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Dynamic correlation effects on the plasmon dispersion in a two-dimensional electron gas
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The charge-density oscillations~plasmons! of a low-density two-dimensional uniform electron gas are stud-
ied within the framework of finite temperature and frequency dependent~dynamic! version of Singwi, Tosi,
Land, and Sjo¨lander theory and compared with the recent experimental results. The use of the Hartree-Fock
approximation for the static structure factor leads to a finite temperature dynamical counterpart of the static
Hubbard approximation. We observe important differences between dynamic and static local-field factors as
well as between the corresponding plasmon dispersion laws. Our calculated plasmon energies that include
dynamic correlations are in very good agreement with the recent experimental results.
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I. INTRODUCTION

The dilute regime of a two-dimensional~2D! electron gas
is a system of current experimental interest. This is beca
the technological advances in semiconductors allow v
low-density samples to be prepared so that through a va
of experiments the strong correlations between the elect
may be probed. Theoretically, the uniform electron gas s
tem with long-range Coulomb interactions has been a
nonical model to study exchange and correlation effe
Thus, recent experimental efforts offer to provide a test
ground for a variety of theoretical approaches.

An important aspect of 2D electron systems is their c
lective excitations which are the charge-density oscillatio1

~plasmons!. There have been many theoretical and exp
mental studies devoted to their dispersion and damping p
erties over the years.2,3 With the advances in measureme
techniques such as Raman spectroscopy plasmon disper
in low-dimensional electronic systems become available.4

An uniform electron gas in 2D is characterized by a
mensionless coupling constantr s5a/aB , wherea51/Anp
is the average spacing between the electrons defined in t
of the areal densityn, andaB5\2e0 /(m* e2) is the effective
Bohr radius defined in terms of the background dielec
constant e0 and electron effective-massm* . Since r s
;n21/2, the dilute regime of a 2D electron gas is conside
to be a strongly interacting system. Thus, measurement
plasmon dispersion in this regime provide useful informat
on the correlation effects.

Recent inelastic light scattering experiments of Erikss
et al.5 and Hirjibehedinet al.6 provide plasmon dispersio
relation in ultra-low-density 2D electron systems going up
large wave vectors. The samples used in their experim
have densities of the order of 109 cm22, which corresponds
to r s;10–20. They have found that at finite temperature
plasmon dispersion roughly follows theAq—dependence
predicted by classical electrodynamics7 even in the dilute
regime. However, some negative corrections from class
behavior were also observed~especially at lower tempera
tures! and have been associated with large correlations
fects.

It is then clear that in order to understand the obser
results one has to perform theoretical calculations beyond
0163-1829/2003/67~11!/115308~6!/$20.00 67 1153
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simple long-wavelength limit (q→0), including also the
correlation effects. Since real samples have a finite thickn
and the measurements of Hirjibehedinet al.6 were done at
finite temperature a comparison between the theory and
experimental data would be more meaningful if the form
takes also into account the abovementioned effects.

A recent paper by Hwang and Das Sarma8 touches upon
some of these issues and analyzes the experimental da
Erikssonet al.5 They numerically compute the plasmon di
persion using a realistic random-phase approximation~RPA!,
which takes into account the finite thickness, finite tempe
ture, andstatic local-field corrections. The local-field correc
tions are described by a generalized Hubbard approximat9

for G(q) that includes also the finite temperature effects
was found by Hwang and Das Sarma8 that the finite tempera-
ture and correlation effects tend to cancel each other. Th
because, the correlations reduce the strength of effec
electron-electron interactions, thus lower the plasmon dis
sion, whereas finite temperature increases it. However,
lower-density samples~with largerr s) this cancelation takes
place only if the density of the sample is adjusted by 10%
was also argued that the static Singwi, Tosi, Land, a
Sjölander ~STLS! theory10 gives similar results. Liu,
Świerkowski, and Neilson11 noted similar cancelation effect
on the plasmon dispersion in double-layer electron syste
At this point the next step forward is to tackle the proble
within a theory that utilizes thedynamic local-field factor.
The dynamic~or quantum! version of the STLS theory12 that
improves the static correlation effects by making the loc
field correction frequency dependent is a useful framew
in this context. This approach is also known12,13 to produce
plasmon dispersions, which always lie between the RPA
sult and that calculated with a static local-field factor. D
namic local-field factors were also identified by inelas
x-ray scattering experiments at large wave vectors
metals.14 From a theoretical viewpoint, the static local-fie
theories assume that the exchange-correlation hole aroun
electron responds rigidly to the electron motion, whereas
dynamic local-field theories attempt to modify this shortco
ing. Since the relaxation time of the surrounding electron
of the order of 1/vpl ~wherevpl is the plasmon frequency!, at
low densities it becomes very significant.

Motivated by these recent experiments measuring p
©2003 The American Physical Society08-1
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mon dispersion in low-density 2D electron systems, and
the related theoretical problems we set out to demonstrate
importance of dynamic correlation effects in the plasm
dispersion. For this purpose we use the generalized m
field theory to calculate the density-density correlation fu
tion from which the plasmon dispersion can be obtained. T
key ingredient of this approach is the wave vector and
quency dependent local-field factorG(q,v), which embod-
ies the exchange and correlation effects beyond the sim
RPA. In this work, we argue that the static local-field corre
tions are not capable of describing the observed plasm
dispersions at larger s . Our calculations using a dynami
extension of the Hubbard approximation toG(q,v) works
very well to account for the correlation effects in recent e
periments at low-density systems. The inadequacy of st
local-field corrections in the context of double-layer electr
systems was also pointed out by Kainthet al.15 from the
analysis of their experimental results.

The rest of this paper is organized as follows. In Sec
we introduce the formalism while Sec. III contains numeric
results for plasmon dispersions and their comparison w
recent experiments. We also discuss the effect of correlat
in the observed plasmon energies, which include tempera
and finite width contributions. Finally, we conclude with
brief summary in Sec. IV.

II. MODEL AND THEORY

We consider a system of homogeneous electron gas
bedded in a rigid positive background in two dimensio
The electrons interact via a Coulomb potentialV(q)
52pe2/(e0q). Since very high mobility samples are used
the experiments5,6 we do not consider the disorder effects.
a generalized mean-field approximation the density-den
correlation function of an interacting system of electrons
given by

x~q,v!5
x0~q,v!

12V~q!@12G~q,v!#x0~q,v!
, ~1!

wherex0(q,v) is the density-density response function o
noninteracting system,16 andG(q,v) is the frequency depen
dent ~dynamic! local-field factor. The plasmon dispersio
vpl(q) is readily obtained from the pole ofx(q,v), i.e.,
from the solution of

12V~q!@12G~q,vpl!#x0~q,vpl!50. ~2!

The RPA is recovered if we setG(q,v)50. In most appli-
cations, the local-field factor is approximated as freque
independent. In this static case, the plasmon energy is g
by12

vpl~q!/EF5~q/kF!~B11!S ~q/kF!21
4

B212BD 1/2

, ~3!

whereB5(q/kF)/(A2 r s@12G(q)#). Here EF5kF
2/2m* is

the Fermi energy andkF5A2pn is the Fermi wave vecto
~we set\51). In the case of dynamic local-field factor, th
plasmon dispersion has to be obtained numerically.
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We first recall some observations from the literature
the general behavior of plasmon dispersion relationvpl(q)
and how the correlation effects influence it. In general
correlation effects beyond the RPA lower the plasmon ene
so thatvpl(q) calculated using local-field factors lies belo
that calculated within the RPA. The reason for this is th
correlations effectively reduce the strength of the Coulo
interaction especially at large wave vectors. This behav
has been demonstrated in many examples.10,12,13Another in-
teresting fact is that when frequency dependent local-fi
factors are used the resultingvpl(q) is typically between
those calculated within the RPA and static local-field fact
Thus, in a sense we may think ofG(q,v) as giving rise to
weaker correlations than its static counterpart. These ob
vations are important because the recent experiments on
dilute 2D electron systems show that the measured value
vpl(q) are not too below the RPA result. As we shall see
Sec. III it is the dynamical nature of the correlation effec
that explains and fits the experimental data better.

In what concerns the static STLS approach one can
the analytical expressions for the static local-field factor o
2D electron gas making use of exact asymptotic behav
and accurate Monte Carlo data obtained recently by Davo
et al.17 Their G(q) may be regarded as the best availab
local-field factor satisfying all sum rules and limiting beha
ior. Qualitatively,G(q) constructed by Davoudiet al.17 re-
sembles the static STLS results at lowq, exhibits a peak
structure aroundq53.5kF , and grows linearly at largeq.
The shape ofG(q) at intermediate and largeq, however,
does not affect the plasmon dispersion which is availabl5,6

only for q&1.5kF .
We calculate the dynamic local-field factor within th

framework of dynamic STLS approximation12 appropriate
for a quasi-two-dimensional system. For a more realistic
scription of the physics involved the finite temperature
fects are includedbothat the level of density response fun
tions and the static structure factorS(q), while the finite
thickness of the sample is included by the infinite squ
well form factorF(qL),

G~q,v;T!52
1

nE dk

~2p!2

x0~q,k,v;T!

x0~q,v;T!

V~k!F~kL!

V~q!F~qL!

3@S~q2k;T!21#. ~4!

In this expressionx0(q,k,v;T) is the temperature depende
inhomogeneous free-electron response function to be defi
below andS(q;T) is the static structure factor, which can b
calculated through the fluctuation-dissipation theorem. At
nite temperature (TÞ0) the static structure factor is give
by:18

S~q;T!52
1

npE0

`

dv cothS v

2kBTD Im x~q,v;T!. ~5!

Using the integral representation of the Fermi function
can express the finite temperature response function in te
of zero-temperature counterpart19
8-2
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DYNAMIC CORRELATION EFFECTS ON THE PLASMON . . . PHYSICAL REVIEW B67, 115308 ~2003!
x0~q,u,v;m,T!5E
0

`

dm8x0~q,u,v;m8,T50!

1

4kBT cosh2@~m2m8!/~2kBT!#
. ~6!

The inhomogeneous free response function is defined as

x0~q,k;v!52
2

\E d2p

~2p!2

f ~p1\q/2!2 f ~p2\k/2!

v2p•q/m1 ih
,

~7!

where f (p) is the Fermi distribution function. More explic
itly, the real and imaginary parts of the inhomogeneous f
response function are given by

x08~q,u,v!52
kF

pq
$u/~qkF!1sgn~m1!

3u~m1
2 21!~m1

2 21!1/21sgn~m2!

3u~m2
2 21!~m2

2 21!1/2%, ~8!

x09~q,u,v!52
kF

pq
$u~12m1

2 !~12m1
2 !1/2

2u~12m2
2 !~12m2

2 !1/2%, ~9!

where u5q•k and m65@6v/(kFq)2u/(2kFq)#. sgn(x)
5x/uxu andu(x) is the unit step function. The correspondin
homogeneous expressions are easily obtained takingq5k.
In principle, Eqs.~1!–~5! are to be solved self-consistent
within the dynamic STLS scheme. Such a calculation is
borious and beyond the scope of this work. Instead, to h
light the effects of frequency dependence we resort to a s
pler approximation. We follow the derivation of the stat
Hubbard local-field correctionGH(q)5q/(2Aq21kF

2 within
the STLS approach given by Jonson.20 Here the Hartree-
Fock approximationS0(q;T) for the static structure factor i
used in evaluating Eq.~4!. S0(q;T) is obtained by simply
replacing in Eq.~5! the free density-density response fun
tion x0(q,v;T) instead of the fullx(q,v;T). This allows us
to obtainG(q,v) without a self-consistent calculation, an
as will be shown subsequently a good agreement with
perimental results is achieved. We recall here that Hw
and Das Sarma8 have also used the Hubbard local-field fac
by introducing a finite temperature generalization@i.e., re-
placing kF in the above expression forGH with k0(T)
5kF(T/TF)ln(11em/kBT)]. Our proposed scheme may be r
garded as thedynamicalversion of the static Hubbard ap
proximation to the local-field factor, which captures the e
sential features of the dynamic correlation effec
Physically, the Hubbard approximation takes the deplet
hole around electrons into account due to the Pauli princi

III. RESULTS AND DISCUSSION

We begin this section by comparing our numerical resu
for vpl(q) with those obtained in the RPA and the sta
G(q). In our calculations we use material parameters app
11530
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priate for GaAs systems. To set the stage for further disc
sions we show in Fig. 1 the plasmon energyvpl(q) of a
zero-thickness 2D electron system atT50 calculated in the
dilute regimer s510. The staticG(q) curve was obtained
using the static local-field factor of Davoudiet al.17 While at
small wave vectors (q&0.2kF) all theories are in good
agreement, at largerq values~recall that the measurements
Hirjibehedinet al.6 went up to 1.6kF) this is no longer true.
As it is expected the RPA yields the largest plasmon f
quency.vpl(q) calculated using static local-field factor is fa
below the RPA and enters the particle-hole continuum a
critical wave-vectorqc , which is small compared to tha
corresponding to the dispersion law as given by dynam
STLS. Another point to be noticed is thatvpl(q) calculated
with dynamic local-field factor always lies between the RP
result and that calculated with a static local-field factor. T
is in accordance with the experimental results, which sho
that vpl lies not too far below the RPA plasmon dispersi
curve.

To understand the differences between the dynamic
static local-field factors within the STLS we have also co
pared the corresponding local-field factors in Fig. 2. It tur
out that the inclusion of the frequency dependence in
STLS theory~calculated here in the dynamic Hubbard a
proximation! cause significant changes in the local-field fa
tor. We first note that at finite wave-vectors there is a b
difference even between the purely staticG(q) ~as calculated
by Davoudiet al.!17 andG(q,0), i.e., when the frequency i
set equal to zero. Second, theq dependence ofG(q,v) for
finite frequencies is similar to that ofG(q,0). Only for large
frequencies (v→`) the dynamic local-field factor ap
proaches the staticG(q).

We now compare our calculation of the plasmon disp

FIG. 1. Plasmon dispersions in a zero thickness 2D elec
system atr s510 andT50 as given by various theories. The dash
line indicates the result of RPA, dotted and solid lines indic
results using the staticG(q) and dynamicG(q,v), respectively as
explained in the text. The shaded region is the particle-hole c
tinuum.
8-3
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A. YURTSEVER, V. MOLDOVEANU, AND B. TANATAR PHYSICAL REVIEW B 67, 115308 ~2003!
sion curves with the experimental results of Hirjibehedinet
al.6 To make the comparisons more appropriate, the res
were obtained forL5330 Å, which is close to the experi
mental samples and the temperatures effects are fully in
porated. We use the experimentally quoted 2D electron d
sities, although a certain (10%) margin of uncertainty ex
in their determination. The temperatures are also given
terms of the Fermi temperatureTF of the corresponding
sample. Note that sinceT is of the same order or larger tha
TF the temperature effects cannot be neglected. Figur
showsvpl(q) as a function of the wave vector atr s58.7 and
r s519.7, which correspond to the highest- and lowe
density samples used in experiment.6 The experimental data
of Hirjibehedinet al.6 are indicated by solid dots. Results
our calculations using dynamic local-field factors are giv
by the solid lines. We observe that a good agreement ex
between our calculations and the experimental data.
comparison the finite temperature and quantum-well wi
corrected RPA and static local-field correctionG(q) results
are also plotted. We use the finite temperature and fi
width corrected static Hubbard approximation to calcul
G(q;T) and subsequently the plasmon dispersionvpl(q).
The discrepancy between the theoretical curves from R
and G(q,v) for large q values increases with increasingr s
showing thus how important the role of the correlation
fects are. Another important observation here is that
static Hubbard approximation leads tovpl(q) lying below
the experimental data. This demonstrates once more the
ure of the static approach to give an accurate estimate o
correlation effects in the largeq region of the plasmon dis
persion in low-density electron systems.

We extend the comparison with the experiment further
Fig. 4, where the data taken from Fig. 3 of Ref. 6 are sho
along with our calculations for a dilute sample (r s515.2) at
different temperatures. The reported temperaturesT

FIG. 2. The wave-vector dependence of dynamic and st
local-field corrections atr s510. Thick solid line—G(q), dotted
line—G(q,0), dash dotted line—Hubbard approximation, dash
line—G(q,v50.5EF).
11530
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50.25 K andT51.85 K correspond to 0.46TF and 3.4TF ,
respectively, for ther s515.2 sample, whereTF is the Fermi
temperature. Under these conditions, the temperature h
non-negligible impact on the plasmon dispersion. We obt
a similar level of agreement~not shown! at a larger tempera
ture T54.55 K(58.3TF), where the plasmon dispersion
largely determined by the temperature effects.

Finally in Fig. 5 one can distinguish the finite thickne
correction from the thermal effects on the plasmon disp
sion. The dotted line contains only correlation effectsT
50, L50). The dashed line (T50, L5330 Å) shows the
expected decrease invpl(q) due to the finite thickness. Im
portant remarks are to be traced from the full line that co
tains all corrections: finite temperature, finite thickness, a
dynamical correlation effects. First, the temperature ha
larger effect on the plasmon dispersion than the finite thi

ic

d

FIG. 3. Plasmon dispersion of the dilute 2D electron gas
different r s (L5330 Å). ~a! r s58.7, T51.85 K'1.1TF , ~b! r s

519.7, T51.85 K'5.7TF . RPA results are plotted with dashe
lines and the experimental data of Ref. 6 with solid circles. Dot
lines indicatevpl(q) using the static Hubbard approximation.
8-4
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DYNAMIC CORRELATION EFFECTS ON THE PLASMON . . . PHYSICAL REVIEW B67, 115308 ~2003!
ness~for the specific values chosen here! and second, within
our formalism all the above mentioned effects contributes
vpl(q) in such a way that the theoretical curve is in a go
agreement with the reported measurements. Having in m
the comparison made in Fig. 1 and the fact that for dil
samples the static local-field corrections was found to be
strong to be completely canceled with the thermal effec8

we are led to the conclusion that the good compensatio
the dynamical correlation effects is due to the fact that th
yield plasmon dispersion curve lying above that calcula
using static correlations.

From a theoretical standpoint the determination of ex
or physically relevant dynamic local-field factorG(q,v) is a
subject of interest. Starting from the early work of Czach
et al,21 there has been numerous attempts at calcula
G(q,v) for 2D electron-gas systems.22 As mentioned before
there are indications in the experimental data for plasm
dispersion and damping properties which put into evide
the importance of dynamic correlation effects. The go
agreement we obtain using a simple version ofG(q,v),
namely, the dynamic version of the Hubbard approximati
is somewhat surprising. We surmise that it should work b
ter than the fully self-consistent calculation within the d
namic STLS. Our results show the importance of dynam
correlation effects in low-density electron systems, but
amount of such effects embodied inG(q,v) appears to
rather delicately depend on the level of approximation be
used. Further theoretical work is necessary for clarificat
of the exact nature ofG(q,v). A different approach to dy-
namic correlation effects was taken by Neilsonet al.,23

where they employed Mori formalism to obtain the rela
ation function. However, their calculated plasmon disp
sions are slightly lower than those with static correlatio

FIG. 4. Temperature dependence of the plasmon dispersionr s

515.2 and L5330 Å). Dashed line corresponds toT50.25 K
'0.458TF and the full line toT51.85 K'3.39TF . Experimental
points of Ref. 6 are marked with solid circles.
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which would make the agreement with Hirjibehedinet al.6

data less satisfactory.

IV. SUMMARY

In this work we have considered the plasmon dispers
relation in a dilute 2D electron gas. Motivated by the rece
experiments on such systems we have found that the
served results are best understood in terms of dynamic
relation effects. The key ingredient of our approach is
wave vector and frequency dependent local-field fac
G(q,v), which embodies the exchange and correlation
fects beyond the simple RPA. We have demonstrated
inadequacy of purely static local-field factors in reproduci
the observed plasmon dispersions. Our calculations s
that a straightforward extension of the Hubbard approxim
tion, which now includes frequency and temperature dep
dence, can explain the experimentally observed plasmon
persions at very low-density samples. Further experiment
low density and temperatures and in the range of largq
values would be useful to assess the role of exchan
correlation effects. Theoretical work should concentrate
the systematic understanding of dynamical correlation
fects.
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( FIG. 5. Finite thickness and finite temperature contributions
the plasmon dispersion atr s515.2, L5330 Å, and T51.85 K
~solid line! along with the experimental data of Ref. 6~solid
circles!. Finite thickness, zero-temperature~dashed line! and zero-
thickness, zero-temperature~dotted line! dispersions are also draw
for comparison.
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Phys. Rev. B44, 6291~1991!.
8-6


