INVESTIGATION OF FINITE PHASED
ARRAYS OF PRINTED ANTENNAS ON
PLANAR AND CYLINDRICAL GROUNDED
DIELECTRIC SLABS

A THESIS
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND
ELECTRONICS ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

By
Onur Bakir
August, 2006



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Vakur B. Ertiirk(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Ayhan Altintas

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ozlem Aydm Civi

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

i



in loving memory of my father ...

iii



ABSTRACT

INVESTIGATION OF FINITE PHASED ARRAYS OF
PRINTED ANTENNAS ON PLANAR AND
CYLINDRICAL GROUNDED DIELECTRIC SLABS

Onur Bakir
M.S. in Electrical and Electronics Engineering
Supervisor: Assist. Prof. Dr. Vakur B. Ertiirk
August, 2006

Printed structures, in the form of a single printed antenna (printed dipole, patch,
etc.) or an array of printed antennas on planar and cylindrical grounded dielectric
slabs, are investigated. Full-wave solutions based on the hybrid method of mo-
ments (MoM)/Green’s function technique in two different domains, the spectral
and the spatial domains are used to analyze these types of geometries. Several nu-
merical problems, encountered in the evaluation of both the spectral and spatial
domain integrals are addressed and solutions for these problems are presented.
Among them the two important ones are: (1) The infinite double integrals which
appear in the asymptotic parts of the spectral domain MoM impedance matrix
and the MoM excitation vector elements for planar grounded dielectric slabs are
evaluated in closed-form in this thesis, resulting an improved efficiency and accu-
racy for the rigorous investigation of printed antennas. (2) In the space domain
MoM solution of printed structures on planar grounded dielectric slabs, an ac-
curate way of treating the singularity problem of the self-term and overlapping
terms as well as the MoM excitation vector is presented along with a way to halve
the order of space domain integrals by employing a proper change of variables

and analytical evaluation of one of the integrals for each double integral.

Finally two different studies which use these improved methods are presented
in order to asses their accuracy and efficiency: (1) Investigation of scan blindness
phenomenon for finite phased arrays of printed dipoles on material coated electri-
cally large circular cylinders, and its comparison with the same type of arrays on
planar platforms. In this study effects on the scan blindness mechanism of sev-
eral array and supporting structure parameters, including curvature effects, are
discussed. (2) A discrete Fourier transform (DFT) based acceleration algorithm

is used in conjunction with the generalized forward backward method (GFBM)

v



to reduce the computational complexity and memory storage requirements of the
aforementioned full-wave solution method for the fast analysis of electrically large
finite phased arrays of microstrip patches. As a result both the computational
complexity and memory storage requirements are reduced to O(N) (of order N),

where N is the number of unknowns.

Keywords: Microstrip antennas and antenna arrays, Method of moments, Green’s
function, Scan blindness.



OZET

TOPRAKLANMIS DUZLEMSEL VE SILINDIRSEL

- DIELEKTRIK YUZEYLER UZERINDEKI FAZ
DIZILIMLI VE SONLU BASKI DEVRE ANTENLERIN
INCELENMESI

Onur Bakir
Elektrik ve Elektronik Miihendisligi, Yiiksek Lisans
Tez Yoneticisi: Yrd. Doc¢. Dr. Vakur B. Ertiirk
Agustos, 2006

Diizlemsel ve silindirsel yiizeyler iizerine basilmig, tek bir anten veya anten dizileri
seklindeki baski devre yapilari, bir tam dalga ¢oziimii olan Momentler Metodu
(MoM), Green fonksiyonu karma teknigi kullanilarak incelenmistir. Bu tezde
hem spektral hem uzamsal bolgede kullanilan bu teknigin uygulanigindaki sorun-
lar ele alinmig ve bu sorunlara yonelik ¢oziimler sunulmustur. Bunlar arasinda
goze garpan iki tanesi: (1) Topraklanmig diizlemsel dielektrik materyaller tizerine
basilmig, baski devre yapilari igin, spektral bolgede yazilmis MoM empedans
matrisi ve MoM voltaj vektori elemanlarinin asimptotik kisimlarini olugturan
iki kath integrallerin kapali formlarmmin bulunmasi ve boéylelikle verimlilik ve
dogrulukta bir artig elde eldilmesi. (2) Yine ayn geometrideki yapilar i¢in uzam-
sal bolgede yazilan MoM c¢oziimiinde, temel fonksiyonlar tam ya da yarim olarak
ist tiste geldigi zaman, MoM empedans matrisi ve MoM voltaj vektorii ele-
manlarinda meydana gelen tekillik problemine, dogru bir ¢oztim bulunmusg ve
yine bu elemanlardaki katli integrallerin sayisini yariya indirmek i¢in bir yol one

surtilmiigtir.

Son olarak bu gelistirilmis metodlarin verimliligini ve dogrulugunu gostermek
i¢in, bunlarin kullamldigr iki ayri galigma sunulmustur: (1) Dielektrik kap1 bityiik
metal silindirler tizerindeki faz dizilimli, sonlu baski dipol antenlerde tarama
korliigii olgusunun incelenmesi ve topraklanmig diizlemsel dielektrik ytizeylerdeki
anten dizilerindeki durumla kargilagtirilmasi. Bu caligmada anten dizileriyle il-
gili bir ¢ok parametrenin ve yiizey egiminin tarama korliigi mekanizmasi tizerine
etkileri incelenmigtir. (2) Ayrik Fourier déntigiimii tabanli bir hizlandirma algo-
ritmasinin, genel ileri-geri metodu ile birlikte kullanilmasiyla, elektriksel olarak

biiyiik faz dizilimli sonlu baski anten dizilerinin tam dalga ¢oziimiinde hesaplama

vi



vil

karmagikligi ve hafiza gereksinimlerinin azaltilmasina yarayan hizli bir metod
geligtirilmesi. Bu sayede hesaplama karmagikligi ve hafiza gereksinimleri O(N)

(N. dereceden) bir seviyeye diigtiriilmiigtiir. N bilinmeyenlerin sayisidir.

Anahtar sozcikler: Mikroserit antenler ve anten dizileri, Momentler metodu,
Green fonksiyonu, Tarama korliigii.
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Chapter 1

Introduction

Printed antennas and arrays are preferred over the conventional antennas and
arrays in a wide range of applications starting from military systems like air-
borne, ship borne, space borne systems, naval or aircraft radar applications to
the civilian systems like wireless or satellite communications, mobile base stations,
cellular phones, remote sensing and biomedical applications. This is due to their
advantages over conventional antennas and arrays such as low fabrication costs,
light-weight, direct integrability with the solid state and other microwave devices,
and conformity to the surface where they can be mounted on planar grounded
dielectric slabs or conform to the coated convex perfectly electric conducting
(PEC) structures like circular, elliptical cylinders, spheres etc. However, the ma-
jority of the computer-aided design (CAD) tools, which are developed to perform
the full-wave analysis of these structures exhibit memory storage and computing
time problems when these structures are electrically large. Furthermore, when
the printed arrays on coated convex bodies are considered, available tools are
scant, and results obtained from these tools yield accuracy problems, in particu-
lar if the arrays and/or array supporting structures are electrically large. There-
fore, a great number of studies using the integral equation (IE) based method
of moments (MoM) solutions, which use the appropriate Green’s function repre-
sentations, have been directed toward the development of efficient and accurate

methods that can be implemented in CAD packages to investigate printed arrays
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mounted on various shaped coated host platforms [1]-[17].

In the light of above discussion, in this thesis a hybrid method based on the
combination of MoM with special Green’s function representations is used to in-
vestigate printed antennas/arrays on planar and cylindrical grounded dielectric
slabs in both spatial and spectral domains. These Green’s function representa-
tions include all the effects of the grounded dielectric slabs and they are specific to
the geometry that is being analyzed. In the spectral domain, an infinitesimal cur-
rent source on the air-dielectric interface is assumed and then the corresponding
Green’s function representation, which might involve Fourier integrals or Fourier
summations, is found by applying the boundary conditions for the electric and
magnetic fields. However, to obtain the spatial domain Green’s function repre-
sentations, we usually start with the spectral domain representations and perform
several asymptotic techniques and various approximations to evaluate the afore-

mentioned integrals and summations.

On the other hand MoM is used to convert an integral equation, which is the
electric field integral equation (EFIE) in our case, to a system of linear equations.
In this method currents on the surface of PEC are modeled as a sum of known
entire-domain or sub-domain basis functions with unknown coefficients written
in the form of a vector (MoM current vector) and found by solving the system of
linear equations. The most important element of this system of linear equations is
the MoM impedance matrix whose elements denote the self and mutual couplings
between the basis functions. Accurate evaluation of these elements can be carried
out both in spatial and spectral domains, which is explained in Chapter 2. Finally,
the right hand side of this matrix equation is the voltage (excitation) vector
whose elements represent the interaction between the feeding mechanism and the
testing functions. It is important to note that the accuracy and efficiency of this
hybrid MoM/Green’s function technique depends on the accurate and efficient
evaluation of the MoM impedance matrix entries, which strongly depend on the
Green’s function representations. When the spectral domain calculations are
considered for planar and cylindrical geometries, each has a single representation,
which is the eigenfunction solution for the corresponding geometry. Besides, each

solution is used as a reference solution in many studies. However, mutual coupling



CHAPTER 1. INTRODUCTION 3

calculations in this domain has severe convergence issues especially for electrically
large lateral separations between the source and observation points. Therefore,
several techniques are used to improve their efficiency and accuracy. On the
other hand, in the spatial domain, more than one representation is used for both
planar and cylindrical geometries based on where each representation yields the
most accurate results and where each representation is the most efficient [18],
[19].

In this thesis Chapter 3 and 4 present the evaluation of the MoM impedance
matrix and the voltage vector entries both in spectral and spatial domains for
planar and cylindrical geometries, respectively, in a detailed way. During the
evaluation of these entries, encountered difficulties and methods to handle these
difficulties as well as several methods to improve both the efficiency and accuracy
are explained. Among them a noticeable one is related to the spectral domain
mutual coupling calculations for planar structures. Mutual coupling expressions
involve the evaluation of infinite double integrals in the spectral domain, which
have severe convergence issues. In previous studies [20] and [21], an asymptotic
extraction method is applied to these integrals along with some integration for-
mulas to decrease the computation time. As a result, the asymptotic parts of
both the impedance matrix and the voltage vector are transformed to finite one-
dimensional integral, which are evaluated using a highly specialized commercial
package ’International Mathematics and Statistics Library’ (IMSL). Note that
these 1-D integrals may posses integrable singularities. In Chapter 3, we provide

closed-form solutions to these 1-D integrals.

However, due to the limited usage of spectral domain solutions (convergence
problems for electrically large geometries), more emphasis is given to the spatial
domain calculations both in Chapter 3 and Chapter 4. In the spatial domain cal-
culations the main problem is handling the singularities when two basis functions
overlap with each other completely or partially. In this thesis we explain how
to treat these singularities for co- and cross-coupling cases as well as probe-basis
function interactions using mappings and change of variable methods in a simi-

lar fashion to [22]. Besides, apart from the singularity treatments, same change
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of variables are used to reduce the order of integrations. Finally, the remain-
ing integrals are numerically calculated using an adaptive Gaussian integration
scheme, which increases the number of points adaptively until a level where the

convergence of the integral is achieved for a desired accuracy.

Finally these improved methods are incorporated into two different studies
to asses their accuracy and efficiency. First study is the investigation of the
scan blindness phenomenon for finite arrays of printed dipoles on material coated
electrically large circular cylinders, and its comparison with the same type of
arrays on planar platforms. Scan blindness phenomenon which is investigated
previously for infinite [23]- [24], [25] and finite [4]-[26] printed antenna arrays
on planar grounded dielectric slabs, are investigated for cylindrical ones and the
results are published in [27]. These foundings are restated in this thesis in Chapter
D.

The second study is a method to reduce the computational time and memory
costs of the aforementioned full-wave solution for the analysis of electrically large
finite phased arrays of printed dipoles and patches on planar grounded dielectric
slabs. In this thesis a generalized forward backward method (GFBM) [28] based
on a discrete Fourier transform (DFT) based acceleration algorithm ([8], [9]) is
used in order to achieve this goal. The computational complexity of the problem
which is originally O(N2,) (order of N2,) for each iteration can be reduced to
O(Niot) (Nyor is the total number of unknowns) using this method. The result is

remarkably fast and accurate as it is shown in Chapter 6.

Chapter 7 concludes this thesis and explains the importance of the work in
the view of presented results. In Appendix A some integral formulas are given
which are used in this thesis. An e/“! time dependence is assumed and suppressed

throughout this work.



Chapter 2

The Hybrid MoM /Green’s

Function Solution

2.1 Introduction

In this chapter a hybrid technique is explained, which is used to analyze the
printed circuit structures. This technique is called the hybrid MoM /Green’s func-
tion method [29]. It is a combination of the conventional Method of Moments
(MoM) solution with a special Green’s function. The special Green’s functions
are specific to the medium that is being analyzed and they are given for planar
and circularly cylindrical grounded dielectric slabs in Chapter 3 and Chapter 4,
respectively. In hybrid MoM/Green’s function technique, an electric field integral
equation (EFIE), whose kernel is the special Green’s functions that include the
presence of the dielectric layer(s) (by satisfying the appropriate boundary condi-
tions), is formulated for the unknown equivalent currents, representing the printed
elements on the dielectric substrate. These currents are then approximated as
a finite sum of known expansion functions multiplied by unknown coefficients.
Finally by taking the moments of the approximated integral equation using the
same expansion functions as weighting functions (Galerkin’s Method), the inte-

gral equation is converted into a matrix equation. Coefficients of the expansion
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functions are the unknowns in this matrix equation. Once we solve for these
unknowns, we can express the current distribution on the dielectric substrate.
Formulation of this matrix equation is given in Section 2.2. Calculation of the
entries of this matrix can be done in spectral or spatial domains and Section 2.3

explains these methods.

2.2 MoM Formulation

In Figure 2.1(a) and 2.2(a) basic geometries for printed circuit structures are
given for planar and cylindrical dielectric slabs, respectively. Although rectangu-
lar microstrip patch antennas are given as an example in these figures, any shape
of a printed structure can be analyzed using the hybrid MoM/Green’s function
technique. These antennas are excited by a probe which is assumed to be ideal in
the rest of the work. Using the Schelkunoff’s surface equivalence principle [30],
these geometries can be analyzed using an equivalent problem as illustrated in
Figure 2.1(b) and Figure 2.2(b), respectively. In the equivalent problem, con-
ducting patch surfaces are replaced with the equivalent induced surface currents

which are unknown and are to be solved via MoM.

In order to write the EFIE, we start by writing the total electric field in
free-space denoted as Fy(7), given by

Eo(r) = Ei(r) + E*(r). (2.1)

In this equation E®(r) is the scattered electric field created by the induced
surface currents whereas the Ei(r) is the incident field which can be a plane
wave incident on the patch (scattering problem) or a field generated by the probe
current density (radiation and/or mutual coupling problem). We are assuming
the latter case in this thesis. E*(r) and Ei(r) are formulated using the special

Green’s function and the corresponding current densities such that

Ei(r) = / /S G )T (2.2)
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Conducting Patch J=naxH

; iy
i / L
probe _ - £ -

IH/HIUI I}I

Dielectric: t,, €, PEC Dielectric: t,, €,

™~

(a) Original Problem (b) Equivalent Problem

Figure 2.1: A Microstip patch antenna on planar host platform.

// r, r') - J(r') ds’ (2.3)

conducto'r

where G is the Green’s dyad involving the appropriate components of the electric
field related to the surface currents on the conducting patch in the existence of
the grounded dielectric slab. These equations are valid for both cylindrical (G™")
and planar geometries (GP'). Finally in (2.2) and in (2.3) r and r’ denote the
cylindrical or the cartesian coordinate system position vectors according to the
geometry that is being analyzed, and the primed coordinates denote the source

points whereas unprimed coordinates denote the field points.

Using the boundary condition, that the tangential component of the total
electric field is zero on the surface of the conducting patch, one obtains the EFIE

given by

X (Ez(r) + Es(r)) =0 on Sconductor , (24)

which can be expressed as (using (2.2) & (2.3))



CHAPTER 2. THE HYBRID MOM/GREEN’S FUNCTION SOLUTION 8

Conducting Patch J=axH
/ A,
74 )
h #
n 74' %

(a) Original Problem (b) Equivalent Problem

Figure 2.2: A Microstip patch antenna on cylindrical host platform.

//s X Grr) I ds == [ kG ) T (25)
atch source

P

where r and ' € S,.onguctor and 7 is the unit vector normal to the conductor
surface. Then, the MoM procedure starts with the expansion of the unknown

surface current in terms of known basis functions

I (r) = z_jl 1,3,(r) (2.6)

where [, represents the unknown current coefficients which are to be found. Us-
ing (2.6) in (2.5) and taking the moments of this integral equation using the same
basis functions as weighting functions (Galerkin procedure) we obtain a matrix

equation given by

N
I
<

(2.7)



CHAPTER 2. THE HYBRID MOM/GREEN’S FUNCTION SOLUTION 9

where

D = //Sm ds Im(r) - (//S ds' G(r,r') - Jn(r’)) (2.8)

V,, = —//Sm ds J(r) - Ei(r) . (2.9)

Zomm 18 the mutual coupling between m!" and n'* basis functions. (2.9) is a general
equation for the voltage vector. Specifically for a radiation problem with an ideal

probe excitation it can be written as

Vo= [ dsd(r)- Gi) (2.10)

where G| represents a modified version of the special Green’s dyad involving the
normal components of the electric field related to the surface currents on the

conducting patch as

d
gﬁ:/ G, d-, (2.11)
0

with G, representing the normal components of Green’s function for either the
cylindrical (G®') or planar (GP') geometries. In (2.10) V,, can be considered as a
mutual coupling between the m!”* basis function on the conducting patch and the
feeding probe, which is assumed to be a unit current source at the probe position

(ideal probe). Gy is the special Green’s function for this kind of feeding source.

Solution of the matrix equation (2.7) will give us the current coefficients which
define the surface current distribution on the conducting patch. The inversion
of the MoM matrix can be done using standard routines. For very large arrays
iterative methods like generalized forward backward method (GFBM) can be
necessary to reduce the computational complexity of this solution (as will be

briefly explained in Chapter 6).
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There are different types of basis functions used in this thesis for comparison
reasons. For planar dielectric slabs 3 types of basis functions are used. These are

entire basis (EB) functions (of order m):

JEB (z,y) = I;/mct (y ;/%) sin (WZT [m - <xn — g)D : (2.12)

piecewise sinusoidal (PWS) basis functions:

PWS Y—UYn sin [ke (xa - |$ - an]
= 2.1
R e e N

and roof-top (RT) basis functions:

1 Y—Yn |:L‘_J7n|
RT
= t 1—— 1. 2.14
S () T ( o )( o (2.14)

where the “rect” function is defined as:

1, |z|<a

rect(z/2a) = { (2.15)

0, otherwise

The EB function is defined over the entire domain of the rectangular conduct-
ing patch whereas the PWS and the RT basis functions are sub-sectional basis

functions and they are defined over the sub-section

(T —xy) <

x < (T, + x,)
Yn —¥a) <y

= . (2.16)
< (Yn + Ya)

In (2.16), x, and y, denote the half-length and the half-width of the basis func-
tions, respectively. x,, and ¥, are the center points of the n'" basis function. Note
that basis functions (2.12)-(2.15) are directed in the & direction. The g-directed
basis functions can be written similarly by interchanging the x and y variables.

Also note that the EB function is defined over the entire patch surface of length
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L and width W. In (2.13) k. is the effective wavenumber of the substrate given
in [31] as

ke = wy/lote (2.17)

e+1 € —1 10t,,
= 1 . 2.1
‘e > T < MG ) (2.18)

For cylindrical dielectric slabs only PWS basis functions are considered. 2

and ¢-directed PWS basis functions are given by

d¢ —d n i ke a — An

Jo(z,0) = rect( ¢2rla¢ > — [2rl(jsin (Zza; ) (2.19)
— 2zp\ sin [ke (1l — |do — do,

Sz, 9) = rect (2222 )Sm[ 2(; sin (|l<:q:~l ) e, (2:20)

respectively, where z, and rl, denote the half-length and the half-width of the z-
directed basis functions, respectively. These basis functions are located at (z,, ¢,)
and they are sinusoidal in the direction of current and constant in the orthogonal

direction.

2.3 Spectral and Spatial Domain Methods

Equations (2.8) and (2.9) are two spatial domain representations of the impedance
matrix and voltage vector entries, which involve the special Green’s functions
in the spatial domain. However, analytically exact expressions for the Green’s
functions which include the effects of planar and cylindrical dielectric slabs are
available only in the spectral domain. Therefore, in the spatial domain these
Green’s functions are represented as the inverse Fourier transform (IFT) of their
spectral domain counterparts, and the MoM matrix and the voltage vector entries

are given by
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Zn = //Smds.]m(ac,y)- [//Snds’

( / /OO dk, dk, G(k., ky)eﬂ‘kz@—x’)eﬂ%(y—y’)) 3 y')] (2.21)

V,, = —// ds (// dkydkxén(kmky)eﬂ“(’”ﬁm)ej’“y(y”y)) m(z,y), (2:22)

respectively for a planar geometry. In (2.21) and (2.22) G and G, represent
the appropriate components of the spectral domain Green’s function, J,, and J,
are the same type of basis functions chosen from the list of basis functions dis-
cussed in the previous section. J,,, and J,, are centered at (z,,, y,n) and (z,, yn),
respectively. Finally (z,, y,) denotes the coordinates of the probe feeding the
microstrip patch antenna. However, in (2.21) and (2.22) the IFT of the spectral
domain Green’s function can not be taken, since Q and Qn are not absolutely
integrable. Therefore, in (2.21) and (2.22) first the order of integrals are changed
by taking the finite integrals inside the IF'T integrals. Then these finite integrals
are evaluated in closed-form by recognizing the Fourier transforms (FT) of J,,
and J,. As a results (2.21) and (2.22) become

Zmnzf/ dk, dky J7, (Ko, ky) - G(ke, ky) - (ke y) (2.23)

and

Vi = — / / dky dky Ja(kos k) - G (K, ke )eThon ekt (2.24)

which are called the spectral domain representation of the MoM matrix and
voltage vector entries. Note that J,, and J,, should be chosen carefully so that
their FT, denoted by J,, and J,, (with their complex conjugates J* , J*), will
make the integrands of (2.23) and (2.24) absolutely integrable.

For cylindrical geometries, equations (2.23) and (2.24) are written as (except
the factor 1/2m)[32]
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Zon= 3 { [ 300G O, e (2.25)
o= > ([ mmogum o). (2.26)

Although the spectral domain method saves us from the integration along
the domain of the basis and testing functions and automatically handles the
singularity problem, it is extremely inefficient for small basis functions and large
separations. Integrands in (2.23) and (2.24) are slowly convergent and highly
oscillatory especially for small basis functions and large separations. This is even
worse for cylindrical geometries where (2.25) and (2.26) are used. Because of the
need for efficient solvers for electrically large structures, there are efficient spatial
domain methods developed by Barkeshli et al. [22] and Erturk et al. [33] for
planar and cylindrical dielectric slabs, respectively. These methods utilize some
high frequency based asymptotic approximations in order to calculate the Green’s

function representations in the spatial domain efficiently.

2.4 Array Geometry

In this subsection we present several geometries (Fig. 2.3 and Fig. 2.4) where the
hybrid MoM/Green’s function technique is used. Fig. 2.3(a) and (b) show the
geometries of finite, periodic arrays of (2N + 1) x (2M + 1) axially (2-directed)
and circumferentially (q@—directed) oriented printed dipoles, respectively. The
arrays are mounted on the dielectric-air interface of dielectric coated, perfectly
conducting, circular cylinders, which are assumed to be infinitely long along the
z-direction. The coated cylinders have an inner radius denoted by a, outer radius
denoted by d, and hence the coating thickness t;, = d—a. The relative permittivity
of the coating is ¢, > 1. The geometry of a finite, planar, periodic array of
(2N 4+ 1) x (2M + 1) printed dipoles is also given in Fig. 2.3(c). In all three
geometries, the dipoles are assumed to be center-fed with infinitesimal generators
with impedance Zr as depicted in Fig. 2.3(d). Each dipole has a length L, width
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W, and is uniformly spaced from its neighbors by distances d,; = dA¢ and d,
in the ri— (rl = d¢) and z—directions, respectively. Similarly for the planar
case, each dipole is uniformly spaced from its neighbors by distances d, and d,
in the y— and z—directions, respectively. Similar to the the dipole array case,
microstrip patch antenna arrays of (2N +1)x (2M 1) rectangular patch antennas
on cylindrical and planar grounded dielectric slabs are depicted in Fig. 2.4 (a)
and (b), respectively. These antennas are excited with coaxial-probes which are

modeled as ideal probes.

In order to analyze these structures, which are shown in Fig. 2.3 and Fig.
2.4, we developed a general code which implements MoM in spectral and spatial
domains (which is selected by the user). This code is fully capable of simulating

these geometries with arbitrary parameters. Key features of our code are:

(i) Several types of basis functions are supported in the modeling of patch
surface currents. For the planar geometries entire basis functions (2.12),
PWS basis functions (2.13) and RT basis functions (2.14) are all available
in the spectral domain. In the spatial domain, basis function selection is
limited to PWS and RT basis functions. For the cylindrical geometries the
only available type is PWS basis functions (2.19) both in the spectral and

spatial domain solutions.

(ii) User selects the number of sub-domains or the number of modes in the
orthogonal directions which is identical on each element (uniform array).
Virtually there is no limit to how dense the discretization can be. However
the accuracy of the solution is obviously limited by the accuracy of the

Green’s function representations.

(iii) For these types of geometries the impedance matrix is a block toeplitz
matrix with toeplitz blocks. By exploiting these properties the fill-time of

the matrix is reduced tremendously.

(iv) Our code can simulate a single antenna or an arbitrarily sized array of
antennas. However only the sub-domain basis functions (PWS and RT

basis functions) can be used for an array of antennas.
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(v) After the solution of current coefficients several antenna and antenna array
performance metrics can be calculated such as input impedance of a sin-
gle antenna, active reflection coefficient of an element of the array, active

element gain patterns.

(vi) The code features a frequency sweep option where start and stop frequencies
and the step size can be selected. In the simulation of a single antenna, feed

position sweep option is also available.

z. PEC ground plane PEC ground péane
0

L

| Firstfee 3 15
X | T X | -——
(-N —M){ } { { (HyPlane) (_EC’LT,,)-o— °"(Nd_>|\;(E-—Plane)
0 (—N,M) ’ ’
n=dAg 1st Column
First RO

(H+Plane

(b)

. (N.-M)
e o | o o __7dy
—— wmOwm ... o ‘\9
e I z
NM) th
" = QOVmm 'éri:ae
First Column h

(H-Plane)

Figure 2.3: Geometries of periodic arrays of (2N + 1) x (2M + 1) (a) axially, (b)
circumferentially oriented printed dipoles on dielectric coated, electrically large
circular cylinders. (c) Geometry of a periodic, planar array of (2N +1) x (2M +1)
printed dipoles. (d) Dipole connected to an infinitesimal generator with a voltage
V.m and a terminating impedance Zr.
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Figure 2.4: (a) Geometry of periodic array of (2N + 1) x (2M + 1) microstrip
rectangular patch antennas on a dielectric coated, electrically large circular cylin-
der. (b) Geometry of a periodic, planar array of (2N + 1) x (2M + 1) microstrip
rectangular patch antennas on a grounded dielectric slab.



Chapter 3

Green’s Function

Representations for Planar
Grounded Dielectric Slab

3.1 Introduction

In the previous chapter spectral and spatial domain methods in the calculation
of MoM matrix and voltage vector entries are explained. This chapter gives a
detailed explanation on the Green’s function representations of planar grounded
dielectric slab for spectral and spatial domain methods. There are some estab-
lished formulations for these functions in the literature which will be restated
in this chapter. Spectral domain expressions for the planar geometries will be
presented in Section 3.2. Our improvements in the spectral domain for the calcu-
lation of self and mutual couplings as well as voltage vector entries for ideal probe
excitation using roof-top sub-sectional basis functions are explained in detail in
Section 3.3. Briefly, using asymptotic extraction techniques convergence of the
numerical integration is accelerated and closed-form expressions are developed
for the asymptotic part of the integral. Consequently, the final form of the spec-

tral domain solution becomes faster and more accurate compared to the previous

17
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studies. In Section 3.4, we briefly explain the spatial domain expressions of the
Green’s function representations for planar geometries. These expressions require
the calculation of two double integrals for the MoM matrix entries and a single
double integral for the voltage vector entries. Spatial domain calculation of the
mutual coupling between two basis functions must be carried out with extra care
if they overlap because of the 1/s type singularity where s is the lateral separa-
tion between the source and field points. We present an asymptotic solution to
this problem in section 3.5. Using a proper change of variables, order of these
integrals can be reduced to one by taking one of the integrals in closed-form which
is explained in detail in Section 3.6. As a result computational burden is reduced

in the computation of these integrals.

3.2 Spectral Domain Green’s Function for

Planar Grounded Dielectric Slabs

Spectral domain Green’s function representation for the planar grounded dielec-

tric slab geometries can be expressed in the form of [21], [31]:

~ B .ZO (Erk’g — k’g)kg + ]kﬁl(k’g — k’i) tan(kld)
sz(kz, ky) - .] ko TeTm

tan(kld) (31)

= .ZO (67«]{78 — k;)kz + j]ﬁ(l{?g - l{ig) tan(kld)
Gyy(kesky) = —j——
kO TeTm

tan(k:ld) (32)

~ = 2o kyky, tan(kqd) ko + jkq tan(kd
Gyiﬂ<kw7ky) == G;py(ka:;k'y) :]?g Y ( 1 );; 1 ( 1 )]

. N Zy ik tan(dk:)

sz(kxa ky) - Gzz(kxa ky) =7 kO lem (34)
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~ A o .ZO kiykg tan(dk:l)
GyZ(kwv ky) = Gzy<k:vv ky) =J ko FeT

with

T. = ki+ jkotan(kid) (
Tw = €ko+ jkytan(kid) (
K= k2 —k2 -k, Im(k) <0 (
k3 = ki—kI—k, Im(ky) <0 (
3
3

IN

F = K2+ k2 (3.10
]{30 = W4/ Uo€o (11

where Z, = \/% is the intrinsic impedance of the free space. Note that G.. (k,, ky)

is not used in this study.

3.3 Closed Form Solution to the Asymptotic
Part of the MoM Impedance Matrix and the
MoM Excitation Vector

Spectral domain MoM solution to the EFIE given by (2.23) requires the compu-
tation of the spectral domain integrals which has to be done numerically. These
double integrals have limits extended to infinity. Unfortunately, the integrands
have slowly convergent and highly oscillatory behaviors which make the compu-
tation of the impedance matrix elements as the most time consuming part of
the MoM solution. Besides, such behaviors can create accuracy problems. These
problems also occur in the computation of the excitation vector elements. Thus,
various techniques have been developed related to the spectral domain evaluation
of the matrix and the excitation vector entries [34]-[35]. Among them, in [20] and
[21], the authors have successfully derived an analytical technique for the fast and
accurate evaluation of the asymptotic part of the impedance matrix when trian-
gular edge mode and roof-top subdomain basis functions are used in the spectral

domain MoM solution for printed narrow strips and antennas. Basically, they
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provide an analytical transformation from an infinite double integral to a finite
one-dimensional (1-D) integral for the asymptotic part of the impedance matrix,
thereby reducing the CPU time dramatically and improving the accuracy regard-
less of the lateral separation between the basis and testing functions. Recently,
the same method has been applied to the MoM excitation vector for probe-fed

planar microstrip antennas [35].

In all these three studies ([20], [21] and [35]), the resulting 1-D finite inte-
grals are computed using the ’International Mathematics and Statistics Library
(IMSL)’ subroutines DQDAGP (if there is a singularity) or DQDAGS, which are
high-quality adaptive integral routines. Unfortunately, these routines are highly
specialized and may not be available on all platforms. Moreover, using standard
numerical integration techniques instead of these IMSL routines may yield accu-
racy problems. In subsection 3.3.1 we will provide closed-form results for these
1-D integrals. Consequently, the asymptotic parts of both the impedance matrix
and the excitation vector are evaluated completely in closed-form, which results
a further reduction in the CPU time and a further improvement in the accuracy
for the evaluation of the MoM matrix and the excitation vector entries. Be-
sides, these closed-form expressions eliminate the need for such highly specialized
subroutines for this problem. In order to asses the accuracy of the closed-form

expressions several numerical results are given in subsection 3.3.2.

3.3.1 Formulation

In the spectral domain MoM solution of printed structures on planar grounded
dielectric slabs, using (2.23) and employing the asymptotic extraction technique,

the impedance matrix elements can be expressed in the form of
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L
1 o0 oo L, N - _
- _R /—OO /—OO Jg”f <k$’ ky) [qu(kz’ky) - qu(kl‘; ky)} Jg(kx, ky)dkxdl{?y
1 0o oo, _ 5
- ﬁ/ / Thy (K ko) G (ks oy ) T (K, Ky ) dey ey (3.12)
™ —00 J—00

(p =z ory,and g = z or y) where ZP4 represents the self and mutual interactions
between the roof-top sub-domain current basis functions J? and Ji. In (3.12)
JP is the Fourier transform of the p-directed basis function (i.e., JP). Basically,

when p = x we have

) Ax : Ay
- ] sin (k‘x ) sin (ky 2 ) oI (kam+kyym) (3.13)
mT Ardy k2 ky |

xT

and when p = y we have

. Az o2 Ay
s sm(kA) sl (e8) (3.14)
™ AzAy ky kg

)

Also in (3.12) JZ is the complex conjugate of the Fourier transform of the g-
directed basis function and finally épq is the appropriate dyadic Green’s function

component in the spectral domain (given in (3.1)-(3.3)) with é;g being its as-

ymptotic value for large 8 = |/k2 + k2 values, given by [21]

~00 _ -ZO kg k%
G (ks by) = T {Qg (e + 1)6} (3.15)
-  Zy [k k2
ny(k?m ky) = —J]?O {25 - (er—i—yl)ﬁ} (3.16)

Zo kuk,

70 (k = G2 (ky ky) = j——2Y
ny( v ky) Gyw( 2 ky) ]ko (e, +1)0

(3.17)

In a similar fashion, the MoM excitation vector elements (for probe-fed structures)

are expressed as
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Vn = 471'2/ / Caglbi, ) = G2 (R, k)| T (R By e/ 0 ) d

1

+
472

/ - / G g by )9 (K, oy )T el (3.18)

where (2P, yP) is the coaxial probe attachment position on the patch surface and
G, »q 1s appropriate dyadic Green’s function component in the spectral domain

((3.4) and (3.5)) with Giz being its asymptotic value for large /3 values given by

[35]

=~ ZO km
G®=-"F"_"" _ 3.19
= ko B(1+e) (3.19)
N Zo k
G =-"F"_"Y 3.20
= ko B(1+e) (3.20)

In the first terms of (3.12) and (3.18), the infinite double integrals converge
rapidly to zero. However, the second terms in (3.12) and (3.18) (called as the
asymptotic part of the impedance matrix element and the MoM excitation vector
element) also contain the infinite double integrals which exhibit slowly convergent
and highly oscillatory behavior. Therefore, in [20] and [21] an analytical technique
has been derived for the fast and accurate evaluation of the asymptotic part of
the impedance matrix elements, and then this technique has been applied to
the MoM excitation vector elements in [35]. Consequently, the infinite double
integrals in the asymptotic part of (3.12) and (3.18) are analytically transformed
to 1-D integrals given by

. 2
sy J 8 kg 1
zeety — S 20 paas il 3.21

. g 64 1
g _ gyaty ) 20 Vi, 3.29
mn mn 2 k() A$2Ay2 €, + 1 mn ( )



CHAPTER 3. PLANAR GROUNDED DIELECTRIC SLABS 23

sy j Z(] 8 1
yatr - 20 I 3.23
mn w2 ko (AmAy) &+1 ™ (3:23)
where
. 1 2Azx
I = = Alx — x5) Sa(x)dx (3.24)
™ J—2Ax%
- 1 2Ax N
rE = [T A= ) Sy (3.25)
T J-2Ax
2y 1 3§m+zs
Lm = 7MTx+ZSB(X)T(X—$s)dX (3.26)
. 1 TA+Azx
Iy = — CO)T(x —wa)dx . (3.27)
T Jxa—Ax

Alx — zs), Sal(x), So(x), B(x), T(x), C(x) and I'(x) are the integrals evalu-
ated in closed-form in [21] and [35], and they are given by (A.1) through (A.7),
respectively, in Appendix A. Similar expressions can be formed for %Y., I%y; , Iy
and [?Y by interchanging Az <« Ay, x, < ys and x4 < y4 where z, and y, are
the lateral separation between the basis and testing functions (i.e., x5 = x,, — x,;
Ys = Ym —UYn), and x4 and y4 are the separation between the basis function under

analysis and the probe location (i.e., T4 = T) — Ty} Ya = Yp — Ym)-

In [20], [21] and [35], the 1-D integrals given in (3.24)-(3.27) were computed nu-
merically using the the International Mathematics and Statistics Library (IMSL)
subroutines. During the computation of these integrals, if there is a singularity
at the integration interval, then the IMSL routine DQDAGP was used, which can
handle interior and endpoint singularities. If there is no singularity, the IMSL
routine DQDAGS was used. Unfortunately, these routines are highly specialized
and may not be available on all platforms. Besides, it is observed that using
standard numerical integration techniques instead of these IMSL routines yields
accuracy problems. In this thesis we are providing closed-form expressions. The

key steps in arriving these closed-form expressions are:

(i) The analytic evaluation of the following type integrals:
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/ .

Figure 3.1: A couple of Z-directed RT basis functions

fila,x1,29) = /m2 Va2 + a2 dx (3.28)
Z1

Fi(a,z1, 29, z5) = / : e (@ — 2,)° + a2 dx (3.29)

1

xT

gi(a, x1,x9) = / " 2iln (a + Va2 + a2) dx | (3.30)

1

T

Gi(@, X1, T2, :CS) - /

e (a + \/(x — ) + a2) dx (3.31)
71

with i« = 0,1,2,3. Analytical expressions to the results of the integrals (3.28),
(3.29), (3.30) and (3.31) are given by (B.1)-(B.4), (B.5)-(B.8), (B.9)-(B.12) and
(B.13)-(B.16), in Appendix B. It is important to notice that F;(a,z1,xs,z5) and
Gi(a, 1,9, x), are expressed in terms of f;(a,z1,x2) and g;(a,x1,3), respec-

tively.

(i) Recognizing that the closed-form expressions to the integrals given by
(3.24)-(3.27) can be obtained as a combination of (3.28)-(3.31).
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Consequently, the closed-form expressions for the 1-D integrals given by (3.24)-

(3.27) are found as follows:

zx®
Imn -

b
TT _
[mn -

Ty _
Imn -

zx
I =

2 3 3
S S A, ) o) Gilag X, X1, )

+ Cf(p E(a$x> X§§—27 ng—p xs)] }

+c5(p) Filay”, xgta, Xier w5)] | (3.32)

T : : : S xx xx xx
16 2.0 {Cis(A% q) {Cg(p) Gi(a,", X35—2: X3g—1: Ts)

q=1p=1i=0

+cs(p) Filag” X X1 ws) | }
1

m Sq T | TT T
+ = Z Z Z {Ci (A$7 q) [Cg(p) Gi(ap 7Xq+17 Xq+27 333)

q=1p=1i=0

+ () Fi(ag®, X0 Xotar )| } (3.33)

4 3
S>3 {d(@) 2o = 1) (folag” X5 xot) — a¥go(ag?, xi¥s xpt) )
q=1p=1

+c(2p) (Fulad? g xpta) — ag¥ai (a3’ xi¥ xt)) | } (3.34)

9o(ai”, xi*, x3") — gola5”, X", x5")
— go(ai", x5",Xx5") + go(a3”, x5", x5") - (3.35)

In (3.32) and (3.33), the constants and the coefficients are given in Table 3.1 and
Table 3.2. Similarly, in (3.34) and (3.35), the constants and the coefficients are
given in Tables 3.3-3.5.
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et = 8Ax3 cr = —4A2? e = —%

o' = 12A22(—-1)7 | 2 =0 o = 3(—1)"
3t = 6Ax 5 = —6Ax )t = %

et = (=1)7*! cg? = 3(-1)1 ot = §(=1)r!
af® =y, + Ay cg(1) = ys + Ay cr(l) = -1
as” =y, — Ay cg(2) = ys — Ay cp(2) = -1
az® = ys cg(3) = =2y, cp(3) =2

Table 3.1: Constants I

Xi* = —2Ax
X3" = —Aw
X5"=0
Xi" = Az
XEt = 2Ax

Table 3.2: Constants 11

3.3.2 Numerical Results

To assess the accuracy of the closed-form expressions presented in (3.32)-(3.35)
with the related parameters given by Table 3.1-3.5, several numerical results in
the form of mutual impedance between two expansion functions and the input
impedance of several probe-fed microstrip patch antennas are obtained and com-

pared with the simulation and measurement results available in the literature.

The first numerical example is the duplication of Fig. 2 in [21], where the finite
1-D integrals are compared with the double infinite integrals using Az = Ay = 1
and y; = 2Ay for 0 < z;, < 10 for (3.24) and (3.25), and using Az = Ay = 1
and y, = %Ay for 0 < x5 < 10 for (3.26). We also evaluated the same integrals,
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Xi'=—-15Az 4wz, |ai’ =—-15Ay+y, |dV(1)=—%
X3! = —0.5Az +x, | a3’ = —05Ay + s dm(2) = &
X3 = 0.5Ax + x4 as’ = 0.5Ay + y, d™(3) = —%
X1’ = 1.5Az + x, ay? = 1.5Ay + y, dw(4) =&

Table 3.3: Constants 111

(1) = —3(15Ar—m,) c™(4) =17 Xi* =z, — Az
c(2) = -3 c(5) = S(L5AT +x,) | X53° = )
c(3) = =G, c(6) = —% X3' =1, + Az

Table 3.4: Constants IV

(3.24)- (3.26), using the closed-form expressions. As depicted in Fig. 3.2, excellent

agreement is obtained.

As a second example, the mutual interaction between two Z-directed current
modes, which are defined to be roof-top functions (2.14), are evaluated along
the H-plane (i.e., along the y-axis). These current modes are on a grounded
dielectric slab with a thickness, ¢, = 0.057)\¢ (Ao is the free-space wavelength)
and €, = 2.33, and the size of each current mode is selected to be Az = 0.05)\y and
Ay = 0.025)g. Since IMSL routines are highly specialized and are not available
on our platforms, we used the standard Gaussian quadrature algorithm in the
following way: For the integration limits from —2Ax to 2Axz, we divided the
integration interval to subintervals with subinterval length being Az /8. In each
subinterval we used an 8-point Gaussian quadrature algorithm. As seen in Fig.
3.3, we have an excellent agreement both in magnitude and phase except for
relatively large separations, where the finite 1-D integration method yields some
numerical problems. As a result, we believe this result illustrates the importance

of the closed-form expressions that we provide for the 1-D integrals.
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zZTr __ Ay
ar’ =yYp+ 5

2T __ Ay
A" =Yp — 5

Table 3.5: Constants V

The last two numerical examples, shown in Fig. 3.4 and Fig. 3.5, provide the
Smith Chart plots of the input impedance of two probe-fed microstrip antennas,
where the closed-form expressions for both the impedance matrix and the exci-
tation vector are used. Results are also compared with the previously published
results as well as the results of a software package ENSEMBLE [36]. Fig. 3.4
is given for a rectangular microstrip patch antenna on a grounded dielectric slab
with €, = 10.2 and thickness, ¢, = 0.127 cm. The length of the patch L is 2 cm,
the width of the patch W is 3 cm, and the feed is located 1 cm from the long
edge (i.e., from the W edge) and 0.65 cm from the short edge (i.e., from the L
edge) as explained in [37]. The frequency is varied from 2.2 GHz to 2.4 GHz, and
9 roof-top basis functions are used along the width of the patch. As seen in Fig.
3.4, very good agreement is obtained with both the measured results given in [37]
and the results obtained from the ENSEMBLE software [36].

In a similar fashion Fig. 3.5 is given for W = 39.52 mm by L = 49.91 mm
rectangular antenna with a coaxial feed located at W/2 from the long side (i.e.,
from the L edge) and 15.36 mm from the short side (i.e., from the W edge)
as depicted in [38]. The antenna is located on a grounded dielectric slab with
€, = 2.484 and h = 6.3 mm. The frequency is varied from 1.72 GHz to 2.10 GHz,
and 5 roof-top basis functions are used along the length of the patch. Similar
to the previous case, very good agreement is obtained with both the measured
and the simulated results given in [38] as well as the results obtained from the
ENSEMBLE software [36]. Note that to account the self inductance of the probe
we added j X, to the input impedance given by

nkty kd,,
X, = — -t (252 1o, .
) - [n( o) 0577 (3.36)

where 7 is the intrinsic impedance of the dielectric medium, k is the wave number
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Figure 3.2: Comparison among the infinite 2-D integral, the finite 1-D integral
and the closed-form expressions.
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Figure 3.3: Magnitude and phase of mutual impedance Z7§ between two identical
Z—directed current modes on a t, = 0.057)\ thick grounded dielectric slab with

€, = 2.33.

of the dielectric medium, d, is the diameter of the feed probe and ¢, is the

thickness of the substrate [39].
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Figure 3.4: Input impedance data of a probe-fed, L = 2 cm by W = 3 cm

rectangular antenna on a A = 0.127 cm thick grounded dielectric slab with €, =
10.2. Frequency = 2.2-2.4 GHz.
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O  Closed-form Asymptotic
& Ensemble
Calculated [38]
Measured [38]

Figure 3.5: Input impedance data of a probe-fed, L = 49.91 mm by W = 39.52
mm rectangular antenna on a A = 6.3 mm thick grounded dielectric slab with
€, = 2.484. Frequency = 1.72-2.10 GHz.
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3.4 Space Domain Green’s Function for

Planar Grounded Dielectric Slabs

Space domain representations of the Green’s function is obtained by transform-
ing the double IF'T integrals into a Fourier-Bessel integral and employing some
parameter transformations. This is also called the Sommerfeld integral type rep-
resentation of the Green’s function. The detailed derivation and computation of
the Sommerfeld integral type representation of the Green’s function is explained
in a detailed way in [22]. In this section, we briefly review it and highlight the
important steps. The evaluation of these integrals starts by considering the two

dimensional (2-D) IFT of the spectral domain Green’s function which is given by

1 i ~ . / !
Goal,9) = 1 [[ Goall, ) )N g, ak, - (3.37)

(p==x,yor zand g =z or y). The integral in (3.37) can be written as a Fourier

Bessel integral given by

Gonlp:6.6) = 5= 32 " [ Goufé) T (Ep)IeEdE (338)
where the following transformations have been used:

ke = JR2+E2=¢ (3.39)

k, = &cos(a) (3.40)

k, = &sin(a) (3.41)

r—1 = pcos(p) — p cos(¢) (3.42)

y—y = psin(¢) - p'sin(¢) (3.43)

If we choose the coordinate system in such a way that p’ = 0, (3.38) becomes
(using the fact that Jy(0) =1, J,,(0) = 0;m # 0)

Cralp) = 5 || Conl€) Tu(s56)¢ dE (3.4

27 Jo

where
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s=p—p =\(@—2)+ -y (3.45)

As a result the components of the Sommerfeld integral type representation of the

Green’s function can be written as

Goals) = —2520 :k§U+ 88; (U— 6”; 1W): (3.46)
G,y(s) = —szo :k§U+ ;;2 (U -~ 6“; IW): (3.47)
R T
Gl = 5o | 5] (3.49
Gayls) = 2520 :(Z,I;: - (3.50)

In (3.46)-(3.50), P, U and W are the Sommerfeld type integrals given by

P o= |G (s de (351)
U= [ Gl (se) dg (3:52)

0
W= [T € (8 d (3.53)

0

where the functions (,, ¢, and ¢, are defined as
. ﬁzog
DO = B8+ e cotltnfin) (3:54)
Cu(§) S (3.55)
“ ﬁzO - jﬂleOt(thﬁzl)

(&) = Buok (3.56)

[ﬁzo - jﬁleOt(thﬁzl)] [6,20 + ﬁzltan(thﬁl)/er]
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with Jy(s€) being the Bessel function of the first kind of order 0 with the argument
s€. Finally (.9 and 3., are defined as

[ yB-e if k3 > €2
ﬁzo - {—jm o k:§<§2 (3.57)

Ba = \eki—E&2. (3.58)
Note that during the evaluation of these Sommerfeld type integrals (i.e., P, U

and W), the envelope extraction technique is used to speed up the computation

of these integrals. Briefly,

(i) the limiting values of (,, ¢, and (, are found when £ — oco. These values

are

lin GO = ¢ =— (3.59
lim () = G=5(05) (3.60)
0.5)€,

lim Gule) = ¢ =5 361

(7i) These limiting values are subtracted from the integrands and added as a

separate integral as follows:

P o= [T[6©-¢) we0)] de+ [TGrneod (362)
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U = [THGle) ~ ) h(se)) dg + [ Gran(s)dg (363)
W= [T — ) RO de+ [T e a(seds (364

The first integrals in (3.62)-(3.64) are now rapidly decaying and hence are com-
puted efficiently. On the other hand, the second integrals in (3.62)-(3.64) are

evaluated analytically recognizing the fact that ¢;°, (;° and ¢ are constants and

/0 ~ Constant - Jo(s€) df = Conzmm . (3.65)
Finally, in the numerical computation of the first integrals given in (3.62)-
(3.64) special care is given to the pole singularities which exist in the interval
ko < § < /€ ko. These singularities are treated using the singularity extrac-
tion method which is different than the singularity removal procedure for the self
and overlapping terms explained in the following sections. For the details of this

singularity extraction method reader is referred to [22].

3.5 Singularity Removal in the Spatial Domain

for Overlapping Basis Functions

When calculating the mutual couplings for the MoM analysis, analytically eval-
uated asymptotic parts of the integrals, explained in the previous section, cause
a singularity problem in the spatial domain integrals when the basis functions
overlap (i.e. s = 0). This singularity must be removed for the efficient calcula-
tion of the MoM matrix entries in the space domain. This section describes the

procedure for the singularity removal when we use PWS basis functions.

3.5.1 7" Component Self-Term

Calculation of the coupling of the z-directed PWS basis function with itself (self-

term) in the spatial domain for planar dielectric slabs requires the computation
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of the integral

Ya Ya Ta Ta

Z5 = / / / /GmJn(az,y)Jn(:p’,y’)d:vd:v'dydy' (3.66)

~Ya —Ya —Ta —Ta

where G, is the electric field of an Z-directed infinitesimal source given by (3.46)
and J,, is the aforementioned PWS basis function given in (2.13). In the view
of (3.63) and (3.64), the self-term can be separated into two parts. Namely the
proper part (denoted by Z#*""") and the singular part (denoted by Zz""""").
Hence Z77 is written as

Tr rxProper mmsingular

Ya Ya Ta Ta
:////<G§;°per+Gj$g“W> Jo(z,9) T (2, ) d da’dy dy'. (3.67)

“Ya—Ya—Ta—Ta

Making use of (3.63) and (3.64), GPP" and GSin9uler are defined as

Zy | 0? e — 1
proper  _ o 2 ~ o
. Zo [ 0? € — 1
chzxngular = — 27]_](;0 nganalytic + @ (Uanalytic — Wanalytic)] (369)

Proper part of the integral (3.67) is carried out numerically whereas the singular
part is treated carefully using some variable changes and approximate analytic
formulas. By employing integration by parts in x and z’ variables in order to
transfer the derivatives onto the basis and testing functions as explained in [32]

singular

and using (3.63) and (3.64), we can write ZZ* as

Ya Ya Ta Ta

pxsingular . ZO 1 001.2 o2 1 /
Znn T ok / / / / S{Cu kg sin [ke(z, — |x|)] sin [ke(xq — |27])]

—Ya —Ya —Ta —La

— (G = G ) 2 cos = [al)) cos ke — 1)

r

dx dz’ dy dy (3.70)

X Sign(l‘)Sign(l'/) } m
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where s is given in (3.45). Note that since the singular point s = 0 is in the inte-
gration surface, standard numerical techniques can not be used for this integral.
First step to attack this integral is to reduce the order of integration. This is

achieved by using the following the change of variables:

1

T = —( — 3.71
\/ﬁ(y Y) (3.71)
L,
= — + 3.72
0 ﬂ(y y) (3.72)
dy'dy = drdy (3.73)
Y T4
A A =T — a\/§
ya["/éé Y
@ Ya )
Y =1+ yaV2
—vd Ya z/ *ya\/i W
e o
b= 7 +yaV2
Y
® @
~yaV2 Y@
w = 7 — ya\/i

Figure 3.6: Mapping from the y-y' plane to 7-1 plane

By doing that the y-y' integrals are converted to 7 and ¢ domain integrals as
it is shown in Fig. 3.6. However, the resultant integrands are only a function
of 7. That is, 7 and 1 domain integrations can be carried out analytically by

employing the following integration formulas:

/ 2 \/a2T+ =dr = Va +73 - \Ja? + 75 (3.74)
T1

T 1
/TIQWdT = ln(a+\/722+a2)—ln(a+\/712+a2). (3.75)
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As aresult (3.70), which was initially a four-fold integral, is reduced into a double

integral given by

Tag Ta
singular

zee = / / {cl(m,x') 08 [ke (224 — |2'| — |2])] + c2(z, 2") cos [ke(|2'] — |x])] }

{4% {m (ya\/i+ J (x\/_;f n 2yg) T x\/_; ]

—2V/2 N <$\/_;>2 +2y2 — ] } da da’ (3.76)

where the functions ¢;(z, 2') and cy(x, 2’) are defined as

/

T —x

V2

c(z, ') = — 2o
n 16mkoy?2 sin® (ko1q)
1
x {Esign(e)sign(a’) (G = ¢ ) + K
€r
co(z,2’) = — 2o
2 167koy? sin®(k.x,)

€ —1

x {Kesign(a)sien(e’) (G = Too¢) ~ kGrf . (37

T

There are two possible values of each ¢;(x,z’) and cy(z, 2") based on the value of
sign(z)sign(x’) which will be called ¢+ and co+. We use ¢4 and coy when the

sign(x)sign(z’) product is positive, and we use ¢;_ and ¢y otherwise.

A similar change of variables is used on the x, 2’ variables as follows:

v = (3.78)

v o= (3.79)

>

dedr’ = dvdv (3.80)
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UV A

Z‘a\/i @
2 24 @ v=v
—Za ZTq Z I::>*xa\/§
: 3
v=v 7 zaV2

a2

V= —u — Ia\/§

Figure 3.7: Mapping from the z-z’ plane to v-v plane

which is depicted in Fig. 3.7. Integration on the variable v can be done analyt-
ically. Finally for the resultant ¥ domain integral we perform a final change of

variable given by

a = (3.81)

do = (3.82)

in order to normalize the integration interval to (0,1). After arranging and re-

grouping the resultant terms the final integral is in the form of

(=]

.5

Z$xstngular o
nn -

o

doz{c;; sin [kex, (1 — 2a)] + ¢y cos [k 2x,(1 — )]

+c5(1 — 2a0) cos(2kez ) + ¢ sin(2k6xaa)}H(a) do

1

+ / {04(1 — ) cos[2kezq(1 — )]

0.5

+cg sin[2kex, (1 — &)]}H(a) do (3.83)
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where H () is defined as
M) = V2| (vo+ /aa? +42) ~ In(zaa

—\/_[ x2+a2—xa} (3.84)

and the constants c3 to ¢g are given by

2,16v/2

3 = W cos(kexy)cr (3.85)
g = 2216V2¢;_ (3.86)
s = 2216V 2o, (3.87)
s = %Zﬁ@_. (3.88)

Numerical integration of the 1-D integral given in (3.83) is significantly more ef-
ficient compared to the original four-fold integral given in (3.70). However, still a
careful evaluation is required for this integral when « is close to 0 because of the
term In(z,«). The best solution to this problem is to use the asymptotic values
of the sine and cosine functions in the interval (0,d;) and integrate this part of
the integral analytically. This §; parameter is chosen to be 2k.z,0; < 1. Using
the series expansion of sine and cosine functions and ignoring the higher order

terms one can write:

lim0 cos(2ker ) ~ 1 (3.89)
hn% sin(2k.r,0) &~ 2k.x 0 (3.90)
lim sinfk.z,(1 —2a)] =~ 2sin(ke.zy) — kexq cos(kezqa) (3.91)

a—0

lir% cos[2kexq(1 — )] =~ 2c08(2kezy) + 2kexy sin(2kex,00) . (3.92)
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As a result, the problematic part of (3.83) (denoted by I,;) can be written as

o1
Iy = —yaﬂ/(dl + dya + dza®) In(a)da
0
0.5
—ya\/i/ dOé{Cg sin [kezq(1 — 2a0)] + cparcos [ke22,(1 — )]
01

+e5(1 — 2a) cos(2kex ) + ¢ sin(ZkExaa)} In(a) dev (3.93)

where the In(z,) part is left out. Now the first integral in (3.93) (denoted by

57797 can be evaluated in closed-form as
01
I;ingulmn = _ya\/g/<d1 + dya + d3a®) In(a)da
0
o3 o3
= _ya\/§ {dl((Sl ln((sl) - 51) + d2 (21 ln((Sl) — 41>
3 53
+ds (31 In(d;) — 91> } (3.94)

where the constants dy, do and d3 are given by

di = czsin(kez,) + s (3.95)
dy = —2cskew, cos(kexy) + ¢4 c08(2key) — 205 4 2¢6ke, (3.96)
d3 = 2ciker,sin(2k.z,) . (3.97)

Finally (3.83) is expressed in its numerically efficient form as

0.5
Zg’rxlsingula’f = / da{@, sin (ke (1 — 2a)] + cqax cos [ke22,(1 — )]
0

+c5(1 — 2a0) cos(2ker ) + ¢ sin(2k6xaa)}7'[r(a) da
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1

+ / {04(1 — ) cos2kexq (1 — )]

g sin[2koz (1 — a)]}H(a) da + 1, (3.98)
where
@) = V2 [n (ot 202+ 12) ~ (e
V2 W—xaa} . (3.99)

Equation (3.98) can be evaluated using a simple Gaussian quadrature scheme

singular
I,

except the part which is found in closed-form. The evaluation of the

proper part of the self-term Z22"*"" is explained in Section 3.6.1 .

Note that self-term (Z¥¥ ) for the g-directed basis functions can be evaluated
using the same expressions (3.98) and (3.84) by simply interchanging the half-
length (z,) and half-width (y,) of the Z-directed basis function with those of the

y-directed one.

In order to asses the accuracy of this method, we compare the singularity
removed self-term results with the spectral domain method results for different

sets of geometric parameters given in Table 3.6.

€r th Zq Ya
Case 1| 3.25 | 0.06)g | 0.195)q | 0.005)
Case 2 | 2.59 | 0.02)\g | 0.05Xg | 0.05)g
Case 3 | 2.59 | 0.003)\y | 0.05Xqg | 0.01)g

Table 3.6: Geometric Parameters

The spectral domain solution to the mutual coupling calculation is pretty accurate
for the self-term. Hence, we use it as a reference solution to check the accuracy of

the space domain solution. Table 3.7 shows that the results are in good agreement
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Spectral Domain (Z%%) | Spatial Domain (Z*%)
Case 1| —16.14 — j141.87 —16.14 — j141.7
Case 2 —0.046 + 582.1 —0.046 + 582.11
Case 3 —0.001 + 598.6 —0.001 + 598.9

44

Table 3.7: Spectral and Spatial Domain Self-Term Results

with the spectral domain solution. Spatial domain solution to the self-term is
generally faster than the spectral domain counter part except for electrically very
thin substrates. For electrically thin substrates, convergence of the numerical
evaluation of integrals in the proper part of the self-term occupies most of the
CPU time! is 11.3sec.

where as the spatial domain solution takes only 1.58sec. However, for Case 3 the

computation time. for the spectral solution of Case 1
spectral domain solution (2.5sec.) is faster compared to the spatial domain CPU

time which is found to be 17.0sec.

3.5.2 Z7(,.) (or Z% (n+1) ) Component Overlapping-Term

In the previous subsection singularity treatment for the self-term is explained. In
the analysis of microstrip antennas and antenna arrays using the spatial domain
MoM, another case where singularity occurs is the overlapping (not entirely) basis
functions (both i-directed or g-directed) case where s = z,. In this situation,

the mutual coupling between two overlapping basis functions can be written as

Ya Ya 2Tq Ta

n(n+1) = / / / / ¢ ISHQIya sin(k a7|j)|)]

—Ya —Ya 0 —Tq

2" — zal)]
2y, sin(kex,)

sin [k (z, —

do dz' dy dy' . (3.100)

ntel 2.6GHz Pentium 4 CPU with HT and 1GB RAM
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Similar to the self-term singularity removal procedure explained in the previ-
ous subsection in the view of (3.66), (3.68) and (3.69) we can write the singular

part of the mutual coupling (3.100) as

Ya Ya 2Tq Tq

singular 1
win = [ [ ] ] @) cos k@, - 1ol o' = zl)
—Ya —Ya 0 —xTq

+ty(z, ') cos [ke(|2" — 24| — |2])] }d:r d' dydy’  (3.101)

where t3(z, 2’) and t4(x, 2’) are defined as

_ tisign(a’ — z,) sign(z) + ¢

ts(x,2') = 5 (3.102)
o ;o :

f(oa) = to tlslgn(an x,) sign(x) (3.103)

(3.104)

with the constants ¢; and ¢, given by

70 e—1 k?
¢ _ co e’} < 3.105
! 27kq {C“ _ }4y2 sin®(kea) 10
Zo ko Ca
L e 3.106
2 <27Tko> 4y? sin® (ko) ( |

There are two possible values of each t3(z,2") and t4(x,z’) based on the value
of sign(z’ — x,) sign(x) which will be called t31(x,2’') and t34(x,2’). When the
sign(z’ — x,) sign(z) product is positive we use t3, and t4,, and we use t3_ and

t4_ otherwise

Equation (3.101) can be reduced to a 2-D integral by carrying out the y and 3/
integrals analytically, in a similar fashion how (3.76) is derived. Briefly, using the
same change of variables and integration formulas given by (3.71)-(3.75), (3.101)

can be expressed as
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2T Tq
[ {tscoslhe(2ea 10’ =l = Jol)] + tycos (o’ ~ 2] ~ |a]) }

0 —z4

 —x 2
Ao |In | yavV/2 + ( 7 ) +22| —In

2| v ]

 —x

V2

— X

V2

dx dx’ . (3.107)

Transformation from the integration domain of z-z’ integrals to the v-v domain

integrals, based on the change of variables denoted in (3.78)-(3.80), are shown
in Fig. 3.8. Applying this last change of variables (3.81)-(3.82) to this integral

to normalize the integration limits, the resultant one-dimensional integral is ob-

tained as
VA
2
A
@
2 24 0
=v
l'a\/i /
v=v-+ Zu\/§
Zq r;
3 ©
—Za Zq v=v— ma\yé 1 L v = 1/—|— 2x4V/2
3 @ e 1
v=—v+z,V2
@~ _
U=V

n(n+1)

Figure 3.8: Mapping from the z-z" plane to v-v plane

0.5

agtinouler _ / {t5 sin(2kezqa) + to(1 — 20) cos(2kezq)

0

+tro cos[kery (1 — 2a0)] + tg sin[kex, (1 — 2a)]}H(a) do
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+ / {t5 sin[2kez,(1 — a)] — to(1 — 2a) cos[kexq (3 — 2a)]

+t7(1 — ) coslkexq (1 — 2a0)] — t1g sinfkexq (1 — 2a)]}7'((a) da

+ / {t9(3 — 2a) coslkerq (3 — 2a)]

1

1 sinfkoza(3 — 2a)]}7—((a) da (3.108)

where

ty = 8\/5%COS(:“’I“)t3+ (3.109)
te = Sﬁxzcos(klxa)tg_ (3.110)
tr = 16v222ty, (3.111)
ty = 8\/5%13254_ (3.112)
ty = 4\/§x3t; (3.113)
ty = 4\/§xa1€1t4_ (3.114)

and H(«) is given by (3.84). Similar to the evaluation of (3.83), (3.108) is prob-
lematic when « approaches to zero due to the In(a) term. Denoting this part of

(3.108) as I,2, in a similar fashion to (3.93) I, is written in the following way:

02
Ly = —ya\/é/(/il + Ko + K3a?) In(a) da
0

0.5
—ya\/§/ {t5 sin(2kex,a0) + tg(1 — 2ar) cos(2kex )
5
+tracoslkery (1 — 2a0)] + tgsinfkex, (1 — 204)]} In(a) dav (3.115)

where k1, ko and k3 are defined by employing the asymptotic values of sine and
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cosine functions (3.89)-(3.92) as

k1 = tg+ tgsin(kexy) (3.116)
Ko = 2tsker, — 2tg + t7 cos(kery) — 2tgkexy(cos(kexy)) (3.117)
Ky = 2trkexysin(kez,). (3.118)

Also §5 is chosen in such a way that 2k.x,02 < 1. The first integral in (3.115),

which is called [;;”gulw, is evaluated in closed-form given by

K2
];;ngulaT = _ya\/i/(dl + dyav + d3042) In(a)da
0

K

= 2 {dl(@ In(sz) — £iz) + d (Kf i) = f)

(e - 2 o1

Finally (3.108) is rewritten in its numerically efficient form as follows:

0.5
Z,ff::f;lar = / {t5 sin(2kex,a0) + (1 — 2a0) cos(2kexqx)
0

+tracoslkera (1 — 2a)] + tgsinf[kezq(1 — 2a)] }Hr(a) fe

+ {t5 Sin[2koza(1 — )] — to(1 — 20) coslkeza(3 — 20)]

+t7(1 — a) coslkexa (1l — 2ar)] — tyo sinfkexq (1 — 2a)]}H(a) do

1.5

+ / {t9(3 — 2a) coslkexq (3 — 2a)]

1
+t1p sinfkexq(3 — 204)]}7'{(04) do+ Ly . (3.120)

This integral is evaluated using a simple Gaussian quadrature integration scheme
just like the self-term evaluations. As it is mentioned before proper part of the

overlapping-term fofn 41y 18 evaluated in an efficient way explained in 3.6.1. Note
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Spectral Domain (Zf,,,)) | Spatial Domain (Z;7, ,,))
Case 1 —11.8 — 5186.1 —11.8 — 7185.9
Case 2 —0.045 — 540.6 —0.045 — j40.6
Case 3 —0.001 — j54.4 —0.001 — 554.64

Table 3.8: Spectral and Spatial Domain Overlapping-Term Results

that overlapping term (Zgly(m Jrl)) for y-directed basis functions can be evaluated
using the same equations (3.115), (3.119) and (3.120) with the Z-directed ones,
by interchanging the the half-length (x,) and half-width (y,) of the #-directed

basis functions with those of the y-directed ones.

A comparison of the numerical results found using the spatial domain and
spectral domain methods for the geometric parameters tabulated in Table 3.6, is
given in Table 3.8. The results show an excellent agreement between the spectral

and space domain solutions.

3.5.3 Z'Y Component Overlapping-Term

Finally, we investigated the cross-coupling terms. Consider two basis functions:
one Z-directed with its center point (0,0) and the other one g-directed with its
center at (—x,/2,—y,). 2z, and 2y, are the length and width of the #-directed
basis function where as the length of the y-directed one is 4y, and its width is

Z,. The mutual coupling between these two basis functions can be written as

singular

proper
75 = 7 g gy

T T ey + e Sl 15 )

Tqsin(2k.y,)

—3Ya —Ya —Ta —Ta

sin [ke (2 — [])] I
121
2y sin (ko) dz dx" dy dy (3.121)
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where the Green’s function component G, is given in (3.48) and it can be written

in terms of its singular and proper terms as

_ proper singular
Guy = GUOPr 4 G

xy
Z [ & e —1
@GPprover  _—  _ <Unum — Wnum> 3.122
Yy 27TI€0 _3x8y €r ] ( )
. Z I 82 € — 1
Gizlg“lm - 277'230 8x8y (Uanalytic B EWanalytic)‘| . (3123)

Using G;@"gw‘" and transferring the derivatives onto the basis and testing func-

tions via integration by parts, singular part of (3.121) can be written as

Ya Ya 0

2 = [ [ [ ] E fcostiulan - be] o 2o — I+ s}

—3Ya —Ya —Ta —Ta

xsign(z)sign(y’ + y,) dx dx’ dy dy’ (3.124)

where the constant ¢i? is given by

Z _ 2
Y = o _ 0 c . 12
“ 2mko {C“ €, S }{ 22 4yq sin(kex,) sin(2k.y,) } (3.125)

T

(ns1))s first y, ¥ domain integrations

Similar to the previous cases (Z22 and Z*

denoted by Iy and given by

Ya Ya
1
Iy = / / . cos[ke(2ya — ¥ + yal)|sign(y' + va) dy dy/ (3.126)
—3Ya —Ya

is reduced to a 1-D integral, using the transformations given in (3.71)-(3.73).
Transformation of integration domain from y-y' to 7-¢) domain is depicted in Fig.

3.9. The resultant integral is given by
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Y AT =7 —yaV/2
A
@ ya\/§
@ Ya )
Y =7+ yaV2

»

.- v Y —2yVZ  YaV2 O v
Y=—-1+ fl/ﬂ\/§

=" yuy2

® —3%a @ @
S = —1 — 3yav/2

Figure 3.9: Mapping from the y-y’ plane to 7-1) plane

V2 .
nr o 1{ y/ sin(k.7v/2) — 2sin[k.(2y, — 7v/2)] J
ke (I’—I)z + 7_2
V2
2ya\/§

/ sinfk. (4y, — 7v2)] dr}. (3.127)

YaV2 (x:/%‘%)Q"‘T2

Then by applying the following change of variables given by

T

— 3.128

v YaV/2 ( )
dr

B = 7 (3.129)

to normalize the integration limits, (3.127) becomes

I}I/D _ _ya\/ﬁ{ /1 sin(2k.y,3) — 2sin2k.y.(1 — 5)] "

ke \/(zi/—;) +2y 52

/ sin 2keya —5)] dﬁ}. (3.130)
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Next, we work on the z-z’ domain integrals denoted by Ix. By changing the

order of integration, x-z’ domain integrals are written as

0 x4
1
Iy = / / coslke (o — |2|)]sign () = dz dz’ . (3.131)
—Zaq —Ta \/(1‘:/—5117) +2y2/82

Then using the change of variables given in (3.78)-(3.80), which is depicted in
Fig. 3.10, z-2’ domain integral is transformed into a v-v domain integral where
v integration is evaluated analytically. As a result, in a similar fashion with the
previous sections, (3.131) is reduced to a 1-D integral denoted by I¥. Finally by
changing the variables using (3.81) and (3.82), integration limits are normalized

and 3P is given by

A% AV
V=V T xa\/§
@ v =V
2 Ly 2 \ alV2 v
a Za 733(1\/5 U — + ma\/ﬁ
@
@ —Zq @ nr=r
@ U = v 2,V
Figure 3.10: Mapping from the z-z’ plane to v-v plane
05, 1
) / Ta { sin(2kezq,0) — 2sinfk.z,(1 — 2a)]} do
Tk V20 225
[ 2 1
Ly .
+/ sin[2kexq(1 — 2a)] dov. (3.132)
o5 e \/21}21042 + 235

Once again, implementation of IX requires special attention since the denomi-

nator has a zero at a = 0 if 3 = 0. So we approximate sine and cosine functions
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in the interval (0,0,) and using the integral formulas given in (3.74) and (3.75)

we evaluate the singular part 732 in closed-form given by

do

2V2 {1 + 2cos(kox,)} {\/ﬂm - yaﬁ}

2[ sin(kezo) {m (:ca(s 4 \/W) - mwya)} - (3.133)

e

]1D o xa\/_ Oa
Xs

{sm (2kezq0) — 2sinfk (1 — 204)]}

Q

As a result we rewrite I3P as

P = xa\/_ /05 { sin(2kez,a) — 2sinfk. (1 — 204)]} da

Vrao? + a0

(3.134)

a d
+LE + : \/_ sm[2k€xa(1 —a) <

where J, is chosen to be 2k.r,0, < 1. For 8 = 0 this equation has still a
logarithmic singularity and as (§ gets closer to 0, the erratic behavior of the
integrand affects the numerical accuracy of the integral. Final equation including
the treatment of this singularity can be derived from (3.124) by combining (3.130)
and (3.134) and Z*¥ becomes

1

Z =~V [ {sm(abn) ~ 2silzhon(1 - 9)}

0

>< {I%?(ﬁ) 22

e

sin(kex,) ln(ﬁ)} ag

4 . / . .
+k7 Sln(kexa)a/ { sin(2k.y,8) — 2sin[2k.y, (1 — ﬁ)]} In(3)dp

e

+8 Sin(k’exa){ya[l + 2 cos(2keya)] <52 In(ds) — 542>

_ki[éﬁ In(dg) — M} +2 1/ sin[2k.ya(2 — B)] 1 () dﬁ} . (3.135)
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Similar to d,, 0g is chosen to be 2k.y,03 < 1. Proper part of the cross coupling
Zz" s evaluated numerically in an efficient way, which is explained in Section
3.6.2, in order to increase the accuracy of the solution even for the electrically

very thin substrates.

In Table 3.9 comparison of the space and spectral domain solutions are given to
test the accuracy of the space domain formulation for the cross coupling (denoted
by Z*¥) of basis (which are oriented in & or g-direction) and testing functions
(which are oriented in ¢ or z-direction), whose domains overlap. Geometric para-
meters given in Table 3.6 are used. Similar to the previous results which are given

for the other components, agreement is very good between the two solutions.

Spectral Domain (Z%¥ ) | Spatial Domain (Z*¥)
Case 1 0.001 — 530.88 0.001 — 530.95
Case 2 0.0003 — j43.31 0.0003 — j43.32
Case 3 2.0 x 1077 — j49.6 2.0 x 1077 — 550.1

Table 3.9: Spectral and Spatial Domain (Z¥ ) Results

3.5.4 Probe V! Component Singularity Treatment

Probe component singularity treatment is rather simple compared to other com-
ponents due to the simplicity of the Green’s function components G, and G.,.
Using (3.50) and (3.62) and employing integration by parts in order to transfer
the derivative onto the basis function, singular part of the voltage vector entry is

given by
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Ym~+Ya Tm+2Tq 0o
szingula'r ZO D . ( )
= — “—sign(r — x,,
m 27T]€0 S

Ym—Ya Tm —Ta

coslke(xy — |2 — 4]

dz dy . 3.136
2y, sin(kex,) v ( )

This time s is defined as \/(33 — )%+ (y — yp)?, where (z,,y,) represent the posi-
tion of the probe which is feeding the antenna. Note that x,, + 2, < x, < T, + 24
and Ym — Yo < Yp < Ym + Ya. Thus, s can take the value 0 in this integral and
there is a possible singularity in the numerical integration. Fortunately we can
carry out the y-integration in closed-form using the integration formula (3.75).

Then the resulting expression for (3.136) becomes

:Csingular o ZO
Vi  dmy, sin(kexq) ko
Tm+2Tq
[ w (e Vo2 33) — i (o =408 |
x coslke(a — |z — zp|)]sign(z — 2,,) dz (3.137)
where

Y = YA —VYa (3138)
Yo = Ya+Ua (3.139)

where y4 = vy, — ¥m. Table 3.10 shows the comparison between spectral and
spatial domain results for the voltage vector entry of an z-directed basis function
(Zm, Ym) = (0, 0) with a probe located at (z,, y,) = (—x,/2, 0). Geometric
parameters are the same as given in Table 3.6. Once again space domain results

are in good agreement with the spectral domain results.
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Spectral Domain (V;%) | Spatial Domain (V%)
Case 1 1.29 4 5106.99 1.29 + 5106.74
Case 2 0.005 4+ 761.04 0.005 + j61.01
Case 3| 9.6x107°+3563.86 | 9.1 x 107° + j63.71

Table 3.10: Spectral and Spatial Domain V,, Results

3.6 Mutual Coupling Calculation in Spatial
Domain for Planar Grounded Dielectric
Slabs (A general case where there is no sin-

gularity)

Spatial domain mutual coupling calculations require the numerical computation
of the two double integrals on the domains of the basis and testing functions.
Although a simple Gaussian quadrature numerical integration scheme is enough in
the computation, the convergence of these integrals can become quite troublesome
for relatively large basis functions and when the dielectric substrate is electrically
very thin. However, using some change of variables in the spatial coordinates, the
order of each of these integrals can be reduced to one by analytically evaluating
one of the integrals. This reduces the computational effort and accelerates the

spatial domain calculations.

3.6.1 Integration Domain Mapping in Spatial Domain:

z-x Case

Mutual coupling between two Z-directed PWS basis functions, located at (x,,, ym)

and (x,,y,) with the same dimensions, can be written as
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Y= T”+ (yn — ya)V2

AT
. Y .
2 @
) )
ym + Y
=1+ (yn +Ua)\/§
-
Y ©) @
|::> ) —7 + (ym + ya)\/§
Ym — Ya
® @ . %
Y=-7 +(Um - Un)\/§
Y G
Yn — Ya Yn Yn + Ya ! i

Figure 3.11: Mapping from the y-y plane to 7-¢ plane

Ym+Ya Yn+tYa Tm~+Ta Tn+Ta
rr

Ym—Ya Yn—Ya Tm —La Tn—Ta

sinfke (2, — [ — 2,])]

2y, sin(kex,)

sin[ke(x, — |2" — 2,|)]

dz dz’ dy dy’ .14
2y, sin(kex,) rar ey (3.140)

where x, and y, are the half-length and half-width of the basis functions and
s is given in (3.45). In order to reduce the order of y-y integrals, we start by
mapping the y-y’ domain to the 7-1¢» domain by the change of variables given in
(3.71)-(3.73), which is depicted in Fig. 3.11. Using the new variables s can be

written as

s=/(x —a)? + 272, (3.141)

1 integral is evaluated analytically by noting that 1) does not occur in the inte-

grand. The resultant three-fold integral is given by

P /7’2 () mm/Jrza %7%(; (s) sinfke(x, — | — x,])]
mn o o 2y, sin(kez,)

m—ZTa Tn—=TLa

sinfke(xq, — 2" — 2m))]

drdz'  d 142
2y, sin(kex,) . x} T (3 )
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AV U:ll+($y1*$a)\/§
A va @
v=v+zpV/2
Tm + Za @ @ P -
’ V+(93n+93(1)\/§
vy
Tm ® (ONN
I::> ’b = —v+ (zm + xa)\/i

vy [

Tm — Ta

(©) @ ‘@ v=-v + zmV2
17
T ’U:*V+(Im *In)\/i v
Tn — Ta In Tn + Ta "

Figure 3.12: Mapping from the z-z’ plane to v-v plane

where 7., (7) is defined as

_2 + 2 a + S 2 S <
Toulr) = Tt )V2 n<T<m (3.143)
27 + (200 — ys)V2 < T<T
with the integration limits 79, 7 and 7, are given as
Ys — 2ya
T = T 3.144
0 \/§ ( )
Ys
o= 3.145
1 \/i ( )
S 2 a
T = Ys T 2Ya (3.146)

V2

and Ys = Ym — Yn.

As the next step, after transferring the spatial derivatives in (3.46) onto the
basis and testing functions z-z’ domain is mapped to v-v domain (shown in Fig.

3.12) in a similar fashion as the previous section. Making use of some trigono-

€T

metric identities and after regrouping the terms, final form of Z** is given by

Zo 1 2
Zinn =~ / Too(T) {Io1 + Lo + Lp} d7 - (3.147
mn 27Tk() <2ya Sin(kegja)> - (7—) { 1 + 2 + 3} T ( )
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where I,1, I,5 and I,3 are the integrals defined as

2/:3 {cos[k:e(xS — vV2)]VEE(v) {k:(Q)U(s) - k?Q(s)}

Ivl

with

Vyt(v) =

/

V4

2

+V5m () { KU (s) + K2Q (3.148)

{cos[k‘ (224 + 25 — VV2) V2 (1/){ U(s) - k2Q(s) }

Vi) { KU (s) + K2Q dv (3.149)

V2

/VO {Cos[k (224 — x5 + VV2)]VE (1) { Uls) — (5)}

V—L\;ga 1 <v<Uly
%sm[ (V2 — 2 + 1)) vi<v<in
(3.152)
conlheto) sinlke(—vv/2 — 24 — 2,)] Ve <V <1y
z?/’%\/i Vo <V < U3
_296%254_1’\/5 V3 <V <1y

_ sinfke(zs—vV2)]
T kB Vo <V <U3

Vit(v) = (3.154)

sin[ke(2$a+x5—ux/§)]
ko2 Vg3 <V <1y
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—2xa+Ts —\2

e VW<r<i
Vit(v) =
%Zm/§ v <v<uy
sin[ke(szi:/:%s-i-V\/Q)] Vo <v<u
V() = |
W v <v <y

In (3.148)-(3.150), the Q(s) function is defined as

Q(s) = U(s) -

€ — 1

W(s), with

€r

60

(3.155)

(3.156)

(3.157)

U(s) and W(s) are given before by (3.52) and (3.53), respectively. Finally, the
separation s becomes s = v/2v2 + 272 and the integration limits vq , v , 15, 3 and

v, are given as

Y
41
Uy
V3

V4

T, — 27,
V2
Ts — Tq

V2

Ts

V2

Ts + X,y

V2

Ts + 27,

V2

(3.158)

(3.159)

(3.160)
(3.161)

(3.162)

with x4y = x,, — x,,. The resultant 7 and v integrals are evaluated with a careful

numerical computation which uses an adaptive Gaussian quadrature integration

scheme in order to increase the efficiency of the solution. In this numerical inte-

gration scheme the number of points are doubled adaptively until a convergence

criteria is met between the consecutive iterations. This convergence criteria is

chosen for a desired accuracy.
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3.6.2 Integration Domain Mapping in Spatial Domain:

2-y Case

Mutual coupling between an # and a y-directed PWS basis functions located at

(Tn, yn) and (x,, Ym), respectively is given by

Ym+2Ya Yn+Ya .Z‘m+Ia/2 Tn+Tq
xry _

ym—2ya Yn—Ya xm—xa/Q In—La

sinfke(x, — |2 — x,])]
2y, sin(kex,)

sin(ke(24a — [¥' — yml)] / '
drdx' dy d 1
% T4 sin(2key,) rar Ay (3:165)

where G, is given by (3.48). After transferring the derivatives onto the basis
and testing functions, and by using the same change of variables given by (3.78)-

(3.80) (shown in Fig. 3.13), (3.163) becomes

Z k Ym+2Ya Yn+Ya
N R cosbo 20~ 13/ )
21ko | v/2x, sin(2k.y,) 2
vg?
xsign(y' — ym) / VP (v)Q(s)dv ¢ dy dy’ (3.164)
veY
o AV U=’l/{,+(fﬂn*$a)\/§
Tm + Ta @ @ V-'27~'!/
Tm
=
Tm — Ta
. v=—v+Qum + 2a)/V2
l/ay @
- n: v+ £2:17r;1 - z4)/V2
In — Ta In Tn + zq g | v

Figure 3.13: Mapping from the z-2’ plane to v-v plane
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where
— sinfk.(1.52, — x5 + vV/2)] vy <v <!
V¥ (v) =< 2cos (ke%) sinfk.(vv2 —x5)] VY <v <1’ (3.165)
sinf[ke(1.52, + x5 — vv/2)] vy < v <ug?

and the constants 15, v1¥, ;Y and v3” are given by

v = “’_\/15595 (3.166)
v’ = :C_\/%E)x (3.167)
v = ””\/O;’x (3.168)
pov = T 15T (3.169)

V2

Finally y-1/ domain integration is converted into a 7-1) domain integration using
the change of variables given by (3.71)-(3.72)(shown in Fig. 3.14). The final form

of the equation is in the form of

Zy 1 F "3
Za:y — /fz; / Ty d d
mn ok (:caya sin(kex,) Siﬂ(%%)) / y(7) { / VY (1)Q(s) u} T
Ty 3
(3.170)
where the function 7 (1) is given by
Sin[ke(Bya —Ys T+ T\/ﬁ)] T(L)vy <7< 7—19”?/
To(r) = 2eoshp)sinflulys — V)] T <r < . (37)
sinfk By v VD] Y <<

The constants 7Y, 7Y, Y and 73 are defined as
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Y= T+/(yn - ya)\/§

Y @
3
Yym + 2ya @ @
=1+ (yn + yu)\/§
Y
T
Y =-7+ (ym + 21/(7)\/5
Ym I::>
- Q
Y=-7+ ym\/5
Ym — 2Ya @ @ ‘ng """"""""""""""""""""""
¥ =—7+ (ym — 2ya)V2
Y >
Yn — Ya Yn Yn + Ya

Figure 3.14: Mapping from the y-y’ plane to 7-¢ plane

ys _ya
V2

Ys + Ya

V2

Ys + 3Ya

V2

(3.172)
(3.173)
(3.174)

(3.175)

The 7-v integrals in (3.170) are evaluated numerically using an adaptive Gaussian

quadrature integration scheme in a similar fashion to the z-2 case.

3.6.3 Evaluation of V¥ in Spatial Domain

The component of the voltage vector for an z-directed basis function located at

(T, Ym) can be expressed as

Ym +ya Tm+Tq

Vi= [ ] G

Ym —Ya Tm—Ta

sin[ke(x, —

|z = zm|)]

2y, sin(kex,)

dy dx (3.176)
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where s = \/(xp — )2+ (y, — y)? and (zp, yp) is the position of the the probe.
There is no mapping applied to the integration domain of this integral, since
it is already in the form of a double integral. An efficient adaptive Gaussian

quadrature method is used in the numerical evaluation of this integral.

Note that voltage vector entry for an g-directed basis function can be found
by changing the parameters x < y, center coordinates, half-length (x,) and half-
width (y,) of the i-directed basis functions with those of the and g-directed basis

functions.



Chapter 4

Green’s Function

Representations for Cylindrical
Grounded Dielectric Slab

4.1 Spectral Domain Representation of Green’s
Function for Cylindrical Grounded Dielec-
tric Slabs

Surface field components on a dielectric coated PEC cylinder can be expressed

as a cylindrical IFT of their spectral domain counterparts given by

Ey(p,2) = ;ﬂ i ein¢{ / E¢(n,kz)ejkzzdkz} (4.1)
1 > - "
B(62) = 5= Y 63”‘7’{ / E.(n,k.)e’ dekZ}. (4.2)

In (4.1) and (4.2) the spectral domain electric field components are obtained using

the special Green’s function and the Fourier transform of the surface currents,

65
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given by

E¢ é¢¢ é¢z j¢ ) (43)
Ez qub Gzz Jz

Derivation of these Green’s function components starts with writing the electric

field in terms of cylindrical wave functions

Eo= S el Jy(kup) + b HP (kp)] (4.4)
ﬁ[; = Z e_jn(b[ci,‘]n(ktip)+d;ilHT(L2)<ktip)] (4'5)

where the superscript ¢ = 1 indicates the dielectric region whereas ¢ = 0 indicates
the free space. The constants al, b?, ¢! and d’, are found by applying the following

n’ “n’ n

boundary conditions:
(i) Tangential electric field is zero on conducting surfaces (at p = a and on the
printed conductor at p = d),

(ii) Tangential components of the electric field is continuous at the dielectric-air

interface (p = d),

(iii) Tangential components of the magnetic field are continuous at the dielectric-

air interface (p = d) except the printed conductor surfaces, where n x H = .J

(iv) Radiation condition: fields vanish p — oo.

Finally in (4.4) and (4.5) ky; denotes the transverse propagation constant in free-

space (i = 0) and in the dielectric region (¢ = 1), which is defined as

kt20 = l{?g - kz, ]{70 = Wy/€olbo (46)
k2, = kI—k% k= wyen. (4.7)

When the source and observation points are both on the air-dielectric interface

(p = p' = d), the special Green’s function components are given by [33]

Gos(n, k.) = — ko

370 | [K2ky| R.CET
T (e, — )T

RT?  [nk.]” Cs — kwR,
kO kt21

dky T
(4.8)
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jZ() ’I’Lkz % (Cﬁ — ktORn)
ko | d k2 T

@¢Z(n, kz) = éz¢(n, k’z> =

A .]ZU Te
Gzz(n7 kz) = ?Okfo?
where
T=1T.T, —1T?
k2
Te ktORn %OOZ
ki
Tm - ktORn Erkjizcgb
tl
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(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

and " denotes the derivatives with respect to the argument. Similarly the normal

components of the Green’s function, where the source point is on the surface

(p' = d) and the observation point is inside the dielectric region, can be written

as [33]
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Zy (gn | T? kikiwR, Ty, | CP
Gpy = J7—\— - 2
ko | p e —1 k T
gk, [ nk, kio - or2
+ T (dkt%) <kt21 (Cr — kwRy)kn CE (4.18)
Gp="—<— || —— — | T knCP" 4.19
’ k’o{P<kt21 T k) (419
ot — Inlkua)Yu(kup) = Ju(kup)Y,(kua) (4.20)
" J{l(ktla)Yn(kﬂd) — Jn(kﬂd)Y,{(kﬂa)

Cp7'2 — Jn<k‘t1a)yri<kt1p) - Jfll(ktlp)yn<kt1a) (421>

Jn(ktla)yn<kt1d) - Jn(ktld)Yn(ktla) .

Expressions involving Bessel and Hankel functions and their derivatives suffer
instability issues due to the large order (n) and argument of these functions.
These functions are evaluated using closed-form expressions which are written
by employing their Debye approximations and Olver’s uniform representations.

These closed-form approximations can be found in [33].

4.2 Spatial Domain Representation of Green’s
Function for Cylindrical Grounded Dielec-
tric Slabs

Similar to the planar case, spectral domain expressions become extremely inef-
ficient and yield inaccurate results when the geometry under interest becomes
electrically large. Therefore, spatial domain hybrid MoM/Green’s function tech-
nique is preferred to investigate the printed arrays on electrically large coated
cylinders. To achieve the desired efficiency and accuracy in this method (in elec-

trically large geometries), three spatial domain Green’s function representations
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are used interchangeably based on where each representation yields the most
accurate result in a most efficient way. These Green’s function representations

are

(i) Planar approximations for the source region, which are explained in a de-

tailed way in the previous chapter,

(ii) The steepest descent path (SDP) representation, which is briefly explained
in the following subsection (4.2.1) and

(iii) The Fourier series representation, which is briefly explained in subsection
(4.2.2).

4.2.1 Steepest Descent Path (SDP) Representation of the

Green’s Function

This representation is based on the circumferentially propagating series represen-
tation of the appropriate Green’s function and its efficient numerical evaluation
along a steepest descent path (SDP) on which the integrand decays most rapidly
([33],[40])-

Consider an infinitesimal surface current distribution J on the air-dielectric

interface, which can be written as

Y )
p
where P = P2 + Pjgzg and its Fourier transform J is given by
. P. ..
J = S eikeind (4.23)

2md

Using (4.1), (4.2) and (4.3), the surface electric field due to this current distrib-

ution is given by
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1 © ; / 7 ~ i 4
S o) { [ Guutn, k) Pt dkz} (1.21)

Amid | =

El(¢7 Z) =

where @ (G = ¢, 2 or p) represents the source direction and [ (I = ¢, Z or p)
represents the observation direction (we did not consider the lo = 22 case) and
élu(n, k.) is the corresponding component of the appropriate dyadic Green’s func-
tion in the spectral-domain. Watson transform is applied to (4.24) in order to

represent the electric field as a sum of circumferentially propagating waves given

by

1 o0 j !
{ [ Gutrnp ( > e‘j”“"b_w_m) dy} -
—00—j€ p=—0

For an electrically large cylinder, the terms other than p = 0 can be neglected
since they represent the multiple wave encirclements which loose their strength
as they travel on the surface of the cylinder. Therefore, taking only the term
corresponding to p = 0 is enough for most cases. The resulting expression for the
electric field is given by

co—je

1 oo . / . /
Bi6,2) = 5 [ b { I Glu(kz,y)P;‘e_J”(¢_¢)dy}. (4.26)
—00 —oo—je

Before applying the SDP method we perform a Fock type substitution and the

employ polar transformations given by

v = kyod + myT (4.27)

where
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Figure 4.1: The cylindrical geometry

and

k., = kosin(y) (4.29)

ko = kocos(v). (4.30)

Using the geometrical relations, shown in Fig. 4.1, given by

z—2 = ssin(a) (4.31)

d(¢p —¢') = scos(a) (4.32)

with s being the arc length of the geodesic path between source and observation
points on the surface of the coating and a being the angle between s and the

circumferential axis, the following expression for the electric field is obtained:
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El(@> S) s

/ dwko Cos(w)e*jkos sin()sina

472d Jey,

(/C Glu<¢ 7-) Uo Jkoscos(w)cos(a)e—jmt7(¢—¢/)mtd7-> ) (433)

Integration contour Cy, can be deformed into its steepest decent path as shown
in Fig. 4.2 where the integrand decays most rapidly as explained in [33]. Resul-

tant expressions for the electric field is given as

? )
i \I]( ) :I;dle point
|
!

Figure 4.2: SDP path

j3n/4 ,—jkos
Ea,s) ~ V2e 2 ‘ / dte " F(a, s,t) (4.34)

4

where
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- k t .
Fla,st) = ‘]Cosfff(t)) Gru(7, ) Plmge ™37 dr (4.35)
cos (O‘T) Cr(t)
tejﬂ/4
¢(t) = — 2 arcsin (W) (436)

and
§=mu(¢—¢). (4.37)

In (4.34) and (4.35), explicit expressions for G, can be obtained from (4.8) -
(4.10) with n is replaced by v which is related to 7 by (4.27).

4.2.2 Numerical evaluation of the Integrals for the SDP

Representation

The surface wave expression given by (4.34) and (4.35) includes two integrals in
the t and 7 domains which are evaluated numerically. In the ¢ domain, the inte-
gration is performed using a Gauss-Hermite quadrature algorithm, whereas in the
7 domain, Filon’s algorithm is used in conjunction with a Gaussian Quadrature
integration algorithm, and a proper tail is added when necessary. Implementa-
tion of the Gauss-Hermite integration procedure to (4.34) and (4.35) yields the

following expressions for the surface fields:

\/2e37/4 o=ikos Q w ko cos[tp(t,)]m:
Amd  Vkos = " cos {OC_T(%)}

|

Ey(a,s) =

(G¢>¢(Tv tQ)Ped) + G¢Z (T> tq)PeZ)ejéTdT] (438)

T(tq)
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V2er Pt eihos S coslu(ty)]m
An2d \/qul T cos {WT%)}

3l

7(tq)

E.(a,s) =

(Go(T, tq)Pf + G (T, tq)P:)e_ngdT] (4.39)

VIR I Lo cosl(fy)lm,
472d \/% q=1 ! cos [Q_T(tq)}

L.

@ is typically chosen to be 1, 3 or 5 (or rarely more) for a desired accuracy,

E,(a,s) =

(Gpo(T, tq)Pf + G (T, tq)P:)e_ngdTl . (4.40)

tq)

depending on the geometry parameters. In some cases even () = 1 (saddle point
contribution) is enough for a highly accurate solution. However, the main diffi-
culty comes from the evaluation of the 7-integral. Therefore, special care should
be given to the efficient evaluation of the T-integrals. As a first step, the (—oo—je,
+00 — je€) integration in the v-domain, whose path is shown in Fig. 4.3, is consid-
ered and part of it denoted by (' is deformed toward the third quadrant assuming
that there is no pole or branch-point singularities in this quadrant. Consequently,
the original contour C' = Cy + Cy is now C' = C} 4+ Cy. Then, using (4.27) the in-
tegration path C' in the v-domain is mapped to 7 domain and C;(t,) is obtained.
However, the integration contour C;(t,) should be updated for each ¢, value. An
example is given in Fig. 4.4 for () = 3 case, where for t1, t5 and t3 values used
in the SDP integration, shown in Fig. 4.2, the corresponding C,(¢;), C,(t2) and
C(t3) paths are illustrated in Fig. 4.4. However, the integrands in the 7-domain
exhibit a highly oscillatory and slowly decaying nature. Therefore, a proper in-
tegration routine is necessary to handle the oscillatory behavior of the integrand
whereas an appropriate tail is used to handle its slowly decaying nature. Besides,
deformation of the path from C to C provides an exponential decay and hence,

a very rapid convergence of the integrand along the third quadrant.

Consequently, first the integration contour is divided into three parts as it is

shown in Fig. 4.5. C represents the part where the integrand converges fast due
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Figure 4.3: Integration contour in the r-domain

to an exponential decay, while the Ct part has a slower convergence. After the
7’ value, which is relatively big, the integrand is approximated by its asymptotic
value and the resultant integral is evaluated in closed-form which we call as the
tail contribution. Note that this method fails for the ¢ — ¢ case. Therefore, in
that case we performed an envelope extraction method with respect to 7. As a
result the 7 integrals for the z-z, ¢-z and ¢-¢ cases are called I, I and I3, and

they are given by

I, = Cll/ ( )Gzz(tq,T)PjengdTJr/ Gzz(tq,T)Pje’j&dT
C5 (tq 7

Pgo 3 .
+ / IPe'ZengdT}. (4.41)

/ T
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1 I]]]"E

Figure 4.4: Integration contours in the 7-domain

I, = Cl[/ ( G(z,z(tq,T)Pje’jdeT—l—/ Gy (ty, T)Pre 5 Tdr
5 (tg) F

Pgoo B .
+ [ Pje‘ygTdTl . (4.42)

/ T

I = 01[/
Cr(t

T q

G¢¢(tq7 T)Pj’e—j&dT
)
+/C;"(tq) (G¢¢(tqa 7-) — By — BS) Pj’e*jf‘rdT

+ BorPee ™4 dr + BsP?e™7dr|. (4.43)
C (tg) CF (tq)

The constants By, B, By and C} are given in [33]. Probe related integrals are per-

formed similarly [33]. Tail integrals are evaluated in closed-form and given by [33]

67]‘67—/

pico B .
R = / Zle € dr & By (4.44)

T jer
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Figure 4.5: Integration contour in the 7-domain

, EFeIET 4 o IET
() — / Byre € dr ~ By |157¢ 4.45
5(7') C ta) 27e€ T 2 l &2 ( )
D 00 . e_jg'r/
Fy(r') = Bse *7dr ~ Bs z (4.46)
T/ J

Finally, on each interval along the 7 contour, where integrals are evaluated nu-
merically, we used Filon’s algorithm in conjunction with a Gaussian quadrature

technique to handle their oscillatory nature. Further details can be found in [33]

4.2.3 Fourier Series Representation of Green’s Functions

As it is mentioned earlier, SDP representation is not valid in the paraxial region
(nearly axial region). In this region Fourier series representation of the Green’s
function is used [33],[41], which is relatively fast and accurate along this region.
Besides, certain components can be made accurate and can be evaluated efficiently

away from the paraxial region after performing some modifications.
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Derivation of this representation of the Green’s function starts by using the

following transformations in (4.26):

k. = —Ccos(y) (4.47)
v = ud (4.48)
po= —Csin(y) (4.49)
and
r = d(¢—¢') = ssin(d) (4.50)
(z—2") = scos(d) (4.51)

where 6 = (90 — «), in (4.26). The resultant expression for the electric field

becomes
1 27 [e%s) .
Ei(s,0) = o~ / / CGuull0) icseostw-o)acay, (4.52)
2m Jo  Jo 27

Note that, all the tangential components of the Green’s function representation

are periodic with respect to ¢ with a period 7 such that [33]

Goo(CY) = Go.(CY+m) (4.53)
Goo(C¥) = Gog(C Y+ ) (4.54)
Go:(C0) = GG 0 + ) (4.55)
G.o(( ) = GG +). (4.56)

Using this periodicity, the Green’s functions components can be approximated
by a Fourier series given by

oo

Gu(C,Y) = ao(C Z ) cos(n21)) + Z b, (C) sin(n2y) (4.57)



CHAPTER 4. CYLINDRICAL GROUNDED DIELECTRIC SLABS 79

where
w(@) = [ Gu(¢ vy (458)
Q) = 2 [ Guulc,v)cos(n2u)du (4.59)
(@) = 2 [ Gulc.v)sin(y)dv. (4.60)

Using these relations and approximating the Fourier series coefficients via a trape-
zoidal rule (explained in detail in [33]), approximate Green’s function components

are given by

ng(ga w) ~ Gzz(g@b = g)
t[outco=0-cueo= ) (222 o
2 ~
G3.(Cv) =~ ‘ SIE(M)GW(C,@D =0) (4.62)

Gl ) = GO +3G5(C v =0)+{ - ()

1 — cos(2
+; Goo(C Y = g) — GG = 0)} } (W) (4.63)
where 2 (2
Gorl¢) = S () (1.69)
and
Goo(C 1) = GLL(CY) + Ggy(C, ) (4.65)

oL = an@-ezo (e )
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Note that G, is written as a sum of planar+curvature terms in (4.65) as ex-
plained in [33]. Superscripts 'p’ stands for the planar term, whereas ’cc¢’ denotes
these curvature terms. Planar term is the component of the Green’s function
for a planar grounded dielectric substrate. (4.63) is obtained by inserting the

approximate expression for the curvature correction term given by:

1
Grric o)~ 3{GEiew =0 (4.67

G5 v =) - G v =0) (1_22(2¢)> } - (4.68)

Also notice that the ¢ and 1 variables are separated. By using the approximate
Green’s function representations (4.61)-(4.63) in (4.52) and performing the 1 in-

tegration in closed-form, the resulting surface fields are written as

Blhs) ~ 52 {k3P<s>+§ZQ[P<s>—@<s>]} (169)
Ey.(6,5) =~ ;ﬁi(;afam{M(s)—R(s)} (4.70)

2

E4p(6,5) =~ —Z {ng(s) + ;f {U(s) _ &z 1W(s)]}

21k €,
2 o
+47T/{20 {S(S) aTZZT(S)}. (4.71)

Explicit expressions for the special functions P(s), Q(s), M(s), R(s), U(s), W (s),
S(s) and T'(s) is given in [33].

As it is mentioned earlier, with a few modifications, Fourier series represen-
tation of the Green’s function components (G4, and Gys) can become valid in
the region away from the paraxial region. In the evaluation of the Fourier coeffi-
cients, using different number of points in the trapezoidal rule, which is explained
in detail in [33], accurate Green’s representations can be obtained away from the
paraxial region. The accurate approximations of Gy, and Gy, for the angles

d — /2 is given by
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2 B
i) ~ SG (¢ v =)

Goy(C ) = G5(¢ 1 =0)

1-— 2
+lomicr =5 - cucr=0] (1=52)
On the other hand for the angles around § = 7/4
GE2(¢, ) z<%§%0fm@w=m+faqw:ﬂ®] -

3

+[oser =5 - cacr=0] (F=52) ) am

are the expressions that are used for the curvature correction term.

The Fourier Series representation of the Green’s function is more accurate
when the separation between the source and the observation point is small (ex-
cept the paraxial region). Also, since the integration is only with respect to the
variable (, it is computationally very efficient. For some geometric parameters
it is preferable to use the Fourier Series representation of the Gy, in the off-
paraxial region for small separations, instead of the SDP representation due to

its efficiency compared to SDP representation at this region.
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4.3 Limitations of the Green’s Function Repre-
sentations for Cylindrical Grounded Dielec-

tric Slab and the Switching Algorithm

In this section we briefly discuss the limitations of the Green’s function represen-
tations in particular the SDP and the paraxial representations. Efficiency and
accuracy of these representations are previously discussed in [41], [42]. These
limitations are manifested in the electrical size (i.e. the radius) of the coated
cylinder and/or in the thickness of the coating. Note that the dielectric constant
of the coating can always be linked to the thickness. First of all, the SDP and
the paraxial representations are developed for electrically large coated cylinders.
Therefore, the desired accuracy is generally achieved when the radius is greater
than 1)y (Ao: free space wavelength). This is illustrated in Fig. 4.6, where the
mutual coupling between two identical z-directed and é—directed current modes
are plotted as a function of the inner radius a, and compared with the eigen-
function solution (spectral domain solution). The current modes are selected to
be (L, W) = (0.39)g,0.01)¢), the thickness is chosen as 0.06\, and the relative
dielectric constant of the coating is set to 3.25. The couplings are evaluated at
s = 1.5Xg. The eigenfunction solution is plotted up to a = 5\ since it exhibits
serious convergence problems for greater radii. As expected, Green’s function
representations show excellent agreement with the eigenfunction solution (even
for a = 1)\g). The small difference in the ¢ — ¢ coupling in Fig. 4.6(b) (especially
at a = 5)g) is due to the convergence problems of the eigenfunction solution.
Furthermore, the results approach to the planar case with the increasing cylin-
der radius without exhibiting any problems. On the other hand, these Green’s
function representations loose their accuracy when the thickness and/or relative
dielectric constant of the coating increase. This is due the Debye, Watson and
Olver’s uniform approximations, made for the ratios of special functions (4.15),
(4.16), (4.17), (4.20) and (4.21) as explained in detail in [40] and [33]. For the
desired accuracy, an approximate upper limit is defined in [33] such that the
thickness of the coating must be less than 0.2\, where A\j = Ao/ Ver-
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Figure 4.6: Magnitude of the mutual coupling, |Z;2|, between two identical z-
directed and (ﬁ—directed current modes versus inner radius a evaluated at s = 1.5\
for t;, = 0.06)\o and ¢, = 3.25 along the (a) E-plane and (b) H-plane. The size of
the current modes is: (L, W) = (0.39)g, 0.01)).
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Finally, these three Green’s function representations are combined to span
the whole cylinder surface using two slightly different switching algorithms for
the arrays of Z— and gzg—directed printed dipoles. In both algorithms, the air-
dielectric interface of the cylinder is divided into three regions and on each region,
the corresponding aforementioned Green’s function representation is used. For

the array of Z—directed printed dipoles, the switching algorithm is given by

Planar representation s < 0.4\ (i.e self-term evaluations)

G.. = ¢ SDP representation (Esp/s >0.2) N (s> 0.4)) (4.75)

Paraxial representation (£sp/s < 0.2) N (s > 0.4)\)

which is similar to the switching algorithm used in [42]-[43], previously. However,
the switching algorithm used for the array of gg—directed printed dipoles is dif-
ferent than the switching algorithm given in [42] and [44], and can be expressed

as

Planar representation s < 0.4\ (i.e self-term evaluations)
SDP representation (Esp/s>0.2) N (s >2\)

Paraxial representation [({sp/s < 0.2) N (s > 0.4)) or

(Esp/s > 0.2) N (0.4 < 5 < 2))] -
(4.76)

In both (4.75) and (4.76), £sp is the saddle point value of (4.37) and is given by

Esp = (d’“%)g (¢ — ¢') in [40] with « being the angle between the ray path

and the circumferential axis. Furthermore, around each boundary which divides
the regions defined in (4.75) and (4.76), more than one Green’s function repre-
sentation yield almost the same accuracy. Hence, small variations in boundary
definitions do not significantly affect the overall accuracy. Consequently, in ad-
dition to its accuracy and has not been used in this thesis, a similar switching
algorithm that we have used for the Gy, component is typically suitable for the

Gy, component.



Chapter 5

Scan Blindness Phenomenon in
Finite Phased Arrays of Printed
Dipoles

5.1 Introduction

Printed antenna arrays on planar or curved surfaces might have many elements
on dielectric substrates (or in free space), where electromagnetic coupling through
space and surface waves can lead to scan blindness [23] and seriously degrade the
performance of a system. This phenomenon was once addressed as a “catastrophic
effect” by Schaubert et al. [45]. Therefore, a complete understanding of the scan
blindness phenomenon is required to improve the scan range of phased arrays and

to reduce design costs significantly.

The blindness phenomenon, which was defined (for planar infinite arrays of
printed antennas) as a phase matching between the phase progression of a sur-
face wave (fs,) on the dielectric substrate and the phase progression of a certain
Floquet mode ([23], [46]), has been previously investigated in detail for various
infinite and finite arrays of printed antennas on grounded planar dielectric sub-

strates. The blindness mechanism was carefully explained first for infinite arrays

85
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of printed antennas [23]-[24], [25], and then research on this topic was extended
to finite phased arrays of printed antennas [4]-[26]. Later, this phenomenon was
discussed for different array configurations such as infinite array of monopoles in a
grounded dielectric slab [47], infinite arrays of printed dipoles on dielectric sheets
perpendicular to a ground plane [48], infinite stripline-fed tapered slot antenna
arrays with a ground plane [45], [49]. Furthermore, various methods to improve
the scan range such as subarraying [46], substrate modification [50], loading the
array elements with varactor diodes [51] or using shorting posts [52] were re-
ported. However, the common point in all these aforementioned studies is the
fact that arrays (infinite or finite) are mounted on planar platforms. Recently,
we have presented a rigorous investigation of the scan blindness phenomenon for
arrays of printed elements mounted on dielectric coated curved surfaces, where
the curvature of the supporting structure affects the blindness mechanism as well

as various performance metrics of the array [27].

Therefore, in this chapter, we briefly review [27], where scan blindness phe-
nomenon is investigated for several arrays consisting of finite number of axi-
ally and/or circumferentially oriented printed dipoles on various-sized electrically
large, dielectric coated, circular cylinders with different electrical parameters. Ef-
fects of several array and supporting structure parameters on the scan blindness
mechanism as well as on various characteristics of arrays are observed. Further-
more, a one-to-one comparison between arrays of printed dipoles on aforemen-
tioned cylinders and arrays of printed dipoles on grounded planar dielectric slabs
is made in terms of the blindness phenomenon. It is shown that the orientation
of the array elements combined with the curvature effects plays an important
role on the behavior of the surface waves, which in turn can alter the scan blind-
ness in these structures. To achieve these goals, a hybrid Method of Moments
(MoM)/Green’s function technique in the spatial domain which is presented in

the previous chapters is used.

Problem geometry, which has been already explained in the beginning of this
thesis in Section 2.5, Fig. 2.3, is also illustrated in Fig. 5.1. Some formulation
related to the performance metrics of the problem are presented in Section 5.2.

Several numerical examples are given in Section 5.3 to demonstrate the effects
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of the curvature of the host body (coated cylinder) on the surface waves and
blindness mechanism. The importance of the array element orientation with
respect to the curvature of the host body is discussed. Furthermore, how several
electrical and geometrical parameters of the array together with its supporting
structure affect the basic performance metrics of finite arrays of printed dipoles

on coated cylinders are investigated.

2z, PEC ground plane PEC ground péane

° e e e

//dzﬁ*{/{ R AT

Row

& —M){ u H T Efpene 2| Somymom - EfPiane)

(=N,M)
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First Ro (H+Plane

(a) (b)

Z

(E-Plane)

{ — nm_th
dipole
‘ First Column y/ I'h .

(H-Plane) (C) (d)

Figure 5.1: Geometries of periodic arrays of (2N + 1) x (2M + 1) (a) axially, (b)
circumferentially oriented printed dipoles on dielectric coated, electrically large
circular cylinders. (c¢) Geometry of a periodic, planar array of (2N +1) x (2M +1)
printed dipoles. (d) Dipole connected to an infinitesimal generator with a voltage
Vum and a terminating impedance Zr.
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5.2 Some Definitions and Far-field Patterns

The full-wave solution used in this study is a hybrid MoM /Green’s function tech-
nique in the spatial domain as explained in detail in Chapter 4 of this thesis and
also in [42]-[44]. By applying Galerkin MoM approach to the EFIE the following
matrix equation which is similar (2.7) is obtained in terms of network parameters
[4], [43]-[44]:

([Z) + [Zy]) - I=V. (5.1)

In the course of obtaining (5.1), dipoles are assumed to be thin (W << L) and a

single expansion mode is used to represent the current on each dipole.

In (5.1), [Z] = [Zumpg) is the impedance matrix of the array (2.8) with ele-
ments Zy,m, pq, Which denotes the mutual impedance between the nmth and pgth
(=N <n,p< N, =M <m,q < M) dipoles and it is given by

Zrm,pg :/S dSpq /S dS;'Lm Joa(Tpg) Guu(rpq/r;zm) fnm(r;zm>' (5.2)

In (5.2), fam(r),,) and f,,(r,,) are the piecewise sinusoidal basis and testing
functions (2.19) or (2.20) with r,, and r/ . being the position vectors of the
pqth and nmth dipoles, respectively, and Gy, (rp,/r),,) (u = z or ¢, depending
on the orientation of the dipole) is the appropriate component of the dyadic
Green’s function for arbitrary source and observation locations. In Sections 4.2
and 4.3 accurate and efficient calculation of the Green’s function representations
is presented in detail. [Zy]| is the generator terminating impedance matrix which
is diagonal [4], I = [I,,,] is the unknown vector of expansion coefficients, and

finally V, given by
V = |:‘/;)q _ ‘/Oe—jkodcos(qb—pA@ sinee—jkoqdz COSQ] (53)

denotes the excitation of the pgth dipole, where an ideal delta gap generator at
the terminal of each center-fed dipole is assumed. Note that (0, ¢) in (5.3) is the
scan direction of the main beam, and V = 1 for uniform excitations similar to

4], [43]-[44]. Furthermore, the Toeplitz property of the matrix [Z] is employed to
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reduce the computational time and LU-decomposition method is applied in the

solution of the matrix equation given by (5.1).

By obtaining the mode currents from the solution of matrix equation (5.1),
several performance metrics for phased arrays given in [53]-[54], [4] are calculated
to investigate scan blindness phenomenon for various cylindrical arrays of printed
dipoles. Furthermore, calculated results for these performance metrics are com-
pared with those for planar arrays. Among these performance metrics, the input
impedance at the nmth dipole is computed as

Vnm

Y
Inm

nm __
Zin -

(5.4)

and is used in the calculation of the active reflection coefficient at the nmth dipole

given by

Zpm (0, ¢) — Zpr(0 = 90°, ¢ = 0°)
o 6 _ in in .
R ( 7¢) Zng(ev Qb) + Z%m*(@ = 9007 ¢ = 00)

By defining the active reflection coefficient at the nmth dipole as in (5.5), each

(5.5)

array element is conjugate matched to its broadside scan impedance. Note that
in some calculations (e.g. to quantify the non-uniformity in the input impedance
across the finite array) the active reflection coefficient definition given by (5.5)
can be modified, and a fixed element’s input impedance at broadside scan can be
used as a reference. For instance, if the middle element is chosen as a reference
element, then the modified version of (5.5) is given by

nm Zi (9, ¢) — Zp (0 = 90°, ¢ = 0°)
mzd(97¢) = nm mid * _ o —_ No)’

(5.6)
where the subscript/superscript ‘'mid’ stands for the middle element of the array.

Another important metric is the active element pattern E™ (6, ¢) (and hence,
the active element gain), which is the field radiated by the array when the nmth
dipole is excited by a voltage generator, and all other dipoles are terminated in an
impedance Z7 [4]. As explained in [4], this pattern gives a very good estimate of
the gain pattern of the array even for small finite ones. The active element pattern
for the nmth dipole is calculated by setting the feed voltage of this dipole to unity
whereas feed voltages for all other dipoles are set to zero. The dipole currents are

computed from the solution of (5.1) by setting Z7 equal to the conjugate of the
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isolated dipole input impedance. Then the active element pattern for the nmth

dipole is calculated as

N M
Enm(g’ gb) _ Ed (07¢) Z Z Ipqe—jkodcos(qﬁ—pAdu)sinee—jkoqdz cos 0 (57)
p=—N q=—M
where E¢ (0, ¢) is the far-field element pattern of a single dipole on a dielec-
tric coated circular cylinder calculated either asymptotically as presented in [55]
or using a reciprocity approach as presented in [56]. In both solutions, the di-
pole current coefficients (I,,,,) obtained from the solution of (5.1) are used, and
both solutions yield exactly the same result. Once the active element pattern is
determined, the active element gain of the nmth element is calculated as
AT Enn (0, 0)

Gun(0,0) = =2

(5.8)

where P;, is the power delivered to the nmth element given by

N M
Pin = Re{ Z Z ]qunmmq]::m} (5.9)

p=—N g=—M

and Zy = 1207 is the free-space intrinsic impedance.

Finally, majority of the numerical results for both cylindrical and planar arrays
are given in the principle planes, namely, the E- and H-planes. Therefore, making
use of Fig. 2.3(a), (b) and (c), where § and ¢ are defined from the z— and
r—axis, respectively, the E- and H-planes are defined as follows. For the array
of Z—directed printed dipoles on coated cylinders and array of printed dipoles on
planar grounded dielectric slabs, as depicted in Fig. 2.3(a) and (c), respectively,
E-plane is the xz plane and H-plane is the zy plane. Hence, to scan the E-plane
¢ is set to 0° and 0 is varied, whereas to scan the H-plane 0 is set to 90° and ¢ is
varied. However, for the array of ngS—directed printed dipoles on coated cylinders,
as depicted in Fig. 2.3(b), E-plane is the xy plane and H-plane is the xz plane.
Thus, to scan the E-plane # is set to 90° and ¢ is varied, whereas to scan the

H-plane ¢ is set to 0° and @ is varied.
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5.3 Numerical Results and Discussion

Numerical results are presented (i) to demonstrate effects of the curvature com-
bined with array element orientation on the surface waves and scan blindness
mechanism; (77) to investigate effects of several electrical and geometrical para-
meters of arrays together with their host platforms on the aforementioned per-
formance metrics. In all results presented in this paper, the size of each dipole
is selected to be (L, W) = (0.39X¢,0.01)\y), the periodicity of arrays is chosen to
be 0.5\ (i.e. d, =d,; = d, = 0.5)\), and finally €, = 3.25 is used. Furthermore,
all the cylindrical arrays are excited using the right hand side of (5.3). A similar

excitation is used for the planar arrays ([4]).

The numerical results depicted in Fig. 5.2(a) and Fig. 5.2(b) show the mag-
nitude of the reflection coefficient |R| (defined in (5.5)) versus scan angle in the
E- and H-planes, respectively. The arrays are 11 x 11 Z2— and a@—directed printed
dipoles on a 3\ coated cylinder with ¢, = 0.06\y. These results are also compared
with those of a planar array (of Z—directed dipoles) with the same parameters
(tn, number of elements, etc.). The |R| values of all the arrays are computed at
their center elements, which are conjugate matched to broadside scan. A possible
scan blindness is observed at § = 41° (90° — 6 = 49°) for the cylindrical array
of Z—directed printed dipoles along the E-plane as shown in Fig. 5.2(a). At this
angle, the reflection coefficient of the center element has a magnitude greater than
unity (|R| > 1), which means that its input impedance has a negative real part
(i.e. Re(ZmMd) < 0) . Therefore, this dipole delivers power to its generator imply-
ing that this power is delivered from other ports with |R| < 1 (i.e. Re(Z]") > 0)
to the middle element. Note that in finite arrays the |R| > 1 condition for the
center element of the array has been used as a tool to demonstrate the exis-
tence/possibility of scan blindness in [4], [2]. Thus, existence of this condition
is also treated as an indication of a possible blindness in this paper. However,
neither the array of qis—directed printed dipoles (on the same coated cylinder) nor
the planar array shows blindness at this angle. Also it is observed that the shape
of |R| corresponding to the planar case is similar to that of the cylindrical array

of Z—directed dipoles and it peaks around the same angle (but |R| < 1). This
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Figure 5.2: Magnitude of the reflection coefficient, |R|, of the middle element vs.
scan angle comparison for 11 x 11 cylindrical arrays of axially (2) and circum-

~

ferentially (¢) directed printed dipoles, and the same array (Z—directed dipoles)
on a planar grounded dielectric slab along the (a) E-plane, (b) H-plane. Array
and host body parameters are: (L, W) = (0.39X,0.01)\), €, = 3.25, t;, = 0.06 )\,

d. = dy = dy = 05X, a = 3.
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may also suggest a potential scan blindness angle for the planar case. On the
other hand, none of the arrays shows a scan blindness along the H-plane as illus-
trated in Fig. 5.2(b). This indicates that E-plane is more critical for relatively
thin coatings since only the lowest-order surface wave is present, which confines
scan blindness phenomenon to the E-plane [57]. Since the blindness mechanism is
closely related to the surface wave fields excited within the substrate of the arrays
[23]-[4], the curvature of the supporting structure combined with the array ele-
ment orientation will change the behavior of these fields. In particular, along the
E-plane, surface waves of the Z—directed dipoles on coated cylinders are stronger
than Qg—directed ones and printed dipoles on planar grounded dielectric slabs
[43]-[44] (also see Fig. 4.6 (a)). Therefore, if the electrical and geometrical para-
meters of the array together with its host platform vary in a way to reinforce the
surface waves, possibility of observing a scan blindness increases, especially along
the E-plane. This is illustrated in Fig. 5.3 and Fig. 5.4 by varying the array size

and the thickness of the coating, respectively.

In Fig. 5.3, the effect of the array size on the blindness mechanism is investi-
gated. This is achieved by observing the variation in |R| versus scan angle in the
E-plane for arrays of 7x 7, 11 x 11 and 15 x 15 2— and gB—direeted printed dipoles
on a coated cylinder with a = 4)\y and ¢, = 0.06)¢. As in the previous numerical
example, results for planar array are also included for comparison purposes, and
|R| values are evaluated for the center elements (which are conjugate matched
to broadside scan) of all the arrays. When the size of the array is increased (by
adding more elements), surface waves are guided more efficiently along the E-
plane for the planar and cylindrical array of Z—directed dipoles. In fact, surfaces
waves are stronger for the cylindrical array of Z—directed dipoles when compared
to the planar ones [43]. This results in a significant change in the shape of |R| as
shown in Fig. 5.3. Based on these results, scan blindness is not possible for the
7 x T arrays (see Fig. 5.3 (a)). However, a peak in the |R| value appears around
0 = 41° (90° — 0 = 49°) for both the planar and cylindrical array of 11 x 11
z—directed printed dipoles (Fig. 5.3 (b)). This may suggest a potential blindness
around this angle even though |R| < 1. Finally, observing a scan blindness is

possible for the cylindrical array of 15 x 15 Z—directed dipoles around 6 = 36°
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Figure 5.3: Magnitude of the reflection coefficient, |R|, of the middle element
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z— and ¢—directed printed dipoles on a 4\ coated cylinder. Planar array of
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(90° — @ = 54°) where |R| ~ 2.35 as clearly seen in Fig. 5.3(c). As expected, the
middle element of this array has an impedance with a negative real part around
this angle and it delivers power to its generator. For the same sized (i.e. 15 x 15)
planar array, a potential blindness phenomenon also exists around the same angle
since |R| is nearly unity. On the other hand, |R| values for the cylindrical array
of Qg—directed dipoles do not change dramatically with the variations in the array
size as shown in Fig. 5.3, and the possibility of scan blindness is not observed.
The best way to explain this result is to consider how the curvature of the coated
cylinder affects the surface waves for this array. As the surface waves propagate
along the E-plane, they continuously shed from the surface due to the curvature.
Therefore, along the E-plane (qﬁ—directed dipoles), surface waves are significantly
weaker than those of the planar case [44]. Consequently, when the array size is

increased, shedding of the waves from the surface continues to be more dominant

than the guiding of these waves.

Results given in Fig. 5.2(a) and Fig. 5.2(b) are repeated for a thinner coating
in Fig. 5.4 to further emphasize the importance of the surface waves on the
blindness mechanism. Parameters used in Fig. 5.2 are kept the same except the
coating thickness is decreased from 0.06\g to 0.02)\g. A decrease in the thickness
of the coating diminishes the strength of the surface waves, which avoids the
possibility of a scan blindness phenomenon in both planes. However, |R| for the
cylindrical array of Z—directed dipoles is still higher than that of a planar case,
and a small local peak around 6 = 41° (90° — 6 = 49°) (which would increase
for thicker substrates) is still visible as shown in Fig. 5.4(a). Note that the
effect of the thickness and the relative dielectric constant (e,.) on scan blindness
phenomenon are similar. As it is well known, the “electrical thickness”, which
depends on the physical thickness, dielectric constant and wavelength, is what

matters when surface waves are considered.

The effect of the cylinder radius is discussed next in Fig. 5.5 by plotting | R,
as a function of element position for 11 x 11 element arrays, where the definition
given in (5.6) is used. In all cases, broadside scan is considered. In Fig. 5.5(a),
| R | across the E-plane (Z—direction, i.e. for the elements of the middle row,

n=-5:5, m=0) of a Z—directed printed dipole array is shown. Similarly in Fig.
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Figure 5.4: Magnitude of the reflection coefficient, |R|, of the middle element vs.
scan angle comparison for 11 x 11 cylindrical arrays of Z— and &—directed printed
dipoles, and the same array (of Z—directed dipoles) on a planar grounded dielec-
tric slab along the (a) E-plane, (b) H-plane. Array and host body parameters
are: (L,W) = (0.39X0,0.01)), € = 3.25, t;, = 0.02)g, d, = d;y = d,, = 0.5\,
a = 3)\0
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5.5(b), |RM%| across the H-plane (2—direction, i.e. for the elements of the middle
column, n=0, m=-5:5) of a gg—directed printed dipole array is given. As seen from
these figures, the input impedance across these finite arrays is nonuniform ([4]),
in particular across the E-plane of cylindrical Z—directed dipole arrays. In this

plane, such a non-uniformity increases as the size of of the radius is decreased,

and relatively high variations in | R/, | is observed when two consecutive elements
are considered. This observation also manifests effects of the surface waves along

the axial direction of the coated cylinder. Their strength increases with the

nm

decreasing radius [43] (also shown in Fig. 4.6(a)). Besides, the variation of |R?,

is symmetric with respect to the center element in both planes, where the center
element is perfectly matched at broadside (|JR™4| = 0) and others are either

slightly or considerably mismatched. Finally, as expected, the results for the

cylinder approach that of a planar case as the radius of the cylinder increases.

Fig. 5.6 compares the finite arrays of printed dipoles on coated cylinders
with their planar counterparts using the active element gain patterns defined
n (5.8). Active element gain patterns corresponding to the cylindrical array of
z—directed dipoles discussed in Fig. 5.3(c) are shown in Fig. 5.6. These patterns
were generated by feeding only the center element of the array and terminating
all elements in Zr = 15.3 — 7% 136.5, which is the conjugate of the isolated dipole
input impedance. First, the H-plane active element gain pattern is shown in Fig.
5.6(a). Along this plane, scan blindness is not observed since the surface waves
are weak especially for the cylindrical case (2—directed dipoles). Hence, the gain
pattern is very smooth and nearly no oscillations are observed. Note that planar
results are valid up to ¢ = 90° due to the infinite substrate and ground plane
assumption. On the other hand, for the same arrays, the active element gain
pattern is very interesting along the E-plane, where scan blindness was said to be
possible around 6 = 36° (90° — 6 = 54°) for the cylindrical array of Z—directed
dipoles based on Fig. 5.3(c). A null or a dip was expected around this angle in this
plane for the cylindrical case. Although the pattern in Fig. 5.6(b) corresponding
to the cylindrical case is more oscillatory than that of the planar one, no null in
the pattern is observed. The oscillations in the pattern are due to the surface

waves which alter the array current distribution and make it more oscillatory
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Figure 5.5: (a) |R™,| vs. element position across the E-plane (n=-5:5, m=0) of
an 11 x 11 element Z—directed dipole array on coated cylinders with radii a = 3\,
a =4\, a = 5\ and a = oo (planar), and (b) same as (a) for an 11 x 11 element
gg—directed dipole array across the H-plane (n=0, m=-5:5). Other parameters

are (L, W) = (0.39X,0.01)), €, = 3.25, £, = 0.06 )0, d» = dyy = d,, = 0.5).
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Figure 5.6: (a) H-plane, (b) E-plane active element gain patterns for 15 x 15
zZ—directed printed dipoles on a 4)\; cylinder and the same array on a planar
grounded dielectric slab. Other array and host body parameters are the same as

in Fig. 5.3(c).
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(which can be deduced from the | R| versus element position plots in Fig. 5.5(a)).
One way to explain this result is to check how many dipoles in the array have a
negative resistance (i.e. Re(Z;,) < 0 equivalent to |R| > 1) around this angle.
It is observed that if only a small portion of the array elements have a negative
resistance, then only a small amount of power is delivered to these elements from
the rest of the array elements with Re(Z;,) > 0, and the remaining power is
still radiated. Therefore, a potential "scan blindness” may not manifest itself
as a visible dip in the gain pattern. In light of this discussion, this cylindrical
array of zZ—directed dipoles considered in Fig. 5.3(c), is excited for a scan of
(0, )=(36°,0°), which corresponds to the ’blindness angle’ (w.r.to |R| > 1 result
shown in Fig. 5.3(c)). The input impedance of all its elements are plotted on the
complex impedance plane in Fig. 5.7(a). The elements experiencing a negative
resistance are marked and their locations in the array are shown. Observe that
only a small number of elements around the middle of the array have the property
Re(Z;,) < 0 and they extract little power from the array. If more elements had
negative resistance, then blindness will be observed in the gain patterns in the
form of a visible dip. Finally, in an infinite array, which can be considered as
the limiting case, the input impedance of all elements are identical and purely
imaginary at the blindness angle. Therefore, a complete blindness would occur

and manifests itself as a null in the gain pattern in this plane.

A similar investigation is also performed for the cylindrical array of qg—directed
dipoles. They are excited at a scan of (6, »)=(90°, 54°) such that the E-plane scan
is performed exactly the same as Z—directed dipole array case. It is observed
that Re(Z;,) values for all elements in this case are positive as clearly seen in
Fig. 5.7(b). Based on this information and considering all the previously given
numerical results, we can conclude that array element orientation with respect to
the curvature of the supporting structure plays a significant role. Considerably
different behaviors are observed concerning scan blindness phenomenon for fi-
nite arrays of axially and circumferentially directed printed dipoles on cylindrical

platforms as well as their planar counterparts.

Finally, the normalized far-field radiation patterns pertaining to 13 x 13 arrays

of Z— and qg—directed dipoles on coated cylinders with radii 3\g and 5\, and their
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comparison with patterns of a planar array are shown in Fig. 5.8. The thickness
of the coating is 0.06\, for all cases. Fig. 5.8(a) shows the E-plane pattern for the
cylindrical array of Z—directed dipoles. In this plane, effects of the curvature on
the radiation pattern is minimum. Hence, as expected, patterns resemble to the
planar case. However, along the H-plane, where the curvature affects the most,
patterns are quite different as seen in Fig. 5.8(b). Agreement with the planar case
is observed only in the main beam as well as in the first sidelobe levels. For the
cylindrical array of gg—directed dipoles, the curvature plays a very significant role
along the E-plane. This result is expected since the array elements are oriented
perpendicular to the axis of the cylinder. Thus, other than the main beam, a
complete disagreement with the planar case is expected and observed as shown in
Fig. 5.8(c). The H-plane patterns are shown in Fig. 5.8(d) where the curvature
does not have a significant impact and a good agreement is observed with the
planar results. In the evaluation of all patterns, all dipoles are excited uniformly
and no special beam forming technique is applied in the excitation of the arrays.
Note that the ground plane and the substrate are assumed to be infinite for
the planar case and the dipoles are Z—directed. Also cylinders are assumed to
be infintely long along the z—direction (parallel to axis of cylinder). Therefore,
patterns for planar array as well as the E-plane pattern for the cylindrical array
of Z—directed dipoles and H-plane pattern for the cylindrical array of gzg—directed

dipoles are evaluated from —90° to 90°.

5.4 Conclusion

In this study, a rigorous investigation of surface waves and their effect on scan
blindness phenomenon for conformal finite phased arrays of printed dipoles has
been performed. Furthermore, effects of several array and supporting structure
parameters on the basic performance metrics of arrays and on the blindness mech-
anism have been discussed. To be able to address these issues, a computationally
optimized and very accurate spatial domain hybrid full wave analysis method
which is presented in Sections 4.2 and 4.3. has been used Several relatively large

but finite arrays pertaining to both axially and circumferentially oriented printed
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Figure 5.7: (a) Input impedance (Z;,) of all elements for a 15 x 15 Z—directed
dipoles on a 4)\y cylinder on the complex impedance plane. Location of the
dipoles in the array with negative real resistance values are marked with ’o’ (rest
is marked with 'x’). (b) Same as (a) for the same sized ¢—directed printed dipole
array on the same cylinder. Other array and host body parameters are the same
as in Fig. 5.3(c).
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Figure 5.8: Far-field patterns of 13 x 13 printed dipole arrays on 3\, 5\ cylinders
and on planar substrates. Patterns for planar and cylindrical Z—directed dipole
arrays along the (a) E-plane, (b) H-plane. Patterns for planar and cylindrical
¢—directed dipole arrays along the (c) E-plane, (d) H-plane. All arrays are phased
to radiate along the broadside direction. Other array and host body parameters
are: (L, W) = (0.39X0,0.01)y), €, = 3.25, t;, = 0.06 o, d, = d,; = d, = 0.5)\.
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dipoles on coated cylinders with different radii have been studied.

In addition to standard parameters (size of the array, thickness of the sub-
strate, value of the dielectric constant, etc.) that affect the blindness mechanism
in finite phased arrays of printed dipoles on planar grounded slabs, it is shown
here that the curvature of the supporting structure and the orientation of the
array element significantly alters the surface waves excited within the substrate
and in turn the blindness mechanism. Consequently, (i) finite phased arrays of
printed dipoles on coated cylinders and similar arrays on planar grounded slabs
show different behavior in terms of scan blindness, (77) unlike planar arrays where
scan blindness is mainly governed by the array related factors (substrate para-
meters, element spacings, etc.) rather than the particular element orientation,
scan blindness in cylindrical arrays of printed dipoles is also governed by the ori-
entation of the array elements with respect to the supporting structure. Under
the same excitations and with the same array and host body parameters, axially
oriented printed dipole arrays can exhibit scan blindness phenomenon, but it may

not occur for arrays of circumferentially oriented printed dipoles.



Chapter 6

Efficient Analysis Of Large Finite

Phased Arrays of Microstrip
Patches Using GFBM With DFT
Based Acceleration Algorithm

6.1 Introduction

Conventional integral equation based MoM solutions to the analysis of finite, pla-
nar phased arrays of printed antennas on grounded dielectric slabs suffer greatly
from the memory storage requirements and computational cost when the num-
ber of elements in the array increases rapidly. Several efficient approaches have
been proposed to accelerate Method of Moments (MoM) solution and to reduce
the memory storage requirements. Some of the MoM based works are infinite
array solution as well as its modifications to include array truncation effects [2],
the hybrid UTD-MoM approach [12], MoM solution based on a discrete Fourier
transform (DFT) representation of the currents, where the number of unknowns
are significantly reduced [5], and implementation of iterative methods to the so-

lution of the MoM matrix equation. In a recent study DFT based acceleration
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method is combined with an iterative forward-backward method (FBM) success-
fully for large finite printed dipole arrays with rectangular boundaries [9]. Later
on, this DFT-FBM is applied to the large finite printed dipole arrays with ellip-

tical boundaries [58].

In order to use FBM for the analysis of planar finite phased arrays of mi-
crostrip patches it must be generalized to handle an arbitrary number of basis
functions expanded on each element. In this chapter, a DFT based algorithm
is used in conjunction a generalized forward backward method (GFBM) [28] for
the fast analysis of planar finite phased arrays of microstrip patches. In this
method the unknown current coefficients corresponding to a single patch are first
solved by a conventional hybrid MoM/Greens function technique. The current
coefficients corresponding to the whole array is then found using GFBM, where
it sweeps the current computation element by element (each element corresponds
to a probe-fed microstrip patch). A similar approach was reported previously in

[59] for linear arrays of elements with arbitrary cross-sections.

The computational complexity of this method, which is originally O(N2,)
(of order N2,) for each iteration, can be reduced to O(Nyy) (N being the
total number of unknowns), assuming that elements are identical and periodic.
This is achieved using a DFT based acceleration algorithm which divides the
contributing elements into “strong” and “weak” interaction groups for a receiving
element in the GFBM. The contributions from the strong group are obtained
by the conventional element-by-element computation to assure the fundamental
accuracy. On the other hand, contributions coming from the weak region are
obtained based on a DFT representation of the array current. In general, only a
few significant DFT terms are sufficient to provide accurate results due to the fact
that they provide minor corrections to the solution in contrast to the dominating

strong group.
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6.2 Formulation

Problem geometry is illustrated in Fig. 6.1 where dielectric thickness is denoted
by t, and the relative permittivity of the dielectric substrate is ¢,. This (2N +
1) x (2M + 1) element array has inter-element spacing of (dz, dy) where dx is
the inter-element distance in the Z-direction and dy in the g-direction. For an
(2N +1) x (2M +1) array of probe-fed microstrip patches we can write the MoM

matrix equation (2.7) in the form of

Figure 6.1: Geometry of a periodic, planar array of (2N +1) x (2M +1) microstrip
rectangular patch antennas on a grounded dielectric slab.

N M Ny . .
Z Z Z Anernmr,pqs = V})qseijﬁzpdxeijﬁyqdy (61)
n=—N m=—M r=1
where
By = kosin(0;) cos(¢;), By, = kosin(6;) sin(¢;), (6.2)
—-N<p<N, -M<qg<M, —-N,<s<N,, (6.3)

and (0;, ¢;) is the scan direction of the main beam. N, denotes the number of
basis functions per element. Z,,,, s is the mutual coupling between the nmrth
basis function and pgs'™" testing function, whereas A,,,, is the unknown current

coefficients to be found. Excitation vector, which is denoted by Vs, is calculated
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using (3.176) where the coordinates (z,, y,) denote the probe position of the pg'"
patch whereas the coordinates (z,,, ¥») denote the position of the pgs'" basis

function.

In order to solve (6.1) using GFBM, first step is to decompose current vector
as forward and backward components and the MoM impedance matrix in the

form of (shown in Fig. 6.2)

IV +1° (6.4)
79+ 79 + 7 (6.5)

IN
|

= 7"

Figure 6.2: Decomposition of Z matrix

where Z% is formed by the block diagonal matrices of Z corresponding to the
impedance matrix of a single patch, where as Z9 and Z% are the lower and upper
triangular parts of Z with Z*’ subtracted. Then the original matrix equation (6.1)

is transformed into two matrix equations given by
291 = V-7V +1) (6.6)
291 = -7 (VU +1°). (6.7)

Equations (6.6) and (6.7) are solved iteratively for I and I/, starting with zero

I°(0). Since Ny is small compared Ny, (which is the total number of unknowns),
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GFBM requires O(N?,) computational complexity and memory storage. GFBM

sweep decomposition is depicted in Fig. 6.3.

To reduce the computational complexity, an acceleration algorithm based on
the DF'T representation of the induced currents on the array has been proposed,
8], [9]. To calculate the MoM matrix entry of an element (called as the receiv-
ing element), this algorithm divides the contributing elements in front of it into
strong and weak interaction regions as shown in Fig. 6.4. Strong group is com-
posed of elements within a few wavelength distance from the receiving element,
and contributions from them are evaluated by employing a conventional MoM
in an element-by-element fashion. To represent the contributions from the weak
region, a few significant DFT terms from the DFT representation of the entire
array currents are selected. Note that the current on each element is represented
by using more than one expansion (basis) function. Therefore, the DFT acceler-
ation algorithm presented in [8] and [9] is slightly modified to handle more basis
functions per element. Briefly, when the elements are identical, each element
has the same number of basis functions. Therefore, first basis functions of each
element are periodic among each other, and can be treated as a periodic array of
one basis function per element (i.e., a subarray is formed). The same is true for
the second, third, etc., basis functions as well. As a result, contributions coming
from the weak region of the overall array can be calculated by combining the weak

region contributions of each sub-array using the corresponding DFT coefficients.

The DFT representation of A,,,, is given by
N M

. . . k . l
g = €710z e=i0umdy 57 N7 e TR (68)
k=—NIl=—M

where By, is the coefficient of the kI'* DFT term (r** basis functions) given by

1
(2N +1)(2M +1)

N M

. . . k . !
S A ifmay 2 iy 12y
n=—N m=—M

Bklr =
(6.9)

Then the weak region contributions to the pgs® element can be expressed as

— 106, —q —q kn s lm
Buyeak =Y. 3. Br Y. Zyppe 1P e I0mde2Tanig 2Tt | (6.10)
T k1

n, mcweak
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Figure 6.3: GFBM sweep decomposition

It has been observed that the DFT representation of practical large array
current distribution is very compact, [5], such that only a few of these DFT
coefficients are nonzero. Since the contribution of weak region provides slight
corrections, it is sufficient to use a few significant DFT terms in the calculation
of (6.10). Sufficient DFT terms are selected based on the criteria given in [5]. By
rewriting (6.10) in the form given by

Ny

Fwear = Z

r=1

Z Bklrcklr,pqs (611)
kleQ

where () is the set of significant DFT terms, and

—4 —i _i9pkn_ _so. lm
Cklr,pqs — Z anr,pqse Jﬁxnd:ce ]ﬁymdye ]27r2NJrle VLG vy (612)

n, mcweak

Chir, pgs and hence, Ey.qr can be calculated very efficiently in an iterative fashion

apart from the usual GFBM iterations, [9] using the equation given by
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Figure 6.4: Decomposition of strong and weak interaction groups

— —jBendz —j2m =k
Ckl'r, pgs — Cklr, (p—1)gs € 5 € 2N+l

z 7 —jBz(=N)dz ,—jBymdy _j2”(};(1\71\71)+21€4m1) 6.13
+ Z (—=N)mr, pgs© e e * + (6.13)
m=—M

where the term inside the parenthesis, which is denoted as Dy, pgs, is given by

_ —jBymd —j2ﬂ'7l
l)klr,pqs—l)klr,p(q—l)se By Ye 2M+1

. . . k(—N . I(M+1
¢~ 10a(=N)dw B, (M-+1)dy ,—j2r 5 —jom (G

—Z(—N)Mr,p(g—1)s

2Ny, pas€ P TN By (M) ~I2T ST M (6.14)

The first term in (6.13) is related to the Ciy, (p—1)¢s Which is obtained before
Chir.pgs 1s interested. This relation is shown in Fig. 6.5(a) where we see that the

weak group of the pgs® receiving element is decomposed into two parts. The
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upper sub-group and the lower sub-group which consist of the elements of the
first row. Note that the upper sub-group of the pgs*" element is identical to the
weak group of the (p — 1)gs™ element except a location shift which corresponds
to a phase shift. The next step is the calculation of the second term in (6.13),
namely Dy, pgs, Which contains the contributions coming from a one-dimensional
array with the receiving element located far away from this array. This term is
also calculated in an iterative fashion given by (6.14), using the periodicity of
the elements in spatial domain, which corresponds to a phase shift. Since we
have more than one basis function to represent the current on each element DFT
coefficients are calculated for each subarray, which is shown in Fig. 6.5(b) and
Fig. 6.5(c). The basis functions which are not being considered are colored with

stripes.

As shown in [9], calculation of Cj, ,qs requires only O(Nyy) operations. Hence,

the overall computational complexity is O(N;o).

6.3 Numerical Results

To validate the accuracy and the efficiency of the method, some numerical results
for printed arrays obtained using the GFBM approach with DFT based accel-
eration algorithm are presented and compared with the direct solution of MoM.
Fig. 6.6 shows the current distribution on the 3" and 11** rows of an 21x21
array. 3 2- directed current modes are expanded on each of the patch antenna
and the array is scanned to the broadside: (6;, ¢;) = (0°,0°). Desired accuracy
for the currents is achieved within 3 iterations by selecting only 9 elements (3x3)
in the strong region and 15 (5 DFT term for each current mode) DFT terms.
Moreover, DFT-GFBM is approximately 200 times faster than the conventional
MoM with LU decomposition (CPU time of DFT-GFBM: 0.13sec., CPU time
of MoM: 25.85sec.). A second example is shown in Fig. 6.7 for an 19x19 array
where 10 current modes (4 Z-directed, 6 y-directed,) are expanded on each of the
patch antenna. Current distribution on the 2"¢ and 10" rows are depicted when

the scan angle is again broadside: (6;, ¢;) = (0°,0°). Desired accuracy for the
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currents is achieved within 3 iterations by selecting only 9 elements (3x3) in the
strong region and 10 (1 DFT term for each current mode) DFT terms. DFT-
GFBM is far more faster (approximately 760 times faster) than the conventional
MoM, with a CPU time of only 0.7sec.

6.4 Conclusion

In this chapter an efficient and accurate method is presented for the analysis
of large printed antenna arrays on planar grounded dielectric slabs. Both the

computational and the memory storage requirements are O(Nyy).
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Figure 6.5: The forward weak group corresponding to the pgs” receiving element
is decomposed into 2 sub-groups (upper and lower loops). Note that the upper
group is identical to the weak group corresponding to the (p — 1)gs™" element
except a location shift which corresponds to a phase shift. This decomposition is
repeated for each basis function shown in (a), (b) and (c)
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Figure 6.6: 21x21 Patch array on planar substrate. 3 expansion modes (Z —
directed) are used per patch. Magnitude of the current coefficients on the (a)
3" row, (b) 11" row. Other array and host body parameters are (L, W) =
(0.3Xg, 0.3N\g), dy = dy, = 0.5\, t, = 0.04)\, €, = 2.55.
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Figure 6.7: 19x19 Patch array on planar substrate. 10 expansion modes (4 -
directed, 6 g-directed,) are used per patch. Magnitude of the current coefficients
on the (a) 2" row, (b) 10" row. Other array and host body parameters are
(L, W) = (0.33)\, 0.53)), d, = d,, = 0.7Xg, t = 0.021 )¢, €, = 2.22.



Chapter 7

Conclusions

In this thesis a hybrid method based on the combination of MoM with special
Green’s function representations is developed in order to investigate printed an-
tennas/arrays on planar and cylindrical grounded dielectric slabs in both spatial
and spectral domains. The accuracy and efficiency of this hybrid MoM /Green’s
function technique depends on the accurate and efficient evaluation of the MoM
impedance matrix entries, which strongly depend on the Green’s function repre-

sentations.

When the spectral domain calculations are considered, a single representation
is used for planar geometries and again a single representation is used for cylindri-
cal geometries. However, mutual coupling calculations in this domain has severe
convergence issues especially for electrically large lateral separations between the
source and observation points. Therefore, several techniques are used to improve
their efficiency and accuracy. In this thesis closed-form expressions are derived
for the asymptotic parts of both the impedance matrix and the excitation vector
of probe fed printed geometries. Implementation of these closed-form expressions
to our existing spectral domain MoM codes results a fast and accurate evaluation

of MoM matrix and the excitation vector entries.
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The spatial domain solution to the printed planar geometries require evalua-
tion of finite double integrals where the main problem is handling the singular-
ities occurring when two basis functions overlap with each other completely or
partially. There is also a possible singularity problem in the evaluation of probe-
basis function interactions when probe is positioned in the basis function. In
this thesis these singularities are treated using mappings and change of variable
methods. Numerical results are in a good agreement with the reference spectral
domain solution, which is assumed to be pretty accurate when the basis functions
overlap. Apart from the singularity treatments, these mappings and change of
variable methods are also used when there is no singularity, in order to reduce
the order of integrations. The remaining integrals are numerically evaluated us-
ing an adaptive Gaussian integration scheme resulting a fast and accurate spatial

domain solution for printed planar geometries.

These improved methods are incorporated with two different studies in Chap-
ter 5 and Chapter 6. In Chapter 5 we have presented an investigation of scan
blindness phenomenon for finite arrays of printed dipoles on material coated elec-
trically large circular cylinders, and its comparison with the same type of arrays
on planar platforms. In this study spatial domain Green’s function representa-
tions derived in [33] for cylindrical grounded dielectric slabs, given in Chapter 4
are used. Effects of several parameters on scan blindness for cylindrical geome-
tries are presented using various numerical results. The results show that (i)
finite phased arrays of printed dipoles on coated cylinders and similar arrays on
planar grounded slabs show different behavior in terms of scan blindness, (i7)
unlike planar arrays where scan blindness is mainly governed by the array related
factors (substrate parameters, element spacings, etc.) rather than the particular
element orientation, scan blindness in cylindrical arrays of printed dipoles is also
governed by the orientation of the array elements with respect to the supporting

structure.

In Chapter 6 we have presented a generalized forward backward method based
on a DFT based acceleration algorithm which reduces the computational com-
plexity of the full-wave solution for the analysis of electrically large finite phased

arrays of printed dipoles and patches on planar grounded dielectric slabs. This
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highly efficient and accurate method reduces the computational complexity of the

problem, which is originally O(N?,) for each iteration to O(Ny).
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Appendix A
Integral Formulas I

The integrals A(x — x5), Sa(x), Sp(x), B(x) and T'(x), used in (3.24)-(3.26), are

evaluated in closed-form in [21] given by

sin?(k,2Y)

Alw =)= [ Kok = ) =52 cos(hyp.) d,
Y

Ay

=7 (8) {(1 +n)ln {(n + 1)Ay + \/(X —z5)2 4+ (n+ 1)2Ay2]

+(n—1)In [(n —1)Ay + \/(X —x5)2+ (n— 1)2Ay2]

—2nIn [nAy + \/(X —z4)% + n2Ay2}

2
- _ 2 2 2
+Ay\/(x zs)? + n?Ay

_Aly {\/(X —x4)? + (n — 1)2Ay?

—i-\/(x —z5)2+ (n+ I)QAyQ] } : (A1)
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oo sin? k Ax
Su(x) = / cos(k:xx) dk,

96{(2A$— IXI)? = 4(Az = X)), Ix| < Az
= (2Az — [x])?, Az < |x| < 2Az,
O, Ix| > 2Az

o sin® (kx %)

Jp(x) = / cos(kzx) dk,
0 k2
$(FAar—2xl),  Il<Az
= 1 5(—fAr+ i), Ar<|x] <24z,
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0 sin® (kyAy)
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and
oo sin® kx%)
TO) = [ 5 sinlko) dk,
—§ (307 +x), —E<x<-F
s Ax Ax
AR , =4 < < =L
- i LX< (25)
0 otherwise

where K is the modified Bessel function of the first kind.

The special functions C'(x) and I'(x), which are the analytical expressions of

results of the integrals used in (3.27), are evaluated in [35] given by
1 y—y y+y
C = - / ——— |Tect 2 ) + rect A a
e e e
-3 YyaT = Yya
Ay Ay\*
—In{ya— -+ x2+<yA—)
2 2
Ay Ay ’
w5 mmr e+ (3 )

and

o sin? (k‘x%>
L) = [ = sinko) d,
0 ks
-, —Ar<xy<0
0, x=0
T, 0<x<-Az (A.7)
+I, xy=+Ax

0, otherwise .




Appendix B

Integral Formulas 11

The analytical expressions to the results of the integrals defined in (3.28)-(3.31),

which are the main building blocks of (3.32)-(3.35), are given by

fO(a’u Iy, $2)
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