)
e SeGraM: A Universal Hardware Accelerator for

Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali' Konstantinos Kanellopoulos? Joél Lindegger? Ziilal Bing6l®

Gurpreet S. Kalsi* Ziyi Zuo’ 2

Nika Mansouri Ghiasi?
Mohammed Alser?

'Bionano Genomics
SCarnegie Mellon University

ABSTRACT

A critical step of genome sequence analysis is the mapping of se-
quenced DNA fragments (i.e., reads) collected from an individual
to a known linear reference genome sequence (i.e., sequence-to-
sequence mapping). Recent works replace the linear reference se-
quence with a graph-based representation of the reference genome,
which captures the genetic variations and diversity across many
individuals in a population. Mapping reads to the graph-based ref-
erence genome (i.e., sequence-to-graph mapping) results in notable
quality improvements in genome analysis. Unfortunately, while
sequence-to-sequence mapping is well studied with many avail-
able tools and accelerators, sequence-to-graph mapping is a more
difficult computational problem, with a much smaller number of
practical software tools currently available.

We analyze two state-of-the-art sequence-to-graph mapping
tools and reveal four key issues. We find that there is a pressing
need to have a specialized, high-performance, scalable, and low-cost
algorithm/hardware co-design that alleviates bottlenecks in both
the seeding and alignment steps of sequence-to-graph mapping.
Since sequence-to-sequence mapping can be treated as a special
case of sequence-to-graph mapping, we aim to design an accelerator
that is efficient for both linear and graph-based read mapping.

To this end, we propose SeGraM, a universal algorithm/hardware
co-designed genomic mapping accelerator that can effectively and
efficiently support both sequence-to-graph mapping and sequence-
to-sequence mapping, for both short and long reads. To our knowl-
edge, SeGraM is the first algorithm/hardware co-design for acceler-
ating sequence-to-graph mapping. SeGraM consists of two main
components: (1) MinSeed, the first minimizer-based seeding ac-
celerator, which finds the candidate locations in a given genome
graph; and (2) BitAlign, the first bitvector-based sequence-to-graph
alignment accelerator, which performs alignment between a given
read and the subgraph identified by MinSeed. We couple SeGraM
with high-bandwidth memory to exploit low latency and highly-
parallel memory access, which alleviates the memory bottleneck.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISCA 22, June 18-22, 2022, New York, NY, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8610-4/22/06. .. $15.00
https://doi.org/10.1145/3470496.3527436

Can Firtina
Gagandeep Singh? Juan Gémez-Luna?

Sreenivas Subramoney? Can Alkan®

2ETH Ziirich

Meryem Banu Cavlak? Jeremie Kim?
Nour Almadhoun Alserr?
Saugata Ghose® Onur Mutlu?

3Bilkent University “Intel Labs

SUniversity of Illinois Urbana-Champaign

We demonstrate that SeGraM provides significant improvements
for multiple steps of the sequence-to-graph (i.e., S2G) and sequence-
to-sequence (i.e., S2S) mapping pipelines. First, SeGraM outper-
forms state-of-the-art S2G mapping tools by 5.9%/3.9x and 106x/-
742x for long and short reads, respectively, while reducing power
consumption by 4.1x/4.4X and 3.0x/3.2X. Second, BitAlign outper-
forms a state-of-the-art S2G alignment tool by 41X-539% and three
S2S alignment accelerators by 1.2x—-4.8X. We conclude that SeGraM
is a high-performance and low-cost universal genomics mapping
accelerator that efficiently supports both sequence-to-graph and
sequence-to-sequence mapping pipelines.

CCS CONCEPTS

« Applied computing — Genomics; - Computer systems orga-
nization — Special purpose systems; « Hardware — Memory
and dense storage.

KEYWORDS

genomics, genome analysis, genome graphs, read mapping, algo-
rithm/hardware co-design, hardware accelerator, read alignment,
seeding, minimizer, bitvector

ACM Reference Format:

Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Ziilal Bingdl,
Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie
Kim, Nika Mansouri Ghiasi, Gagandeep Singh, Juan Gomez-Luna, Nour
Almadhoun Alserr, Mohammed Alser, Sreenivas Subramoney, Can Alkan,
Saugata Ghose, and Onur Mutlu. 2022. SeGraM: A Universal Hardware
Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence
Mapping. In The 49th Annual International Symposium on Computer Archi-
tecture (ISCA °22), June 18-22, 2022, New York, NY, USA. ACM, New York,
NY, USA, 18 pages. https://doi.org/10.1145/3470496.3527436

1 INTRODUCTION

Genome sequencing, the process used to determine the DNA se-
quence of an organism, has led to many notable advancements
in several fields, such as personalized medicine (e.g., [1-7]), out-
break tracing (e.g., [8—14]), evolutionary biology (e.g., [15-18]), and
forensic science (e.g., [19-22]). Contemporary genome sequencing
machines are unable to determine the base pairs (ie., A,C, G, T
nucleobases) of the entire DNA sequence. Instead, the machines
take a DNA sequence and break it down into small fragments, called
reads, whose base pairs can be reasonably accurately identified. As
an example, human DNA consists of approximately 3.2 billion base
pairs, while reads, depending on the sequencing technology, range
in size from a few hundred [23-28] to a few million [23, 29-35]
base pairs. Computers then reconstruct the reads back into a full

https://doi.org/10.1145/3470496.3527436
https://doi.org/10.1145/3470496.3527436
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3470496.3527436&domain=pdf&date_stamp=2022-06-11

ISCA 22, June 18-22, 2022, New York, NY, USA

DNA sequence. In order to find the locations of the reads in the
correct order, read-to-reference mapping is performed. The reads
are mapped to a reference genome (i.e., a complete representative
DNA sequence of a particular organism) for the same species.

A single (i.e., a linear) reference genome is not representative
of different sets of individuals (e.g., subgroups) in a species and
using a single reference genome for an entire species may bias the
mapping process (i.e., reference bias) due to the genetic diversity
that exists within a population [36-43]. For example, the African
genome, with all known genetic variations within the populations
of African descent, contains 10% more DNA bases than the current
linear human reference genome [44]. Combined with errors that
can be introduced during genome sequencing (with error rates as
high as 5-10% for long reads [23, 29-31, 45-47]), reference bias can
lead to significant inaccuracies during mapping. This can create
many issues for a wide range of genomic studies, from identifying
mutations that lead to cancer [48], to tracking mutating variants
of viruses such as SARS-CoV-2 [49], where detecting the varia-
tions that exist in the sequenced genome accurately is of critical
importance for both diagnosis and treatment [50].

An increasingly popular technique to overcome reference bias is
the use of graph-based representations of a species’ genome, known
as genome graphs [42, 51-55]. A genome graph enables a compact
representation of the linear reference genome, combined with the
known genetic variations in the entire population as a graph-based
data structure. As we show in Figure 1, a node represents one or
more base pairs, an edge enables two nodes to be connected to each
other, and base pairs in connected nodes represent the sequence
of base pairs in the genomic sequence. Multiple outgoing directed
edges from a node captures genetic variations.

Sequence #1: ACGTACGT
Sequence #2: ACGGACGT
Sequence #3: ACGTTACGT
Sequence #4: ACGACGT

Figure 1: Example of a genome graph that represents 4 related
but different genomic sequences.

Genome graphs are growing in popularity for a number of ge-
nomic applications, such as (1) variant calling [36, 54, 56], which
identifies the genomic differences between the sequenced genome
and the reference genome; (2) genome assembly [51, 57-59], which
reconstructs the entire sequenced genome using the reads without
utilizing a known reference genome sequence; (3) error correc-
tion [60-62], which corrects the noisy regions in long reads due
to sequencing errors; and (4) multiple sequence alignment [63-65],
which aligns three or more biological sequences of similar length.
With the increasing importance and usage of genome graphs, hav-
ing fast and efficient techniques and tools for mapping genomic
sequences to genome graphs is now crucial.

Compared to sequence-to-sequence mapping, where an organ-
ism’s reads are mapped to the single linear reference genome,
sequence-to-graph mapping captures the inherent genetic diversity
within a population. This results in significantly more accurate read-
to-reference mapping [36, 43, 61, 65, 66]. For example, sequenced
reads from samples that are not represented in the samples used
for constructing the reference genome may not align at all or in-
correctly align when they originate from a region that differs from

639

D. Senol Cali, et al.

the reference genome. This can result in failure to detect disease-
related genetic variants. However, if (1) we incorporate the known
disease-related genetic variants in our read mapping process using
a genome graph and (2) the sequenced sample contains one or more
of these variants, we can accurately detect the variant(s).

Figure 2 shows the sequence-to-graph mapping pipeline, which
follows the seed-and-extend strategy [36, 61], similar to sequence-to-
sequence mapping [67]. The pipeline is preceded by two offline pre-
processing steps. The first offline pre-processing step constructs the
genome graph using a linear reference genome and a set of known
variations @ The second offline pre-processing step indexes the

nodes of the graph and generates a hash-table-based index @ for
fast lookup. When reads from a sequenced genome are received,
the pipeline tries to map them to the pre-processed reference graph
using three online steps. First, the seeding step ° is executed,
where each read is fragmented into sub-strings (called seeds) and
exact matching locations of these seeds (i.e., candidate mapping
locations) are found within the graph nodes using the index. Second,
the optional filtering, chaining, or clustering step e is performed
to decrease the number of required alignments in the next step.
Third, the alignment step e is performed between all remaining
candidate mapping locations (i.e., subgraphs) within the graph and
the query read to find the optimal alignment.

L/nearrefere(wcegename : Genome Graph Construction]
Known genetic variations
[@ | Genome graph
| Hash-table-based index (of graph nodes)
1
Reads from T
sequenced genome
l Candidate mapping locations (subgraphs)
Filtering/Chaining/Clustering]

i candidate mapping locations (subgraphs)
P Alignment

Optimal alignment between
read & subgraph

Indexing Pre-Processing Steps

(Offline)

Seed-and-Extend Steps
(Online)

Figure 2: Sequence-to-graph mapping pipeline.

Prior works [67-75] show that read-to-reference mapping is
one of the major bottlenecks of the full genome sequence analy-
sis pipeline, and that it can benefit from algorithm/hardware co-
design [67, 76] that takes advantage of specialized hardware accel-
erators. Given the additional complexities and overheads of process-
ing a genome graph instead of a linear reference genome, graph-
based analysis exacerbates the bottlenecks of read-to-reference
mapping. Due to the nascent nature of sequence-to-graph mapping,
a much smaller number of software tools (and no hardware acceler-
ators) exist for sequence-to-graph mapping [36, 54, 61, 66, 77-83]
compared to the traditional sequence-to-sequence mapping.

In order to identify and quantify the performance bottlenecks of
existing tools, we analyze GraphAligner [61] and vg [36], two state-
of-the-art software tools for sequence-to-graph mapping. Based on
our analysis (Section 3), we make four key observations. (1) Among
the three online steps of the read mapping pipeline (i.e., seeding,
filtering, and alignment), sequence-to-graph alignment i) consti-
tutes 50-95% of the end-to-end execution of sequence-to-graph
mapping, and ii) is even more expensive than its counterpart in
the traditional read mapping pipeline [68-70] since a graph-based
representation of the genome is more complex to process (both
computationally and memory-wise) than the linear representation.
(2) Alignment suffers from high cache miss rates, due to the high

SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

amount of internal data that is generated and reused during this
step. (3) Seeding suffers from the main memory (DRAM) latency
bottleneck, due to the high number of irregular memory accesses
generated when querying the seeds. (4) Both state-of-the-art tools
scale sublinearly as thread count increases, wasting available thread-
level parallelism in hardware. These observations expose a pressing
need to have a specialized, high-performance, scalable, and low-cost
algorithm/hardware co-design that alleviates bottlenecks in both
the seeding and alignment steps of sequence-to-graph mapping.

To this end, our goal is to design high-performance, scalable,
power- and area-efficient hardware accelerators that alleviate bot-
tlenecks in both the seeding and alignment steps of sequence-to-
graph mapping, with support for both short (e.g., lllumina [24-
28, 84]) and long (e.g., PacBio [35, 85], ONT [32-34, 86]) reads.
Since sequence-to-sequence (S2S) mapping can be treated as a spe-
cial case of sequence-to-graph mapping (S2G), we aim to design a
universal accelerator that is effective and efficient for both problems
(S2G and S2S mapping).

We propose SeGraM, a universal genomic mapping accelerator
that supports both sequence-to-graph mapping and sequence-to-
sequence mapping, for both short and long reads. SeGraM con-
sists of two main components: (1) MinSeed, the first minimizer-
based seeding accelerator, which finds the candidate mapping loca-
tions (i.e., subgraphs) in a given genome graph; and (2) BitAlign,
the first bitvector-based sequence-to-graph alignment accelerator,

which performs alignment between a given read and the subgraph
identified by MinSeed. MinSeed is built upon a memory-efficient
minimizer-based seeding algorithm, and BitAlign is built upon our
novel bitvector-based, highly-parallel sequence-to-graph alignment
algorithm.

In MinSeed, the minimizer-based seeding approach decreases
the memory footprint of the index and provides speedup during
seed queries. MinSeed logic requires only basic operations (e.g.,
comparisons, simple arithmetic operations, scratchpad read-write
operations) that are implemented with simple logic. Due to fre-
quent memory accesses required for fetching the seeds, we couple
MinSeed with High-Bandwidth Memory (HBM) [87] to enable low-
latency and highly-parallel memory access, which alleviates the
memory latency bottleneck.

In BitAlign, we design a new bitvector-based alignment approach,
which is amenable to efficient hardware acceleration. BitAlign em-
ploys a systolic-array-based design to circulate the internal data
(i.e., bitvectors) generated by different processing elements, which
provides scalability and reduces both memory bandwidth and mem-
ory footprint. In order to handle hops (i.e., non-neighbor nodes in
the graph-based reference), BitAlign provides a simple design that
contains queue structures between each processing element, which
store the most recently generated bitvectors.

Key Results. We compare SeGraM with seven state-of-the-art
works: S2G mapping software (GraphAligner [61] and vg [36],
which are CPU-based, and HGA [88], which is GPU-based), SIMD-
based S2G alignment software (PaSGAL [89]), and hardware accel-
erators for S2S alignment (the GACT accelerator in Darwin [68],
the SillaX accelerator in GenAx [70], and GenASM [69]). We find
that: (1) SeGraM outperforms state-of-the-art S2G mapping tools
by 5.9%/3.9x and 106x/742% for long and short reads, respectively,
while reducing power consumption by 4.1x/4.4Xx and 3.0x/3.2x.
(2) BitAlign outperforms the state-of-the-art S2G alignment tool

640

ISCA 22, June 18-22, 2022, New York, NY, USA

by 41x-539% and three S2S alignment hardware accelerators by

1.2X-4.8X. (3) MinSeed can be employed for the seeding step of

both S2G and S2S mapping pipelines.
This paper makes the following contributions:

e We introduce SeGraM, the first universal genomic mapping ac-
celerator for both sequence-to-graph and sequence-to-sequence
mapping. SeGraM is also the first algorithm/hardware co-design
for accelerating sequence-to-graph mapping. SeGraM alleviates
performance bottlenecks of graph-based genome sequence anal-
ysis.

e We propose MinSeed, the first algorithm/hardware co-design for
minimizer-based seeding. MinSeed can be used for the seeding
steps of both S2G mapping and traditional S2S mapping.

e We propose BitAlign, the first algorithm/hardware co-design
for sequence-to-graph alignment. BitAlign is based on a novel
bitvector-based S2G alignment algorithm that we develop, and
can be also used as a S2S aligner.

e SeGraM provides large (1.2xX-742X) performance and power ben-
efits over seven state-of-the-art works for end-to-end S2G map-
ping, multiple steps of the S2G mapping pipeline, as well as the
traditional S2S mapping pipeline.

o To aid research and reproducibility, we open source our software
implementations of the SeGraM algorithms and datasets [90].

2 BACKGROUND

We present a brief background on the genome sequence analysis
pipeline, and the changes required to it to support genome graphs.

2.1 Genome Sequence Analysis

Read Mapping. Most types of genome sequence analysis start
with finding the original locations of the sequenced reads on the ref-
erence genome of the organism, via a computational process called
read mapping [1, 67,71, 73, 91-96]. To complete this task accurately
in the shortest amount of time, many existing read mappers adopt
a seed-and-extend approach that consists of four stages (See Fig-
ure 2): indexing, seeding, optional filtering/chaining/clustering, and
alignment. Indexing @) pre-processes the reference genome and
generates an index of the reference to be later used in the next steps
of read mapping. Seeding ° finds the set of k-length substrings
(i.e., k-mers) to represent each read and finds the exact matching
locations of these k-mers in the reference genome (i.e., seeds). These
seeds from the reference genome represent the candidate mapping
locations of the query read in the reference genome. Many read
mappers include an optional filtering/chaining/clustering step e
to eliminate candidate mapping regions around the seed locations
from the previous step that are dissimilar to the query read to
decrease the number of alignment operations. Finally, to find the
read’s optimal mapping location while taking sequencing errors
and the differences caused by variations and mutations into account,
alignment e performs approximate string matching (i.e., ASM)
between the read and the reference regions around the non-filtered
candidate mapping locations from the previous step. As part of
the alignment step, traceback is also performed to find the optimal
alignment between the read and the reference region, which is the
alignment with the highest likelihood of being correct (based on
a scoring function [97-99]) or with lowest edit distance (i.e., total
number of edits: substitutions, insertions, deletions) [100].

Approximate String Matching (ASM) finds the similarities
and differences (i.e., substitutions, insertions, deletions) between

ISCA 22, June 18-22, 2022, New York, NY, USA

two strings [101-104]. Traditional ASM methods use dynamic pro-
gramming (DP) based algorithms, such as Levenshtein distance [100],
Smith-Waterman [105], and Needleman-Wunsch [106]. Since DP-
based algorithms have quadratic time and space complexity (i.e.,

O(m x n) between two sequences with lengths m and n), there is a

dire need for lower complexity algorithms or algorithm/hardware

co-designed ASM accelerators. One lower-complexity approach to

ASM is bitvector-based algorithms, such as Bitap [69, 107, 108] and

the Myers’ algorithm [103].

2.2 Graph-Based Genome Sequence Analysis

Genome Graphs. Genetic variations between two individu-
als are observed by comparing the differences between their two
genomes. These differences, such as single-nucleotide polymor-
phisms (i.e., SNPs) [109, 110], insertions and deletions (i.e., indels),
and structural variations (i.e., SVs) [111-114], lead to genetic diver-
sity between populations and within communities [115]. However,
the presence of these genomic variations creates limitations when
mapping the sequenced reads to a reference genome [42, 116-118],
since the reference genome is commonly represented as a single lin-
ear DNA sequence, which does not reflect all the genetic variations
that exist in a population [119]. Using a single reference genome in-
troduces reference bias, by only emphasizing the genetic variations
that are present in the single reference genome [42, 48, 120-123]
and ignoring other variations that are not represented in the single
linear reference sequence. These factors lead to low read mapping
accuracy around the genomic regions that have SNPs, indels and
SVs, and eventually cause, for example, false detection of SVs [54].

Genome graphs are better suited for expressing the the genomic
regions that have SNPs, indels and SVs than a linear reference
sequence [36] since genome graphs combine the linear reference
genome with the known genetic variations in the entire population
as a graph-based data structure. Therefore, there is a growing trend
towards using genome graphs [36, 51, 54, 56, 61, 62, 65, 66, 124, 125]
to more accurately express the genetic diversity in a population.
With increasing importance and usage of genome graphs, having
accurate and efficient tools for mapping genomic sequences to these
graphs has become crucial.

Sequence-to-Graph Mapping. Similar to traditional sequence-
to-sequence mapping (Section 2.1), sequence-to-graph mapping also
follows the seed-and-extend strategy. Sequence-to-graph mapping
pipeline has two pre-processing and three main steps (see Figure 2).
The first pre-processing step constructs the genome graph @ using
a linear reference genome and the associated variations for that
genome. The second pre-processing step indexes the nodes of the
graph @ The resulting index is used in the first main step of the

pipeline, seeding o, which aims to find seed matches between the
query read and a region of the graph. After optionally filtering these
seed matches with a filtering [72, 75, 94], chaining [65, 91, 126, 127],
or clustering [36, 61] step e, alignment e is performed between
all of the non-filtered seed locations within the graph and the query
read. Even though sequence-to-sequence mapping is a well-studied
problem, given the additional complexities and overheads of pro-
cessing a genome graph instead of a linear reference genome (see
Section 3), sequence-to-graph mapping is a more difficult computa-
tional problem with a smaller number of practical software tools
currently available.

Sequence-to-Graph Alignment. The goal of aligning a se-
quence to a graph is to find the path on the graph with the highest

641

D. Senol Cali, et al.

likelihood of being correct [89]. Similar to traditional sequence-
to-sequence (S2S) alignment, sequence-to-graph (S2G) alignment
also employs DP-based algorithms with quadratic time complex-
ity [79, 80, 89, 101, 128]. A DP-based algorithm operates on a table,
where each column of the table corresponds to a reference charac-
ter, and each row of the table corresponds to a query read character.
Each cell of the table can be interpreted as the cost of a partial
alignment between the subsequences of the reference and of the
query read that have been traversed so far. In S2S alignment, a
new cell in the table is determined with simple rules from 3 of its
neighbor cells. For example, as we show in Figure 3a, when comput-
ing the blue-shaded cell, we need information only from the three
light blue-shaded cells. In contrast to S2S alignment, S2G alignment
must incorporate non-neighboring characters as well whenever
there is an edge (i.e., hop) from the non-neighboring character to
the current character. For example, as we show in Figure 3b, when
computing the green-shaded cell, we need information from all of
the light green-shaded cells.

Single linear

0 -E0-86E600

Graph-based
Hop

reference !

Query ™~

read

Query
read

i
N T/
S—

4 0 n >

(a) Sequence-to-Sequence Alignment (b) Sequence-to-Graph Alignment

Figure 3: Data dependencies in (a) sequence-to-sequence
alignment, and (b) sequence-to-graph alignment.

Even though there are many efforts for optimizing or accelerat-
ing the DP-based algorithms for S2S alignment [68, 70, 129-132],
obtaining efficient solutions for S2G alignment demands attention
with the growing usage of genome graphs for genome sequence
analysis.

3 MOTIVATION AND GOAL
3.1 Software Tool Analysis

In order to understand the performance bottlenecks of the state-of-
the-art sequence-to-graph mapping tools, we rigorously analyze
two such tools, GraphAligner [61] and vg [36], running on an
Intel® Xeon® E5-2630 v4 CPU [133] with 20 physical cores/40 log-
ical cores with hyper-threading [134-137], operating at 2.20GHz,
with 128GB DDR4 memory. Based on our bottleneck analysis with
Intel VTune [138] and Linux Perf Tools [139], we make four key
observations.

Observation 1: Alignment Step is the Bottleneck. Among
the three main steps of the sequence-to-graph mapping pipeline
(Figure 2), the alignment step constitutes 50-95% of the end-to-end
execution time (measured across three short and four long read
datasets; see Section 10). As shown in prior works [67-70, 129],
sequence-to-sequence alignment is one of the major bottlenecks of
the genome sequence analysis pipeline, and needs to be accelerated
using specialized hardware. Since a graph-based representation
of the genome is more complex than the linear representation,
sequence-to-graph alignment places greater pressure on this bot-
tleneck.

Observation 2: Alignment Suffers from High Cache Miss
Rates. GraphAligner has a cache miss rate! of 41%, meaning that

1We use the cache-misses metric from Linux Perf Tools [139].

SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

GraphAligner requires improvements to the on-chip caches (e.g.,
lower access latency) in order to improve its performance. We find
that the main reason of this high cache miss rate is the high amount
of intermediate data that is generated and reused as part of the
alignment step (for the dynamic programming table). vg tackles
this issue by dividing the read into overlapping chunks, which
reduces the size of the dynamic programming table, thus the size
of the intermediate data.

Observation 3: Seeding Suffers from the DRAM Latency
Bottleneck. Our profiling of the seeding step of the pipeline finds
that seeding requires a significant number of random main memory
accesses while querying the index for the seed locations and suffers
from the DRAM latency bottleneck.

Observation 4: Baseline Tools Scale Sublinearly. When we
perform a scalability analysis by running GraphAligner and vg with
5,10, 20, and 40 threads, we observe that both tools scale sublinearly
(i.e., their parallel efficiency does not exceed 0.4). When we focus on
the change in the cache miss rate with the number of threads (t=10,
20, 40), we observe that (1) from t=10 to t=20 to t=40, the cache
miss rate increases from 25% to 29% to 41%, and (2) 76% of cache
misses are associated with the alignment step of sequence-to-graph
mapping when t=40. These results suggest that when the number
of threads reaches the number of logical cores in a CPU system, due
to the large amount of intermediate data required to be accessed
in the caches during the alignment step, two threads sharing the
same physical core experience significant cache and main memory
interference with each other and cannot fully take advantage of
the full thread-level parallelism available in hardware.

When we take all four observations into account, we find that
we need to have a specialized, balanced, and scalable design for
compute units, on-chip memory, and main memory accesses for
both the seeding and alignment steps of sequence-to-graph map-
ping. Unfortunately, these bottlenecks cannot be solved easily by
software-only or hardware-only solutions. Thus, there is a pressing
need to co-design new algorithms with new hardware to enable
high-performance, efficient, scalable, and low-cost sequence-to-
graph mapping.

3.2 Accelerating Sequence-to-Graph Mapping

Sequence-to-Sequence Accelerators. Even though there are
several hardware accelerators designed to alleviate bottlenecks in
several steps of traditional sequence-to-sequence (S2S) mapping
(e.g., pre-alignment filtering [72, 73, 75, 76, 94, 140-148], sequence-
to-sequence alignment [68-70, 129-132, 149-151]), none of these
designs can be directly employed for the sequence-to-graph (S2G)
mapping problem. This is because S2S mapping is a special case
of S2G mapping, where all nodes have only one edge (Figure 3a).
Existing accelerators are limited to only this special case, and are
unsuitable for the more general S2G mapping problem, where we
also need to consider multiple edges (i.e., hops) that a node can
have (Figure 3b).

S2G mapping is a more complex problem than S2S mapping
since the graph structure is more complex than a linear sequence.
This additional complexity results in four issues. First, even though
solutions for both problems follow the seed-and-extend approach,
the already-expensive alignment step of S2S mapping is even more
expensive in S2G mapping due to the hops in the graph that must
be handled. Second, these hops add irregularity to the execution
flow of alignment since they can originate from any vertex in the

642

ISCA 22, June 18-22, 2022, New York, NY, USA

graph, leading to more data dependencies and irregular memory
accesses. Third, the heuristics used in S2S alignment are often not
directly applicable to the S2G problem, as they assume a single
linear reference sequence. For example, chaining, which is used to
combine different seed hits in long read mapping (assuming they
are part of a linear sequence), cannot be used directly for a genome
graph because there can be multiple paths connecting two seeds
together in the graph. Fourth, since the genome graph contains
both the linear reference sequence and the genetic variations, the
search space for the query reads is much larger in S2G mapping
than in S2S mapping.

Existing S2S mapping accelerators can mimic the behavior of
S2G mapping by taking all paths that exist in the genome graph
into account and aligning the same read to each of these paths
one at a time. However, this would be prohibitively inefficient in
terms of both computation and memory requirements (e.g., it would
require an exorbitant memory footprint to store all possible graph
paths as separate linear sequence strings). Thus, with the growing
importance and usage of genome graphs, it is crucial to have effi-
cient designs optimized for sequence-to-graph mapping, which can
effectively work with both short and long reads.

Graph Processing Accelerators. Unlike typical graph traversal
workloads [152-155], sequence-to-graph mapping involves high
amounts of both random memory accesses (due to the seeding step)
and expensive computations (due to the alignment step). Seeding
enables the mapping algorithm to detect and focus on only certain
candidate subgraphs, eliminating the need for a full graph traver-
sal. Alignment is not a graph traversal workload, and instead is
an expensive bitvector-based or DP-based computational problem.
While existing graph accelerators [156—180] could potentially be
customized to help the seeding step of the sequence-to-graph map-
ping pipeline, they are unable to handle the major bottleneck of
sequence-to-graph mapping, which is alignment.

3.3 Our Goal

Our goal is to design a high-performance, memory-efficient, and
scalable hardware acceleration framework for sequence-to-graph
mapping that can also effectively perform sequence-to-sequence
mapping. To this end, we propose SeGraM, the first universal ge-
nomic mapping accelerator that can support both sequence-to-graph
mapping and sequence-to-sequence mapping, for both short and
long reads. To our knowledge, SeGraM is the first algorithm/hard-
ware co-design for accelerating sequence-to-graph mapping.

4 SEGRAM: HIGH-LEVEL OVERVIEW

SeGraM provides efficient and general-purpose acceleration for
both the seeding and alignment steps of the sequence-to-graph
mapping pipeline. We base SeGraM upon a minimizer-based seed-
ing algorithm and we propose a novel bitvector-based algorithm
to perform approximate string matching between a read and a
graph-based reference genome. We co-design both algorithms with
high-performance, scalable, and efficient hardware accelerators. As
we show in Figure 4, a SeGraM accelerator consists of two main
components: (1) MinSeed (MS), which finds the minimizers for
a given query read, fetches the candidate seed locations for the
selected minimizers, and for each candidate seed, fetches the sub-
graph surrounding the seed; and (2) BitAlign (BA), which, aligns
the query read to the subgraphs identified by MinSeed, and finds

ISCA 22, June 18-22, 2022, New York, NY, USA

the optimal alignment. To our knowledge, MinSeed is the first hard-
ware accelerator for minimizer-based seeding and BitAlign is the
first hardware accelerator for sequence-to-graph alignment.

graph nodes

Main Memory (graph-based reference & index)
frequencies

seed locations?

Seed B
Scratchpad | :

izers l
Read

Filter Find | [10)
Minimizers Candidate |||:
by Frequency | |Seed Regions || : hoad
Scratchpad

| HIB B

Input Scratchpad

:¢ [Minimizer
i1 | Scratchpad

(9]

Hop Queues

Host
CPU

Before SeGraM execution starts, pre-processing steps (1) gen-
erate each chromosome’s graph structure, (2) index each graph’s
nodes, and (3) pre-load both the resulting graph and hash table
index into the main memory. Both the graph and its index are
static data structures that can be generated only once and reused
for multiple mapping executions (Section 5).

SeGraM execution starts when the query read is streamed from
the host and MinSeed writes it to the read scratchpad (°) Using
all of the k-length subsequences (i.e., k-mers) of the query read,
MinSeed finds the minimum representative set of these k-mers (i.e.,
minimizers) according to a scoring mechanism and writes them to
the minimizer scratchpad (e) For each minimizer, MinSeed fetches

Figure 4: Overview of SeGraM.

its occurrence frequency from the hash table in main memory (e)
and filters out each minimizer whose occurrence frequency is above
a user-defined threshold (o) We aim to select the least frequent
minimizers and filter out the most frequent minimizers such that
we minimize the number of seed locations to be considered for the
expensive alignment step. Next, MinSeed fetches the seed locations
of the remaining minimizers from main memory, and writes them
to the seed scratchpad (e) Finally, MinSeed calculates the candi-
date reference region (i.e., subgraph surrounding the seed) for each
seed (o) fetches the graph nodes from memory for each candidate
region in the reference and writes the nodes to the input scratchpad
of BitAlign. (o) BitAlign starts by reading the subgraph and the
query read from the input scratchpad, and generates the bitvec-
tors (o) required for performing approximate string matching
and edit distance calculation. While generating these bitvectors,
BitAlign writes them to the hop queues (°) in order to handle the
hops required for graph-based alignment, and also, to the bitvector
scratchpad (@) to be later used as part of the traceback operation.
Once BitAlign finishes generating and writing all the bitvectors, it
starts reading them back from the bitvector scratchpad, performs the
traceback operation (Q) finds the optimal alignment between the
subgraph and the query read, and streams the optimal alignment
information back to the host (@)

5 PRE-PROCESSING FOR SEGRAM

SeGraM requires two pre-processing steps before it can start execu-
tion: (1) generating the graph-based reference, and (2) generating

643

D. Senol Cali, et al.

the hash-table-based index for the reference graph. After gener-
ating both data structures, we pre-load both the resulting graph
and its index into main memory. Both the graph and its index are
static data structures that can be generated only once and reused for
multiple mapping executions. As such, pre-processing overheads
are expected to be amortized across many mapping executions.

Graph-Based Reference Generation. As the first pre-process-
ing step, we generate the graph-based reference using a linear refer-
ence genome (i.e., as a FASTA file [181]) and its associated variations
(i.e., as one or more VCF files [182]). We use the vg toolkit’s [36]
vg construct command, and generate one graph for each chromo-
some. For the alignment step of sequence-to-graph mapping, we
need to make sure the nodes of each graph are topologically sorted.
Thus, we sort each graph using the vg ids -s command. Then, we
convert our VG-formatted graphs to GFA-formatted [183] graphs
using the vg view command since GFA is easier to work with for
the later steps of the pre-processing.

As shown in Figure 5, we generate three table structures to store
the graph-based reference: (1) the node table, (2) the character table,
and (3) the edge table. The node table stores one entry for each
node of the graph, using the node ID as the entry index, with the
entry containing four fields: (i) the length of the node sequence
in characters, (ii) the starting index corresponding to the node
sequence in the character table, (iii) the outgoing edge count for
the node, and (iv) the starting index corresponding to the node’s
list of outgoing edges in the edge table. The character table stores
the associated sequence of each node, with each entry consisting
of one character in the sequence (i.e., A, C, G, T). The edge table
stores the associated outgoing nodes of each node (indexed by node
ID), with each entry consisting of an outgoing node ID.

1 #out

seq. 2-bit §
length: ™ | edges : char 4B edge info
Node Table Character Table Edge Table

Figure 5: Memory layout of the graph-based reference.

We use statistics about each chromosome’s associated graph (i.e.,
number of nodes, number of edges, and total sequence length) to
determine the size of each table and of each table entry. Based on
our analysis, we find that each entry in the node table requires 32 B,
with a total table size of #nodes * 32 B. Since we can store characters
in the character table using a 2-bit representation (A:00, C:01, G:10,
T:11), the total size of the table is total sequence length * 32 bits. We
find that each entry in the edge table requires 4B, thus the total size
of the edge table is #edges * 4 B. Across all 24 chromosomes (1-22,
X, and Y) of the human genome, the storage required for the graph-
based reference is 1.4 GB. We store the graph-based reference in
main memory.

Hash-Table-Based Index Generation. As the second pre-pro-
cessing step, we generate the hash-table-based index for each of the
generated graphs (i.e., one index for each chromosome). The nodes
of the graph structure are indexed and stored in the hash-table-
based index. As we explain in Section 6, since SeGraM performs
minimizer-based seeding, we use minimizers [91, 126, 184] as the

SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

hash table key, and the minimizers’ exact matching locations in the
graphs’ nodes as the hash table value.

As shown in Figure 6, we use a three-level structure to store the
hash-table-based index. In the first level of the hash-table-based
index, similar to Minimap?2 [91], we use buckets to decrease the
memory footprint of the index. Each entry in this first level cor-
responds to a single bucket, and contains the starting address of
the bucket’s minimizers in the second-level table, along with the
number of minimizers in the second-level table that belong to the
bucket. In the second level, we store one entry for each minimizer.
Each second-level entry stores the hash value of the corresponding
minimizer, the starting address of the minimizer’s seed locations
in the third-level table, and number of locations that belong to the
minimizer. The minimizers are sorted based on their hash values. In
the third level, each entry corresponds to one seed location. An entry
contains the node ID of the corresponding seed location, and the
relative offset of the corresponding seed location within the node.
Locations are grouped based on their corresponding minimizers,
and sorted within each group based on their values.

Lo hash value : #seed locations | @ nodelD :

offset

First Level: Buckets Second Level: Minimizers Third Level: Seed Locations

Figure 6: Memory layout of the hash-table-based index.

We use statistics about each graph (i.e., number of distinct mini-
mizers, total number of locations, maximum number of minimizers
per bucket, and maximum number of locations per minimizer) to
determine the size of the hash-table-based index. We empirically
choose the first-level bucket count. Figure 7 shows the impact that
the number of buckets has on both the total memory footprint of
the hash-table-based index (left axis, blue squares) and the maxi-
mum number of minimizers in each bucket (right axis, red dots).
We observe from the figure that while a lower bucket count de-
creases the memory footprint of the index, it increases the number
of minimizers assigned to each bucket (i.e., the number of hash
collisions increases), increasing the number of memory lookups
required. We empirically find that a bucket count of 224 strikes a
reasonable balance. Each bucket entry requires 4 B of data, result-
ing in a size of 224 x 4 B for the first level. Each minimizer requires
12B of data, resulting in a size of #distinct minimizers * 12 B for
the second level. Each location requires 8 B of data, resulting in a
size of #total number of locations * 8 B for the third level. Across all

~#~Hash table size (GB) ~e~Max number of minimizers in a bucket

w
¢

100

w
o

80
70
60

B NN
[N

40
30
20
10

Memory Footprint (GB)
=
15

@
o
Number of Minimizers

]

Number of Buckets
Figure 7: Effect of the bucket count on the memory footprint
of the hash-table-based index and the maximum number of
minimizers per bucket.

644

ISCA 22, June 18-22, 2022, New York, NY, USA

24 chromosomes (1-22, X, and Y) of the human genome, the total
storage required for the hash-table-based index is 9.8 GB. We store
the hash-table-based index in main memory.

6 MINSEED ALGORITHM

We base MinSeed upon Minimap2’s minimizer-based seeding algo-
rithm (i.e., mm_sketch [91, 126, 185]). A <w,k>-minimizer [91, 126,
184, 186—188] is the smallest k-mer in a window of w consecutive
k-mers (according to a scoring mechanism), for subsequences of
length k. Minimizers ensure that two different sequences are repre-
sented with the same seed if they share an exact match of at least
w+k —1 bases long. Compared to using the full set of k-mers, using
only the <wk>-minimizers decreases the storage requirements of
the index (by a factor of 2/(w + 1)) and speeds up index queries.
In Figure 8, we show an example of how the <5,3>-minimizer of a
sequence is selected from the full set of k-mers from the sequence’s
first window. After finding the 5 adjacent 3-mers, we sort them and
select the smallest based on a pre-defined ordering/sorting mech-
anism. In this example, sorting is done based on lexicographical
order and the lexicographically smallest k-mer is selected as the
minimizer of the first window of the given sequence.

Position 1 2 3 4 5 6 7

Sequence| A G T A G C A

k-mer, A G T

k-mer, G T A

k-mer; T A G lexicographically
S i
k-merg G C A minimizer)

Figure 8: Example of finding the minimizer of the first win-
dow of a sequence.

The MinSeed algorithm starts by computing the minimizers of a
given query read. While a naive way to compute the minimizers is
to use a nested loop (where the outer loop iterates over the query
read to define each window and the inner loop finds the minimum
k-mer (i.e., minimizer) within each window), we can eliminate the
inner loop by caching the previous minimum k-mers within the
current window. The single-loop algorithm has a complexity of
O(m), where m is the length of the query read.

After finding the minimizers of each read, MinSeed queries the
hash-table-based index (Section 5) stored in memory to fetch the oc-
currence frequency (i.e., #locations) of each minimizer. A minimizer
is discarded if its occurrence frequency in the reference genome
is above a user-defined threshold (pre-computed for each chromo-
some in order to discard the top 0.02% most frequent minimizers),
in order to reduce the number of seed locations that are sent to
the alignment step of the mapping pipeline [91, 93, 126]). If the
minimizer is not discarded, then all of the seed locations for that
minimizer are fetched from the index.

After fetching all seed locations corresponding to all non-discard-
ed minimizers of a query read, MinSeed calculates the leftmost and
rightmost positions of each seed, using the node ID and relative
offset of the seed location along with the relative offset of the
corresponding minimizer within the query read. As we show in
Figure 9, to find the leftmost position of the seed region (x), we
need the start position of the minimizer within the query read (a),
the start position of the seed within the (graph-based) reference (c),
and the error rate (E). Similarly, to find the rightmost position of the

ISCA 22, June 18-22, 2022, New York, NY, USA

seed region (y), we need the end position of the minimizer within
the query read (b), the end position of the seed within the (graph-
based) reference (d), the query read length (m), and the error rate
(E). Finally, for all seeds of the query read, the subgraphs, which are
found by using the calculated leftmost and rightmost positions of
the seed regions, are fetched from main memory. These subgraphs
serve as the output of the MinSeed algorithm.

0 @ b m-1
® inimi ® query read
a m-b-1
X c d y
* seed }————————————e graph-based
l—y—, ;'—’ reference
a*(1+E) (m—=b=1)*(1+E)
P

P
left-extension right-extension

Figure 9: Calculations for finding the start (x) and end (y)
positions of a candidate seed region (i.e., subgraph) using
i) the start (a) and end (b) positions of a minimizer within
the query read and ii) the start (c) and end (d) positions of a
seed within the (graph-based) reference.

7 BITALIGN ALGORITHM

After MinSeed determines the subgraphs to perform alignment for
each query read, for each (read, subgraph) pair, BitAlign calcu-
lates the edit distance and the corresponding alignment between
the two. In order to provide an efficient, hardware-friendly, and
low-cost solution, we modify the sequence alignment algorithm of
GenASM [69, 189], which is bitvector-based, to support sequence-
to-graph alignment, and we exploit the bit-parallelism that the
GenASM algorithm provides.

GenASM. GenASM [69] makes the bitvector-based Bitap algo-
rithm [107, 108] suitable for efficient hardware implementation.
GenASM shares a common characteristic with the well-known
DP-based algorithms [100, 105, 106]: both algorithms operate on
tables (see Section 2.2 and Figure 3a). The key difference between
GenASM-based alignment and DP-based alignment is that cell val-
ues are bitvectors in GenASM, whereas cell values are numerical
values in DP-based algorithms. In GenASM, the rules for comput-
ing new cell values can be formulated as simple bitwise operations,
which are particularly easy and cheap to implement in hardware.
Unfortunately, GenASM is limited to sequence-to-sequence align-
me<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>