.83), (3.108) is prob-

lematic when α approaches to zero due to the ln(α) term. Denoting this part of

(3.108) as Ip2, in a similar fashion to (3.93) Ip2 is written in the following way:

Ip2 = −ya
√

2

δ2
∫

0

(κ1 + κ2α+ κ3α
2) ln(α) dα

−ya
√

2

0.5
∫

δ

{

t5 sin(2kexaα) + t6(1 − 2α) cos(2kexaα)

+t7α cos[kexa(1 − 2α)] + t8 sin[kexa(1 − 2α)]
}

ln(α) dα (3.115)

where κ1, κ2 and κ3 are defined by employing the asymptotic values of sine and
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cosine functions (3.89)-(3.92) as

κ1 = t6 + t8 sin(kexa) (3.116)

κ2 = 2t5kexa − 2t6 + t7 cos(kexa) − 2t8kexa(cos(kexa)) (3.117)

κ3 = 2t7kexa sin(kexa) . (3.118)

Also δ2 is chosen in such a way that 2kexaδ2 ≪ 1. The first integral in (3.115),

which is called Isingularp2 , is evaluated in closed-form given by

Isingularp2 = −ya
√

2

κ2
∫

0

(d1 + d2α+ d3α
2) ln(α)dα

= −ya
√

2

{

d1(κ2 ln(κ2) − κ2) + d2

(

κ2
2

2
ln(κ2) −

κ2
2

4

)

+ d3

(

κ3
2

3
ln(κ2) −

κ3
2

9

)}

(3.119)

Finally (3.108) is rewritten in its numerically efficient form as follows:

Zxxsingular

n(n+1) =

0.5
∫

0

{

t5 sin(2kexaα) + t6(1 − 2α) cos(2kexaα)

+t7α cos[kexa(1 − 2α)] + t8 sin[kexa(1 − 2α)]
}

Hr(α) dα

+

1
∫

0.5

{

t5 sin[2kexa(1 − α)] − t9(1 − 2α) cos[kexa(3 − 2α)]

+t7(1 − α) cos[kexa(1 − 2α)] − t10 sin[kexa(1 − 2α)]
}

H(α) dα

+

1.5
∫

1

{

t9(3 − 2α) cos[kexa(3 − 2α)]

+t10 sin[kexa(3 − 2α)]
}

H(α) dα+ Ip2 . (3.120)

This integral is evaluated using a simple Gaussian quadrature integration scheme

just like the self-term evaluations. As it is mentioned before proper part of the

overlapping-term Zxx
n(n+1) is evaluated in an efficient way explained in 3.6.1. Note
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Spectral Domain (Zxx
n(n+1)) Spatial Domain (Zxx

n(n+1))

Case 1 −11.8 − j186.1 −11.8 − j185.9

Case 2 −0.045 − j40.6 −0.045 − j40.6

Case 3 −0.001 − j54.4 −0.001 − j54.64

Table 3.8: Spectral and Spatial Domain Overlapping-Term Results

that overlapping term (Zyy
m(m+1)) for ŷ-directed basis functions can be evaluated

using the same equations (3.115), (3.119) and (3.120) with the x̂-directed ones,

by interchanging the the half-length (xa) and half-width (ya) of the x̂-directed

basis functions with those of the ŷ-directed ones.

A comparison of the numerical results found using the spatial domain and

spectral domain methods for the geometric parameters tabulated in Table 3.6, is

given in Table 3.8. The results show an excellent agreement between the spectral

and space domain solutions.

3.5.3 Zxy

mn
Component Overlapping-Term

Finally, we investigated the cross-coupling terms. Consider two basis functions:

one x̂-directed with its center point (0, 0) and the other one ŷ-directed with its

center at (−xa/2,−ya). 2xa and 2ya are the length and width of the x̂-directed

basis function where as the length of the ŷ-directed one is 4ya and its width is

xa. The mutual coupling between these two basis functions can be written as

Zxy
mn = Zxyproper

mn + Zxysingular

mn

=

ya
∫

−3ya

ya
∫

−ya

0
∫

−xa

xa
∫

−xa

(Gproper
xy (s) +Gsingular

xy (s))
sin [ke(2ya − |y′ + ya|)]

xa sin(2keya)

×sin [ke(xa − |x|)]
2ya sin(keya)

dx dx′ dy dy′ (3.121)
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where the Green’s function component Gxy is given in (3.48) and it can be written

in terms of its singular and proper terms as

Gxy = Gproper
xy +Gsingular

xy

Gproper
xy = − Z0

2πk0

[

∂2

∂x∂y

(

Unum − ǫr − 1

ǫr
Wnum

)

]

(3.122)

Gsingular
xy = − Z0

2πk0

[

∂2

∂x∂y

(

Uanalytic −
ǫr − 1

ǫr
Wanalytic

)

]

. (3.123)

Using Gsingular
xy and transferring the derivatives onto the basis and testing func-

tions via integration by parts, singular part of (3.121) can be written as

Zxysingular

mn =

ya
∫

−3ya

ya
∫

−ya

0
∫

−xa

xa
∫

−xa

cxy1
s

{cos [ke(xa − |x|)] cos [ke(2ya − |y′ + ya|)]}

×sign(x)sign(y′ + ya) dx dx
′ dy dy′ (3.124)

where the constant cxy1 is given by

cxy1 =
Z0

2πk0

{

ζ∞u − ǫr − 1

ǫr
ζ∞w

}{

k2
e

2xaya sin(kexa) sin(2keya)

}

. (3.125)

Similar to the previous cases (Zxx
nn and Zxx

n(n+1)), first y, y′ domain integrations

denoted by IY and given by

IY =

ya
∫

−3ya

ya
∫

−ya

1

s
cos[ke(2ya − |y′ + ya|)]sign(y′ + ya) dy dy

′ (3.126)

is reduced to a 1-D integral, using the transformations given in (3.71)-(3.73).

Transformation of integration domain from y-y′ to τ -ψ domain is depicted in Fig.

3.9. The resultant integral is given by
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Figure 3.9: Mapping from the y-y′ plane to τ -ψ plane

I1D
Y = − 1

ke

{ ya

√
2

∫

0

sin(keτ
√

2) − 2 sin[ke(2ya − τ
√

2)]
√

(

x′−x√
2

)2
+ τ 2

dτ

2ya

√
2

∫

ya

√
2

sin[ke(4ya − τ
√

2)]
√

(

x′−x√
2

)2
+ τ 2

dτ

}

. (3.127)

Then by applying the following change of variables given by

β =
τ

ya
√

2
(3.128)

dβ =
dτ

ya
√

2
(3.129)

to normalize the integration limits, (3.127) becomes

I1D
Y = −ya

√
2

ke

{ 1
∫

0

sin(2keyaβ) − 2 sin[2keya(1 − β)]
√

(

x′−x√
2

)2
+ 2y2

aβ
2

dβ

2
∫

1

sin[2keya(2 − β)]
√

(

x′−x√
2

)2
+ 2y2

aβ
2

dβ

}

. (3.130)
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Next, we work on the x-x′ domain integrals denoted by IX . By changing the

order of integration, x-x′ domain integrals are written as

IX =

0
∫

−xa

xa
∫

−xa

cos[ke(xa − |x|)]sign(x)
1

√

(

x′−x√
2

)2
+ 2y2

aβ
2

dx dx′ . (3.131)

Then using the change of variables given in (3.78)-(3.80), which is depicted in

Fig. 3.10, x-x′ domain integral is transformed into a ν-υ domain integral where

υ integration is evaluated analytically. As a result, in a similar fashion with the

previous sections, (3.131) is reduced to a 1-D integral denoted by I1D
X . Finally by

changing the variables using (3.81) and (3.82), integration limits are normalized

and I1D
X is given by
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Figure 3.10: Mapping from the x-x′ plane to ν-υ plane

I1D
X =

0.5
∫

0

2xa
ke

{

sin(2kexaα) − 2 sin[kexa(1 − 2α)]
}

1
√

2x2
aα

2 + 2y2
aβ

2
dα

+

1
∫

0.5

2xa
ke

sin[2kexa(1 − 2α)]
1

√

2x2
aα

2 + 2y2
aβ

2
dα . (3.132)

Once again, implementation of I1D
X requires special attention since the denomi-

nator has a zero at α = 0 if β = 0. So we approximate sine and cosine functions
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in the interval (0, δα) and using the integral formulas given in (3.74) and (3.75)

we evaluate the singular part I1D
Xs in closed-form given by

I1D
Xs =

xa
√

2

ke

∫ δα

0

{

sin(2kexaα) − 2 sin[ke(1 − 2α)]
}

dα
√

x2
aα

2 + y2
aβ

2

≈ 2
√

2 {1 + 2 cos(kexa)}
{

√

x2
aδ

2
α + y2

aβ
2 − yaβ

}

−2
√

2

ke
sin(kexa)

{

ln
(

xaδα +
√

β2y2
a + x2

aδ
2
α

)

− ln(βya)
}

. (3.133)

As a result we rewrite I1D
X as

I1D
X =

xa
√

2

ke

∫ 0.5

δα

{

sin(2kexaα) − 2 sin[ke(1 − 2α)]
}

dα
√

x2
aα

2 + y2
aβ

2

+I1D
Xs +

xa
√

2

ke

∫ 1

0.5
sin[2kexa(1 − α)]

dα
√

x2
aα

2 + y2
aβ

2
(3.134)

where δα is chosen to be 2kexaδα ≪ 1. For β = 0 this equation has still a

logarithmic singularity and as β gets closer to 0, the erratic behavior of the

integrand affects the numerical accuracy of the integral. Final equation including

the treatment of this singularity can be derived from (3.124) by combining (3.130)

and (3.134) and Zxy
mn becomes

Zxy
mn = −cxy1

ya
ke

[√
2

1
∫

0

{

sin(2keyaβ) − 2 sin[2keya(1 − β)]
}

×
{

I1D
X (β) − 2

√
2

ke
sin(kexa) ln(β)

}

dβ

+
4

ke
sin(kexa)

1
∫

δβ

{

sin(2keyaβ) − 2 sin[2keya(1 − β)]
}

ln(β)dβ

+8 sin(kexa)

{

ya[1 + 2 cos(2keya)]

(

δ2
β

2
ln(δβ) −

δ2
β

4

)

− 1

ke
[δβ ln(δβ) − δβ]

}

+
√

2

2
∫

1

sin[2keya(2 − β)]I1D
X (β) dβ

]

. (3.135)
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Similar to δα, δβ is chosen to be 2keyaδβ ≪ 1. Proper part of the cross coupling

Zxyproper

mn is evaluated numerically in an efficient way, which is explained in Section

3.6.2, in order to increase the accuracy of the solution even for the electrically

very thin substrates.

In Table 3.9 comparison of the space and spectral domain solutions are given to

test the accuracy of the space domain formulation for the cross coupling (denoted

by Zxy
mn) of basis (which are oriented in x̂ or ŷ-direction) and testing functions

(which are oriented in ŷ or x̂-direction), whose domains overlap. Geometric para-

meters given in Table 3.6 are used. Similar to the previous results which are given

for the other components, agreement is very good between the two solutions.

Spectral Domain (Zxy
mn) Spatial Domain (Zxy

mn)

Case 1 0.001 − j30.88 0.001 − j30.95

Case 2 0.0003 − j43.31 0.0003 − j43.32

Case 3 2.0 × 10−7 − j49.6 2.0 × 10−7 − j50.1

Table 3.9: Spectral and Spatial Domain (Zxy
mn) Results

3.5.4 Probe V x

m
Component Singularity Treatment

Probe component singularity treatment is rather simple compared to other com-

ponents due to the simplicity of the Green’s function components Gzx and Gzy.

Using (3.50) and (3.62) and employing integration by parts in order to transfer

the derivative onto the basis function, singular part of the voltage vector entry is

given by
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V xsingular

m = − Z0

2πk0

ym+ya
∫

ym−ya

xm+xa
∫

xm−xa

ζ∞p
s

sign(x− xm)

×cos[ke(xa − |x− xm|)]
2ya sin(kexa)

dx dy . (3.136)

This time s is defined as
√

(x− xp)2 + (y − yp)2, where (xp, yp) represent the posi-

tion of the probe which is feeding the antenna. Note that xm+xa < xp < xm+xa

and ym − ya < yp < ym + ya. Thus, s can take the value 0 in this integral and

there is a possible singularity in the numerical integration. Fortunately we can

carry out the y-integration in closed-form using the integration formula (3.75).

Then the resulting expression for (3.136) becomes

V xsingular

m =− Z0

4πya sin(kexa)k0

∫ xm+xa

xm−xa

{

ln
(

y2 +
√

(x− xp)2 + y2
2

)

− ln
(

y1 +
√

(x− xp)2 + y2
1

)}

× cos[ke(a− |x− xm|)]sign(x− xm) dx (3.137)

where

y1 = yA − ya (3.138)

y2 = yA + ya (3.139)

where yA = yp − ym. Table 3.10 shows the comparison between spectral and

spatial domain results for the voltage vector entry of an x̂-directed basis function

(xm, ym) = (0, 0) with a probe located at (xp, yp) = (−xa/2, 0). Geometric

parameters are the same as given in Table 3.6. Once again space domain results

are in good agreement with the spectral domain results.
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Spectral Domain (V x
m) Spatial Domain (V x

m)

Case 1 1.29 + j106.99 1.29 + j106.74

Case 2 0.005 + j61.04 0.005 + j61.01

Case 3 9.6 × 10−5 + j63.86 9.1 × 10−5 + j63.71

Table 3.10: Spectral and Spatial Domain Vx Results

3.6 Mutual Coupling Calculation in Spatial

Domain for Planar Grounded Dielectric

Slabs (A general case where there is no sin-

gularity)

Spatial domain mutual coupling calculations require the numerical computation

of the two double integrals on the domains of the basis and testing functions.

Although a simple Gaussian quadrature numerical integration scheme is enough in

the computation, the convergence of these integrals can become quite troublesome

for relatively large basis functions and when the dielectric substrate is electrically

very thin. However, using some change of variables in the spatial coordinates, the

order of each of these integrals can be reduced to one by analytically evaluating

one of the integrals. This reduces the computational effort and accelerates the

spatial domain calculations.

3.6.1 Integration Domain Mapping in Spatial Domain:

x̂-x̂ Case

Mutual coupling between two x̂-directed PWS basis functions, located at (xm, ym)

and (xn, yn) with the same dimensions, can be written as
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Figure 3.11: Mapping from the y-y′ plane to τ -ψ plane

Zxx
mn =

ym+ya
∫

ym−ya

yn+ya
∫

yn−ya

xm+xa
∫

xm−xa

xn+xa
∫

xn−xa

Gxx(s)
sin[ke(xa − |x− xn|)]

2ya sin(kexa)

×sin[ke(xa − |x′ − xm|)]
2ya sin(kexa)

dx dx′ dy dy′ (3.140)

where xa and ya are the half-length and half-width of the basis functions and

s is given in (3.45). In order to reduce the order of y-y′ integrals, we start by

mapping the y-y′ domain to the τ -ψ domain by the change of variables given in

(3.71)-(3.73), which is depicted in Fig. 3.11. Using the new variables s can be

written as

s =
√

(x− x′)2 + 2τ 2. (3.141)

ψ integral is evaluated analytically by noting that ψ does not occur in the inte-

grand. The resultant three-fold integral is given by

Zxx
mn =

∫ τ2

τ0
Txx(τ)







xm+xa
∫

xm−xa

xn+xa
∫

xn−xa

Gxx(s)
sin[ke(xa − |x− xn|)]

2ya sin(kexa)

×sin[ke(xa − |x′ − xm|)]
2ya sin(kexa)

dx dx′
}

dτ (3.142)
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Figure 3.12: Mapping from the x-x′ plane to ν-υ plane

where Txx(τ) is defined as

Txx(τ) =







−2τ + (2ya + ys)
√

2 τ1 ≤ τ < τ2

2τ + (2ya − ys)
√

2 τ0 ≤ τ < τ1
(3.143)

with the integration limits τ0, τ1 and τ2 are given as

τ0 =
ys − 2ya√

2
(3.144)

τ1 =
ys√
2

(3.145)

τ2 =
ys + 2ya√

2
(3.146)

and ys = ym − yn.

As the next step, after transferring the spatial derivatives in (3.46) onto the

basis and testing functions x-x′ domain is mapped to ν-υ domain (shown in Fig.

3.12) in a similar fashion as the previous section. Making use of some trigono-

metric identities and after regrouping the terms, final form of Zxx
mn is given by

Zxx
mn = − Z0

2πk0

(

1

2ya sin(kexa)

)2
∫ τ2

τ0
Txx(τ) {Iv1 + Iv2 + Iv3} dτ (3.147)
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where Iv1, Iv2 and Iv3 are the integrals defined as

Iv1 = 2
∫ ν3

ν1

{

cos[ke(xs − ν
√

2)]Vxx1 (ν)
{

k2
0U(s) − k2

eQ(s)
}

+Vxx2 (ν)
{

k2
0U(s) + k2

eQ(s)
}

}

dν (3.148)

Iv2 =
∫ ν4

ν2

{

cos[ke(2xa + xs − ν
√

2)]Vxx3 (ν)
{

k2
0U(s) − k2

eQ(s)
}

+Vxx4 (ν)
{

k2
0U(s) + k2

eQ(s)
}

}

dν (3.149)

Iv3 =
∫ ν2

ν0

{

cos[ke(2xa − xs + ν
√

2)]Vxx5 (ν)
{

k2
0U(s) − k2

eQ(s)
}

+Vxx6 (ν)
{

k2
0U(s) + k2

eQ(s)
}

}

dν (3.150)

with

Vxx1 (ν) =



















ν − xs−xa√
2

ν1 < ν < ν2

−ν + xs+xa√
2

ν2 < ν < ν3

(3.151)

Vxx2 (ν) =



















cos(kexa)

ke

√
2

sin[ke(−ν
√

2 − xa + xs)] ν1 < ν < ν2

cos(kexa)

ke

√
2

sin[ke(−ν
√

2 − xa − xs)] ν2 < ν < ν3

(3.152)

Vxx3 (ν) =



















xs−ν
√

2√
2

ν2 < ν < ν3

−2xa−xs+ν
√

2√
2

ν3 < ν < ν4

(3.153)

Vxx4 (ν) =



















− sin[ke(xs−ν
√

2)]

ke

√
2

ν2 < ν < ν3

sin[ke(2xa+xs−ν
√

2)]

ke

√
2

ν3 < ν < ν4

(3.154)
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Vxx5 (ν) =



















−2xa+xs−ν
√

2√
2

ν0 < ν < ν1

−xs+ν
√

2√
2

ν1 < ν < ν2

(3.155)

Vxx6 (ν) =



















sin[ke(2xa−xs+ν
√

2)]

ke

√
2

ν0 < ν < ν1

sin[ke(xs−ν
√

2)]

ke

√
2

ν1 < ν < ν2

. (3.156)

In (3.148)-(3.150), the Q(s) function is defined as

Q(s) = U(s) − ǫr − 1

ǫr
W (s) , with (3.157)

U(s) and W (s) are given before by (3.52) and (3.53), respectively. Finally, the

separation s becomes s =
√

2ν2 + 2τ 2 and the integration limits ν0 , ν1 , ν2 , ν3 and

ν4 are given as

ν0 =
xs − 2xa√

2
(3.158)

ν1 =
xs − xa√

2
(3.159)

ν2 =
xs√
2

(3.160)

ν3 =
xs + xa√

2
(3.161)

ν4 =
xs + 2xa√

2
(3.162)

with xs = xm − xn. The resultant τ and ν integrals are evaluated with a careful

numerical computation which uses an adaptive Gaussian quadrature integration

scheme in order to increase the efficiency of the solution. In this numerical inte-

gration scheme the number of points are doubled adaptively until a convergence

criteria is met between the consecutive iterations. This convergence criteria is

chosen for a desired accuracy.
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3.6.2 Integration Domain Mapping in Spatial Domain:

x̂-ŷ Case

Mutual coupling between an x̂ and a ŷ-directed PWS basis functions located at

(xn, yn) and (xm, ym), respectively is given by

Zxy
mn =

ym+2ya
∫

ym−2ya

yn+ya
∫

yn−ya

xm+xa/2
∫

xm−xa/2

xn+xa
∫

xn−xa

Gxy(s)
sin[ke(xa − |x− xn|)]

2ya sin(kexa)

×sin[ke(2ya − |y′ − ym|)]
xa sin(2keya)

dx dx′ dy dy′ (3.163)

where Gxy is given by (3.48). After transferring the derivatives onto the basis

and testing functions, and by using the same change of variables given by (3.78)-

(3.80) (shown in Fig. 3.13), (3.163) becomes

Zxy
mn =

Z0

2πk0

[

ke√
2xa sin(2keya)

] ym+2ya
∫

ym−2ya

yn+ya
∫

yn−ya

cos[ke(2ya − |y′ − ym|)]

×sign(y′ − ym)











νxy
3
∫

νxy
0

Vxy(ν)Q(s) dν











dy dy′ (3.164)
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Figure 3.13: Mapping from the x-x′ plane to ν-υ plane
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where

Vxy(ν) =











































− sin[ke(1.5xa − xs + ν
√

2)] νxy0 < ν < νxy1

2 cos
(

kexa

2

)

sin[ke(ν
√

2 − xs)] νxy1 < ν < νxy2

sin[ke(1.5xa + xs − ν
√

2)] νxy2 < ν < νxy3

(3.165)

and the constants νxy0 , νxy1 , νxy2 and νxy3 are given by

νxy0 =
xs − 1.5xa√

2
(3.166)

νxy1 =
xs − 0.5xa√

2
(3.167)

νxy2 =
xs + 0.5xa√

2
(3.168)

νxy3 =
xs + 1.5xa√

2
. (3.169)

Finally y-y′ domain integration is converted into a τ -ψ domain integration using

the change of variables given by (3.71)-(3.72)(shown in Fig. 3.14). The final form

of the equation is in the form of

Zxy
mn =

Z0

2πk0

(

1

xaya sin(kexa) sin(2keya)

) τxy
3
∫

τxy
0

Txy(τ)











νxy
3
∫

νxy
0

Vxy(ν)Q(s) dν











dτ

(3.170)

where the function T (τ) is given by

Txy(τ) =











































sin[ke(3ya − ys + τ
√

2)] τxy0 < τ < τxy1

2 cos(keya) sin[ke(ys − τ
√

2)] τxy1 < τ < τxy2

− sin[ke(3ya + ys − τ
√

2)] τxy2 < τ < τxy3

. (3.171)

The constants τxy0 , τxy1 , τxy2 and τxy3 are defined as
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Figure 3.14: Mapping from the y-y′ plane to τ -ψ plane

τxy0 =
ys − 3ya√

2
(3.172)

τxy1 =
ys − ya√

2
(3.173)

τxy2 =
ys + ya√

2
(3.174)

τxy3 =
ys + 3ya√

2
. (3.175)

The τ -ν integrals in (3.170) are evaluated numerically using an adaptive Gaussian

quadrature integration scheme in a similar fashion to the x̂-x̂ case.

3.6.3 Evaluation of V x,y

m
in Spatial Domain

The component of the voltage vector for an x̂-directed basis function located at

(xm, ym) can be expressed as

V x
m =

ym+ya
∫

ym−ya

xm+xa
∫

xm−xa

Gzx(s)
sin[ke(xa − |x− xm|)]

2ya sin(kexa)
dy dx (3.176)
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where s =
√

(xp − x)2 + (yp − y)2 and (xp, yp) is the position of the the probe.

There is no mapping applied to the integration domain of this integral, since

it is already in the form of a double integral. An efficient adaptive Gaussian

quadrature method is used in the numerical evaluation of this integral.

Note that voltage vector entry for an ŷ-directed basis function can be found

by changing the parameters x↔ y, center coordinates, half-length (xa) and half-

width (ya) of the x̂-directed basis functions with those of the and ŷ-directed basis

functions.



Chapter 4

Green’s Function

Representations for Cylindrical

Grounded Dielectric Slab

4.1 Spectral Domain Representation of Green’s

Function for Cylindrical Grounded Dielec-

tric Slabs

Surface field components on a dielectric coated PEC cylinder can be expressed

as a cylindrical IFT of their spectral domain counterparts given by

Eφ(φ, z) =
1

2π

∞
∑

n=−∞
ejnφ







∞
∫

−∞

Ẽφ(n, kz)e
jkzz dkz







(4.1)

Ez(φ, z) =
1

2π

∞
∑

n=−∞
ejnφ







∞
∫

−∞

Ẽz(n, kz)e
jkzz dkz







. (4.2)

In (4.1) and (4.2) the spectral domain electric field components are obtained using

the special Green’s function and the Fourier transform of the surface currents,

65
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given by




Ẽφ

Ẽz



 =





G̃φφ G̃φz

G̃zφ G̃zz









J̃φ

J̃z



 . (4.3)

Derivation of these Green’s function components starts with writing the electric

field in terms of cylindrical wave functions

Ẽi
z =

∞
∑

n=−∞
e−jnφ[ainJn(ktiρ) + binH

(2)
n (ktiρ)] (4.4)

H̃ i
z =

∞
∑

n=−∞
e−jnφ[cinJn(ktiρ) + dinH

(2)
n (ktiρ)] (4.5)

where the superscript i = 1 indicates the dielectric region whereas i = 0 indicates

the free space. The constants ain, b
i
n, c

i
n and din are found by applying the following

boundary conditions:

(i) Tangential electric field is zero on conducting surfaces (at ρ = a and on the

printed conductor at ρ = d),

(ii) Tangential components of the electric field is continuous at the dielectric-air

interface (ρ = d),

(iii) Tangential components of the magnetic field are continuous at the dielectric-

air interface (ρ = d) except the printed conductor surfaces, where n̂×H = J

(iv) Radiation condition: fields vanish ρ→ ∞.

Finally in (4.4) and (4.5) kti denotes the transverse propagation constant in free-

space (i = 0) and in the dielectric region (i = 1), which is defined as

k2
t0 = k2

0 − k2
z ; k0 = ω

√
ǫ0µ0 (4.6)

k2
t1 = k2

1 − k2
z ; k1 = ω

√
ǫ1µ1 . (4.7)

When the source and observation points are both on the air-dielectric interface

(ρ = ρ′ = d), the special Green’s function components are given by [33]

G̃φφ(n, kz) =
jZ0

k0







[

k2
0kt0
k2
t1

]

RnC
e
nTm
T

− kt0
RnT

2
c

(ǫr − 1)T
−
[

nkz
dkt1

]2
Ce
n − kt0Rn

T







(4.8)
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G̃φz(n, kz) = G̃zφ(n, kz) =
jZ0

k0

[

nkz
d

k2
t0

k2
t1

(Ce
n − kt0Rn)

T

]

(4.9)

G̃zz(n, kz) =
jZ0

k0

k2
t0

Te
T

(4.10)

where

T = TeTm − T 2
c (4.11)

Te = kt0Rn −
k2
t0

k2
t1

Ce
n (4.12)

Tm = kt0Rn − ǫr
k2
t0

k2
t1

Cm
n (4.13)

Tc =
k0(ǫr − 1)

k2
t1

nkz
d

(4.14)

Rn =
H(2)′

n (kt0d)

H
(2)
n (kt0d)

(4.15)

Ce
n = kt1

J ′
n(kt1a)Y

′
n(kt1d) − J ′

n(kt1d)Y
′
n(kt1a)

J ′
n(kt1a)Yn(kt1d) − Jn(kt1d)Y ′

n(kt1a)
(4.16)

Cm
n = kt1

Jn(kt1a)Y
′
n(kt1d) − J ′

n(kt1d)Yn(kt1a)

Jn(kt1a)Yn(kt1d) − Jn(kt1d)Yn(kt1a)
. (4.17)

and ′ denotes the derivatives with respect to the argument. Similarly the normal

components of the Green’s function, where the source point is on the surface

(ρ′ = d) and the observation point is inside the dielectric region, can be written

as [33]



CHAPTER 4. CYLINDRICAL GROUNDED DIELECTRIC SLABS 68

Gρφ = j
Z0

k0

{

jn

ρ

[

T 2
c

ǫr − 1
− k2

0kt0RnTm
k2
t1

]

Cpr1
n

T

+
jkz
T

(

nkz
dk2

t1

)(

k2
t0

k2
t1

)

(Ce
n − kt0Rn)kt1C

pr2
n

}

(4.18)

Gρz =
jZ0

k0

{

−jn
ρ

(

k2
t0

k2
t1

)

k0TcC
pr1
n

T
+
jkz
T

(

k2
t0

k2
t1

)

Tekt1C
pr2
n

}

(4.19)

Cpr1
n =

J ′
n(kt1a)Yn(kt1ρ) − Jn(kt1ρ)Y

′
n(kt1a)

J ′
n(kt1a)Yn(kt1d) − Jn(kt1d)Y ′

n(kt1a)
(4.20)

Cpr2
n =

Jn(kt1a)Y
′
n(kt1ρ) − J ′

n(kt1ρ)Yn(kt1a)

Jn(kt1a)Yn(kt1d) − Jn(kt1d)Yn(kt1a)
. (4.21)

Expressions involving Bessel and Hankel functions and their derivatives suffer

instability issues due to the large order (n) and argument of these functions.

These functions are evaluated using closed-form expressions which are written

by employing their Debye approximations and Olver’s uniform representations.

These closed-form approximations can be found in [33].

4.2 Spatial Domain Representation of Green’s

Function for Cylindrical Grounded Dielec-

tric Slabs

Similar to the planar case, spectral domain expressions become extremely inef-

ficient and yield inaccurate results when the geometry under interest becomes

electrically large. Therefore, spatial domain hybrid MoM/Green’s function tech-

nique is preferred to investigate the printed arrays on electrically large coated

cylinders. To achieve the desired efficiency and accuracy in this method (in elec-

trically large geometries), three spatial domain Green’s function representations
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are used interchangeably based on where each representation yields the most

accurate result in a most efficient way. These Green’s function representations

are

(i) Planar approximations for the source region, which are explained in a de-

tailed way in the previous chapter,

(ii) The steepest descent path (SDP) representation, which is briefly explained

in the following subsection (4.2.1) and

(iii) The Fourier series representation, which is briefly explained in subsection

(4.2.2).

4.2.1 Steepest Descent Path (SDP) Representation of the

Green’s Function

This representation is based on the circumferentially propagating series represen-

tation of the appropriate Green’s function and its efficient numerical evaluation

along a steepest descent path (SDP) on which the integrand decays most rapidly

([33],[40]).

Consider an infinitesimal surface current distribution J on the air-dielectric

interface, which can be written as

J = Pe

δ(φ− φ′) δ(z − z′)

ρ′
(4.22)

where Pe = P z
e x̂+ P φ

e φ̂ and its Fourier transform J̃ is given by

J̃ =
Pe

2πd
ejkzz′ejnφ

′

. (4.23)

Using (4.1), (4.2) and (4.3), the surface electric field due to this current distrib-

ution is given by
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El(φ, z) =
1

4π2d

∞
∑

n=−∞
ejn(φ−φ′)







∞
∫

−∞

G̃lu(n, kz)P
u
e e

jkz(z−z′) dkz







(4.24)

where û (û = φ̂, ẑ or ρ̂) represents the source direction and l̂ (l̂ = φ̂, ẑ or ρ̂)

represents the observation direction (we did not consider the l̂û = ẑẑ case) and

G̃lu(n, kz) is the corresponding component of the appropriate dyadic Green’s func-

tion in the spectral-domain. Watson transform is applied to (4.24) in order to

represent the electric field as a sum of circumferentially propagating waves given

by

El(φ, z) =
1

4π2d

∫ ∞

−∞
dkze

−jkz(z−z′)







∫ ∞−jǫ

−∞−jǫ
Glu(kz, ν)P

u
e





∞
∑

p=−∞
e−jν[(φ−φ

′)−2πp]



 dν







. (4.25)

For an electrically large cylinder, the terms other than p = 0 can be neglected

since they represent the multiple wave encirclements which loose their strength

as they travel on the surface of the cylinder. Therefore, taking only the term

corresponding to p = 0 is enough for most cases. The resulting expression for the

electric field is given by

El(φ, z) =
1

2π

∫ ∞

−∞
dkze

−jkz(z−z′)
{∫ ∞−jǫ

−∞−jǫ
Glu(kz, ν)P

u
e e

−jν(φ−φ′)dν
}

. (4.26)

Before applying the SDP method we perform a Fock type substitution and the

employ polar transformations given by

ν = kt0d+mtτ (4.27)

where

mt =

(

kt0d

2

)
1
3

(4.28)
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Figure 4.1: The cylindrical geometry

and

kz = k0 sin(ψ) (4.29)

kt0 = k0 cos(ψ) . (4.30)

Using the geometrical relations, shown in Fig. 4.1, given by

z − z′ = s sin(α) (4.31)

d(φ− φ′) = s cos(α) (4.32)

with s being the arc length of the geodesic path between source and observation

points on the surface of the coating and α being the angle between s and the

circumferential axis, the following expression for the electric field is obtained:
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El(α, s) ≈ 1

4π2d

∫

CΨ

dψk0 cos(ψ)e−jk0s sin(ψ)sinα

(∫

Cτ

Glu(ψ, τ)P
u
e e

−jk0s cos(ψ)cos(α)e−jmtτ(φ−φ′)mtdτ
)

. (4.33)

Integration contour Cψ can be deformed into its steepest decent path as shown

in Fig. 4.2 where the integrand decays most rapidly as explained in [33]. Resul-

tant expressions for the electric field is given as

C
SDP

-p/2+a

p/2+a
y =a
saddle point

( )t
2

y( )t
3

Imy

Rey

y( )t
1

Cy

Figure 4.2: SDP path

El(α, s) ≈
√

2e−j3π/4

4π2d

e−jk0s√
k0s

∫ ∞

−∞
dt e−t

2

F̃ (α, s, t) (4.34)

where
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F̃ (α, s, t) =
k0cosψ(t)

cos
(

α−ψ(t)
2

)

∫

Cτ (t)
Glu(τ, t)P

u
e mte

−jξτ dτ (4.35)

ψ(t) = α− 2 arcsin

(

tejπ/4√
2
√
k0s

)

(4.36)

and

ξ = mt(φ− φ′). (4.37)

In (4.34) and (4.35), explicit expressions for Glu can be obtained from (4.8) -

(4.10) with n is replaced by ν which is related to τ by (4.27).

4.2.2 Numerical evaluation of the Integrals for the SDP

Representation

The surface wave expression given by (4.34) and (4.35) includes two integrals in

the t and τ domains which are evaluated numerically. In the t domain, the inte-

gration is performed using a Gauss-Hermite quadrature algorithm, whereas in the

τ domain, Filon’s algorithm is used in conjunction with a Gaussian Quadrature

integration algorithm, and a proper tail is added when necessary. Implementa-

tion of the Gauss-Hermite integration procedure to (4.34) and (4.35) yields the

following expressions for the surface fields:

Eφ(α, s) ≈
√

2e−j3π/4

4π2d

e−jk0s√
k0s

Q
∑

q=1

wq
k0 cos[ψ(tq)]mt

cos
[

α−ψ(tq)
2

]

×
[

∫

Cτ(tq)

(Gφφ(τ, tq)P
φ
e +Gφz(τ, tq)P

z
e )e−jξτdτ

]

(4.38)
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Ez(α, s) ≈
√

2e−j3π/4

4π2d

e−jk0s√
k0s

Q
∑

q=1

wq
k0 cos[ψ(tq)]mt

cos
[

α−ψ(tq)
2

]

×
[

∫

Cτ(tq)

(Gzφ(τ, tq)P
φ
e +Gzz(τ, tq)P

z
e )e−jξτdτ

]

(4.39)

Eρ(α, s) ≈
√

2e−j3π/4

4π2d

e−jk0s√
k0s

Q
∑

q=1

wq
k0 cos[ψ(tq)]mt

cos
[

α−ψ(tq)
2

]

×
[

∫

Cτ(tq)

(Gρφ(τ, tq)P
φ
e +Gρz(τ, tq)P

z
e )e−jξτdτ

]

. (4.40)

Q is typically chosen to be 1, 3 or 5 (or rarely more) for a desired accuracy,

depending on the geometry parameters. In some cases even Q = 1 (saddle point

contribution) is enough for a highly accurate solution. However, the main diffi-

culty comes from the evaluation of the τ -integral. Therefore, special care should

be given to the efficient evaluation of the τ -integrals. As a first step, the (−∞−jǫ,
+∞−jǫ) integration in the ν-domain, whose path is shown in Fig. 4.3, is consid-

ered and part of it denoted by C1 is deformed toward the third quadrant assuming

that there is no pole or branch-point singularities in this quadrant. Consequently,

the original contour C = C1 +C2 is now C̃ = C̃1 +C2. Then, using (4.27) the in-

tegration path C̃ in the ν-domain is mapped to τ domain and Cτ (tq) is obtained.

However, the integration contour Cτ (tq) should be updated for each tq value. An

example is given in Fig. 4.4 for Q = 3 case, where for t1, t2 and t3 values used

in the SDP integration, shown in Fig. 4.2, the corresponding Cτ (t1), Cτ (t2) and

Cτ (t3) paths are illustrated in Fig. 4.4. However, the integrands in the τ -domain

exhibit a highly oscillatory and slowly decaying nature. Therefore, a proper in-

tegration routine is necessary to handle the oscillatory behavior of the integrand

whereas an appropriate tail is used to handle its slowly decaying nature. Besides,

deformation of the path from C to C̃ provides an exponential decay and hence,

a very rapid convergence of the integrand along the third quadrant.

Consequently, first the integration contour is divided into three parts as it is

shown in Fig. 4.5. C−
τ represents the part where the integrand converges fast due
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Figure 4.3: Integration contour in the ν-domain

to an exponential decay, while the C+
τ part has a slower convergence. After the

τ ′ value, which is relatively big, the integrand is approximated by its asymptotic

value and the resultant integral is evaluated in closed-form which we call as the

tail contribution. Note that this method fails for the φ − φ case. Therefore, in

that case we performed an envelope extraction method with respect to τ . As a

result the τ integrals for the z-z, φ-z and φ-φ cases are called I1, I2 and I3, and

they are given by

I1 = C1

[

∫

C−

τ (tq)
Gzz(tq, τ)P

z
e e

−jξτdτ +
∫ τ ′

τ̃
Gzz(tq, τ)P

z
e e

−jξτdτ

+
∫ p̂q∞

τ ′

B1

τ
P z
e e

−jξτdτ

]

. (4.41)
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Figure 4.4: Integration contours in the τ -domain

I2 = C1

[

∫

C−

τ (tq)
Gφz(tq, τ)P

z
e e

−jξτdτ +
∫ τ ′

τ̃
Gφz(tq, τ)P

z
e e

−jξτdτ

+
∫ p̂q∞

τ ′

B1

τ
P z
e e

−jξτdτ

]

. (4.42)

I3 = C1

[

∫

C−

τ (tq)
Gφφ(tq, τ)P

φ
e e

−jξτdτ

+
∫

C+
τ (tq)

(Gφφ(tq, τ) −B2τ −B3)P
φ
e e

−jξτdτ

+
∫

C+
τ (tq)

B2τP
φ
e e

−jξτdτ +
∫

C+
τ (tq)

B3P
φ
e e

−jξτdτ

]

. (4.43)

The constants B1, B2, B3 and C1 are given in [33]. Probe related integrals are per-

formed similarly [33]. Tail integrals are evaluated in closed-form and given by [33]

F1(τ
′) =

∫ p̂i∞

τ ′

B1

τ
e−jξτdτ ≈ B1

e−jξτ
′

jξτ ′
. (4.44)
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Figure 4.5: Integration contour in the τ -domain

F2(τ
′) =

∫

C+
τ (tq)

B2τe
−jξτdτ ≈ −B2

[

jξτ̃e−jξτ̃ + e−jξτ̃

ξ2

]

(4.45)

F3(τ
′) =

∫ p̂i∞

τ ′
B3e

−jξτdτ ≈ B3
e−jξτ

′

jξ
(4.46)

Finally, on each interval along the τ contour, where integrals are evaluated nu-

merically, we used Filon’s algorithm in conjunction with a Gaussian quadrature

technique to handle their oscillatory nature. Further details can be found in [33]

4.2.3 Fourier Series Representation of Green’s Functions

As it is mentioned earlier, SDP representation is not valid in the paraxial region

(nearly axial region). In this region Fourier series representation of the Green’s

function is used [33],[41], which is relatively fast and accurate along this region.

Besides, certain components can be made accurate and can be evaluated efficiently

away from the paraxial region after performing some modifications.
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Derivation of this representation of the Green’s function starts by using the

following transformations in (4.26):

kz = −ζ cos(ψ) (4.47)

ν = µd (4.48)

µ = −ζ sin(ψ) (4.49)

and

rl = d(φ− φ′) = s sin(δ) (4.50)

(z − z′) = s cos(δ) (4.51)

where δ = (90 − α), in (4.26). The resultant expression for the electric field

becomes

El(s, δ) ≈
1

2π

∫ 2π

0

∫ ∞

0

Glu(ζ, ψ)

2π
ejζs cos(ψ−δ)ζdζdψ. (4.52)

Note that, all the tangential components of the Green’s function representation

are periodic with respect to ψ with a period π such that [33]

Gzz(ζ, ψ) = Gzz(ζ, ψ + π) (4.53)

Gφφ(ζ, ψ) = Gφφ(ζ, ψ + π) (4.54)

Gφz(ζ, ψ) = Gφz(ζ, ψ + π) (4.55)

Gzφ(ζ, ψ) = Gzφ(ζ, ψ + π) . (4.56)

Using this periodicity, the Green’s functions components can be approximated

by a Fourier series given by

Glu(ζ, ψ) = a0(ζ) +
∞
∑

n=1

an(ζ) cos(n2ψ) +
∞
∑

n=1

bn(ζ) sin(n2ψ) (4.57)
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where

a0(ζ) =
1

π

∫

T
Glu(ζ, ψ)dψ (4.58)

an(ζ) =
2

π

∫

T
Glu(ζ, ψ) cos(n2ψ)dψ (4.59)

bn(ζ) =
2

π

∫

T
Glu(ζ, ψ) sin(2ψ)dψ . (4.60)

Using these relations and approximating the Fourier series coefficients via a trape-

zoidal rule (explained in detail in [33]), approximate Green’s function components

are given by

Ga
zz(ζ, ψ) ≈ Gzz(ζ, ψ =

π

2
)

+
[

Gzz(ζ, ψ = 0) −Gzz(ζ, ψ =
π

2
)
]

(

1 + cos(2ψ)

2

)

(4.61)

Ga
φz(ζ, ψ) ≈ ζ2 sin(2ψ)

2
G̃φz(ζ, ψ = 0) (4.62)

Ga
φφ(ζ, ψ) ≈ Gp1

uu(ζ) +
1

2
Gcc
φφ(ζ, ψ = 0) +

{

− ζ2Gp2
uu(ζ)

+
1

2

[

Gcc
φφ(ζ, ψ =

π

2
) −Gcc

φφ(ζ, ψ = 0)
] }

(

1 − cos(2ψ)

2

)

.(4.63)

where

Gφz(ζ, ψ) =
ζ2 sin(2ψ)

2
G̃φz(ζ, ψ) (4.64)

and

Gφφ(ζ, ψ) ≈ Gp
uu(ζ, ψ) +Gcc

φφ(ζ, ψ) (4.65)

Gp
uu(ζ, ψ) = Gp1

uu(ζ) −Gp2
uu(ζ)

(

1 − cos(2ψ)

2

)

ζ2 . (4.66)
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Note that Gφφ is written as a sum of planar+curvature terms in (4.65) as ex-

plained in [33]. Superscripts ’p’ stands for the planar term, whereas ’cc’ denotes

these curvature terms. Planar term is the component of the Green’s function

for a planar grounded dielectric substrate. (4.63) is obtained by inserting the

approximate expression for the curvature correction term given by:

Ga, cc
φφ (ζ, φ)≈ 1

2

{

Gcc
φφ(ζ, ψ = 0) (4.67)

+
[

Gcc
φφ(ζ, ψ =

π

2
) −Gcc

φφ(ζ, ψ = 0)
]

(

1 − 2 cos(2ψ)

2

)}

. (4.68)

Also notice that the ζ and ψ variables are separated. By using the approximate

Green’s function representations (4.61)-(4.63) in (4.52) and performing the ψ in-

tegration in closed-form, the resulting surface fields are written as

Ezz(δ, s) ≈ −Z0

2πk0

{

k2
0P (s) +

∂2

∂z2
[P (s) −Q(s)]

}

(4.69)

Eφz(δ, s) ≈ −Z0

2πk0

∂2

∂z∂rl
{M(s) −R(s)} (4.70)

Eφφ(δ, s) ≈ −Z0

2πk0

{

k2
0U(s) +

∂2

∂r2
l

[

U(s) − ǫr − 1

ǫr
W (s)

]

}

+
jZ0

4πk0

{

S(s) − ∂2

∂r2
l

T (s)

}

. (4.71)

Explicit expressions for the special functions P (s), Q(s), M(s), R(s), U(s), W (s),

S(s) and T (s) is given in [33].

As it is mentioned earlier, with a few modifications, Fourier series represen-

tation of the Green’s function components (Gφz and Gφφ) can become valid in

the region away from the paraxial region. In the evaluation of the Fourier coeffi-

cients, using different number of points in the trapezoidal rule, which is explained

in detail in [33], accurate Green’s representations can be obtained away from the

paraxial region. The accurate approximations of Gφz and Gφφ for the angles

δ → π/2 is given by
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Ga2
φz(ζ, ψ) ≈ ζ2 sin(2ψ)

2
G̃φz(ζ, ψ = π/2)

Ga2, cc
φφ (ζ, ψ) ≈ Gcc

φφ(ζ, ψ = 0)

+
[

Gcc
φφ(ζ, ψ =

π

2
) −Gcc

φφ(ζ, ψ = 0)
]

(

1 − cos2ψ

2

)

. (4.72)

On the other hand for the angles around δ = π/4

Ga2
φz(ζ, ψ) ≈ ζ2 sin(2ψ)

2

[

G̃φz(ζ, ψ = 0) + G̃φz(ζ, ψ = π/2)

2

]

(4.73)

Gcc
φφ(ζ, ψ) ≈ 3

4

{

Gcc
φφ(ζ, ψ = 0)

+
[

Gcc
φφ(ζ, ψ =

π

2
) −Gcc

φφ(ζ, ψ = 0)
]

(

1 − cos2ψ

2

)}

(4.74)

are the expressions that are used for the curvature correction term.

The Fourier Series representation of the Green’s function is more accurate

when the separation between the source and the observation point is small (ex-

cept the paraxial region). Also, since the integration is only with respect to the

variable ζ, it is computationally very efficient. For some geometric parameters

it is preferable to use the Fourier Series representation of the Gφφ in the off-

paraxial region for small separations, instead of the SDP representation due to

its efficiency compared to SDP representation at this region.
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4.3 Limitations of the Green’s Function Repre-

sentations for Cylindrical Grounded Dielec-

tric Slab and the Switching Algorithm

In this section we briefly discuss the limitations of the Green’s function represen-

tations in particular the SDP and the paraxial representations. Efficiency and

accuracy of these representations are previously discussed in [41], [42]. These

limitations are manifested in the electrical size (i.e. the radius) of the coated

cylinder and/or in the thickness of the coating. Note that the dielectric constant

of the coating can always be linked to the thickness. First of all, the SDP and

the paraxial representations are developed for electrically large coated cylinders.

Therefore, the desired accuracy is generally achieved when the radius is greater

than 1λ0 (λ0: free space wavelength). This is illustrated in Fig. 4.6, where the

mutual coupling between two identical ẑ-directed and φ̂-directed current modes

are plotted as a function of the inner radius a, and compared with the eigen-

function solution (spectral domain solution). The current modes are selected to

be (L,W ) = (0.39λ0, 0.01λ0), the thickness is chosen as 0.06λ0 and the relative

dielectric constant of the coating is set to 3.25. The couplings are evaluated at

s = 1.5λ0. The eigenfunction solution is plotted up to a = 5λ0 since it exhibits

serious convergence problems for greater radii. As expected, Green’s function

representations show excellent agreement with the eigenfunction solution (even

for a = 1λ0). The small difference in the φ−φ coupling in Fig. 4.6(b) (especially

at a = 5λ0) is due to the convergence problems of the eigenfunction solution.

Furthermore, the results approach to the planar case with the increasing cylin-

der radius without exhibiting any problems. On the other hand, these Green’s

function representations loose their accuracy when the thickness and/or relative

dielectric constant of the coating increase. This is due the Debye, Watson and

Olver’s uniform approximations, made for the ratios of special functions (4.15),

(4.16), (4.17), (4.20) and (4.21) as explained in detail in [40] and [33]. For the

desired accuracy, an approximate upper limit is defined in [33] such that the

thickness of the coating must be less than 0.2λd, where λd = λ0/
√
ǫr.
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Finally, these three Green’s function representations are combined to span

the whole cylinder surface using two slightly different switching algorithms for

the arrays of ẑ− and φ̂−directed printed dipoles. In both algorithms, the air-

dielectric interface of the cylinder is divided into three regions and on each region,

the corresponding aforementioned Green’s function representation is used. For

the array of ẑ−directed printed dipoles, the switching algorithm is given by

Gzz =











































Planar representation s < 0.4λ0 (i.e self-term evaluations)

SDP representation (ξSP/s > 0.2)
⋂

(s ≥ 0.4λ0)

Paraxial representation (ξSP/s ≤ 0.2)
⋂

(s ≥ 0.4λ0)

(4.75)

which is similar to the switching algorithm used in [42]-[43], previously. However,

the switching algorithm used for the array of φ̂−directed printed dipoles is dif-

ferent than the switching algorithm given in [42] and [44], and can be expressed

as

Gφφ =



























































Planar representation s < 0.4λ0 (i.e self-term evaluations)

SDP representation (ξSP/s > 0.2)
⋂

(s ≥ 2λ0)

Paraxial representation [(ξSP/s ≤ 0.2)
⋂

(s ≥ 0.4λ0) or

(ξSP/s > 0.2)
⋂

(0.4λ0 ≤ s < 2λ0)] .

(4.76)

In both (4.75) and (4.76), ξSP is the saddle point value of (4.37) and is given by

ξSP =
(

d k0 cosα
2

)
1
3 (φ − φ′) in [40] with α being the angle between the ray path

and the circumferential axis. Furthermore, around each boundary which divides

the regions defined in (4.75) and (4.76), more than one Green’s function repre-

sentation yield almost the same accuracy. Hence, small variations in boundary

definitions do not significantly affect the overall accuracy. Consequently, in ad-

dition to its accuracy and has not been used in this thesis, a similar switching

algorithm that we have used for the Gφφ component is typically suitable for the

Gφz component.



Chapter 5

Scan Blindness Phenomenon in

Finite Phased Arrays of Printed

Dipoles

5.1 Introduction

Printed antenna arrays on planar or curved surfaces might have many elements

on dielectric substrates (or in free space), where electromagnetic coupling through

space and surface waves can lead to scan blindness [23] and seriously degrade the

performance of a system. This phenomenon was once addressed as a “catastrophic

effect” by Schaubert et al. [45]. Therefore, a complete understanding of the scan

blindness phenomenon is required to improve the scan range of phased arrays and

to reduce design costs significantly.

The blindness phenomenon, which was defined (for planar infinite arrays of

printed antennas) as a phase matching between the phase progression of a sur-

face wave (βsw) on the dielectric substrate and the phase progression of a certain

Floquet mode ([23], [46]), has been previously investigated in detail for various

infinite and finite arrays of printed antennas on grounded planar dielectric sub-

strates. The blindness mechanism was carefully explained first for infinite arrays

85
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of printed antennas [23]-[24], [25], and then research on this topic was extended

to finite phased arrays of printed antennas [4]-[26]. Later, this phenomenon was

discussed for different array configurations such as infinite array of monopoles in a

grounded dielectric slab [47], infinite arrays of printed dipoles on dielectric sheets

perpendicular to a ground plane [48], infinite stripline-fed tapered slot antenna

arrays with a ground plane [45], [49]. Furthermore, various methods to improve

the scan range such as subarraying [46], substrate modification [50], loading the

array elements with varactor diodes [51] or using shorting posts [52] were re-

ported. However, the common point in all these aforementioned studies is the

fact that arrays (infinite or finite) are mounted on planar platforms. Recently,

we have presented a rigorous investigation of the scan blindness phenomenon for

arrays of printed elements mounted on dielectric coated curved surfaces, where

the curvature of the supporting structure affects the blindness mechanism as well

as various performance metrics of the array [27].

Therefore, in this chapter, we briefly review [27], where scan blindness phe-

nomenon is investigated for several arrays consisting of finite number of axi-

ally and/or circumferentially oriented printed dipoles on various-sized electrically

large, dielectric coated, circular cylinders with different electrical parameters. Ef-

fects of several array and supporting structure parameters on the scan blindness

mechanism as well as on various characteristics of arrays are observed. Further-

more, a one-to-one comparison between arrays of printed dipoles on aforemen-

tioned cylinders and arrays of printed dipoles on grounded planar dielectric slabs

is made in terms of the blindness phenomenon. It is shown that the orientation

of the array elements combined with the curvature effects plays an important

role on the behavior of the surface waves, which in turn can alter the scan blind-

ness in these structures. To achieve these goals, a hybrid Method of Moments

(MoM)/Green’s function technique in the spatial domain which is presented in

the previous chapters is used.

Problem geometry, which has been already explained in the beginning of this

thesis in Section 2.5, Fig. 2.3, is also illustrated in Fig. 5.1. Some formulation

related to the performance metrics of the problem are presented in Section 5.2.

Several numerical examples are given in Section 5.3 to demonstrate the effects
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of the curvature of the host body (coated cylinder) on the surface waves and

blindness mechanism. The importance of the array element orientation with

respect to the curvature of the host body is discussed. Furthermore, how several

electrical and geometrical parameters of the array together with its supporting

structure affect the basic performance metrics of finite arrays of printed dipoles

on coated cylinders are investigated.
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Figure 5.1: Geometries of periodic arrays of (2N + 1)× (2M + 1) (a) axially, (b)
circumferentially oriented printed dipoles on dielectric coated, electrically large
circular cylinders. (c) Geometry of a periodic, planar array of (2N+1)×(2M+1)
printed dipoles. (d) Dipole connected to an infinitesimal generator with a voltage
Vnm and a terminating impedance ZT .
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5.2 Some Definitions and Far-field Patterns

The full-wave solution used in this study is a hybrid MoM/Green’s function tech-

nique in the spatial domain as explained in detail in Chapter 4 of this thesis and

also in [42]-[44]. By applying Galerkin MoM approach to the EFIE the following

matrix equation which is similar (2.7) is obtained in terms of network parameters

[4], [43]-[44]:

([Z] + [ZT]) · I = V. (5.1)

In the course of obtaining (5.1), dipoles are assumed to be thin (W << L) and a

single expansion mode is used to represent the current on each dipole.

In (5.1), [Z] = [Znm,pq] is the impedance matrix of the array (2.8) with ele-

ments Znm,pq, which denotes the mutual impedance between the nmth and pqth

(−N ≤ n, p ≤ N, −M ≤ m, q ≤M) dipoles and it is given by

Znm,pq =
∫

Spq

dspq

∫

Snm

ds′nm fpq(rpq) Guu(rpq/r
′
nm) fnm(r′nm) . (5.2)

In (5.2), fnm(r′nm) and fpq(rpq) are the piecewise sinusoidal basis and testing

functions (2.19) or (2.20) with rpq and r′nm being the position vectors of the

pqth and nmth dipoles, respectively, and Guu(rpq/r
′
nm) (u = z or φ, depending

on the orientation of the dipole) is the appropriate component of the dyadic

Green’s function for arbitrary source and observation locations. In Sections 4.2

and 4.3 accurate and efficient calculation of the Green’s function representations

is presented in detail. [ZT] is the generator terminating impedance matrix which

is diagonal [4], I = [Inm] is the unknown vector of expansion coefficients, and

finally V, given by

V =
[

Vpq = V0e
−jk0d cos(φ−p∆φ) sin θe−jk0qdz cos θ

]

(5.3)

denotes the excitation of the pqth dipole, where an ideal delta gap generator at

the terminal of each center-fed dipole is assumed. Note that (θ, φ) in (5.3) is the

scan direction of the main beam, and V0 = 1 for uniform excitations similar to

[4], [43]-[44]. Furthermore, the Toeplitz property of the matrix [Z] is employed to
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reduce the computational time and LU-decomposition method is applied in the

solution of the matrix equation given by (5.1).

By obtaining the mode currents from the solution of matrix equation (5.1),

several performance metrics for phased arrays given in [53]-[54], [4] are calculated

to investigate scan blindness phenomenon for various cylindrical arrays of printed

dipoles. Furthermore, calculated results for these performance metrics are com-

pared with those for planar arrays. Among these performance metrics, the input

impedance at the nmth dipole is computed as

Znm
in =

Vnm
Inm

, (5.4)

and is used in the calculation of the active reflection coefficient at the nmth dipole

given by

Rnm(θ, φ) =
Znm
in (θ, φ) − Znm

in (θ = 90◦, φ = 0◦)

Znm
in (θ, φ) + Znm ∗

in (θ = 90◦, φ = 0◦)
. (5.5)

By defining the active reflection coefficient at the nmth dipole as in (5.5), each

array element is conjugate matched to its broadside scan impedance. Note that

in some calculations (e.g. to quantify the non-uniformity in the input impedance

across the finite array) the active reflection coefficient definition given by (5.5)

can be modified, and a fixed element’s input impedance at broadside scan can be

used as a reference. For instance, if the middle element is chosen as a reference

element, then the modified version of (5.5) is given by

Rnm
mid(θ, φ) =

Znm
in (θ, φ) − Zmid

in (θ = 90◦, φ = 0◦)

Znm
in (θ, φ) + Zmid ∗

in (θ = 90◦, φ = 0◦)
, (5.6)

where the subscript/superscript ’mid’ stands for the middle element of the array.

Another important metric is the active element pattern Enm(θ, φ) (and hence,

the active element gain), which is the field radiated by the array when the nmth

dipole is excited by a voltage generator, and all other dipoles are terminated in an

impedance ZT [4]. As explained in [4], this pattern gives a very good estimate of

the gain pattern of the array even for small finite ones. The active element pattern

for the nmth dipole is calculated by setting the feed voltage of this dipole to unity

whereas feed voltages for all other dipoles are set to zero. The dipole currents are

computed from the solution of (5.1) by setting ZT equal to the conjugate of the
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isolated dipole input impedance. Then the active element pattern for the nmth

dipole is calculated as

Enm(θ, φ) = Ed
nm(θ, φ)

N
∑

p=−N

M
∑

q=−M
Ipqe

−jk0d cos(φ−p∆φ) sin θe−jk0qdz cos θ (5.7)

where Ed
nm(θ, φ) is the far-field element pattern of a single dipole on a dielec-

tric coated circular cylinder calculated either asymptotically as presented in [55]

or using a reciprocity approach as presented in [56]. In both solutions, the di-

pole current coefficients (Inm) obtained from the solution of (5.1) are used, and

both solutions yield exactly the same result. Once the active element pattern is

determined, the active element gain of the nmth element is calculated as

Gnm(θ, φ) =
4π|Enm(θ, φ)|2

Z0Pin
(5.8)

where Pin is the power delivered to the nmth element given by

Pin = Re







N
∑

p=−N

M
∑

q=−M
IpqZnm,pqI

∗
nm







(5.9)

and Z0 = 120π is the free-space intrinsic impedance.

Finally, majority of the numerical results for both cylindrical and planar arrays

are given in the principle planes, namely, the E- and H-planes. Therefore, making

use of Fig. 2.3(a), (b) and (c), where θ and φ are defined from the z− and

x−axis, respectively, the E- and H-planes are defined as follows. For the array

of ẑ−directed printed dipoles on coated cylinders and array of printed dipoles on

planar grounded dielectric slabs, as depicted in Fig. 2.3(a) and (c), respectively,

E-plane is the xz plane and H-plane is the xy plane. Hence, to scan the E-plane

φ is set to 0◦ and θ is varied, whereas to scan the H-plane θ is set to 90◦ and φ is

varied. However, for the array of φ̂−directed printed dipoles on coated cylinders,

as depicted in Fig. 2.3(b), E-plane is the xy plane and H-plane is the xz plane.

Thus, to scan the E-plane θ is set to 90◦ and φ is varied, whereas to scan the

H-plane φ is set to 0◦ and θ is varied.
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5.3 Numerical Results and Discussion

Numerical results are presented (i) to demonstrate effects of the curvature com-

bined with array element orientation on the surface waves and scan blindness

mechanism; (ii) to investigate effects of several electrical and geometrical para-

meters of arrays together with their host platforms on the aforementioned per-

formance metrics. In all results presented in this paper, the size of each dipole

is selected to be (L,W ) = (0.39λ0, 0.01λ0), the periodicity of arrays is chosen to

be 0.5λ0 (i.e. dz = drl = dy = 0.5λ0), and finally ǫr = 3.25 is used. Furthermore,

all the cylindrical arrays are excited using the right hand side of (5.3). A similar

excitation is used for the planar arrays ([4]).

The numerical results depicted in Fig. 5.2(a) and Fig. 5.2(b) show the mag-

nitude of the reflection coefficient |R| (defined in (5.5)) versus scan angle in the

E- and H-planes, respectively. The arrays are 11×11 ẑ− and φ̂−directed printed

dipoles on a 3λ0 coated cylinder with th = 0.06λ0. These results are also compared

with those of a planar array (of ẑ−directed dipoles) with the same parameters

(th, number of elements, etc.). The |R| values of all the arrays are computed at

their center elements, which are conjugate matched to broadside scan. A possible

scan blindness is observed at θ = 41◦ (90◦ − θ = 49◦) for the cylindrical array

of ẑ−directed printed dipoles along the E-plane as shown in Fig. 5.2(a). At this

angle, the reflection coefficient of the center element has a magnitude greater than

unity (|R| > 1), which means that its input impedance has a negative real part

(i.e. Re(Zmid
in ) < 0) . Therefore, this dipole delivers power to its generator imply-

ing that this power is delivered from other ports with |R| < 1 (i.e. Re(Znm
in ) > 0)

to the middle element. Note that in finite arrays the |R| > 1 condition for the

center element of the array has been used as a tool to demonstrate the exis-

tence/possibility of scan blindness in [4], [2]. Thus, existence of this condition

is also treated as an indication of a possible blindness in this paper. However,

neither the array of φ̂−directed printed dipoles (on the same coated cylinder) nor

the planar array shows blindness at this angle. Also it is observed that the shape

of |R| corresponding to the planar case is similar to that of the cylindrical array

of ẑ−directed dipoles and it peaks around the same angle (but |R| < 1). This
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may also suggest a potential scan blindness angle for the planar case. On the

other hand, none of the arrays shows a scan blindness along the H-plane as illus-

trated in Fig. 5.2(b). This indicates that E-plane is more critical for relatively

thin coatings since only the lowest-order surface wave is present, which confines

scan blindness phenomenon to the E-plane [57]. Since the blindness mechanism is

closely related to the surface wave fields excited within the substrate of the arrays

[23]-[4], the curvature of the supporting structure combined with the array ele-

ment orientation will change the behavior of these fields. In particular, along the

E-plane, surface waves of the ẑ−directed dipoles on coated cylinders are stronger

than φ̂−directed ones and printed dipoles on planar grounded dielectric slabs

[43]-[44] (also see Fig. 4.6 (a)). Therefore, if the electrical and geometrical para-

meters of the array together with its host platform vary in a way to reinforce the

surface waves, possibility of observing a scan blindness increases, especially along

the E-plane. This is illustrated in Fig. 5.3 and Fig. 5.4 by varying the array size

and the thickness of the coating, respectively.

In Fig. 5.3, the effect of the array size on the blindness mechanism is investi-

gated. This is achieved by observing the variation in |R| versus scan angle in the

E-plane for arrays of 7×7, 11×11 and 15×15 ẑ− and φ̂−directed printed dipoles

on a coated cylinder with a = 4λ0 and th = 0.06λ0. As in the previous numerical

example, results for planar array are also included for comparison purposes, and

|R| values are evaluated for the center elements (which are conjugate matched

to broadside scan) of all the arrays. When the size of the array is increased (by

adding more elements), surface waves are guided more efficiently along the E-

plane for the planar and cylindrical array of ẑ−directed dipoles. In fact, surfaces

waves are stronger for the cylindrical array of ẑ−directed dipoles when compared

to the planar ones [43]. This results in a significant change in the shape of |R| as

shown in Fig. 5.3. Based on these results, scan blindness is not possible for the

7 × 7 arrays (see Fig. 5.3 (a)). However, a peak in the |R| value appears around

θ = 41◦ (90◦ − θ = 49◦) for both the planar and cylindrical array of 11 × 11

ẑ−directed printed dipoles (Fig. 5.3 (b)). This may suggest a potential blindness

around this angle even though |R| < 1. Finally, observing a scan blindness is

possible for the cylindrical array of 15 × 15 ẑ−directed dipoles around θ = 36◦
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Figure 5.3: Magnitude of the reflection coefficient, |R|, of the middle element
vs. scan angle along the E-plane for (a) 7 × 7, (b) 11 × 11 and (c) 15 × 15
ẑ− and φ̂−directed printed dipoles on a 4λ0 coated cylinder. Planar array of
ẑ−directed dipoles is also included. Other array and host body parameters are:
(L,W ) = (0.39λ0, 0.01λ0), ǫr = 3.25, th = 0.06λ0, dz = drl = dy = 0.5λ0.
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(90◦ − θ = 54◦) where |R| ≈ 2.35 as clearly seen in Fig. 5.3(c). As expected, the

middle element of this array has an impedance with a negative real part around

this angle and it delivers power to its generator. For the same sized (i.e. 15× 15)

planar array, a potential blindness phenomenon also exists around the same angle

since |R| is nearly unity. On the other hand, |R| values for the cylindrical array

of φ̂−directed dipoles do not change dramatically with the variations in the array

size as shown in Fig. 5.3, and the possibility of scan blindness is not observed.

The best way to explain this result is to consider how the curvature of the coated

cylinder affects the surface waves for this array. As the surface waves propagate

along the E-plane, they continuously shed from the surface due to the curvature.

Therefore, along the E-plane (φ̂−directed dipoles), surface waves are significantly

weaker than those of the planar case [44]. Consequently, when the array size is

increased, shedding of the waves from the surface continues to be more dominant

than the guiding of these waves.

Results given in Fig. 5.2(a) and Fig. 5.2(b) are repeated for a thinner coating

in Fig. 5.4 to further emphasize the importance of the surface waves on the

blindness mechanism. Parameters used in Fig. 5.2 are kept the same except the

coating thickness is decreased from 0.06λ0 to 0.02λ0. A decrease in the thickness

of the coating diminishes the strength of the surface waves, which avoids the

possibility of a scan blindness phenomenon in both planes. However, |R| for the

cylindrical array of ẑ−directed dipoles is still higher than that of a planar case,

and a small local peak around θ = 41◦ (90◦ − θ = 49◦) (which would increase

for thicker substrates) is still visible as shown in Fig. 5.4(a). Note that the

effect of the thickness and the relative dielectric constant (ǫr) on scan blindness

phenomenon are similar. As it is well known, the “electrical thickness”, which

depends on the physical thickness, dielectric constant and wavelength, is what

matters when surface waves are considered.

The effect of the cylinder radius is discussed next in Fig. 5.5 by plotting |Rnm
mid|

as a function of element position for 11× 11 element arrays, where the definition

given in (5.6) is used. In all cases, broadside scan is considered. In Fig. 5.5(a),

|Rnm
mid| across the E-plane (ẑ−direction, i.e. for the elements of the middle row,

n=-5:5, m=0) of a ẑ−directed printed dipole array is shown. Similarly in Fig.
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Figure 5.4: Magnitude of the reflection coefficient, |R|, of the middle element vs.
scan angle comparison for 11×11 cylindrical arrays of ẑ− and φ̂−directed printed
dipoles, and the same array (of ẑ−directed dipoles) on a planar grounded dielec-
tric slab along the (a) E-plane, (b) H-plane. Array and host body parameters
are: (L,W ) = (0.39λ0, 0.01λ0), ǫr = 3.25, th = 0.02λ0, dz = drl = dy = 0.5λ0,
a = 3λ0.
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5.5(b), |Rnm
mid| across the H-plane (ẑ−direction, i.e. for the elements of the middle

column, n=0, m=-5:5) of a φ̂−directed printed dipole array is given. As seen from

these figures, the input impedance across these finite arrays is nonuniform ([4]),

in particular across the E-plane of cylindrical ẑ−directed dipole arrays. In this

plane, such a non-uniformity increases as the size of of the radius is decreased,

and relatively high variations in |Rnm
mid| is observed when two consecutive elements

are considered. This observation also manifests effects of the surface waves along

the axial direction of the coated cylinder. Their strength increases with the

decreasing radius [43] (also shown in Fig. 4.6(a)). Besides, the variation of |Rnm
mid|

is symmetric with respect to the center element in both planes, where the center

element is perfectly matched at broadside (|Rmid
mid| = 0) and others are either

slightly or considerably mismatched. Finally, as expected, the results for the

cylinder approach that of a planar case as the radius of the cylinder increases.

Fig. 5.6 compares the finite arrays of printed dipoles on coated cylinders

with their planar counterparts using the active element gain patterns defined

in (5.8). Active element gain patterns corresponding to the cylindrical array of

ẑ−directed dipoles discussed in Fig. 5.3(c) are shown in Fig. 5.6. These patterns

were generated by feeding only the center element of the array and terminating

all elements in ZT = 15.3− j ∗136.5, which is the conjugate of the isolated dipole

input impedance. First, the H-plane active element gain pattern is shown in Fig.

5.6(a). Along this plane, scan blindness is not observed since the surface waves

are weak especially for the cylindrical case (ẑ−directed dipoles). Hence, the gain

pattern is very smooth and nearly no oscillations are observed. Note that planar

results are valid up to φ = 90◦ due to the infinite substrate and ground plane

assumption. On the other hand, for the same arrays, the active element gain

pattern is very interesting along the E-plane, where scan blindness was said to be

possible around θ = 36◦ (90◦ − θ = 54◦) for the cylindrical array of ẑ−directed

dipoles based on Fig. 5.3(c). A null or a dip was expected around this angle in this

plane for the cylindrical case. Although the pattern in Fig. 5.6(b) corresponding

to the cylindrical case is more oscillatory than that of the planar one, no null in

the pattern is observed. The oscillations in the pattern are due to the surface

waves which alter the array current distribution and make it more oscillatory
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Figure 5.5: (a) |Rnm
mid| vs. element position across the E-plane (n=-5:5, m=0) of

an 11×11 element ẑ−directed dipole array on coated cylinders with radii a = 3λ0,
a = 4λ0, a = 5λ0 and a = ∞ (planar), and (b) same as (a) for an 11×11 element
φ̂−directed dipole array across the H-plane (n=0, m=-5:5). Other parameters
are (L,W ) = (0.39λ0, 0.01λ0), ǫr = 3.25, th = 0.06λ0, dz = drl = dy = 0.5λ0.
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Figure 5.6: (a) H-plane, (b) E-plane active element gain patterns for 15 × 15
ẑ−directed printed dipoles on a 4λ0 cylinder and the same array on a planar
grounded dielectric slab. Other array and host body parameters are the same as
in Fig. 5.3(c).
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(which can be deduced from the |R| versus element position plots in Fig. 5.5(a)).

One way to explain this result is to check how many dipoles in the array have a

negative resistance (i.e. Re(Zin) < 0 equivalent to |R| > 1) around this angle.

It is observed that if only a small portion of the array elements have a negative

resistance, then only a small amount of power is delivered to these elements from

the rest of the array elements with Re(Zin) > 0, and the remaining power is

still radiated. Therefore, a potential ”scan blindness” may not manifest itself

as a visible dip in the gain pattern. In light of this discussion, this cylindrical

array of ẑ−directed dipoles considered in Fig. 5.3(c), is excited for a scan of

(θ, φ)=(36◦, 0◦), which corresponds to the ’blindness angle’ (w.r.to |R| > 1 result

shown in Fig. 5.3(c)). The input impedance of all its elements are plotted on the

complex impedance plane in Fig. 5.7(a). The elements experiencing a negative

resistance are marked and their locations in the array are shown. Observe that

only a small number of elements around the middle of the array have the property

Re(Zin) < 0 and they extract little power from the array. If more elements had

negative resistance, then blindness will be observed in the gain patterns in the

form of a visible dip. Finally, in an infinite array, which can be considered as

the limiting case, the input impedance of all elements are identical and purely

imaginary at the blindness angle. Therefore, a complete blindness would occur

and manifests itself as a null in the gain pattern in this plane.

A similar investigation is also performed for the cylindrical array of φ̂−directed

dipoles. They are excited at a scan of (θ, φ)=(90◦, 54◦) such that the E-plane scan

is performed exactly the same as ẑ−directed dipole array case. It is observed

that Re(Zin) values for all elements in this case are positive as clearly seen in

Fig. 5.7(b). Based on this information and considering all the previously given

numerical results, we can conclude that array element orientation with respect to

the curvature of the supporting structure plays a significant role. Considerably

different behaviors are observed concerning scan blindness phenomenon for fi-

nite arrays of axially and circumferentially directed printed dipoles on cylindrical

platforms as well as their planar counterparts.

Finally, the normalized far-field radiation patterns pertaining to 13×13 arrays

of ẑ− and φ̂−directed dipoles on coated cylinders with radii 3λ0 and 5λ0, and their
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comparison with patterns of a planar array are shown in Fig. 5.8. The thickness

of the coating is 0.06λ0 for all cases. Fig. 5.8(a) shows the E-plane pattern for the

cylindrical array of ẑ−directed dipoles. In this plane, effects of the curvature on

the radiation pattern is minimum. Hence, as expected, patterns resemble to the

planar case. However, along the H-plane, where the curvature affects the most,

patterns are quite different as seen in Fig. 5.8(b). Agreement with the planar case

is observed only in the main beam as well as in the first sidelobe levels. For the

cylindrical array of φ̂−directed dipoles, the curvature plays a very significant role

along the E-plane. This result is expected since the array elements are oriented

perpendicular to the axis of the cylinder. Thus, other than the main beam, a

complete disagreement with the planar case is expected and observed as shown in

Fig. 5.8(c). The H-plane patterns are shown in Fig. 5.8(d) where the curvature

does not have a significant impact and a good agreement is observed with the

planar results. In the evaluation of all patterns, all dipoles are excited uniformly

and no special beam forming technique is applied in the excitation of the arrays.

Note that the ground plane and the substrate are assumed to be infinite for

the planar case and the dipoles are ẑ−directed. Also cylinders are assumed to

be infintely long along the z−direction (parallel to axis of cylinder). Therefore,

patterns for planar array as well as the E-plane pattern for the cylindrical array

of ẑ−directed dipoles and H-plane pattern for the cylindrical array of φ̂−directed

dipoles are evaluated from −90◦ to 90◦.

5.4 Conclusion

In this study, a rigorous investigation of surface waves and their effect on scan

blindness phenomenon for conformal finite phased arrays of printed dipoles has

been performed. Furthermore, effects of several array and supporting structure

parameters on the basic performance metrics of arrays and on the blindness mech-

anism have been discussed. To be able to address these issues, a computationally

optimized and very accurate spatial domain hybrid full wave analysis method

which is presented in Sections 4.2 and 4.3. has been used Several relatively large

but finite arrays pertaining to both axially and circumferentially oriented printed



CHAPTER 5. SCAN BLINDNESS PHENOMENON 102

−10 0 10 20 30 40 50
100

110

120

130

140

150

160

170
θ=90o, φ=54o

Re(Z
in

)

Im
(Z

in
)

−10 0 10 20 30 40 50
100

110

120

130

140

150

160

170
θ=36o, φ=0o

Re(Z
in

)

Im
(Z

in
)

(−2,−1) 
( 2,−1) 

(−1,−1) 
( 1,−1) 

( 0, −1) 
(−3, 0)
( 3, 0)

(−2, 0) 
( 2, 0) 

(−1, 0) 
( 1, 0) 

( 0, 0) 

(−3, 1)
( 3, 1)

(−2, 1) 
( 2, 1) 

(−1, 1)
( 1, 1)

( 0, 1) 

(−3, 2) 
( 3, 2) 

(m, n) = 

z (n) 

rl (m) 

(7, −7) (7, 7) 

(−7, 7) (−7, −7) 

(a)

(b)

Figure 5.7: (a) Input impedance (Zin) of all elements for a 15 × 15 ẑ−directed
dipoles on a 4λ0 cylinder on the complex impedance plane. Location of the
dipoles in the array with negative real resistance values are marked with ’o’ (rest
is marked with ’x’). (b) Same as (a) for the same sized φ̂−directed printed dipole
array on the same cylinder. Other array and host body parameters are the same
as in Fig. 5.3(c).
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Figure 5.8: Far-field patterns of 13×13 printed dipole arrays on 3λ0, 5λ0 cylinders
and on planar substrates. Patterns for planar and cylindrical ẑ−directed dipole
arrays along the (a) E-plane, (b) H-plane. Patterns for planar and cylindrical
φ̂−directed dipole arrays along the (c) E-plane, (d) H-plane. All arrays are phased
to radiate along the broadside direction. Other array and host body parameters
are: (L,W ) = (0.39λ0, 0.01λ0), ǫr = 3.25, th = 0.06λ0, dz = drl = dy = 0.5λ0.
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dipoles on coated cylinders with different radii have been studied.

In addition to standard parameters (size of the array, thickness of the sub-

strate, value of the dielectric constant, etc.) that affect the blindness mechanism

in finite phased arrays of printed dipoles on planar grounded slabs, it is shown

here that the curvature of the supporting structure and the orientation of the

array element significantly alters the surface waves excited within the substrate

and in turn the blindness mechanism. Consequently, (i) finite phased arrays of

printed dipoles on coated cylinders and similar arrays on planar grounded slabs

show different behavior in terms of scan blindness, (ii) unlike planar arrays where

scan blindness is mainly governed by the array related factors (substrate para-

meters, element spacings, etc.) rather than the particular element orientation,

scan blindness in cylindrical arrays of printed dipoles is also governed by the ori-

entation of the array elements with respect to the supporting structure. Under

the same excitations and with the same array and host body parameters, axially

oriented printed dipole arrays can exhibit scan blindness phenomenon, but it may

not occur for arrays of circumferentially oriented printed dipoles.



Chapter 6

Efficient Analysis Of Large Finite

Phased Arrays of Microstrip

Patches Using GFBM With DFT

Based Acceleration Algorithm

6.1 Introduction

Conventional integral equation based MoM solutions to the analysis of finite, pla-

nar phased arrays of printed antennas on grounded dielectric slabs suffer greatly

from the memory storage requirements and computational cost when the num-

ber of elements in the array increases rapidly. Several efficient approaches have

been proposed to accelerate Method of Moments (MoM) solution and to reduce

the memory storage requirements. Some of the MoM based works are infinite

array solution as well as its modifications to include array truncation effects [2],

the hybrid UTD-MoM approach [12], MoM solution based on a discrete Fourier

transform (DFT) representation of the currents, where the number of unknowns

are significantly reduced [5], and implementation of iterative methods to the so-

lution of the MoM matrix equation. In a recent study DFT based acceleration

105
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method is combined with an iterative forward-backward method (FBM) success-

fully for large finite printed dipole arrays with rectangular boundaries [9]. Later

on, this DFT-FBM is applied to the large finite printed dipole arrays with ellip-

tical boundaries [58].

In order to use FBM for the analysis of planar finite phased arrays of mi-

crostrip patches it must be generalized to handle an arbitrary number of basis

functions expanded on each element. In this chapter, a DFT based algorithm

is used in conjunction a generalized forward backward method (GFBM) [28] for

the fast analysis of planar finite phased arrays of microstrip patches. In this

method the unknown current coefficients corresponding to a single patch are first

solved by a conventional hybrid MoM/Greens function technique. The current

coefficients corresponding to the whole array is then found using GFBM, where

it sweeps the current computation element by element (each element corresponds

to a probe-fed microstrip patch). A similar approach was reported previously in

[59] for linear arrays of elements with arbitrary cross-sections.

The computational complexity of this method, which is originally O(N2
tot)

(of order N2
tot) for each iteration, can be reduced to O(Ntot) (Ntot being the

total number of unknowns), assuming that elements are identical and periodic.

This is achieved using a DFT based acceleration algorithm which divides the

contributing elements into “strong” and “weak” interaction groups for a receiving

element in the GFBM. The contributions from the strong group are obtained

by the conventional element-by-element computation to assure the fundamental

accuracy. On the other hand, contributions coming from the weak region are

obtained based on a DFT representation of the array current. In general, only a

few significant DFT terms are sufficient to provide accurate results due to the fact

that they provide minor corrections to the solution in contrast to the dominating

strong group.
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6.2 Formulation

Problem geometry is illustrated in Fig. 6.1 where dielectric thickness is denoted

by th and the relative permittivity of the dielectric substrate is ǫr. This (2N +

1) × (2M + 1) element array has inter-element spacing of (dx, dy) where dx is

the inter-element distance in the x̂-direction and dy in the ŷ-direction. For an

(2N +1)× (2M +1) array of probe-fed microstrip patches we can write the MoM

matrix equation (2.7) in the form of

Figure 6.1: Geometry of a periodic, planar array of (2N+1)×(2M+1) microstrip
rectangular patch antennas on a grounded dielectric slab.

N
∑

n=−N

M
∑

m=−M

Nb
∑

r=1

AnmrZnmr,pqs = Vpqse
−jβxpdxe−jβyqdy (6.1)

where

βx = k0 sin(θi) cos(φi), βy = k0 sin(θi) sin(φi), (6.2)

−N ≤ p ≤ N, −M ≤ q ≤M, −Nb ≤ s ≤ Nb, (6.3)

and (θi, φi) is the scan direction of the main beam. Nb denotes the number of

basis functions per element. Znmr,pqs is the mutual coupling between the nmrth

basis function and pqsth testing function, whereas Anmr is the unknown current

coefficients to be found. Excitation vector, which is denoted by Vpqs, is calculated
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using (3.176) where the coordinates (xp, yp) denote the probe position of the pqth

patch whereas the coordinates (xm, ym) denote the position of the pqsth basis

function.

In order to solve (6.1) using GFBM, first step is to decompose current vector

as forward and backward components and the MoM impedance matrix in the

form of (shown in Fig. 6.2)

I = If + Ib (6.4)

Z = Zfg + Zsg + Zbg (6.5)

Figure 6.2: Decomposition of Z matrix

where Zsg is formed by the block diagonal matrices of Z corresponding to the

impedance matrix of a single patch, where as Zfg and Zbg are the lower and upper

triangular parts of Z with Zsg subtracted. Then the original matrix equation (6.1)

is transformed into two matrix equations given by

ZsgIf = V − Zfg
(

If + Ib
)

(6.6)

ZsgIb = −Zbg
(

If + Ib
)

. (6.7)

Equations (6.6) and (6.7) are solved iteratively for Ib and If , starting with zero

Ib(0). Since Nb is small compared Ntot (which is the total number of unknowns),
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GFBM requires O(N2
tot) computational complexity and memory storage. GFBM

sweep decomposition is depicted in Fig. 6.3.

To reduce the computational complexity, an acceleration algorithm based on

the DFT representation of the induced currents on the array has been proposed,

[8], [9]. To calculate the MoM matrix entry of an element (called as the receiv-

ing element), this algorithm divides the contributing elements in front of it into

strong and weak interaction regions as shown in Fig. 6.4. Strong group is com-

posed of elements within a few wavelength distance from the receiving element,

and contributions from them are evaluated by employing a conventional MoM

in an element-by-element fashion. To represent the contributions from the weak

region, a few significant DFT terms from the DFT representation of the entire

array currents are selected. Note that the current on each element is represented

by using more than one expansion (basis) function. Therefore, the DFT acceler-

ation algorithm presented in [8] and [9] is slightly modified to handle more basis

functions per element. Briefly, when the elements are identical, each element

has the same number of basis functions. Therefore, first basis functions of each

element are periodic among each other, and can be treated as a periodic array of

one basis function per element (i.e., a subarray is formed). The same is true for

the second, third, etc., basis functions as well. As a result, contributions coming

from the weak region of the overall array can be calculated by combining the weak

region contributions of each sub-array using the corresponding DFT coefficients.

The DFT representation of Anmr is given by

Anmr = e−jβxndxe−jβymdy
N
∑

k=−N

M
∑

l=−M
Bklre

−j2π kn
2N+1 e−j2π

lm
2M+1 (6.8)

where Bklr is the coefficient of the klth DFT term (rth basis functions) given by

Bklr =
1

(2N + 1)(2M + 1)

N
∑

n=−N

M
∑

m=−M
Anmre

jβxndxejβymdyej2π
kn

2N+1 ej2π
lm

2M+1 .

(6.9)

Then the weak region contributions to the pqsth element can be expressed as

Eweak =
∑

r

∑

k

∑

l

Bklr

∑

n,m∈weak
Znmre

−jβxndxe−jβymdye−j2π
kn

2N+1 e−j2π
lm

2M+1 . (6.10)
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dy

dx

y

x

Figure 6.3: GFBM sweep decomposition

It has been observed that the DFT representation of practical large array

current distribution is very compact, [5], such that only a few of these DFT

coefficients are nonzero. Since the contribution of weak region provides slight

corrections, it is sufficient to use a few significant DFT terms in the calculation

of (6.10). Sufficient DFT terms are selected based on the criteria given in [5]. By

rewriting (6.10) in the form given by

Eweak =
Nb
∑

r=1





∑

kl∈Q
BklrCklr, pqs



 (6.11)

where Q is the set of significant DFT terms, and

Cklr, pqs =
∑

n,m∈weak
Znmr, pqse

−jβxndxe−jβymdye−j2π
kn

2N+1 e−j2π
lm

2M+1 (6.12)

Cklr, pqs and hence, Eweak can be calculated very efficiently in an iterative fashion

apart from the usual GFBM iterations, [9] using the equation given by
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Receiving Element

Weak Region Strong Region

Figure 6.4: Decomposition of strong and weak interaction groups

Cklr, pqs =Cklr, (p−1)qs e
−jβxndxe−j2π

k
2N+1

+





M
∑

m=−M
Z(−N)mr, pqse

−jβx(−N)dxe−jβymdye−j2π(
k(−N)
2N+1

+ lm
2M+1)



(6.13)

where the term inside the parenthesis, which is denoted as Dklr, pqs, is given by

Dklr, pqs =Dklr, p(q−1)se
−jβymdye−j2π

l
2M+1

−Z(−N)Mr, p(q−1)se
−jβx(−N)dxe−jβy(M+1)dye−j2π

k(−N)
2N+1 e−j2π

l(M+1)
2M+1

+Z(−N)(−M)r, pqse
−jβx(−N)dxe−jβy(−M)dye−j2π

k(−N)
2N+1 e−j2π

l(−M)
2M+1 (6.14)

The first term in (6.13) is related to the Cklr, (p−1)qs which is obtained before

Cklr, pqs is interested. This relation is shown in Fig. 6.5(a) where we see that the

weak group of the pqsth receiving element is decomposed into two parts. The



CHAPTER 6. EFFICIENT ANALYSIS OF LARGE PRINTED ARRAYS 112

upper sub-group and the lower sub-group which consist of the elements of the

first row. Note that the upper sub-group of the pqsth element is identical to the

weak group of the (p− 1)qsth element except a location shift which corresponds

to a phase shift. The next step is the calculation of the second term in (6.13),

namely Dklr, pqs, which contains the contributions coming from a one-dimensional

array with the receiving element located far away from this array. This term is

also calculated in an iterative fashion given by (6.14), using the periodicity of

the elements in spatial domain, which corresponds to a phase shift. Since we

have more than one basis function to represent the current on each element DFT

coefficients are calculated for each subarray, which is shown in Fig. 6.5(b) and

Fig. 6.5(c). The basis functions which are not being considered are colored with

stripes.

As shown in [9], calculation of Ckrl,pqs requires only O(Ntot) operations. Hence,

the overall computational complexity is O(Ntot).

6.3 Numerical Results

To validate the accuracy and the efficiency of the method, some numerical results

for printed arrays obtained using the GFBM approach with DFT based accel-

eration algorithm are presented and compared with the direct solution of MoM.

Fig. 6.6 shows the current distribution on the 3rd and 11th rows of an 21x21

array. 3 x̂- directed current modes are expanded on each of the patch antenna

and the array is scanned to the broadside: (θi, φi) = (0◦, 0◦). Desired accuracy

for the currents is achieved within 3 iterations by selecting only 9 elements (3x3)

in the strong region and 15 (5 DFT term for each current mode) DFT terms.

Moreover, DFT-GFBM is approximately 200 times faster than the conventional

MoM with LU decomposition (CPU time of DFT-GFBM: 0.13sec., CPU time

of MoM: 25.85sec.). A second example is shown in Fig. 6.7 for an 19x19 array

where 10 current modes (4 x̂-directed, 6 ŷ-directed,) are expanded on each of the

patch antenna. Current distribution on the 2rd and 10th rows are depicted when

the scan angle is again broadside: (θi, φi) = (0◦, 0◦). Desired accuracy for the



CHAPTER 6. EFFICIENT ANALYSIS OF LARGE PRINTED ARRAYS 113

currents is achieved within 3 iterations by selecting only 9 elements (3x3) in the

strong region and 10 (1 DFT term for each current mode) DFT terms. DFT-

GFBM is far more faster (approximately 760 times faster) than the conventional

MoM, with a CPU time of only 0.7sec.

6.4 Conclusion

In this chapter an efficient and accurate method is presented for the analysis

of large printed antenna arrays on planar grounded dielectric slabs. Both the

computational and the memory storage requirements are O(Ntot).
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Figure 6.5: The forward weak group corresponding to the pqsth receiving element
is decomposed into 2 sub-groups (upper and lower loops). Note that the upper
group is identical to the weak group corresponding to the (p − 1)qsth element
except a location shift which corresponds to a phase shift. This decomposition is
repeated for each basis function shown in (a), (b) and (c)



CHAPTER 6. EFFICIENT ANALYSIS OF LARGE PRINTED ARRAYS 115

0 1 2 3 4 5 6 7 8 9 10

2.5

3

3.5

4

4.5

x/l
0

|A
n

m
r
|

Conventional MoM

DFT-GFBM

(a)

(b)

0 2 4 6 8 10

2.5

3

3.5

4

4.5

x/l
0

|A
n

m
r|

Conventional MoM

DFT-GFBM

Figure 6.6: 21x21 Patch array on planar substrate. 3 expansion modes (x̂ −
directed) are used per patch. Magnitude of the current coefficients on the (a)
3rd row, (b) 11th row. Other array and host body parameters are (L, W ) =
(0.3λ0, 0.3λ0), dx = dy = 0.5λ0, th = 0.04λ0, ǫr = 2.55.
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Figure 6.7: 19x19 Patch array on planar substrate. 10 expansion modes (4 x̂-
directed, 6 ŷ-directed,) are used per patch. Magnitude of the current coefficients
on the (a) 2nd row, (b) 10th row. Other array and host body parameters are
(L, W ) = (0.33λ0, 0.53λ0), dx = dy = 0.7λ0, th = 0.021λ0, ǫr = 2.22.



Chapter 7

Conclusions

In this thesis a hybrid method based on the combination of MoM with special

Green’s function representations is developed in order to investigate printed an-

tennas/arrays on planar and cylindrical grounded dielectric slabs in both spatial

and spectral domains. The accuracy and efficiency of this hybrid MoM/Green’s

function technique depends on the accurate and efficient evaluation of the MoM

impedance matrix entries, which strongly depend on the Green’s function repre-

sentations.

When the spectral domain calculations are considered, a single representation

is used for planar geometries and again a single representation is used for cylindri-

cal geometries. However, mutual coupling calculations in this domain has severe

convergence issues especially for electrically large lateral separations between the

source and observation points. Therefore, several techniques are used to improve

their efficiency and accuracy. In this thesis closed-form expressions are derived

for the asymptotic parts of both the impedance matrix and the excitation vector

of probe fed printed geometries. Implementation of these closed-form expressions

to our existing spectral domain MoM codes results a fast and accurate evaluation

of MoM matrix and the excitation vector entries.

117
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The spatial domain solution to the printed planar geometries require evalua-

tion of finite double integrals where the main problem is handling the singular-

ities occurring when two basis functions overlap with each other completely or

partially. There is also a possible singularity problem in the evaluation of probe-

basis function interactions when probe is positioned in the basis function. In

this thesis these singularities are treated using mappings and change of variable

methods. Numerical results are in a good agreement with the reference spectral

domain solution, which is assumed to be pretty accurate when the basis functions

overlap. Apart from the singularity treatments, these mappings and change of

variable methods are also used when there is no singularity, in order to reduce

the order of integrations. The remaining integrals are numerically evaluated us-

ing an adaptive Gaussian integration scheme resulting a fast and accurate spatial

domain solution for printed planar geometries.

These improved methods are incorporated with two different studies in Chap-

ter 5 and Chapter 6. In Chapter 5 we have presented an investigation of scan

blindness phenomenon for finite arrays of printed dipoles on material coated elec-

trically large circular cylinders, and its comparison with the same type of arrays

on planar platforms. In this study spatial domain Green’s function representa-

tions derived in [33] for cylindrical grounded dielectric slabs, given in Chapter 4

are used. Effects of several parameters on scan blindness for cylindrical geome-

tries are presented using various numerical results. The results show that (i)

finite phased arrays of printed dipoles on coated cylinders and similar arrays on

planar grounded slabs show different behavior in terms of scan blindness, (ii)

unlike planar arrays where scan blindness is mainly governed by the array related

factors (substrate parameters, element spacings, etc.) rather than the particular

element orientation, scan blindness in cylindrical arrays of printed dipoles is also

governed by the orientation of the array elements with respect to the supporting

structure.

In Chapter 6 we have presented a generalized forward backward method based

on a DFT based acceleration algorithm which reduces the computational com-

plexity of the full-wave solution for the analysis of electrically large finite phased

arrays of printed dipoles and patches on planar grounded dielectric slabs. This
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highly efficient and accurate method reduces the computational complexity of the

problem, which is originally O(N2
tot) for each iteration to O(Ntot).
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Appendix A

Integral Formulas I

The integrals A(χ− xs), ℑa(χ), ℑb(χ), B(χ) and T (χ), used in (3.24)-(3.26), are

evaluated in closed-form in [21] given by

A(x− xs) =
∫ ∞

0
K0(ky|χ− xs|)

sin2(ky
∆y
2

)

k2
y

cos(kyys) dky

=π
(

∆y

8

)

{

(1 + n) ln
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(n+ 1)∆y +
√

(χ− xs)2 + (n+ 1)2∆y2

]

+(n− 1) ln
[

(n− 1)∆y +
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(χ− xs)2 + (n− 1)2∆y2

]

−2n ln
[
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(χ− xs)2 + n2∆y2

]

+
2
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(χ− xs)2 + n2∆y2

− 1

∆y

[

√

(χ− xs)2 + (n− 1)2∆y2

+
√

(χ− xs)2 + (n+ 1)2∆y2

]

}

, (A.1)
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ℑa(χ) =
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(A.3)

B(χ) =
∫ ∞
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, (A.4)
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and

T (χ) =
∫ ∞

0

sin3
(
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2

)

k2
x

sin(kxχ) dkx

=































−π
8

(

3
2
∆x+ χ

)

, −3∆x
2
< χ < −∆x

2

π
4
(χ), −∆x

2
< χ < ∆x

2
π
8

(

3
2
∆x− χ

)

, ∆x
2
< χ < 3∆x

2

0, otherwise

(A.5)

where K0 is the modified Bessel function of the first kind.

The special functions C(χ) and Γ(χ), which are the analytical expressions of

results of the integrals used in (3.27), are evaluated in [35] given by

C(χ) =
π

8

+∞
∫
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(A.6)

and

Γ(χ) =
∫ ∞

0

sin2
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∆x
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0, otherwise .

(A.7)



Appendix B

Integral Formulas II

The analytical expressions to the results of the integrals defined in (3.28)-(3.31),

which are the main building blocks of (3.32)-(3.35), are given by

f0(a, x1, x2) =
x2

2

√

x2
2 + a2 − x1

2

√

x2
1 + a2

+
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


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√
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√

x2
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

 (B.1)
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x2
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)3/2 −
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x2
1 + a2

)3/2
(B.2)

f2(a, x1, x2) =
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x2 (x2
2 + a2)

3/2 − x1 (x2
1 + a2)

3/2
]

4
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(
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8
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x1 +
√
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1



 (B.3)

f3(a, x1, x2) =
1

15

(

x2
2 + a2

)3/2 (

3x2
2 − 2a2

)

− 1

15

(

x2
1 + a2

)3/2 (

3x2
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)

(B.4)
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F0(a, x1, x2, xs) = f0(a, x1 − xs, x2 − xs) (B.5)

F1(a, x1, x2, xs) = f1(a, x1 − xs, x2 − xs)

+xs f0(a, x1 − xs, x2 − xs) (B.6)

F2(a, x1, x2, xs) = f2(a, x1 − xs, x2 − xs) + 2xs f1(a, x1 − xs, x2 − xs)

+x2
s f0(a, x1 − xs, x2 − xs) (B.7)

F3(a, x1, x2, xs) = f3(a, x1 − xs, x2 − xs) + 3xs f2(a, x1 − xs, x2 − xs)

+ 3x2
s f1(a, x1 − xs, x2 − xs)

+x3
s f0(a, x1 − xs, x2 − xs) (B.8)

g0(a, x1, x2) = x2 ln
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a+
√

x2
2 + a2

)

− x1 ln
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1



 (B.9)

g1(a, x1, x2) =
x2

2

2
ln
(

a+
√

x2
2 + a2

)

− x2
1

2
ln
(

a+
√

x2
1 + a2

)

+
a

2

(

√

x2
2 + a2 −

√

x2
1 + a2

)

− 1
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(
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(B.10)

g2(a, x1, x2) =
x3
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3
ln
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√

x2
2 + a2
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− x3
1

3
ln
(

a+
√

x2
1 + a2

)

−(x3
2 − x3

1)

9
+
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(

x2

√

x2
2 + a2 − x1

√

x2
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)

−a
3

6
ln
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x2 +
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2 + a2

x2 +
√

x2
1 + a2



 (B.11)

g3(a, x1, x2) =
x4

2

4
ln
(

a+
√

x2
2 + a2

)

− x4
1

4
ln
(

a+
√

x2
1 + a2

)

−(x4
2 − x4
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16
+
a (x2

2 − 2a2)
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√

x2
2 + a2

−a (x2
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12

√

x2
1 + a2 , (B.12)
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G0(a, x1, x2, xs) = g0(a, x1 − xs, x2 − xs) (B.13)

G1(a, x1, x2, xs) = g1(a, x1 − xs, x2 − xs)

+xs g0(a, x1 − xs, x2 − xs) (B.14)

G2(a, x1, x2, xs) = g2(a, x1 − xs, x2 − xs) + 2xs g1(a, x1 − xs, x2 − xs)

+x2
s g0(a, x1 − xs, x2 − xs) (B.15)

G3(a, x1, x2, xs) = g3(a, x1 − xs, x2 − xs) + 3xs g2(a, x1 − xs, x2 − xs)

+ 3x2
s g1(a, x1 − xs, x2 − xs)

+x3
s g0(a, x1 − xs, x2 − xs) . (B.16)


