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We discuss an algebraic way to construct generic entangled states of qunits based on the
polar decomposition of the su(2) algebra. In particular, we show that these states can
be defined as eigenstates of certain Hermitian operators.

Keywords: Entanglement; quantum nonlocality.

By qunit we mean here an n-level quantum system, specified by the observables,
forming a basis of the su(n) algebra or of its complexification. For example, observ-
ables for a qubit are specified by Pauli operators, forming the Hermitian generators
of the su(2) algebra. In turn, observables for a qutrit form a Hermitian basis of the
su(3) algebra,1 and so on.

Our definition of generic entangled states coincides with that of Refs. 2 and 3.
This assumes that they are completely entangled and have a simple structure
like Bell and GHZ (Grinberger–Horne–Zeilinger) states of two and three qubits,
respectively.

The main aim of this paper is to show that generic entangled states in multi-
qunit systems can be constructed as the su(2) phase states of dimension n. The
basis of completely entangled states in the corresponding Hilbert space can be
constructed from generic entangled states by means of the local cyclic permutation
operator. This approach also allows us to specify Hamiltonians, whose eigenstates
are the generic entangled states.

Recent investigations in the field of entanglement have shown that entan-
gled states of a given system form a certain class different from other states of
the same system2,4 and that there are local transformations such as SLOCC5–7

(stochastic local transformations assisted by classical communications) and Lorentz
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transformations8,9 that can change the amount of entanglement but cannot create
entanglement. In view of these results, the definition of completely entangled states
takes on special significance.

An approach has been developed in Refs. 10–13 which defines the completely
entangled states of a given system in terms of the quantum fluctuations of basic
observables that can be accessible for the measurement of states of this system.
Thus, consider a system of N qunits, defined in the Hilbert space

HN,n = H

N
N

n , dim Hn = n.

The basic observables Oj are associated with the basis of the Lie algebra

LN,n =
N⊕

i=1

su(n)

or its complexification.
A quantum mechanical measurement of observables Oj in a state ψ ∈ HN,n

implies the mean value 〈ψ|Oj |ψ〉 and variance

Vj(ψ) =
〈
ψ

∣∣O2
j

∣∣ψ〉 − 〈ψ|Oj |ψ〉2 ≥ 0, (1)

which gives the amount of quantum fluctuations (uncertainty) peculiar to this mea-
surement and thus determines the quantum precision of the measurement. Summa-
tion over all local obervables {Oj} given by the basis of LN,n then defines the total
amount of uncertainty peculiar for the state ψ ∈ HN,n:

V (ψ) =
∑

j

Vj(ψ). (2)

It was proposed in Ref. 12 to define completely entangled states ψCE ∈ HN,n by
the condition

V (ψCE) = max
ψ∈HN,n

V (ψ). (3)

If the local observables correspond to a compact Lie algebra (which is the case for
qunits), then the maximum in (3) is provided by the magnitude of the Casimir
operator

V (ψCE) = C,
∑

j

O2
j = C × 1,

where 1 denotes the unit operator. This implies the condition of complete entan-
glement of the form

∀Oj ∈ LN,n, 〈ψCE |Oj |ψCE〉 = 0. (4)

The opposite case of minimal total variance (2) corresponds to the generalized
coherent states12 (for a definition of generalized coherent states, see Ref. 14).

The conventional universal measure of entanglement is usually associated with
the entropy.15 From the physical point of view, entropy represents a measure of
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uncertainty in the system. It is then clear that the definition (3) of complete
entanglement provides maximum entropy and hence expresses the requirement of
Ref. 15 in a different way. In fact, Eq. (3) represents a variational principle similar to
the maximum entropy principal in quantum statistical thermodynamics. It should
be emphasized that the equivalent conditions (4) represent an operational definition
of complete entanglement10 (definition in terms of what can be measured).

The definition of completely entangled states (3) seems to be quite natural
from the information point of view. In fact, the variance Vj(ψ) has been associ-
ated with the amount of information about the state ψ that can be extracted from
the macroscopic measurement of the observable Oj (the so-called Wigner skew
information).16–18 This object has a certain similarity with Fisher information19,20

(concerning Fisher information, see Ref. 21). Thus, the definition (3) means that
completely entangled states carry a maximal amount of total Wigner skew infor-
mation, provided by the measurement of all basic observables for a given system.

Below we will use the definition of complete entanglement (3) and its equiva-
lent from (4) to specify the generic entangled states of qunits. For simplicity, we
restrict examples to qubits and qutrits. Generalization to the case of n ≥ 4 can be
constructed in a similar way.

Let us first note that the generic entangled states of two and three qubits,
namely the Bell and GHZ states, are expressed in terms of the homogeneous
states:

|ψBell〉 =
1√
2
(|0, 0〉 ± |1, 1〉),

|ψGHZ〉 =
1√
2
(|0, 0, 0〉 ± |1, 1, 1〉).

Following these examples, consider homogeneous states of N qunits

|�; N〉 =
N⊗

j=1

|�〉j . (5)

Using the homogeneous states (5), we can construct an n-dimensional representa-
tion of the su(2) algebra of the form

J+ = λ0|0; N〉〈1; N |+ · · · + λn−2|n − 2, N〉〈n − 1; N |,
J− = λ0|1; N〉〈0; N |+ · · · + λn−2|n − 1; N〉〈n − 2; N |, (6)

Jz =
n − 1

2
|0; N〉〈0; N |+ · · · + 1 − n

2
|n − 1; N〉〈n − 1; N |,

such that

[J+, J−] = 2jz, [Jz, J±] = ±J±.

Thus,

λ2
0 = n − 1, λ2

1 − λ2
0 = n − 2, . . . , λ2

n−2 − λ2
n−3 = 2 − n, λ2

n−2 = n − 1.
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Following Refs. 22 and 23, consider the polar decomposition of the su(2)
algebra (5):

J+ = JrE, J− = E+Jr, EE+ = 1.

Here the “radial” operator Jr = (J+J−)1/2 is diagonal, while the unitary operator
E describes the “exponential of the su(2) phase.” It is seen that the operator E

has the form

E = |0; N〉〈1; N | + |1; N〉〈2; N |
+ · · · + |n − 2; N〉〈n − 1; N | + eiϕ|n − 1; N〉〈0 : N |. (7)

In other words, operator (7) provides cyclic permutations of homogeneous states
(5). Here ϕ denotes an arbitrary “reference phase,” which can be set to ϕ = 0 for
simplicity.

Consider now a linear superposition of homogeneous states (5):

|ψN,n〉 =
n−1∑
�=0

a�|�; N〉,
n−1∑
�=0

|a�|2 = 1, (8)

and define the coefficients a here by the requirement that (8) is the su(2) phase
state:

E|ψN,n〉 = eiφ|ψN,n〉.
We get

a�,k =
1√
n

ei�φk , φk =
2kπ

n
, k = 0, 1, . . . , n − 1. (9)

Thus, the N -qunit su(2) phase states take the form

∣∣ψ(k)
(N,n)

〉
=

1√
n

n−1∑
�=0

ei�φk |�; N〉. (10)

First, the states (10) with different k are mutually orthogonal (for a proof, see
Ref. 24). Then, the states (10) are definitely nonseparable and manifest complete
entanglement.

To illustrate this fact, consider first the case of N qubits (n = 2). Then, there
are only two eigenvalues of the su(2) phase, namely φ0 = 0 and φ1 = π, so that the
states (10) take the form

∣∣ψ(±)
N,2

〉
=

1√
2
(|0; N〉 ± |1; N〉). (11)

At N = 2 and N = 3, it coincides with the Bell and GHZ states, respectively.
The local observables for qubits are provided by the Pauli operators

σx = |0〉〈1| + h.c., σ2 = −i|0〉〈1|+ h.c., σz = |0〉〈0| − |1〉〈1|. (12)

It can be easily seen that the states (11) obey the condition (4) of complete entangle-
ment with the observables (12) for all N ≥ 2. Hence, these states can be considered
as the generic entangled states of N qubits.
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It should be stressed that there are only two independent phase states (11) in
the case of qubits, while the dimension of the space HN,2 is 2N . However, beginning
with the states (11), one can construct a basis of completely entangled states in
HN,2 in the following way. Consider a local cyclic permutation operator εn, which in
the case of qubits (n = 2) coincides with σx in (12). Then, acting by this operator
ε2 on the individual components of the generic states (11) (2N − 2) times, we get
the whole basis.

For example, at N = 2, acting by ε2 = σx on the first part in the Bell states,
we get EPR (Einstein–Podolsky–Rosen) states

ε
(1)
2

∣∣ψ(±)
2,2

〉
=

1√
2
(|1, 0〉 ± |0, 1〉).

In the case of N = 3, action by the local operator ε2 = σx on the first, second and
third parts gives the states

ε
(1)
2

∣∣ψ(±)
3,2

〉
=

1√
2
(|1, 0, 0〉 ± |0, 1, 1〉),

ε
(2)
2

∣∣ψ(±)
3,2

〉
=

1√
2
(|0, 1, 0〉 ± |1, 0, 1〉),

ε
(3)
2

∣∣ψ(±)
3,2

〉
=

1√
2
(|0, 0, 1〉 ± |1, 1, 0〉),

which complete (11) with respect to the whole basis of completely entangled states
in the eight-dimensional space H3,2. It should be stressed that the local operation ε

destroys neither complete entanglement nor orthogonality of the states. The former
statement follows from the fact that ε+2 σiε2 = σj . For the latter statement, see
Ref. 24.

In the case of qutrits with n = 3, the generic (su(2) phase) states (10) take the
form

∣∣ψ(k)
(N,3)

〉
=

1√
3
(|0; N〉 + ei2kπ/3|1; N〉 + ei4kπ/3|2; N〉). (13)

At N = 2, they coincide with the completely entangled states of two qutrits, which
have been considered in the context of quantum information processing with ternary
logic in Ref. 25. To check with the aid of condition (4) that states (13) manifest
complete entanglement, we should choose local observables for a qutrit as the Her-
mitian generators of the su(3) algebra:

Oi =




(|0〉〈0| − |1〉〈1|), (|1〉〈1| − |2〉〈2|), (−|1〉〈1| + |2〉〈2|)
1
2 (|0〉〈1| + h.c.), 1

2 (|1〉〈2| + h.c.), 1
2 (|0〉〈2| + h.c.)

−i
2 (|0〉〈21| − h.c.), −i

2 (|1〉〈2| − h.c.), −i
2 (−|0〉〈2| + h.c.).

(14)

It is seen that O1+O2+O3 = 0, so that only eight out of nine generators in (14) are
independent. It is now a straightforward matter to show that the states (13) obey
the condition (4) with the observables (14). To complete the basis of completely
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entangled states in HN,3, we should again use the local cyclic permutation operator,
which now takes the form

ε3 = |0〉〈1| + |1〉〈2| + |2〉〈0|.
Taking into account that the unitary transformation ε transforms any observable
from (14) into another observable from the same set

ε+3 Oiε3 = Oj ,

we can conclude that the use of ε3 does not influence the complete entanglement of
the generic states.

Generic states of qunits with n ≥ 4 can be constructed in the same way.
Summarizing, we have shown that the generic entangled states of qunits have

the form of the su(2) phase states of dimension n in the basis of homogeneous states
(8). The basis of completely entangled states in HN,n can be constructed from the
generic states through the use of the local cyclic permutation operator.

Besides that, the consideration of the su(2) algebra in the basis of homogeneous
N -qunit states and its polar decomposition opens the way to defining the generic
entangled states as the eigenstates of certain Hermitian operators. In particular,
they are eigenstates of the cosine and sine of the su(2) phase operators

C = (E + E+)/2, S = (E − E+)/2i (15)

as well as of the Hermitian phase operator

Φ =
∑

k

φk

∣∣ψ(k)
(N,n)

〉〈
ψ

(k)
(N,n)

∣∣. (16)

These operators can be interpreted as the physical Hamiltonians whose eigenstates
manifest complete entanglement.

For example, in the case of two qubits (N = 2 and n = 2), the operators (15)
and (16) take the form

C =
1
2
(
σ(1)

x ⊗ σ(2)
x − σ(1)

y ⊗ σ(2)
y

)
, S = 0, Φ = π(1− C),

in the subspace of non-zero eigenvalues of E. In the more interesting case of two
qutrits, we get

C = O
(1)
4 ⊗ O

(2)
4 + O(1)

5 ⊗O(2)
5 + O(1)

6 ⊗O(2)
6 − O

(1)
7 ⊗ O

(2)
7

−O(1)
8 ⊗O(2)

8 −O(1)
9 ⊗O(2)

9 ,

and so on.
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