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Abstract

We discuss the lattice structure of congruential random number generators and examine figures of merit.
Distribution properties of lattice measures in various dimensions are demonstrated by using large numer-
ical data. Systematic search methods are introduced to diagnose multiplier areas exhibiting good, bad
and worst lattice structures. We present two formulae to express multipliers producing worst and bad
laice points. The conventional criterion of normalised lattice rule is also questioned and it is shown that
this measure used with a fixed threshold is not suitable for an effective discrimination of lattice struc-
tures. Usage of percentiles represents different dimensions in a fair fashion and provides consistency for
different figures of merits.

AMS Subject Classifications: 65C10, 65Y05, 68Q22, 11A55.

Keywords: Bad lattice points, good lattice points, lattice rules, linear congruential generators, random
number, spectral test.

1. Introduction

Random numbers are essential tools in many applications such as simulation, educa-
tion, criptography, arts, numerical analysis, computer programming, VLSI testing,
recreation and sampling. Because of their efficiency and ease of implementation, lin-
ear congruential generators attracted the attention of many researchers and became
de facto standards. Random number generators must be subjected to several theo-
retical and empirical tests to detect certain kinds of weaknesses before their use for
serious applications. The most popular theoretical measure for assessing the quality
of random number generators is the distribution of z-tuples in ¢ dimensional space.
This performance is measured by various figures of merits.

It is well known that the ¢ dimensional vectors of successive numbers in dimension
t > 2 produced by a linear congruential generator have a lattice structure. Several
authors have examined this property and discussed various measures for assessing
it. In Sect. 2, we summarize and compare basic techniques for assessing the lattice
structure. In Sect. 3, by examining some patterns in figure of merits, we address the
problem of diagnosing good and bad multipliers. Conventional works on spectral
test deal with the problem of finding best lattice structure. But in a recent paper,
Entacher et al [8] studied some cases giving rise to bad lattice points. In Sect. 4, we
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enhance the classification of bad lattice points and advert some systematic patterns
to identify areas comprised of bad lattice points.

We also question the usage of figure of merit based on normalized spectral test with
a fixed threshold value. For this purpose, in Sect. 5, distribution properties of nor-
malized spectral test are investigated thoroughly on large amounts of data obtained
from various generators. It is shown that the distribution curves of test values have
completely distinct patterns in different dimensions. Therefore we show that a per-
centile-based measure may be more appropriate in order to avoid the deteriorating
impact of fixed threshold in smaller dimensions and to provide similar rankings with
respect to different methods of assessment.

2. Assessing the Lattice Structure

Several references address the methods of assessment for the lattice structure [1], [6],

[11]-{13], [19], [29], and [30].

(a) The squared Euclidean distance vtz,

(b) The distance between adjacent parallel hyperplanes d,

(c) Minimal number of parallel hyperplanes,

(d) The Euclidean distance between points v;,

(e) Number of bits of accuracy: log, v;,

(f) Standardized figure of merit u,,

(g) Beyer quotient g;: Ratio of the shortest and the longest basis vector lengths,

(h) Normalized figures of merit Sy x (A, M), S2 (A, M) and S3 (A, M) with respect
to criteria (b), (¢) and (d) [11],

(i) Lattice packing constants [11],

(j) Discrepancy.

Since all these methods have their advantages and shortcomings some of them are
widely used simultaneously in random number literature.

Given a congruential random number generator with multiplier a, relatively prime to
modulus M, for 2 <t < T, the spectral test uses integers {S, ..., S;} # (0,...,0)
satisfying the relation

t
Y Sia'! = 0(modM). (1)
i=1
Letting 0 < a < M, it determines the values of
t
vtzzmin{ZSiz}. 2
i=1

The relation (1) may be written as an equation for a certain k satisfying

t

> Sia T = kM. 3)
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‘We must stress that contrary to the conventionally accepted definition 0 < S; < M,
the S; values can not be larger than a. Because for any dimension ¢, the expres-
sion (3) will be equal to zero by choosing only two nonzero coefficients: §; = —1
and S;_| = a, giving v,> = a® + 1. In fact, this is an upper bound for the squared
Euclidean distance.

The spectral test is a very reliable theoretical tool to distinguish bad and good
congruential generators. This test is explained in detail by Knuth [19]. Although
a plethora of papers address the question of rating various generators, there is no
universally adopted criterion to tell whether or not a particular random number
generator passes or fails the spectral test. This is partly because the success mea-
sure is case-dependent and several generators considered as adequate in common
application, fail in specific cases [2], [9], and [10].

In order to make this criterion independent of M, Knuth suggests the standardized
figure of merit

/2!

T2+ )M @)

Mt

There are other criteria adopted by various authors. A very common measure is the
normalized figure of merit

Mr =Min{d}/d;, 2 <t <T}, ©)

where, d;= 1/v, represents the maximum distance between adjacent hyperplanes
determined by the points of the lattice in z-dimensional space and d; is the lower
bound of this distance.

Although widely used by several authors, the figure of merit ¢, called Beyer Quo-
tient has also received severe criticism. By referring to two works of S. S. Ryshkov
on the Minkowski-reduced lattice bases, Leeb [27] reminded the users that Beyer
quotient is not uniquely determined for dimensions ¢ > 6. It is rather surprising to
observe recent uses of g; for dimensions up to 40. Leeb lists some of these incorrect
uses. To mention a few more, we can present the following list with their maximum
dimensions 7: L’Ecuyer and Tezuka [26] T = 12, L’Ecuyer [21] T = 20, L’Ecuyer
and Couture [24] T = 30, L’Ecuyer, Blouin and Couture [23] T = 20, and Kao and
Tang [14] T = 8. Dyadkin and Hamilton [4] and [5] conducted extensive analyses
to identify multipliers for 64 and 128-bit multipliers taking 7 = 20. L’Ecuyer and
Couture [24] presented a package implementing lattice and spectral tests. Authors
support the usage of M7 = ming<,<7 S; but also deal with ¢, for historical reasons.
They also argue that: “One advantage of using Beyer quotients is that they are all
normalized (between 0 and 1) and that Q7 is defined for all positive 7', in contrast to
M7. One may then compare (and rank) generators of the same size using the figure
of merit Q7 for large T.”

The proposed thresholds are also subjective and arbitrary. For example, Knuth [19]
considers v, > 239/ adequate for a good generator for most purposes but admits
that this criterion was chosen partly because 30 is conveniently divisible by 2, 3, 5,
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and 6. The same author proposed u; > 0.1 as a threshold for passing the spectral
test for 2 < ¢ < 6 and adhered to this rule in the last edition of his book. But this
limit is not satisfactory. In application, generators having u; > 3 abound even for
single-precision floating-point arithmetic (Sezgin [31]).

M, also has been used with different thresholds. One of the earliest applications
belongs to Kurita [20], who by screening 7440 multipliers for M = 23! — I obtained
multipliers having values larger than 60% of the upper limits. Some other thresholds
used are 80% [11] and [13], 70% [16], 75% [17], and 84% [18].

Using the density sphere packings formulas given by Conway and Sloane [3],
L’Ecuyer [22] listed the upper bound of M7 up to T = 48. In this work, L’Ecuyer
presented test values for 290 multipliers belonging to various size moduli between
28 — 5and 2128 — 159. Investigation of these values show that increasing the dimen-
sion causes a fall in M7 in 95% of cases. The sizes of test values are distributed as
follows:

Mg > Mg = M3 in 44.5% of cases,
Mg > Mg > M3, in 37.2% of cases,
Mg = Mg > M3, in 13.4% of cases,
Mg = Mg = M3, in 4.8% of cases.

Mg = Mg > M3, is more common in smaller moduli. Increasing modulus causes an
increase in cases of Mg > Mg > Ms3;. This points out the discrete character of the
lattice structure in smaller moduli. For the same reason Mg = M ¢ = M3, cases are
also very common for smaller moduli. After this study, the usage of fixed threshold
criterion with large T values gained popularity in the literature. Some extensions
of My are proposed in recent studies: For example, Lemieux and L’Ecuyer [28]
proposed M,  criterion taking into account the projections of the lattice over sub-
spaces of small or successive dimensions. Entacher et al [7] consider M’ as a measure
of the minimum test value of the multiplier a itself and additionally the subsequence
generators with multipliers a; for a set of different k£ values. Kao and Tang [15]
derived the upper bounds of spectral test for multiple recursive random number
generators and conducted several searches.

3. Some Patterns in Spectral Test Figure of Merits

Entacher et al [8] classify the causes of bad lattices under four headings:

(a) If the parameter a is small such as 2, 3, 4, ..., worst lattice points occur.

(b) If i and @ are small, a is also small and results in bad lattices.

(¢c) If a = 2* + 1, for high dimensions short dual vectors occur. Since M can be
expressed as ¢ jaj for some integers c, the number of hyperplanes containing
all lattice points will be n; < X|c;|. Therefore multipliers near a power of 2
induce bad lattice points.
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Table 1. The values of u; near M /2 ~ 1073741823 for dimensions 2 <t < 6

Multiplier Dimensions ()
2 3 4 5 6

1073741777 0.000 0.002 0.172 2.859 1.447
1073741784 0.000 0.001 0.090 3.182 0.132
1073741796 0.000 0.000 0.021 1.238 0.582
1073741799 0.000 0.000 0.013 0.695 0.843
1073741800 0.000 0.000 0.008 0.363 0.199
1073741805 0.000 0.000 0.004 0.171 6.228
1073741807 0.000 0.000 0.002 0.051 1.452
1073741812 0.000 0.000 0.001 0.016 0.350
1073741814 0.000 0.000 0.000 0.006 0.117
1073741815 0.000 0.000 0.000 0.004 0.061
1073741816 0.000 0.000 0.000 0.000 0.000
1073741817 0.000 0.000 0.000 0.000 0.000
1073741827 0.000 0.000 0.000 0.000 0.000
1073741829 0.000 0.000 0.000 0.000 0.000
1073741839 0.000 0.000 0.002 0.071 2.162
1073741843 0.000 0.000 0.003 0.092 2.948
1073741846 0.000 0.000 0.009 0.455 0.528
1073741849 0.000 0.000 0.013 0.647 1.731
1073741850 0.000 0.000 0.018 1.029 1.317
1073741852 0.000 0.000 0.024 1.479 0.730
1073741860 0.000 0.001 0.065 5.091 0.602
1073741861 0.000 0.001 0.073 5.827 0.362

(d) Apart from these cases causing bad lattice structure for a multiplier, good mul-
tipliers will generate bad sub-lattices if the lags | = (m — 1) /i are employed with
small i values.

In the above classification, cases a and b correspond to the same situation, because
if a and the power are small, the resulting parameter is also small. We would like to
summarize the causes of the worst and the bad lattice structures under two headings:

(1) Cases where a can be expressed as (K (M + ni) 4+ np)/N with small N and
n = Knp + njy values. This case will produce the worst lattice points.

(2) Cases where a is (ky M/ ko + n)'/*. If k» and n are small, this form will produce
bad lattice points in dimension ¢ + 1. These headings are examined below in
detail.

3.1. Cases where a = (K (M + ny) +n3)/N

Sezgin [32] studied the behavior of the Euclidean distance and showed that v%
becomes very small if a takes values close to KM /N where integers K and N are
0 < K < N, and N is small. For example the u, values in Table 1 are obtained for

M =23 _1bytaking K =1and N = 2.

It is interesting to note that when y;, is very small for two dimensional space, those
of higher dimensions are also small. This fact is demonstrated by Figs. 1-3. It must
also be noted that the area of bad multipliers gets narrower in higher dimensions.
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1073706000 1073716000 1073726000 1073736000 1073746000 1073756000 1073766000 1073776000

Multiplier

Fig. 1. Symmetrical distribution of 115 around kM /n as seen for M /2 = 1073741824

MU(3)
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107373980 1073740800 1073741800 1073742800 1073743800
Multiplier

Fig. 2. Distribution of x3 around M/2 for M = 2147483647

In order to rate the lattice structure in a more general framework, we can use the
fact that any multiplier a can be expressed as

0 w (6)

where K, N, n; and n; are integers 0 < N < M,0< K < N,and —N <nj; < N.



Distribution of Lattice Points 179

MuU(4)

0 - — —
1073741600 1073741700 1073741800 1073741900 1073742000
Multiplier

Fig. 3. Distribution of u4 around M/2 for M = 2147483647

Therefore, (1) can be written as

t
Z(M> S = kM =0 (mod M). )

Multiplying both sides by N'~!, (7) can be written as

t .
SONTUKM 4 Knp 402 S =0 (mod M). ®
i=1

Letting n = Knj 4+ n, and expanding the binomial expression we get

- -
§ N'~ 'S,§ (’ , )(KM)-’n’_-’_lzN’_lkM.
J
j=0

If we group terms containing nonzero powers of M separately we get

t t i—1

o , i — 1 S
§ Nf*ls,-nl”:N’*‘kM—E NHS,-E <’ . )(KM)Jn'J‘.
; ; , J
i=1 i=1 j=1

Noting that terms containing factor M are = O(mod M) in the right-hand side of
the equation, we get the minimum Euclidean distance being subject to condition

t
> N TlSF =0 (mod M). )
i=1
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Therefore the minimization problem reduces to solving the above relation and choos-

ing the set S, ..., S. This expression is equivalent to
t . .
Y ONTTlSE = kM (10)
i=1

for an integer k*. This equation does not depend on a and suggests a general identi-
fication method for the worst multipliers mentioned by Entacher et al [8]. Especially
when N and n values are very small, the worst multipliers will be obtained. For
small dimensions and moderate N values it is possible to get very small S} val-

ues. For example, in M = 23l _ 1 when N = 3, K = 2,ny = land np, = —1,
we can get very small spectral test values for + = 2. Setting k = 0 it immediately
follows that 387 + S5 = 0. This equality has the minimal solution S} = 1 and

S5 = —3. Therefore v% =12 4+ (—3)2 = 10, a very small value. In a similar manner
v% = NZST + NnS3 + nzSg" = 0 will have a solution satisfying 95} + 355 + 83 = 0.
With S} =0, §5 = 1, and, §5 = -3, we get v32 = 10 again. The same value can be

obtained for all other dimensions, because, for t = T we will have S| = 87 = ... =
S3_, = 0but, S5 _, = =3, 57 = 1. It must be noted that for these constants, all

possible multipliers are not acceptable for practice and ¢ must be primitive root of
M. Therefore n, must be —2. These examples explain why the worst lattice points
are accumulated in certain areas.

By taking S7_, = —n, S7 = N, in the worst lattice points, all dimensions will attain
the same value. For this reason, in worst areas we will have v} = v; = ... = v}

with a common solution since no smaller sz value can be reached by including new
nonzero lower degree terms. Worst lattice points will accumulate in certain areas.
By changing n; and n, slightly, we observe a family of bad multipliers around the
worst point. For example for N = 2, K = 1, and n; = —1, very small v% will be
observed. In M = 23! — 1, by taking ny = 8, we will get the nearest primitive ele-
ment a = 1073741827 with N = 2, n = 7 and v3 = 7> + 2% = 53. In this multiplier,
for all dimensions we will have the same test value. With increasing n, starting from
the higher dimensions, there will be different v,2 values. For example, when n = 31,
in dimensions 7 and 8 we will have different results since the multiplier 1073741839
have the following v,z valuesforr = 2,...,8:965, 965,965, 965, 965, 324, and 165.
Dimension 2 and 3 test results will remain identical until a = 1073742497, where
v3 = v = 1814413. It is remarkable that when k = 0, bad points do not depend
on M.

This approach also explains the bad multipliers presented by L’Ecuyer and
Hellekalek [25]. They tabulate some good and bad (baby) LCGs for 25 moduli

between 2!2 — 3 and 236 — 5. We present in Table 2 the explanation for 15 of these
cases.
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Table 2. Representation of lattice structure of some bad multipliers presented by L’Ecuyer and
Hellekalek having largest prime moduli less than 2€, for 12 < e < 26

M A N K ny no n=Kn|+ny u22
212 3 5 1 0 0 5 5 26
213 2341 7 2 2 1 5 74
24 _3 2731 6 1 5 0 5 61
215 _ 19 10 1 0 0 10 10 101
216 _ 15 17 1 0 0 17 17 290
217 _q 68985 19 10 1 -5 5 386
218 _ 5 203883 9 7 —4 2 -26 757
29 458756 8 7 5 4 39 1585
220 _3 213598 54 11 -1 0 —11 3037
22l _9 202947 31 3 —24 0 -72 6145
222 _3 4079911 110 107 0 3 3 12109
223 _ 15 2696339 28 9 17 2 155 24809
224 _3 486293 69 2 —68 -73 —209 48442
225 _39 5431467 278 45 3 6 141 97165
226 _5 42038579 439 275 0 —44 —44 194657

3.2. Cases where a = (kyM/ky + n)!/!

Ifa’ is kM +n, the (1 + 1)th dimension will have bad lattice for small n values. Because
in Eq. (3), £S;a’~! will be expressed as —n + (kM +n) = kM = 0 (mod M) and
coefficients can be chosen as S| = —n and S; = 1. Since 7 is small and v = n? + 1
does not depend on k, very small test results will be obtained. This case may be
extended to situations (k1 M/k, 4+ n) with small k» and n values. Because this will
give

—nky + (kiM + kan) = kpkM = 0 (mod M).

Letting S = —nky and §; = | we get v,2 = (nk»)*> + 1. Table 3 represents a few
examples of these cases obtained for M = 231 — 1.

Examination of Table 3 shows that there is a fall in spectral test results for dimension
t + 1 compared to the neighboring dimensions. These values are highlighted with
bold numbers. The falls are very drastic when & and n are very small. When the
t-th root is very small, in other words, 7 is very large in operation (.)!/*, we get very
small multipliers as in the cases of cube root and fourth root in Table 3. As a result,
very small test values will be observed in small dimensions too. This case is evident
in multipliers 1285, 1625, 283, and, 952.

These two main patterns have also their counterparts as additive and multiplica-
tive inverses. These are two relations facilitating the search for good or bad lattices.
Once a multiplier is determined, we can say that its inverses with respect to modular
addition and multiplication have the same lattice character. For example, if we have
a multiplier a with spectral test value v, we will have the same value for the additive
inverse @ = M—a, because the expression (1) will lead to
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Table 3. The spectral test values for various multipliers in the form a = (kyM/ky + n) 1/t

VkiM]ky +n a t=2 t=3 =4 =5 t=6 =7 =38
VM + 282689 46344 0931  0.078 0439 0532  0.669  0.697  0.537
V2M + 524306 65540  0.658  0.011  0.063  0.178  0.349  0.557  0.436
M —25659522 1285 0.026  0.887 0417  0.642  0.620 0618  0.556
I2M =3951669 1625 0.033 0770 0331  0.696 0497 0535  0.716
¥3M — 28203020 283 0.006 0192 0534 0367  0.690  0.692  0.562
V2M/5 + 141262 29311 0.589 0572 0.687  0.682  0.655  0.673  0.648
Y2M/5 + 3807949 952 0.019  0.657 0437 0567  0.646  0.731  0.560

t
Z S;(M —a)'~! = 0 (mod M).

i=1

In the binomial expansion all terms containing M will vanish and we will be left
only with terms containing powers of a which will lead to the same test value. Sez-
gin [32] and Kao and Wong [18] considered additive inverses and gave examples. On
the other hand, multiplicative inverse ¢* has the property aa* = I (Mod M) and
produces the same set of random numbers but in reverse order. Several authors have
presented multiplicative inverses. Fishman and Moore [13], Fishman [11], L’Ecuyer
[22], and Tang [33] can be mentioned as examples.

4. Bad Regions

Table 1 and Figs. 1-3 show that very bad lattice values are obtained systematically
around certain points. This fact was also observed in examples of Sect. 3.1. Now
let us take the set of coefficients Sy, ... , S; and investigate the behavior of v, in the
neighborhood of a. Sezgin [32] showed that when y is small, the multiplier a + y
must reach the same integer multiple of M as in the Eq. (3) defined for multiplier a.

Therefore a 4 y will have coefficients Sy1, ... , Sy, satisfying
t .
> @+ y)7'Syi = 0 (mod M). (11)
i=1

By expanding binomial terms, and arranging with respect to powers of a, we
will get

k

Si—k =Y (T Sykriny' (12)
i=0

These relations and pattern of constants are shown below explicitly in matrix form.
Since most authors use dimensions up to 8, we contend to give the matrix up to this
value.
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Si Lyy2 oyt oy ey Sy1
S5 12y 3y2 4y3 5y% 6y 7y° Sya
S3 1 3y 6y2 10y 15y* 21y° Sy3
Sy 1 4y 10y 20y 35y* | | Sy4
Ss |~ 1 5y 15y235y3 || Sys |- (13
Se 1 6y 21y* || Sye
S7 1 Ty Sy7
Sg 1 Sy8

The extension of this matrix representation is obvious. The system has a regular
pattern and S,; can be obtained by using the inverse of the matrix.

Sy L—y y2 =y =y 0 =7 Si
Sy2 1 =2y 3y2 —4y3 5y%  —6y> 7y° S
Sy3 1 =3y 6y* —10y> 15y* —21y3 S3
Sya 1 —4y 10y —20y3 35y% Sy
Sys |~ 1 =5y 15y* =35y3 || Ss |- (14
Sy6 1 —6y 21y? Se
Sy7 1 ~Ty S7
Sy8 1 Sg
Therefore the solution for S,; is
k
Syary =Y (TFT) S ki (=) 15)

i=0
Now we can express the Euclidean distances for multipliers a + y, around the value
a, as a function of Sy, ..., S;. Since the definition of v% is v% = 512 + S%, it is possible
to write the figure of merit vgz for multiplier a + y as
2 _ 2 2
Vi = Syl + Syz

= 512 - 2518y + S%y2 + S22 (16)

=83y* — 28515y + 3.
By similar calculations figure of merits for higher dimensions can be obtained. We

present them here only up to ¢t = 5:

vy = S5yt — 253837 + (455 4 55 4 28153)y% — 282(81 + 283)y +v;  (17)

1)34 = S2y6 — 2S3S4y5 + (S% + 28,84 + 952)))4 —2(85184 + S$» 83 + 6S3S4)y3
(87 4 28183 + 453 + 65254 + 953)y% — 2(S182 + 25283 + 38384)y + v3
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Vs = S5y% — 284857 + (7 + 28385 + 1653)y° — 2($,S5 + S354 + 1254S5)y°
+ (87 + 28185 + 28284 + 957 + 168355 4 3652) y*
—2(8184 + S283 + 45,55 + 65384 + 1854855)y°
+ (87 + 28183 + 453 + 685284 + 957 + 1285385 + 1652)y?
— 2818y + 28283 + 35354 + 4S4S5)y + v2.

These relations clearly explain the behavior of lattice points. vﬁ, is a polynomial of
degree 2(r — 1) and this causes very chaotic behavior in higher dimensions.

A perusal of Figs. 1-3 obtained for M = 23! — 1 reveals that u, values approach
zero as the multiplier goes to M /2. This is a common phenomenon for multipliers
of the form (KM + n)/N for small n and N. At the right and left sides of minimum
points, u, starts to increase. This increase continues until u; reaches a maximum.
For example, u, reaches its maxima at /1073716869 at left and 1073766925 at right.
There is a distance of 50056 between these summits. Similar peaks are observed for
higher dimensions. For example u3 has peaks at a = 1073741164 and 1073742500.
The distance between maxima gets shorter with increasing ¢. Therefore the search
for bad lattice points areas must start from smaller dimensions. Since sz is a polyno-
mial of degree 2(r — 1), the figures of merit are very erratic for large dimensions when
M is not extremely large. For a 32 bit modulus, the investigation of bad regions in
two-dimensional space will be an efficient search strategy. For 64 and 128 bits how-
ever, it will be worthwhile to take into account bad regions in the third and forth
dimensions.

The relation between the divisor N and starting point of the areas for good or
bad lattice points exhibits a very regular and simple form. It is possible to express
this relation more concisely. Referring to the formula of figure of merit u,, assume
that we want to find the end point of the bad area where uy < C. By noting
that Sy = N, S = KM — Na,a ~ KM/N, and using Egs. (2)-(4), and (16), we
get the lower and upper limits of bad multipliers region as @ — y and a + y where

1 [cm
YENV

(18)
Example 1: For M = 2147483647 and N = 2 we get a = 1073741824 with a very
small figure of merit S7/M =~ 0. The y value satisfying the above inequality is
y = 13073,/C. Therefore if we choose C = 0.01, it may be said that there is a bad
lattice area having up < 0.01, between 1073740516 and 1073743131. This agrees
remarkably well with the actual calculations.

Example 2: Currently, the moduli having 256 bits are not common. Assume that
in future we will need 256 bit muduli and during a search we will try to find a
region of bad multipliers having uy < 0.0001 near an arbitrary K M /N value such
asa ~ 71M/78942. Then we must look below a + y and above a — y where
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2128 70.0001 2128
- : = = 1.37209 x 103!,
YT 780N T T 78942007 x

In application the search for good or bad multipliers must start from the largest
areas and go gradually to narrower ones. This implies starting from N = 1 and
going to 2, 3, 4, ..., etc. Although the length of area is inversely proportional to
N, growing K will compensate this loss and the cumulative number of multipliers
having a certain quality increases with N.

5. Some Properties of Lattice Points Distribution

The distribution of lattice quality measures for different dimensions is very crucial
for thoroughly understanding the behavior of multipliers. But these investigations
are surprisingly neglected in the random number generation literature. Entacher
et al [8] remarked that the normalized spectral test measure is not suitable for
use with a fixed threshold value such as M7y = 0.80 adopted by many authors
during their evaluation of random number generators. Figure 4 gives the cumula-
tive frequency distribution of normalized measure for dimensions 2-6 obtained on
10,167,840 primitive roots out of 20 million possible candidates by a random search
for M =231 — 1.

In Fig. 4, the cumulative curves of smaller dimensions are above the curves of higher
dimensions for small S values. The situation is opposite for higher S values. For
example in dimension ¢t = 2, 9.9% of the multipliers have normalized test measure
below 0.3. For the same threshold in dimensions 3, 4, 5, and 6, these proportions
are 6.5, 3.6, 1.7, and 0.9, respectively. On the other hand, in the good quality side,

0.9 / /
1/ /
1/
/4
V94

y

0.4

- 7

0 o1 02 03 04 05 06 07 08 09 1
Figure of Merit (S)

Cumulative frequency distribution

Fig. 4. Cumulative distributions of normalized spectral test value S
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Fig. 5. Empirical frequency distributions of normalized spectral test value S

the multipliers having S values above the conventional 0.8 level is 29.4% for r = 2.
In higher dimensions, this proportion falls to 13.8, 5.8, 3.3, and 1.2%, respectively.
These data clearly show that fixed thresholds correspond to different percentiles in
different dimensions. It is more selective in higher dimensions but allows a lower
quality in smaller dimensions. This fact is not acceptable from a practical point of
view because bad lattice structure will be more frequent for small 7 values.

Our study also reveals that discrete nature of spectral test results are displayed clearly
for small moduli. For example, according to our data (not presented here), for M
= 32767, F(S) curves are step-functions. This is the natural result of filling the
t-dimensional space with a limited number of points. On the other hand for large
moduli, this discrete nature is still observed in higher dimensions. This is clearly
seen in scattered points representing dimensions 5 and 6 for the empirical frequency
distributions depicted in Fig. 5. In smaller dimensions, however, frequency points
accumulate densely about regular curves.

The above properties of distribution curves are caused by remarkable patterns of the
frequency curves of normalized test results in different dimensions. The frequency
distribution obtained by normalizing v, is particularly interesting. The curve is a
straight line with slope 0.0044 until § = 0.93. From this point on, the frequency falls
rapidly implying a sharp decrease in the proportion of exceptionally good quality
multipliers. The curves are ordered from right to left in the plot area according to
their increasing ¢ values. The curves for smaller dimensions remain above others in
the tail areas. The case is opposite near the medial region. It is interesting to see that
tail areas get consistently smaller with increasing ¢, and observations accumulate
densely about the mode values.
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Fig. 6. Mean values of S for different modulus sizes and dimensions

We studied the normalized test values for different moduli and dimensions in detail.
For this purpose, four multipliers are examined. Nearest prime modulus values to

215220 225 4nd 231, and number of prime roots tested are summarized below:

Modulus Number of prime roots
M15 =215 —19=32,749 10,912
M20 = 220+ 7 = 1,048,583 133,485
M25 = 225+35 = 33,554,467 250,000
M31 =231 — 1 =2,147,483,647 124,473

Important descriptive characteristics of these curves are presented in Figs. 6-11. We
investigate below these figures in detail.

(1) Means: Means of S values are depicted in Fig. 6. In dimension ¢t = 2, means
of different modulus values do not have great differences. M31 has a mean value of
0.635 whereas M15 has a mean value of 0.637. The difference grows with increasing
dimensions. Since smaller moduli give coarser lattice distributions in higher dimen-
sion, they have higher means. For example, M3/ hasamean of 0.614in t = §, whereas
the mean of M15 is 0.645. There are interesting patterns in Fig. 6. After a general
fall in dimensions 3 and 4, all generators start to give progressively higher means
with increasing dimensions. The increasing divergence between the generators with
increasing dimensions is remarkable. This is the result of enhanced filling capacity
of generators with larger periods.

(2) Variances: According to Fig. 7, unlike means, the distribution of variances is
quite stable between different modulus values. For ¢t =2, M31 has a variance 0.0507.
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The variance of M15 is 0.0520, not a very different value. Other two variances are
both 0.0508. The variances of generators M31, M25, M20, and M15, for t = 8,
are 0.0074, 0.0072, 0.0064 and 0.0065, respectively. Although they do not change
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very much between different modulus values, there is an obvious tendency of having
smaller variances with increasing dimensions. This is the result of diminishing tail
regions with increasing dimensions. As seen from Fig. 5, by increasing dimensions,



190 F. Sezgin

0.3
—o—M31
—a— M25
——M20
——M15
0.25
(]
£
g
g
£
S
3
5 0.15
=
(]
3
o
2
5 O
2
=
Ly
Q
o
0.05
0
1 2 3 4 5 6 7 8 9

Dimensions

Fig. 11. Relative frequencies of minimum normalized spectral test values S

the curves tend to have smaller tail areas and values accumulate densely about the
mode.

(3) Skewness: Skewness is an important property of distributions representing the
asymmetry with respect to mean. Figure § shows that the distribution of normalized
test value S is skew to left for all modulus sizes and skewness grows with increasing
dimension. This property implies that values larger than the mean are more frequent
and the right tails get heavier with increasing dimension. One can deduce the same
information from Fig. 12 by examining distances between various percentiles. In this
figure, distances between lower quantiles are always larger than distances between
higher quantiles. These differences get smaller with increasing dimension.

(4) Kurtosis: Kurtosis gives useful information by expressing the excess of obser-
vations near the mean and far from it. Figure 9 shows that curves are platykurtic
for t = 2, 3, and 4. After t = 5 they become increasingly leptokurtic. This means
that the distribution is flat for small dimensions therefore contain less observation
near mean and more observations in tails. In larger dimension, however, curves are
peaked. These facts can also be deduced from the Fig. 12 of percentiles. For smaller
dimensions percentiles are situated in a larger region, but for larger dimensions,
frequencies tend to accumulate densely near the central areas.

(5) Minimum and maximum S values: Fixed threshold uses a single value across
dimensions and therefore the failure of a single dimension is enough to reject the
multiplier. Our detailed examination showed that both large and small values are
more frequent in smaller dimensions. This fact can be seen in Figs. 10 and 11. Two-
dimensional test shows the maximum S value with approximately 35% probability.
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Table 4. Some useful percentiles of normalized spectral test value S
Percentile t=2 t=3 t=4 t=5 t=6 t=17 t=8
0.01 0.095 0.164 0.223 0.272 0.322 0.348 0.372
0.05 0.213 0.277 0.331 0.378 0.419 0.435 0454
0.10 0.302 0.349 0.393 0.443 0.468 0.482 0.497
0.20 0.426 0.443 0.470 0.506 0.526 0.535 0.544
0.80 0.851 0.767 0.726 0.714 0.709 0.696 0.686
0.90 0.903 0.824 0.774 0.752 0.744 0.728 0.714
0.95 0.928 0.861 0.808 0.781 0.770 0.751 0.734
0.99 0.964 0.909 0.856 0.825 0.809 0.790 0.768

The probability decreases steadily and ¢ = § has only about 7% probability of rep-
resenting the maximum S.

Although the former probability gets slightly higher and the second slightly smaller
with increasing modulus size, this pattern remains unchanged across modulus val-
ues. Similar comments are valid for minimum S. More than 20% of minimums are
recorded in ¢t = 2. For ¢ = 8, this is slightly above 5%. As for the maximums, the
pattern remains the same across modulus sizes, but with a slightly higher percentage
of small modulus in smaller dimensions and higher percentage of larger modulus in
higher dimensions. Entacher et al [8] noted that: “We observe a steady decrease of
the number of multipliers rated as bad with increasing dimensions ¢ and no more
such multipliers for dimensions ¢t > 7. The phenomenon may be explained in two
ways: either there are no poor quality lattice rules in higher dimensions or our crite-
rion is not suited to identify them.” According to the percentages of Figs. 4, 5 and
12, it is now clear that the first explanation is valid for this fact.

As a guide for applied test studies we present some percentiles of normalized lattice
test in Table 4. Readers are reminded that these are calculated from 20 million
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candidate multipliers of 31 bit generators described in Sect. 5 and presented in
Fig. 12. Usage of percentiles is desirable for two reasons. As can be seen from the
Fig. 12, the first reason is the lack of a common fixed threshold for different dimen-
sions. The second reason is the validity of percentiles for different figure of merit
criteria. As pointed out in Sect. 2, lattice structure can be assessed by different mea-
sures. Since the relation between these measures preserves the order of magnitudes,
percentiles of different figures of merits will have a correspondence, whereas there is
no correspondence between values obtained as percentages of the maximum attain-
able values of different measures. For example if in ¢ dimensional space v, exceeds
80% of the maximum attainable value v;, the standardized value u, will exceed only
100*0.8"% of the maximum attainable value ;. v, having 0.8 spectral threshold
value of My, will produce u; = 6.26 in dimension ¢ = 6 that corresponds only to
26% of the upper bound 23.87.

6. Conclusions

In the present article it is shown that multipliers producing worst lattice points form
certain clusters. The same is true for best multipliers. Using these facts it is possible
to diagnose systematically certain regions as fertile and unproductive before detailed
numerical searches.

Some distributional properties of lattice test are also investigated theoretically and
results are supported by a large body of empirical data. It is shown that the usage
of conventional fixed threshold technique applied on normalized spectral test figure
of merit is not appropriate as the measure of quality. This method gives greater
emphasis on higher dimensions and neglects the most important part, the smaller
dimensions. Therefore a threshold vector based on percentiles of the distribution is
more appropriate.
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