PHYSICAL REVIEW B

VOLUME 45, NUMBER 4

15 JANUARY 1992-1I

Potential oscillations near a barrier in the presence of phase-breaking scattering
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Using the Green’s function method for nonequilibrium processes, we study the potential oscillations
near a barrier in both coherent- and incoherent-transport regimes. In the fully coherent regime the local
electrochemical potential oscillates near the barrier, due to interference of the incident and reflected
waves. The inclusion of phase-breaking scattering leads to suppression of these oscillations as a result of
increasing contribution from the incoherent processes. As one goes away from the barrier, the ampli-
tude of oscillations is found to decay with a decay length equal to the phase-scattering length.

Structures across which the electron wave function re-
tains its phase are commonly denoted as mesoscopic sys-
tems.! In recent years, experiments on electron
waveguides and quantum-point contacts unambiguously
showed that at such small length scales electron transport
can thoroughly be understood only by use of the
quantum-mechanical wave function and especially in-
cluding the effects of its phase. In basic quantum
mechanics a particle is assumed to perform wave motion
throughout space without suffering from scattering
events which randomly change its phase (i.e., phase-
breaking scattering). Since the early days of studying
mesoscopic systems it has been stressed that one has to
go beyond this naive approach for a complete interpreta-
tion of the experimental data. To this end, a phase-
coherence length L ,, which is the average distance trav-
eled by electrons without having a phase-breaking
scattering, has been introduced.? Accordingly, the in-
terference effects are present only when the size of the de-
vice is on the order of L # but diminish as the size gets
larger.

The effects of phase-breaking scattering have been in-
cluded in the ensemble-averaged properties using di-
agrammatic techniques® based on the Kubo formalism.
The study of dynamics and kinetics of the system in the
presence of phase breaking, on the other hand, is only re-
cent. Datta* employed the Dyson equation in the Kel-
dysh formalism® to derive a steady-state quantum kinetic
equation in the presence of inelastic scattering. His for-
mulation is applicable to the phase-breaking scattering as
well, for which energy transfer between the electron and
its environment is not necessary. Results of Datta
showed that an excitation travels a distance on the order
of L, before losing its phase information, indicating that
the Keldysh formalism is appropriate for studying trans-
port in the mesoscopic regime. D’Amato and Pastawski®
studied the effects of dephasing using the multiprobe gen-
eralization of the Landauer formula as proposed by
Biittiker.” According to Biittiker’s approach the voltage
probes in the circuit are sources of inelastic scattering
since they are connected to macroscopic reservoirs and
thus the incoming and outgoing fluxes are totally in-
coherent. Reversing this statement one finds that inelas-
tic scattering in a device can be modeled by using ficti-
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tious voltage probes.® In fact, the equivalence of the mul-
tiprobe approach to dephasing has recently been shown.’
In their work, D’Amato and Pastawski focused attention
on the conductance of a disordered linear chain for which
elastic scattering and localization are as important as in-
elastic scattering. Recently Flores and Anda'® also used
the Keldysh formalism® to study the conductance of a
linear chain by including inelastic-scattering events.

The subject matter of this paper is a more direct study
of phase coherence in mesoscopic systems. It is known'!
that the local chemical potential oscillates near a barrier
in the presence of transport due to interference of in-
cident and reflected waves. Biittiker'! examined the
relevance of Landauer formulas by studying these poten-
tial oscillations. Oscillations of the same nature were
shown'? to exist in narrow constrictions as well. It was
argued that the potential oscillations may also affect the
noninvasive measurements by the scanning-tunneling mi-
croscope.’® In this paper we study the effect of phase-
breaking scattering on the potential oscillations. First,
we apply the Keldysh formulation® for nonequilibrium
processes to calculate carrier density and current in a
mesoscopic system. We use a strictly one-dimensional
(1D) model and a local self-energy operator,* and find
that the chemical potential oscillations are suppressed as
a result of phase-breaking scattering. Moreover, we show
that the strength of such interference effects decay as
exp(—1/L,), where [ is the total distance to be traveled
by the electron wave in order to give rise to interference
(i.e., twice the distance from the point of measurement to
the barrier for the present problem).

We first follow the approach developed by Datta,* and
we start with the Dyson equation in the Keldysh formula-
tion,*" in terms of the Hamiltonian of the noninteracting
system H,, Green’s function G, and self-energy 3 ma-
trices. Assuming a steady-state condition, the quantum-
kinetic equation for the Green’s function

[E—Hy(r)]G(r,r";E)
=8(r—r' )T+ fdr”i(r,r”;E)G(r",r’;E) (1)

is obtained from the Fourier transform of the Dyson
equation. Furthermore, this differential equation can be
transformed into an integral equation
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G(r,rsE)=Golr,rs )t [ drde” Golr, s E)
X3(r'",r"";E)G(r";E)  (2)

by using the Green’s function for the noninteracting
system G’O(r,r’;E ), which satisfies the equation
(E—H,)G,=1I. The electron density n(r;E), hole densi-
ty p(r;E), and current density j(r; E) (all per unit ener-
gy), in turn, can be found in terms of the Green’s func-
tion. Details of the derivation are the same as those
found in Ref. 4. For an arbitrary self-energy function,
Eq. (2) is difficult to solve and does not have any advan-
tages over the quantum-kinetic equation Eq. (1). Howev-
er, with the following assumptions it can be simplified to
a great extent. First, we restrict our attention to a strict-
ly 1D system. Second, we include the elastic-scattering
events into~i together with phase-breaking scattering.
This way Go(x,x';E) can be calculated directly from a
1D free-electron approximation. While doing so we as-
sume that the device is connected to two reservoirs at
x =%t o0 having chemical potentials u; and py for the
left- and right-hand-side reservoir, respectively. Clearly,

J

BRIEF REPORTS 45

we do not impose any boundary conditions on the
Green’s function on a boundary specified a priori. This is
consistent with the open nature of the system at hand.!*
That is, the system is driven by external agents and the
response of the system to this external excitation can be
found only after completely solving the problem. Lastly
we assume that scattering events (both elastic and phase
breaking) take place at discrete and uncorrelated scatter-
ing center.* To this end, one can write

S(x,x;E)=8(x —x’)ZEi(E)S(x —x;), (3)

where 3;(E) denotes the self-energy contribution by the
ith scatterer located at x;.

Substituting Eq. (3) into Eq. (2) one can solve G in
terms of G,. Then, the electron density and current den-
sity are calculated in terms of the noninteracting Green’s
function and the reducible self-energy matrix

S, (x,xE)=3 [E,(E)];8(x —x;)8(x"—x;)
ij

as

n(x;E)=n0(x;E)+$ Im (¥ G&(x,x;E)NZNE));G¢ (x),x;E) }—L S G&(x,x;E)NZS(E)]);Gd (x),x;E)

0 2T i ‘
(4a)
s )= jolsE)— P Re |3 200EXE) sk gy G ) xiE)
JAXSE )= Jol X5 2m € % ax [Z; ]ij 0 \XjX;
_E;%Re[2Gg(x,xi;E)[[Ef(E)],jaG(f(xj,x;E)/ax+[2§(E)]ijaG()<(xj,x;E)/ax] . (4b)
ij

Here superscripts <, >, A, and R stand for the electron,
hole, advanced, and retarded functions, respectively.
Note that, the reducible self-energy matrix satisfies the
Dyson equation 2,=3+3G,2,.

In order to study potential oscillations in the presence
of phase-breaking scattering, we assume that 3, of all the
scatterers has a phase-breaking part, but only self-
energies of the scatterers lying in the barrier region have
an elastic-scattering part. The phase-breaking part is

given by
SSE)=[ifi/T(E)]p(x;E) , (5a)
S7(E)=[—i#/7(E)]n(x;E) . (5b)

As shown in Ref. 4 these self-energy functions are con-
sistent with the golden-rule expression for a system of
electrons interacting with a reservoir of oscillators at
thermodynamic equilibrium, with the restriction that the
scattering is not inelastic (i.e., the energy of the electron
is conserved). In addition, one can show that the self-
energies given by Eq. (5) yield a conserved current
throughout the device. This point can also be reached
starting from the multiprobe approach and yields Ward
identities.® Note that Eq. (5) has a simple physical inter-
pretation as well. Taking 7,(E) as the average time for
an electron or a hole of energy E to suffer a phase-
breaking scattering at site i, assuming that the state (elec-

-
tron or hole state) is initially filled, £ (E) and = J(E) be-
come the average times between these scattering events
including the effects of exclusion. One other important
point to notice is that the self-energy functions depend on
the electron and hole densities. Therefore, Egs. (4) and
(5) have to be solved self-consistently. The elastic part of
the self-energies, on the other hand, is given by o,(E)I,
and is independent of the carrier densities.

Finally, we define a local electrochemical potential
within the linear-response approximation, i.e., by neglect-
ing all the energy dependences and calculating everything
at the Fermi level E;. To this end we consider a reser-
voir at thermodynamic equilibrium with chemical poten-
tial u;, connected to the ith scattering site by an ideal
wire © (i.e., without any internal structure ). Assuming
that pu; >uy one finds that the current into the reservoir
is proportional to (u; —p;)n(x;; Er), and the current out
of the reservoir is proportional to (u; —pg )p(x;; Ep), the
proportionality constants being the same. Thus, in order
to have zero net current into the reservoir its chemical
potential has to be given by

_ wrn(x;Ep)+prp(x; Ep)

p= (6)
! n(x;;Ep)+p(x;Eg)

This definition of u; is reminiscent of the counting argu-
ment of Landauer.'* However, in the present study the
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FIG. 1. Variation of the local electrochemi-

0.1; ¢, 0.5; d, 1; e, 2. Dotted lines indicate the
position of the potential barrier with kgl =2,
and 0 =0.06X#’k;/m. The length of the de-
vice is kL =20, and the density of scatterers
is p,.=12.5kg. The curves are offset by 0.1 for
clarity. Inset schematically shows the struc-
ture, the cross-shaded portion denoting the re-
gion in which phase-breaking scattering takes
place.
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carrier densities are determined from full quantum-
mechanical calculations and have interference proper-
ties.''1® As shown by Biittiker,'® Eq. (6) has to be
corrected to include the self-consistent potential if the
Fermi wavelength is shorter than or comparable to the
screening length. Note that y; is not a real electrochemi-
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FIG. 2. (a) Percent change in the total density of states
AD(x;Er), corresponding to the potential profiles in Fig. 1.
The curves are offset by 1. (b) Decay of the oscillation ampli-
tude of AD(x;Er) per period as a function of Ag/L,. The filled
circles are averages over elastic-scattering strength values o, for
various values of p,, /, and L. The solid line denotes
exp(—Agp/Ly).
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cal potential since it does not determine the carrier densi-
ty at that under local thermodynamic equilibrium condi-
tions.*

At this point, it is in order to compare the present
work with those proposed earlier. Our work uses Datta’s
approach,* but differs from it in the following points: In-
stead of solving the differential kinetic equation (as Datta
did) we solve the integral equation Eq. (2) for the in-
teracting Green’s function. This provides significant ad-
vantages. (i) For a local self-energy function the Dyson
equation reduces to a set of matrix equations. Conse-
quently the interacting Green’s function can be calculat-
ed by using the noninteracting Green’s function and re-
ducible self-energy function. The self-consistency scheme
becomes transparent and numerically tractable in this
way. (ii) We include the external current through the cir-
cuit in the noninteracting Green’s function GO, so that it
is not necessary to introduce heuristic external sources.
In addition, the artifacts due to the a priori selected posi-
tion of the contacts are eliminated. In spite of the fact
that a simple model for the current sources may be em-
ployed!” within the current model, we believe that the
effect of the probes is more subtle and has to be investi-
gated separately.

The local electrochemical potential used in the present
work and Datta’s method* have different definitions.
Datta assumes local thermodynamic equilibrium and
defines the local potential accordingly. In the present
work, however, the local electrochemical potential is ob-
tained as a result of a noninvasive measurement. That is,
there is no need to have thermodynamic equilibrium,
even locally. The present definition may be used for cases
beyond linear response as well, since it depends on the to-
tal interaction between the system and the noninvasive
voltage probe. The linear-response assumption is intro-
duced to simplify the solution, and is not essential.

The method of Flores and Anda'® uses the tight-
binding model and starts with two disconnected bodies at
thermodynamic equilibrium of different chemical poten-
tials and obtains the nonequilibrium Green’s function G|,
by connecting these two systems. In our method, as de-
scribed above, we assume that there is an a priori non-
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equilibrium distribution of carriers for the noninteracting
system and we calculate G, accordingly. The multiprobe
approaches,®’ on the other hand, are aiming only at the
calculation of the conductance with the help of artificial
dephasing probes. Thus, they may not be appropriate for
more detailed analyses. More recently, McLennan and
co-workers'? also used the formalism developed by Datta
to study voltage drop in mesoscopic systems. Their work
and ours!”!® independently arrived at the same con-
clusion that the phase-breaking scattering leads to decay-
ing potential oscillations going away from an obstacle.

We applied the present method to the structure shown
in the inset to Fig. 1. This structure is characterized by
three parameters: the phase-breaking time 7, elastic-
scattering strength o (both are calculated at E. and are
the same for all scatterers), and the density of scatterers
Ps- The barrier extends from —//2 to +1/2, and the
phase-breaking scatterers are uniformly distributed be-
tween —L /2 and +L /2. The phase-breaking length L,
is given by

L,=tkpr/mpg , @)

which is the Fermi velocity times the phase-breaking
time averaged over the unit length. In Fig. 1 the local
electrochemical potential profile is shown for the varying
L /L4 ratio. Clearly, for L,— c one obtains the phase-
coherent result!! and potential oscillations have the same
oscillation amplitude independent from the distance to
the barrier. In the other extreme, i.e., for L ¢ <<L, phase
coherence is lost and electrons act as classical particles.
Thus, out of the barrier region u; varies linearly with po-
sition.® In the intermediate regime potential oscillations
are still present, but their amplitudes get smaller as they
go away from the barrier. That is, a transition from the
classical regime to the quantum regime takes place as a
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function of L /L,. One can show by using Egs. (3) and
(2) that the period of oscillations is Ap/2 provided that
L,>>Ap.

We develop a more quantitative approach to these de-
caying oscillations by considering the total density of
states per unit energy,*

D(x;E)=n(x;E)+p(x;E) . (8)

Note that in the absence of the barrier and phase-
breaking scattering, D(x;Ey) is just equal to the density
of states Dy(Ep)=m /m#’kp. In the limit L, <<Ap, on
the other hand D(x;Ey) satisfies a diffusion equation,
and hence exponentially decays away from the barrier.
The percent change in the density of states

corresponding to the potential profiles in Fig. 1, is shown
in Fig. 2(a). The envelope of AD(x;Er) may be com-
pared to the retarded Green’s function as found by Dat-
ta, since it represents the propagation of the excitation
created by the barrier. In order to analyze the interfer-
ence effects away from the barrier, in Fig. 2(b) decay of
magnitude of AD(x;Ey) per period is shown as a func-
tion of Ag/L,. Clearly, L, dependence of decay is given
by exp(—Ag/L,). This is due to the fact that in order
for incident and reflected waves to interfere a distance d
away from the barrier, the wave has to travel a total dis-
tance of 2d without suffering a phase-breaking scattering.
Consequently, the strength of the interference decays as
exp(—2d /L,). This result verifies the phenomenological
exponential dependence? of the phase-coherence effects
on L,, and corroborates that a diffusion approach is ap-
propriate for studying mesoscopic systems with phase-
breaking scattering.’
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