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Abstract The emergent universe scenario is a proposal for
resolving the Big Bang singularity problem in the standard
Friedmann–Lemaitre–Robertson–Walker cosmology. In the
context of this scenario, the Universe originates from a non-
singular static state. In the present work, considering the real-
ization of the emergent universe scenario, we address the
possibility of having a nonsingular Kantowski–Sachs type
static state. Considering four and five dimensional models
(with and without brane), it is shown that both the existence
and stability of a nonsingular state depend on the dimensions
of the spacetime and the nature of the fluid supporting the
geometry.

1 Introduction

Besides the great successes of standard model of cosmology
based on Einstein’s theory of general relativity (GR), there
still remain several theoretical issues. One attempt to resolve
these problems was the inflationary universe scenario [1–3].
Although the inflation resolves some of the problems such as
horizon problem, flatness problem and magnetic monopole
problem, but it is incapable of solving the initial big bang sin-
gularity problem. In the standard model of cosmology, the
Universe originates from an initial singular point where all
the mass, energy, and spacetime are infinitely compressed. To
cure this singularity problem, some models such as the ekpy-
rotic/cyclic universe [4–8], the pre-big bang [9,10], and the
emergent universe [11,12] have been proposed. In the latter
scenario proposed by Ellis et al. [11,12], the Universe has no
timelike singularity, it is ever existing and stands almost static
in the infinite past. The emergent model replaces the initial
big bang singularity with a nonsingular static state, the so
called Einstein static state (ESS). Then, the Universe enters
to an inflationary era and produces the same cosmological
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history as in the standard model. The existence of a stable
ESS against various perturbations, such as quantum fluctu-
ations, is a prerequisite for a successful emergent universe
scenario. The original emergent model supposes an ESS that
is characterized by Friedmann–Lemaitre–Robertson–Walker
(FLRW) metric with a perfect fluid source. In the framework
of Einstein’s GR, it was demonstrated by Eddington that an
ESS is unstable versus the homogeneous and isotropic pertur-
bations [13,14]. Later studies by Gibbons [15,16] and Bar-
row et al. [17] showed that an ESS can be neutrally stable
versus small inhomogeneous vector and tensor perturbations
as well as adiabatic scalar density perturbations if the per-
fect fluid filling the universe has a sound speed c2

s > 1/5.
An approach to amend the instability problem is to modify
cosmological field equations of GR. Many works has been
performed along this line in the context of modified theo-
ries of gravity such as Einstein–Cartan theory [18,19], f (R)

gravity [20–23], f (T )gravity [24,25], brane gravity [26–28],
massive gravity [29,30] and modified Gauss–Bonnet gravity
[31,32] among the others.

The emergent universe scenario has been analyzed in Ein-
stein’s GR and modified theories only for the FLRW space-
time. One interesting question that can be raised here is: can
a non-FLRW static state be a seed for an emergent universe?
To answer this question, one may consider Kantowski–Sachs
(KS) [33] or Bianchi type cosmological models [34,35] and
investigate their stability versus various perturbations. Our
aim in the present work is to explore the former. KS mod-
els are spatially homogeneous and rotation-free but possess
shear. Hence, they represent anisotropic universes. However,
it is shown that the initial anisotropies in the context of these
models die away as the universe expands from the initial sin-
gularity if there is a positive cosmological constant, which
is effectively the requirement for an inflation scenario in the
early stages of our universe [36,37]. Therefore, the universe
could be initially anisotropic KS type, and then it passes
through the inflation and its subsequent cosmological eras
toward the current homogeneous and isotropic state. In [36],
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KS type anisotropic cosmological models are classified in
the presence of a nonzero cosmological constant. It is shown
that for a positive cosmological constant there exists a set of
big bang models of zero measure as well as a set of mod-
els possessing nonzero measure with the de Sitter asymp-
totic. In [38], nonsingular KS type cosmological solutions are
obtained in a quantum-corrected Einstein gravity. In deriv-
ing these analytical solutions, the authors used the analogy
with the Nariai black hole. The global structure of the KS
cosmological models are studied in [39]. It has been shown
that if the energy–momentum source is a perfect fluid, all the
general relativistic models are geodesically incomplete, both
to the past and to the future, and the energy density of the per-
fect fluid diverges at each resulting singularity. In [40], KS
models are examined versus the classical tests of cosmology,
and the results have been compared with those belonging to
FLRW spacetime in the standard model of cosmology. It is
shown that for a large class of KS models, the observations
are incapable of distinguishing between KS models and the
standard model of cosmology. The reference [41] discusses
the growth of density perturbations in KS cosmologies in the
presence of a positive cosmological constant. It is found that
when a bounce occurs in the cosmic scale factor, the den-
sity gradient in the bouncing directions experiences a local
maximum at or slightly after the bounce.

The organization of this paper is as follows. In Sect. 2, we
introduce the Kantowski–Sachs metric and its corresponding
Einstein field equations in four dimensions. We obtain the
existence and stability conditions versus the scalar perturba-
tions for a Kantowski–Sachs static state (KSSS) for various
energy–momentum sources with generic linear and Chaply-
gin gas type equations of state. The analysis in four dimen-
sions shows that there is only one particular fluid type that
can support a nonsingular KSSS. In Sect. 3, regarding the
result in Sect. 2 and motivated by the fact that anisotropic
models can be exact solutions to the string effective action
[42], we apply our analysis to a braneworld generalization of
the model in which a four dimensional KS spacetime embed-
ded in a five dimensional bulk space. The conditions for the
existence and stability of a nonsingular KSSS are also dis-
cussed in this framework for various fluid types. In Sect. 4,
the stability analysis is done for a 5-dimensional KS model
without the brane. Finally, Sect. 5 is devoted to our conclud-
ing remarks.

2 KS geometry in four dimensions

We consider that the spacetime metric is the KS type [33]

ds2 = −dt2 + a2
1(t)dr2 + a2

2(t)(dθ2 + sin2θdϕ2), (1)

where a1(t) and a2(t) are two arbitrary functions of time and
the energy–momentum tensor supporting this geometry has

the generic form Tμ
ν = diag (−ρ, pr , pt , pt ) [43]. Then,

the Einstein field equations considering the above metric and
energy–momentum source read as

ȧ2
2

a2
2

+ 2ȧ1ȧ2

a1a2
+ 1

a2
2

= � + k4ρ, (2)

2ä2

a2
+ ȧ2

2

a2
2

+ 1

a2
2

= � − k4 pr , (3)

ä1

a1
+ ä2

a2
+ ȧ1ȧ2

a1a2
= � − k4 pt , (4)

where k4 = 8πG is the four dimensional gravitational cou-
pling constant and � is a generic (positive or negative) cos-
mological constant.

2.1 KSSS and stability analysis in four dimensions

In the following, we investigate the existence and stability
of KS type static state considering the field equations (2)–
(4). To keep the generality of the analysis, we consider two
generic kinds of energy–momentum sources: (i) a fluid pos-
sessing linear equation of state, and (ii) a fluid with general-
ized Chaplygin gas type equations of state.

2.1.1 Energy–momentum source with linear equations of
state

For the sake of generality, here we consider distinct equa-
tions of state for the radial and lateral pressures pr and pt ,
respectively, as [43–45]

pr = ωrρ + p0r , pt = ωtρ + p0t . (5)

Then, the field equations (2)–(4) become

ȧ2
2

a2
2

+ 2ȧ1ȧ2

a1a2
+ 1

a2
2

= � + k4ρ, (6)

2ä2

a2
+ ȧ2

2

a2
2

+ 1

a2
2

= � − k4ωrρ − k4 p0r , (7)

ä1

a1
+ ä2

a2
+ ȧ1ȧ2

a1a2
= � − k4ωtρ − k4 p0t . (8)

The static state corresponding to the above system of non-
linear differential equations is defined as ȧ1(t) = ȧ2(t) =
ρ̇(t) = 0. Then, considering the identifications a1 = a01,
a2 = a02 and ρ = ρ0 for the static state, through the field
equations (6)–(8), we obtain

1

a2
02

= � + k4ρ0, (9)

1

a2
02

= � − k4ωrρ0 − k4 p0r , (10)

0 = � − k4ωtρ0 − k4 p0t . (11)
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From (11), the sign of � depends on the sign of ωt and p0t .
Using Eqs. (9) and (10), we have

p0r = −(1 + ωr )ρ0 = ωe f f ρ0. (12)

From (11), one gets the following relation for p0t

p0t = −ωtρ0 + �

k4
. (13)

The Eqs. (12) and (13) represent the constant radial and lat-
eral effective equations of state of the fluid supporting the
static state.

Now, to study the stability of the static state given in Eqs.
(9)–(11), we apply the scalar perturbations to the dynamical
quantities of the system (6)–(8), i.e. the scale factors a1(t)
and a2(t) and the energy density ρ(t), as

a1(t) −→ a01 (1 + δa1(t)) ,

a2(t) −→ a02 (1 + δa2(t)) ,

ρ(t) −→ ρ0 (1 + δρ(t)) . (14)

Hence, the perturbed field equations up to the first order take
the following form

1

a2
02

− 2δa2

a2
02

= � + k4ρ0 + k4ρ0δρ, (15)

2δä2 + 1

a2
02

− 2δa2

a2
02

= � − k4ωrρ0δρ − k4ωrρ0 − k4 p0r ,

(16)

δä1 + δä2 = � − k4ωtρ0δρ − k4ωtρ0 − k4 p0t . (17)

Using the constraints given by Eqs. (9)–(11), one can reduce
these perturbation equations to

2δa2

a2
02

= −k4ρ0δρ, (18)

2δä2 − 2δa2

a2
02

= −k4ωrρ0δρ, (19)

δä1 + δä2 = −k4ωtρ0δρ. (20)

Substituting (18) in (19) leads to

δä2 + γ 2δa2 = 0, (21)

where

γ 2 = −1 + ωr

a2
02

= ωe f f

a2
02

. (22)

Hence, one realizes that the oscillating modes for δa2

δa2 = C1e
iγ t + C2e

−iγ t , (23)

requires the constraint

ωr < −1. (24)

Similarly, using (18), (19) and (20), we obtain

2δä1 = k4(1 + ωr − 2ωt )ρ0δρ. (25)

Combining (18) and (19) gives

δρ = −2δä2

k4(1 + ωr )ρ0
, (26)

where substituting in (25) yields

δä1 =
(

2ωt

1 + ωr
− 1

)
δä2, (27)

which represents the relation between the radial and lateral
perturbations. Twice integration of this equation gives

δa1 =
(

2ωt

1 + ωr
− 1

)
δa2 + C3t + C4 (28)

where C3 and C4 are integration constants. Regarding (23),
the above equation implies that the stable oscillatory modes
in δa1 is subjected to the conditionC3 = C4 = 0. In this case,
the amplitude of the perturbations along the radial direction
depends explicitly on the nature of the fluid, i.e on the equa-
tions of state parameters. For the particular case ωt = 1+ωr ,
the perturbation amplitude on the radial and lateral directions
are the same.

In the following, we elaborate on two specific forms of
the fluid (5) and discuss on the stability of KSSS.

2.1.1.1 Perfect fluid
Considering a perfect fluid form for the supporting matter

fields by setting ωr = ωt = ω and p0r = p0t = 0, Eqs. (9)–
(11) for the static state reduce to

1

a2
02

= � + k4ρ0, (29)

1

a2
02

= � − k4ωρ0, (30)

0 = � − k4ωρ0. (31)

Substituting p0r = 0 into Eq. (12), one gets either wr = −1
or ρ0 = 0. The same result can be observed by comparing the
equations (29) and (30). If ρ0 = 0, Eqs. (29) and (30) will be
source free (because of (31)) and cannot be held anymore for
finite a0. If ω = ωr = ωt = −1 for a perfect fluid, Eq. (31)
(which demands � < 0) is inconsistent with Eqs. (29) and
(30). In either way, one observes that having a finite size
static sate for the KS spacetime is impossible. Then, a per-
fect fluid cannot support a nonsingular KSSS. Hence, for the
realization of a stable nonsingular KSSS, the modification of
the perfect fluid from is inevitable.

2.1.1.2 Anisotropic fluid
Here, we consider two possible minimal modifications of

the perfect fluid form leading to anisotropic fluids: (1) a fluid
having different equations of state parameters on the radial
and lateral directions, and (2) a fluid modifying the perfect
fluid form with distinct constant pressures on the radial and
lateral directions.
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Type 1:
In this case, considering two different equations of state

parameters for the radial and lateral directions we have

pr = ωrρ, pt = ωtρ. (32)

Then, Eqs. (9)–(11) governing the static state reduce to

1

a2
02

= � + k4ρ0, (33)

1

a2
02

= � − k4ωrρ0, (34)

0 = � − k4ωtρ0. (35)

Satisfaction of (35) demands that � and ωt have the same
sign. Comparing Eqs. (33) and (34) we obtains the constraint
ωr = −1 on the equation of state in the radial direction to
have a nonsingular static state. On the other hand, we have
seen that the stability of KSSS demands ωr < −1, i.e. Eq.
(24). Therefore, one can conclude that the anisotropic fluid
from defined in (32) can support a static state but this static
state is not stable versus the scalar perturbations (14).
Type 2:

We consider a fluid modifying the perfect fluid form by
distinct constant pressures on the radial and lateral directions.
For this aim, we introduce the constant pressure terms p0t and
p0r to the equations of state of the fluid with ωr = ωt = ω.
In this case, the equations in (5) become

pr = ωρ + p0r , pt = ωρ + p0t . (36)

Then Eqs. (12) and (13) for the static state reduce to

p0r = −(1 + ω)ρ0,

p0t = −ωρ0 + �

k4
. (37)

Combining them gives the following relation between the
constant pressures p0r and p0t

p0t − p0r = ρ0 + �

k4
. (38)

In the case ρ0 + �
k4

= 0, we face an inconsistency in the
static state given by Eqs. (9)–(11). Thus, to have a static state
we consider ρ0 + �

k4
�= 0. In this case, γ 2 given by Eq. (22)

becomes

γ 2 = −1 + ω

a2
02

. (39)

Therefore, the positivity condition on γ 2 to have a stable
nonsingular static state demands

ω < −1, (40)

which means that the fluid supporting the geometry lies in
the phantom range.

For the stability of this case, the oscillatory modes of δa2

is given by Eq. (23) with γ in (154). The dynamics of δa1

from Eq. (28) reads as

δa1 =
(

ω − 1

ω + 1

)
δa2 + C3t + C4, (41)

where for C3 = C4 = 0, the oscillatory modes are possible
and hence the static state will be stable. Regarding the stabil-
ity requirement (155), one notes that although the perturba-
tion in both directions have the same sign but the amplitude
of the perturbations on the radial direction is always greater
than the perturbations on the lateral direction.

2.1.2 Energy–momentum source with generalized
Chaplygin gas equation of state

Here, we consider a generalization of the Chaplygin gas type
fluid [46–48] for the energy–momentum source possessing

pr = −αr

ρn
, pt = − αt

ρm
. (42)

where 0 ≤ m, n ≤ 1, αr and αt are positive constants. If
αr = αt and m = n = 1, the energy–momentum source
reduces to the generalized Chaplygin gas in [48]. The equa-
tions governing a static state have the form

1

a2
02

= � + k4ρ0, (43)

1

a2
02

= � + k4
αr

ρn
0
, (44)

0 = � + k4
αt

ρm
0

. (45)

Satisfaction of (45) demands � < 0 for αt > 0. Then,
using (14), the perturbed field equations around the static
state given by Eqs. (43)–(45) reduce to

2δa2

a2
02

= −k4ρ0δρ, (46)

2δä2 − 2δa2

a2
02

= −nk4
αr

ρn
0
δρ, (47)

δä1 + δä2 = −mk4
αt

ρm
0

δρ. (48)

Combining (46) and (47), we obtain

δä2 + γ 2δa2 = 0, (49)

where

γ 2 = −nαrρ
−(n+1)
0 + 1

a2
02

. (50)

Here, one observes that since αr > 0, then γ 2 < 0 and
consequently there are no oscillatory modes for δa2 and δa1.

We recapitulate our analysis in this section as follows.
It is proved that in the context of Einstein’s GR in four
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dimensions: (i) a perfect fluid source cannot support a finite
size static KS geometry, (ii) an anisotropic fluid with lin-
ear equations of state pr = ωrρ and pt = ωtρ supports a
finite size static KS geometry but it is not stable against the
scalar perturbations, (iii) a modification in the linear equa-
tion of state of the perfect fluid form as pr = ωρ + p0r and
pt = ωρ + p0t can support a stable nonsingular KS type
static state, and (iv) a generalized Chaplygin gas fluid having
pr = − αr

ρn , pt = − αt
ρm cannot support a stable nonsingular

KS geometry in four spacetime dimensions.
In the following section, since anisotropic models are

exact solutions to the string theory, we investigate the exis-
tence and stability conditions for a KSSS in a five dimen-
sional gravity theory, and show how the extra dimensional
geometric modifications affect the results in four dimensions.

3 KS geometry on the brane

We consider the five dimensional action [49]

S =
∫

d5x
√−G

(
1

2k5
R − �5

)

+
∫

ξ=0
d4x

√−g

(
1

k5
K± − λ + Lmatter

)
, (51)

where k5 = 8πG5, G, g, R, �5, λ, and Lmatter are the
5-dimensional gravitational coupling constant, trace of the
bulk space’s metric GAB , trace of the brane’s metric gμν ,
bulk space’s Ricci scalar, bulk and brane vacuum energy, and
the Lagrangian of the confined matter fields to brane, respec-
tively. Also, xμ with μ = 0, . . . , 3 represents the coordinates
of the brane while ξ represents the single extra dimension
orthogonal to the brane, and K± is the extrinsic curvature on
either sides of the brane.

Variation of the action (51) with respect to the bulk metric
GAB gives the 5D Einstein field equations

(5)Gab = k5
(5)Tab,

(5)Tab = −�5Gab + δ(ξ)
(−λGab + Tmatter

ab

)
, (52)

where a, b = 0, . . . , 4. In order to keep the generality of
our analysis, similar to the four dimensional case, we con-
sider the energy–momentum tensor Tmatter

μν corresponding to
Lmatter on the brane as Tμ

ν = diag (−ρ, pr , pt , pt ) [43].
Considering the bulk space metric in the form

ds2 = (NaNb + gab) dx
adxb, (53)

where Na represents the unit normal vector to the hypersur-
face ξ = constant and gab is the induced metric on this
hypersurface, the induced field equations on the brane take
the following form [50–52]

Gμν = −�gμν + k4Tμν + k2
5Sμν − Eμν, (54)

in which

Sμν = 1

12
T Tμν − 1

4
T α

μ Tαν + 1

24
gμν(3T

αβTαβ − T 2).

Here � = k5(�5 + k5λ
2/6) is the effective cosmological

constant on the brane, and Eab = Cabcd NaNb where Cabcd

represents the 5-dimensional Weyl tensor of the bulk space.
Considering the brane cosmology with zero Weyl tensor

and a generic energy–momentum tensor possessing the form
we mentioned above, the Einstein field equations for the met-
ric (1) on the brane read as

ȧ2
2

a2
2

+ 2ȧ1ȧ2

a1a2
+ 1

a2
2

= � + k4ρ + 1

12
k2

5(ρ2 − p2
r − p2

t + 2pr pt ), (55)

2ä2

a2
+ ȧ2

2

a2
2

+ 1

a2
2

= � − k4 pr − 1

12
k2

5(ρ2 − p2
r + p2

t + 2ρpt ), (56)

ä1

a1
+ ä2

a2
+ ȧ1ȧ2

a1a2

= � − k4 pt − 1

12
k2

5(ρ2 + p2
r + ρpr + ρpt − pr pt ).

(57)

3.1 KSSS and stability analysis on the brane

In the following, we investigate the existence and stability
of KS type static state on the 4D brane considering the field
equations (55)–(57). For the sake of generality of the analysis,
we study two generic kinds of energy–momentum sources:
(i) the sources possessing linear equation of state, and (ii)
the sources with generalized Chaplygin gas type equation of
state.

3.1.1 Energy–momentum source with linear equations of
state

We consider a general equation of state with the form given
in (5), and introduce the parameters

A = 1

12
k2

5(1 − ω2
r − ω2

t + 2ωrωt ),

B = k4 + 1

6
k2

5 (ωr (p0t − p0r ) + ωt (p0r − p0t )) ,

C = 1

12
k2

5(2p0r p0t − p2
0r − p2

0t ),

D = 1

12
k2

5(1 − ω2
r + ω2

t + 2ωt ),

E = 1

6
k2

5(ωt p0t − ωr p0r + p0t ) + k4ωr ,

F = 1

12
k2

5(p2
0r − p2

0t ) − k4 p0r ,
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G = 1

12
k2

5(1 + ω2
r + ωr + ωt − ωrωt ),

H =k4ωt+ 1

12
k2

5 (ωr (2p0r − p0t )−ωt p0r + p0r + p0t ) ,

I = 1

12
k2

5(p0r p0t − p2
0r ) − k4 p0t . (58)

Hence the field equations (55)–(57) reduce to the following
forms

ȧ2
2

a2
2

+ 2ȧ1ȧ2

a1a2
+ 1

a2
2

= � + Aρ2 + Bρ + C, (59)

2ä2

a2
+ ȧ2

2

a2
2

+ 1

a2
2

= � − Dρ2 − Eρ + F, (60)

ä1

a1
+ ä2

a2
+ ȧ1ȧ2

a1a2
= � − Gρ2 − Hρ + I. (61)

For a static state defined by ȧ1 = ȧ2 = ä1 = ä2 = 0, let
a1 = a01, a2 = a02 and ρ = ρ0. Then, the field equations
(59)–(61) give

1

a2
02

= � + Aρ2
0 + Bρ0 + C, (62)

1

a2
02

= � − Dρ2
0 − Eρ0 + F, (63)

0 = � − Gρ2
0 − Hρ0 + I. (64)

The Using equations (62) and (63), we have the constraint
equation for ρ0

(A + D)ρ2
0 + (B + E)ρ0 + C − F = 0, (65)

Now, to study the stability of static state defined in (62)–
(64), we consider the scalar perturbations in the form of
Eq. (14). Keeping up to the first order perturbation terms,
Eqs. (59)–(61) give

1

a2
02

− 2δa2

a2
02

= � + Aρ2
0 (1 + 2δρ) + Bρ0(1 + δρ) + C,

(66)

2δä2 + 1

a2
02

− 2δa2

a2
02

= � − Dρ2
0 (1 + 2δρ) − Eρ0(1 + δρ) + F,

(67)
δä1 + δä2 = � − Gρ2

0 (1 + 2δρ) − Hρ0(1 + δρ) + I.

(68)

Using the constraints given by Eqs. (62)–(64), one can reduce
above equations to

−2δa2

a2
02

= (2Aρ2
0 + Bρ0)δρ, (69)

2δä2 − 2δa2

a2
02

= (−2Dρ2
0 − Eρ0)δρ, (70)

δä1 + δä2 = (−2Gρ2
0 − Hρ0)δρ. (71)

From Eq. (69), we have

δρ = − 2

a2
02(2Aρ2

0 + Bρ0)
δa2, (72)

where substituting in Eq. (70) leads to

δä2 + α2δa2 = 0, (73)

where

α2 = − 1

a2
02

(
1 + 2Dρ0 + E

2Aρ0 + B

)
. (74)

Hence, the oscillating modes for δa2 requires

1 + 2Dρ0 + E

2Aρ0 + B
< 0. (75)

The solution to Eq. (73) with the condition (75) is

δa2 = C1e
iαt + C2e

−iαt , (76)

which shows the oscillatory behavior of δa2.
On the other hand, combining Eqs. (69), (70) and (71)

gives

2δä1 = ((2A + 2D − 4G)ρ2
0 + (B + E − 2H)ρ0)δρ, (77)

and subtracting (70) from (69) leads to

2δä2 = −((2A + 2D)ρ2
0 + (B + E)ρ0)δρ. (78)

Hence, using (78) and (77) we obtain

δä1 = βδä2, (79)

where β is defined as

β = 4Gρ0 + 2H

(2A + 2D)ρ0 + B + H
− 1. (80)

Twice integration of equation (79) gives

δa1 = βδa2 + C3t + C4. (81)

This shows that δa1 can also have an stable oscillatory mode
if C3 = C4 = 0, and

2(A + D)ρ0 + B + H �= 0. (82)

Hence, both the conditions in (75) and (82) should be satis-
fied to have a stable static state. This result holds for a fluid
with the general form of equation of state (5). In Fig. 1, the
existence and stability conditions (i.e. Eqs. (64), (65), (75)
and (82)) for a static state are plotted for some typical values
of the parameters. The presence of some ρ0 > 0 ranges rep-
resents the satisfaction of the constraints that means a stable
static state exists for the given values of the parameters. The
intersection of Y = 0 and � = 0 lies in the range ωr < −1
that guarantees a stable static state. When p0r = 0.1 and
p0t = 0.2, ωt should be also negative, but for p0r = 0.1,
p0t = −0.1, and small amounts of ρ0 > 0 , the constraints
for having a stable static state can be satisfied for a positive
value of ωt . It is also clear from Fig. 1 that, in this setup,
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changing the value of p0t did not affect the result of Eq. (65),
but have a significant effect on Eq. (64) for small values of
ρ0 > 0.

In the following, we consider some special types of fluids
and discuss under what conditions these fluids can support a
nonsingular KSSS on the brane.

3.1.1.1 Perfect fluid
In this case, we consider perfect fluid which means ωr =

ωt = ω and p0r = p0t = 0. Then, the coefficients A to I
defined in Eq. (58) reduce to

A = 1

12
k2

5,

B = k4,

D = G = 1

12
k2

5(1 + 2ω),

E = H = k4ω,

C = F = I = 0. (83)

For the the static state given by Eqs. (62)–(64), one obtains

1

a2
02

= � + 1

12
k2

5ρ2
0 + k4ρ0, (84)

1

a2
02

= � − 1

12
k2

5(1 + 2ω)ρ2
0 − k4ωρ0, (85)

0 = � − 1

12
k2

5(1 + 2ω)ρ2
0 − k4ωρ0. (86)

Similar to four dimensions, these equations lead to

1

a2
02

= 0, (87)

which means that a perfect fluid cannot support a KSSS even
in the presence of higher dimensional modifications.

3.1.1.2 Anisotropic fluid
In four dimensions, we showed that a stable static state can

exist only for an anisotropic fluid of Type 2. Here, we show
that in the presence of higher dimensional modifications to
the field equations, both Type 1 and Type 2 fluids can support
a stable nonsingular KSSS.
Type 1:

In this case we consider equations of state in (32). Hence,
the coefficients A to I defined by Eq. (58) reduce to

A = 1

12
k2

5(1 − ω2
r − ω2

t + 2ωrωt ),

B = k4,

D = 1

12
k2

5(1 − ω2
r + ω2

t + 2ωt ),

E = k4ωr ,

G = 1

12
k2

5(1 + ω2
r + ωr + ωt − ωrωt ),

H = k4ωt ,

C = F = I = 0. (88)

Then the constraints (64) and (65) for the existence of a static
state, respectively, become

�−
(

1

12
k2

5(1+ω2
r +ωr +ωt−ωrωt )

)
ρ2

0 −k4ωtρ0 =0,

(89)

and

1

6
k2

5(1 − ω2
r + ωt + ωrωt )ρ

2
0 + k4(1 + ωr )ρ0 = 0. (90)

Also the conditions (75) and (82) to have an oscillatory mode,
respectively, become

1
6k

2
5(1 − ω2

r + ω2
t + 2ωt )ρ0 + k4ωr

1
6k

2
5(1 − ω2

r − ω2
t + 2ωrωt )ρ0 + k4

< −1, (91)

and

ρ0 �= − 3k4

k2
5

(
1 + ωr (ωt−ωr )

1+ωt

) . (92)

Thus, in contrast to four dimensions, the anisotropic fluid of
Type 1 can support a stable nonsingular ESU on the brane
under the conditions (89)–(92). In Fig. 2, these conditions
are plotted for some typical values of the parameters. We
see from the figure that the constraints can be satisfied for
ρ0 > 0. This means a stable static state do exist for the given
values of the parameters. In this case, it is obvious that to
have a stable static state we need ωr < −1, but ωt can have
any value in the given range of −1.5 < ωt < 1.
Type 2:

Now we consider anisotropic fluid given in (36). Thus, the
coefficients in (58) become

A = 1

12
k2

5,

B = k4,

C = 1

12
k2

5(2p0r p0t − p2
0r − p2

0t ),

D = G = 1

12
k2

5(1 + 2ω),

E = 1

6
k2

5(ωp0t − ωp0r + p0t ) + k4ω,

F = 1

12
k2

5(p2
0r − p2

0t ) − k4 p0r ,

H = k4ω + 1

12
k2

5(ωp0r − ωp0t + p0r + p0t ),

I = 1

12
k2

5(p0r p0t − p2
0r ) − k4 p0t . (93)

Then the constraints (64) and (65) obtained for the existence
of a static state, respectively, become

� − 1

12
k2

5(1 + 2ω)ρ2
0

−
(
k4ω + 1

12
k2

5(ωp0r − ωp0t + p0r + p0t )

)
ρ0
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Fig. 1 The left plots show the
intersecting surfaces
corresponding to constraints
(64) and (65) for having a static
state. Y = 0 represents equation
(64) and � = 0 represents
equation (65). The right plots
show the intersection of surfaces
for the existence conditions in
the solution space of stability
conditions, i.e equations (75)
and (82). The curves in the right
plots satisfy all the conditions
(64),(65),(75) and (82) to have a
totally stable static state. We
used the typical values of
p0r = 0.1 and p0t = 0.2 for the
first line and p0r = 0.1 and
p0t = −0.1 for the second line.
We also assumed k4 = 1,
k5 = 1.5, � = 10−5

Fig. 2 The first plot shows the intersecting surfaces corresponding to
constraints (89) and (90) for having a static state. Y = 0 and � = 0
represent equations (89) and (90), respectively. The second plot shows
the intersection of surfaces for the existence conditions in the solution
space of stability conditions, i.e Eqs. (91) and (92). The value of the

parameters in blue in the second plot satisfy all the conditions (89),
(90), (91) and (92) to have a totally stable static state. The used typical
values and ranges are: k4 = 1, k5 = 1.5, p0r = 0, p0t = 0, � = 10−5,
−1.5 < ωr , ωt < 1, 0.0001 < ρ0 < 5

123



Eur. Phys. J. C (2021) 81 :557 Page 9 of 14 557

Fig. 3 The figures show the contours for constraints (94) and (95) in
the solution space of equations (96) and (97). Y = 0 represents equation
(94) and � = 0 represents equation (95). The used typical values and
ranges are: k4 = 1, k5 = 1.5, � = 10−5, −1 < p0r , p0t < 1, and
ω = − 3

2 . Here, the surfaces Y = 0 and � = 0 intersect on a line that
means the satisfaction of all the conditions (94),(95),(96) and (97)

+ 1

12
k2

5(p0r p0t − p2
0r ) − k4 p0t = 0, (94)

and

1

6
k2

5(1 + ω)ρ2
0

+
(
k4(1 + ω) + 1

6
k2

5(ωp0t − ωp0r + p0t )

)
ρ0

+1

6
k2

5(p0r p0t − p2
0r ) + k4 p0r = 0. (95)

In this case, the conditions (75) and (82) governing the sta-
bility of the the static state become

1
6k

2
5(1 + 2ω)ρ0 + 1

6k
2
5(ωp0t − ωp0r + p0t ) + k4ω

1
6k

2
5ρ0 + k4

< −1,

(96)

and

ρ0 �= −3k4

k2
5

− 1

4

(
p0r + p0t (

1 − ω

1 + ω
)

)
. (97)

Figure 3 shows the possibility of satisfying the conditions
(94)–(97). Similar to GR, considering ω < −1, we can have
a stable static state for the given value of parameters.

3.1.2 Energy–momentum source with generalized
Chaplygin gas equation of state

For an energy–momentum source with a generalized Chap-
lygin equation of state of the form (42), the Einstein field
equations on the brane will be

ȧ2
2

a2
2

+ 2ȧ1ȧ2

a1a2
+ 1

a2
2

= � + k4ρ + 1

12
k2

5

(
ρ2 − α2

r

ρ2n − α2
t

ρ2m + 2
αrαt

ρm+n

)
,

(98)

2ä2

a2
+ ȧ2

2

a2
2

+ 1

a2
2

= � + k4
αr

ρn
− 1

12
k2

5

(
ρ2 − α2

r

ρ2n + α2
t

ρ2m − 2
αt

ρm−1

)
,

(99)
ä1

a1
+ ä2

a2
+ ȧ1ȧ2

a1a2

= � + k4
αt

ρm
− 1

12
k2

5

×
(

ρ2 + α2
r

ρ2n − αr

ρn−1 − αt

ρm−1 − αrαt

ρm+n

)
. (100)

The corresponding static state is given by the following equa-
tions

1

a2
02

= � + k4ρ0 + 1

12
k2

5

(
ρ2

0 − α2
r

ρ2n
0

− α2
t

ρ2m
0

+ 2
αrαt

ρm+n
0

)
,

(101)

1

a2
02

= � + k4
αr

ρn0
− 1

12
k2

5

(
ρ2

0 − α2
r

ρ2n
0

+ α2
t

ρ2m
0

− 2
αt

ρm−1
0

)
,

(102)

0 = � + k4
αt

ρm0
− 1

12
k2

5

(
ρ2

0 + α2
r

ρ2n
0

− αr

ρn−1
0

− αt

ρm−1
0

− αrαt

ρm+n
0

)

. (103)

Combining Eqs. (101) and (102) we get

k4

(
ρ0 − αr

ρn
0

)
+ 1

6
k2

5

(
ρ2

0 − α2
r

ρ2n
0

+ αrαt

ρm+n
0

− αt

ρm−1
0

)
= 0

(104)

Thus to have a static state the constrains (103) and (104)
should be satisfied. Then, the perturbed field equations versus
the scalar perturbations (14) take the forms

1

a2
02

− 2δa2

a2
02

= � + k4ρ0(1 + δρ)

+ k2
5

12

(
ρ2

0 (1 + 2δρ) − α2
r

ρ2n
0

(1 − 2nδρ)

− α2
t

ρ2m
0

(1 − 2mδρ) + 2
αrαt

ρm+n
0

(1 − (n + m)δρ)

)
,

123



557 Page 10 of 14 Eur. Phys. J. C (2021) 81 :557

(105)

2δä2 + 1

a2
02

− 2δa2

a2
02

= � + k4
αr

ρn
0

(1 − nδρ)

− k2
5

12

(
ρ2

0 (1 + 2δρ) − α2
r

ρ2n
0

(1 − 2nδρ)

+ α2
t

ρ2m
0

(1 − 2mδρ) − 2αt

ρm−1
0

(1 − (m − 1)δρ)

)
,

(106)

δä1 + δä2 = � + k4
αt

ρm
0

(1 − mδρ)

− k2
5

12

(
ρ2

0 (1 + 2δρ) + α2
r

ρ2n
0

(1 − 2nδρ)

− αr

ρn−1
0

(1 − (n − 1)δρ

)

− αt

ρm−1
0

(1 − (m − 1)δρ) − αrαt

ρm+n
0

(1 − (n + m)δρ)).

(107)

Using Eqs. (101) to (103) and defining

A = k4ρ0 + k2
5

6

(
ρ2

0 + n
α2
r

ρ2n
0

+ m
α2
t

ρ2m
0

−(n + m)
αrαt

ρm+n
0

)
, (108)

B = −nk4
αr

ρn
0

− k2
5

6

(
ρ2

0 + n
α2
r

ρ2n
0

− m
α2
t

ρ2m
0

+(m − 1)
αt

ρm−1
0

)
, (109)

C = −mk4
αt

ρm
0

− k2
5

12

(
2ρ2

0 − 2n
α2
r

ρ2n
0

+ (n − 1)
αr

ρn−1
0

+(m − 1)
αt

ρm−1
0

+ (n + m)
αrαt

ρm+n
0

)
. (110)

The perturbed equations (105) to (107) reduce to

− 2δa2

a2
02

= Aδρ, (111)

2δä2 − 2δa2

a2
02

= Bδρ, (112)

δä1 + δä2 = Cδρ. (113)

Combining (111) and (112) we obtain

δä2 +
(
B

A
− 1

)
1

a2
02

δa2 = 0. (114)

Then an oscillatory mode for δa2 is subjected to the condition

B

A
> 1. (115)

Combining Eqs. (111)–(113), we also obtain

− 2δä1 = (−2C + B − A)δρ. (116)

Fig. 4 This figure shows the surfaces which satisfy equations (100)
and (104) in the solution space of equation (115). Q = 0 and W =
0 represent equations (100) and (104), respectively, and their overlap
shows the region in which we have a stable static state. The used typical
values are: k4 = 1, k5 = 1.5, αr = 1

2 , αt = 2, � = 10−5

Using (111) and (112)

2δä2 = (B − A)δρ, (117)

Combining it with (116) we get

δä1 =
(

2C

B − A
− 1

)
δä2. (118)

Then, the dynamics of δa1 reads as

δa1 =
(

2C

B − A
− 1

)
δa2 + αt + β. (119)

where α, β are constants and for α = β = 0 and B �= A
the oscillatory modes are possible and the static state will
be stable. Figure 4 shows the possibility of satisfying the
constraints (100) and (104) in the solution space of equation
(115) for the given values of parameters. It is seen from the
figure that we need n,m > 1 and very small amount of ρ0,
which corresponds to a large radial and lateral pressure, to
have a stable static state. However, for ρ0 < 0.004, m can be
less than 1.

Hence, the following is the summary of the analysis of
the existence and stability of a KSSS on a brane: (i) a perfect
fluid cannot support a finite size static KS geometry even
in the presence of higher dimensional modifications, (ii) in
contrast to GR in four dimensions, an anisotropic fluid with
pr = ωrρ and pt = ωtρ supports a stable finite size static
KS geometry, and (iii) a modification of the perfect fluid form
as pr = ωρ+ p0r and pt = ωρ+ p0t can also support a stable
nonsingular KS type static state, and (iv) in contrast to the
case in four dimensions, a stable nonsingular KS geometry
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can be supported by a generalized Chaplygin gas source of
energy–momentum.

4 KS geometry in five dimensions

In this section, we consider a five-dimensional KS type metric

ds2 = −dt2 + a2
1(t)dr2 + a2

2(t)(dθ2
1

+sin2θ1dθ2
2 + sin2θ1sin

2θ2dθ2
3 ), (120)

where a1(t) and a2(t) are two arbitrary functions of time and
the energy–momentum tensor supporting this geometry has
the generic form Tμ

ν = diag (−ρ, pr , pt , pt , pt ). Then,
the Einstein field equations are

3

(
ȧ2

2

a2
2

+ ȧ1ȧ2

a1a2
+ 1

a2
2

)
= � + k5ρ, (121)

3

(
ä2

a2
+ ȧ2

2

a2
2

+ 1

a2
2

)
= � − k5 pr , (122)

ä1

a1
+ 2ä2

a2
+ 2ȧ1ȧ2

a1a2
+ ȧ2

2

a2
2

+ 1

a2
2

= � − k5 pt . (123)

4.1 KSSS and stability analysis in five dimensions

In the following, we study the existence and stability of five-
dimensional KS type static state considering the field equa-
tions (121)–(123). Similar to previous sections, we consider
two generic kinds of energy–momentum sources: (i) a fluid
possessing linear equation of state, and (ii) a fluid with gen-
eralized Chaplygin gas type equations of state.

4.1.1 Energy–momentum source with linear equations of
state

By considering a general equation of state with the form
given in (5), the field equations (121)–(123) become

3

(
ȧ2

2

a2
2

+ ȧ1ȧ2

a1a2
+ 1

a2
2

)
= � + k5ρ, (124)

3

(
ä2

a2
+ ȧ2

2

a2
2

+ 1

a2
2

)
= � − k5ωrρ − k5 p0r , (125)

ä1

a1
+ 2ä2

a2
+ 2ȧ1ȧ2

a1a2
+ ȧ2

2

a2
2

+ 1

a2
2

= � − k5ωtρ − k5 p0t

. (126)

Then, the corresponding static state is given by the following
equations

3

a2
02

= � + k5ρ0, (127)

3

a2
02

= � − k5ωrρ0 − k5 p0r , (128)

1

a2
02

= � − k5ωtρ0 − k5 p0t . (129)

From (127) and (128) we get

p0r = −(1 + ωr )ρ0 = ωe f f ρ0, (130)

and combining (127) and (129) leads to

p0t = 2

3

�

k5
−

(
ωt + 1

3

)
ρ0. (131)

To study the stability of the static state given by (127)–(129),
we consider the scalar perturbations in the form of (14) and
keep up to the first order perturbation terms. Then Eqs. (124)–
(126) give

3

(
1

a2
02

− 2δa2

a2
02

)
= � + k5ρ0 + k5ρ0δρ,

(132)

3

(
δä2 + 1

a2
02

− 2δa2

a2
02

)
= � − k5ωrρ0δρ − k5ωrρ0 − k5 p0r ,

(133)

δä1 + 2δä2 + 1

a2
02

− 2δa2

a2
02

= � − k5ωtρ0δρ − k5ωtρ0 − k5 p0t .

(134)

Using the static state defined in (127)–(129), the above equa-
tions reduce to

−6
δa2

a2
02

= k5ρ0δρ, (135)

3δä2 − 6
δa2

a2
02

= −k5ωrρ0δρ, (136)

δä1 + 2δä2 − 2δa2

a2
02

= −k5ωtρ0δρ. (137)

Substituting (135) in (136) leads to

δä2 + γ 2δa2 = 0, (138)

where

γ 2 = −2(1 + ωr )

a2
02

= 2ωe f f

a2
02

. (139)

Hence, the oscillating modes for δa2

δa2 = C1e
iγ t + C2e

−iγ t , (140)

requires the constraint

ωr < −1. (141)

Similarly, using (135), (136) and (137), we obtain

δä1 = k5

(
2

3
ωr − ωt + 1

3

)
ρ0δρ. (142)

Combining (135) and (136) gives

δρ = −3δä2

k5(1 + ωr )ρ0
, (143)
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where substituting in (142) yields

δä1 =
(

3ωt − ωr

1 + ωr
− 1

)
δä2, (144)

Twice integration of this equation gives

δa1 =
(

3ωt − ωr

1 + ωr
− 1

)
δa2 + C3t + C4. (145)

Similar to 4D case, the stable oscillatory modes in δa1 is
subjected to the condition C3 = C4 = 0. Here, for 3ωt =
3ωr + 2 the perturbation amplitude on the radial and lateral
directions are the same.

In the following, we consider two specific forms of the
fluid (5) and discuss on the stability of KSSS.

4.1.1.1 Perfect fluid
To study perfect fluid, we set ωr = ωt = ω and p0r = p0t .

Then, Eqs. (127)–(129) for the static state reduce to

3

a2
02

= � + k5ρ0, (146)

3

a2
02

= � − k5ωρ0, (147)

1

a2
02

= � − k5ωρ0. (148)

Comparing (146) and (147) leads to ω = −1. Similar to the
case in four dimensions, (148) is not consistent with (147)
regardless of ω values meaning that having a static state is
not possible for a perfect fluid in five dimensions.

4.1.1.2 Anisotropic fluid
Here, similar to previous sections, we consider two mod-

ifications of the perfect fluid.
Type 1:

In this case, by considering two different equations of state
parameters for the radial and lateral directions in the form of
(32), the Eqs. (127)–(129) governing the static state become

3

a2
02

= � + k5ρ0, (149)

3

a2
02

= � − k5ωrρ0, (150)

1

a2
02

= � − k5ωtρ0. (151)

comparing Eqs. (149) and (150) we obtains the constraint
ωr = −1 which is not allowed based on Eq. (141). Then a
Type 1 fluid fails to support a stable static sate.
Type 2:

Now we consider anisotropic fluid with the form of (36).
Then the Eqs. (130) and (131) for p0r and p0t become

p0r = −(1 + ω)ρ0, (152)

p0t = 2

3

�

k5
−

(
ω + 1

3

)
ρ0. (153)

In this case, γ 2 given by Eq. (139) becomes

γ 2 = −3(1 + ω)

a2
02

, (154)

Therefore, the positivity condition on γ 2 to have a stable
nonsingular static state demands

ω < −1, (155)

which means that the fluid supporting the geometry lies in
the phantom range. Also, Eq. (144) becomes

δä1 =
(

ω − 1

ω + 1

)
δä2, (156)

The dynamics of δa1 reads as

δa1 =
(

ω − 1

ω + 1

)
δa2 + C3t + C4. (157)

Then, similar to four dimension, for C3 = C4 = 0 the
oscillatory modes are possible and hence the static state will
be stable.

4.2 Energy–momentum source with generalized Chaplygin
gas equation of state

Using energy–momentum source with a generalized Chap-
lygin equation of state of the form (42), the Einstein field
equations in five dimensions will be

3

(
ȧ2

2

a2
2

+ ȧ1ȧ2

a1a2
+ 1

a2
2

)
= � + k5ρ, (158)

3

(
ä2

a2
+ ȧ2

2

a2
2

+ 1

a2
2

)
= � + k5

αr

ρn
, (159)

ä1

a1
+ 2ä2

a2
+ 2ȧ1ȧ2

a1a2
+ ȧ2

2

a2
2

+ 1

a2
2

= � + k5
αt

ρm
. (160)

Then, the corresponding static state is

3

a2
02

= � + k5ρ0, (161)

3

a2
02

= � + k5
αr

ρn
0
, (162)

1

a2
02

= � + k5
αt

ρm
0

. (163)

applying the perturbations given by (14) to the field equations
(158)–(160) leads to

3

(
1

a2
02

− 2δa2

a2
02

)
= � + k5ρ0 + k5ρ0δρ, (164)

3

(
δä2 + 1

a2
02

− 2δa2

a2
02

)
= � + k5αr

ρn
0

(1 − nδρ), (165)
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δä1 + 2δä2 + 1

a2
02

− 2δa2

a2
02

= � + k5αt

ρm
0

(1 − mδρ). (166)

Considering Eqs. (161)–(163), the above equations reduce to

6δa2

a2
02

= −k5ρ0δρ, (167)

3δä2 − 6δa2

a2
02

= −nk5
αr

ρn
0
δρ, (168)

δä1 + 2δä2 − 2δa2

a2
02

= −mk5
αt

ρm
0

δρ. (169)

Combining (167) and (168) one gets

δä2 + γ 2δa2 = 0, (170)

where

γ 2 = −2(nαrρ
−(n+1)
0 + 1)

a2
02

. (171)

Thus, γ 2 is always negative and consequently there are no
oscillatory modes for δa1 and δa2.

The summary of the result obtained in this section is as fol-
lows. The analysis here reveals that the existence and stability
conditions for a four and a five dimensional KS geometries
without a brane are similar in some manners. More specif-
ically, (i) finite size static KS geometry does not exist for a
perfect fluid source, (ii) an anisotropic type 1 fluid cannot
support a static state, but an anisotropic type 2 fluid supports
a stable nonsingular KS type static state, and (iii) a general-
ized Chaplygin gas fluid cannot support a stable nonsingular
KS geometry in a 5-dimensional model without brane. The
results of the analysis are different than the case when a four
dimensional brane is embedded in a five (or higher) dimen-
sional Ricci flat bulk space. Specifically, a stable nonsingular
KS geometry can be supported by both the generalized Chap-
lygin gas fluid and an anisotropic fluid in a brane model. One
interpretation of the differences in these two 5-dimensional
models (with and without brane) is that in a braneworld sce-
nario, the matter fields are confined to the brane and have no
way to propagate along the extra dimension(s). Due to this
confinement, matter fields have one less degree of freedom
in comparison to the case where they are distributed in a five
dimensional space. The confinement of the matter fields to
the brane affects the local extrinsic curvature and dynamics
of the brane within its bulk space. This induces a modifi-
cation to the Einstein’s field equations on the brane. This
modification provides a geometrical interpretation for dark
energy as the manifestation of the local extrinsic shape of
the brane, see for instances [53–55]. In our study, this modi-
fication provides the possibility of the existence and stability
of an anisotropic KS type static state for a wider range of
fluid types on the brane in comparison to the four and five
dimensional models without brane.

5 Conclusion

In the present work, the possibility of having a nonsingular
KS type spacetime as a seed for an emergent universe is
investigated. It is discussed that the existence and stability
of the nonsingular KSSS depend on the dimensions of the
spacetime and the nature of the fluid supporting the geometry.
In particular, it is found that:

• In the context of GR in four dimensions:

(i) A perfect fluid cannot support a finite size static KS
geometry.

(ii) An anisotropic fluid with equations of states pr =
ωrρ and pt = ωtρ can support a finite size static
KS geometry but it is not stable against the scalar
perturbations.

(iii) A modification of the perfect fluid form possessing
equations of state pr = ωρ + p0r and pt = ωρ + p0t

can support a stable nonsingular KS type static state.
(iv) A generalized Chaplygin gas fluid with the equations

of state pr = − αr
ρn and pt = − αt

ρm cannot support a
stable nonsingular KS geometry.

• In the context of a five dimensional braneworld scenario:

(i) A perfect fluid cannot support a finite size static KS
geometry even in the presence of higher dimensional
modifications.

(ii) In contrast to the four dimensional case, an anisotropic
fluid having equations of state pr = ωrρ and pt =
ωtρ supports a stable finite size static KS geometry.

(iii) A fluid having the equations of state pr = ωρ + p0r

and pt = ωρ + p0t can support a stable nonsingular
KS type static state.

(iv) In contrast to the case in four dimensions, a stable
nonsingular KS geometry can be supported by a gen-
eralized Chaplygin gas fluid.

• In the context of a five dimensional model without brane,
the results of the analysis for the existence and stabil-
ity conditions are similar to the four dimensional model
addressed above.
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