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Abstract

THE LINE BALANCING ALGORITHM
FOR OPTIMAL BUFFER ALLOCATION
IN PRODUCTION LINES

Omer Selvi
M.S. in Industrial Engineering
Supervisor: Asst. Prof. Murat Fadiloglu
September, 2002

Buffer allocation is a challenging design problem in serial production lines that
is often faced in the industry. Effective use of buffers (i.e. how much buffer storage to
allow and where to place it) in production lines is important since buffers can have a
great impact on the efficiency of the production line. Buffers reduce the blocking of the
upstream station and the starvation of the downstream station. However, buffer storage
is expensive both due to its direct cost and the increase of the work-in-process
inventories it causes. Thus, there is a trade-off between performance and cost. This
means that the optimal buffer capacity and the allocation of this capacity have to be
determined by analysis. In this thesis, we focus on the optimal buffer allocation
problem. We try to maximize the throughput of the serial production line by allocating
the total fixed number of buffer slots among the buffer locations and in order to achieve
this aim we introduced a new heuristic algorithm called “Line Balancing Algorithm
(LIBA)”applicable to all types of production lines meaning that there is no restriction
for the distributions of processing, failure and repair times of any machine, the
disciplines such as blocking, failure etc. and the assumptions during the application of

LIBA in the line.

Keywords: Production Lines, Buffer, Optimal Buffer Allocation Problem



Ozet

URETIM HATLARINDA
OPTIMAL ARA DEPO PAYLASTIRIMI ICIN
HAT DENGELEME ALGORITMASI

Omer Selvi
Endiistri Miihendisligi Boliimii Yiiksek Lisans
Tez Yoneticisi: Yar. Dog. Murat Fadiloglu
Eyliil, 2002

Uretim Hatlarinda ara depo paylastirimi  giiniimiiz endiistrisinde genellikle
karsilasilan 6nemli bir problemdir. Ara depolarin {iretim hattinda etkili kullanim1 yani
ara depolarin hangi miktarda ve nereye yerlestirilecegi dnemlidir ¢linkii ara depolarin
iiretim hatlarinin verimliliginde biiyiik etkisi vardir. Ara depolar kendisinin 6niindeki ve
kendisini takip eden istasyonun tikanma ve a¢ kalma sikliklarini azaltir. Ama direkt
maliyetinden ve ara iirlin miktarindaki artisa neden olmasindan dolayi ara depo
kullanimi1 pahal1 bir yatirnmdir. Bu yiizden, performans ve maliyet arasinda endirekt bir
iligki vardir. Bu, optimal ara depo gereksinim miktar1 ve bu miktarin paylastirimi analiz
ile belirlenmeli anlamina gelir. Bu calismada, optimal ara depo paylastirim problemi
tizerinde odaklanilmigtir. Toplam sabit ara depo miktarin1 mevcut ara depo lokasyonlari
arasinda paylastirimi yoluyla seri liretim hattinin birim iiretim miktar1 maksimize
edilmeye ¢alisilmis ve bu amaca ulagmak i¢in istasyonlarin isleme,bozulum ve onarim
zamanlar1 dagilimi, blokaj, bozulum vs. disiplini ve hattin varsayimlari ne olursa olsun
her tiirlii diretim hattina tatbik edilebilir “Hat Dengeleme Algoritmasi” adli sezgisel bir

algoritma gelistirilmistir.

Anahtar Sozciikler: Seri Uretim Hatlari, Ara Depo, Optimal Ara Depo Payalastirim

Problemi
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Chapter 1

INTRODUCTION

Production lines, also called manufacturing flow lines, transfer lines, flow lines
or serial production lines, have been an important area of research ever since 1950’s.
Since flow lines can often be found throughout manufacturing industry (e.g. automobile
industry), many researches have recognized the importance of the subject and

contributed to it.

Let us first define manufacturing flow lines briefly. Manufacturing flow line
systems consist of material, work areas, and storage areas. Material flows from work
area to storage area, from storage area to the proceeding work area and so on. Material
visits each storage and work area. There is an entry work area through which material
enters and an exit work area through which it leaves the system. The work areas are
usually called machines or stations and the storage areas are usually called buffers.
Figure 1.1 illustrates an N-machine production line where M;’s stand for machines and

B;’s are buffers.

O PO O O

M, Bl M B Bn2) Moy By My

Figure 1. 1. The N-machine production line
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Due to their diversity, complexity and inherent randomness in their behaviour,
modelling and estimating the performances of manufacturing flow lines are difficult.
Especially, the randomness inherent in production lines is what makes manufacturing
flow lines difficult to analyze. The primary source of randomness is that the times parts
spend in work areas are not deterministic. This randomness may be due to random

processing times, random failure and repair events that occur on the stations, or both.

In serial production lines, one of the key questions that the designers face is the
buffer allocation problem, i.e., how much buffer storage to allow and where to place it
in the line. This is an important question since buffers can have a great impact on the
efficiency of the production line. They reduce blocking in the upstream stations and the
starvation in the downstream stations. Unfortunately, buffer storage is expensive both
due to its direct cost and the increase of the work-in-process inventories it causes.
Because of the trade-off between the performance and the cost, determination of the

total buffer capacity and the allocation of the buffer capacities is an important problem.

The problem can be formulated in many different ways depending on the choice
of the objective function. Objectives used in the literature are basically maximizing
throughput, minimizing work-in-process, minimizing sojourn time and minimizing cost
or maximizing profit based on the user defined cost or profit functions. In this thesis,
we study the classical problem, which is known as “Optimal Buffer Allocation Problem
(OBAP)” with the objective of maximizing production rate. We focus on the allocation
of total fixed number of buffer slots among the buffer locations for the optimal

production rate of the production line.

In the second chapter of our study, we give a brief background of the production
lines. We provide a review of related research in the literature in Chapter 3. In Chapter
4, we present two related algorithms on the allocation of total fixed number of buffer
slots for maximizing throughput and compare these algorithms in Chapter 5 where we

also develop a heuristic algorithm. Finally, concluding remarks are made in Chapter 6.



Chapter 2

BACKGROUND

2. 1. Major Features and Classes of Production Lines

There are three major classes of manufacturing flow lines. These are;
1. Asynchronous Systems
2. Synchronous Systems

3. Continuous Systems

Asynchronous and synchronous systems are suitable for the manufacturing of
discrete parts. The only difference between them is that all the operations and machine
state changes in the line occur simultaneously as well as buffer levels in the
synchronous systems. In asynchronous systems, the machines are not forced to start or
stop their operations at the same instant. Even when machines have fixed, equal
operation times, the presence of buffers between them allows them to start and stop
independently, as long as the intermediate buffers are neither empty nor full. In some
applications, the operation times may be random. Finally, uncertain failure and repair
times can lead the unsynchronized operation times. Unlike asynchronous systems, in
synchronous systems, all machines are forced to start and stop their operations at the

same time.
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The feature distinguishes continuous systems from the others is that the material
is treated as continuous rather than discrete. That is, instead of discrete parts moving
from buffer to machine and vice versa at specific instants, there is a fluid that is
transferred continuously. Continuous systems are naturally the production systems in
which the material processed is a fluid rather than discrete entities (e.g. chemical

processing).

A machine is said blocked if the processed part on it cannot be put to the
downstream buffer and starving if it is idle and there is no part to be processed in the
upstream buffer. The function of a buffer is to decouple machines. If a machine is
subject to a disruption (a failure or a long operation time), the machine upstream can
still operate until the upstream buffer fills up and the machine downstream can still
operate until the downstream buffer becomes empty. The larger the buffers of the line,
the longer before the filling or emptying occur, and the larger is the production rate.
Pairs of machines that have no storage space between them have the greatest coupling;
and infinite buffers, or storage areas that are never filled, have the least (Infinite buffers

allow coupling when they become empty).

In real life, since all buffers have finite capacity, blocking may occur. There are

two types of blocking;

1. Blocking After Service (BAS)
2. Blocking Before Service (BBS)

BAS, also called #ype-1 blocking, manufacturing blocking, production blocking,
transfer blocking or non-immediate blocking, occurs at the instant of completion of a
part on the machine, if downstream buffer is full. In that case, the part stays on the
machine until a space is available in the downstream buffer. During this time, the
machine is prevented from working and it is said to be blocked. When a space becomes
available in the downstream buffer, the part is immediately transferred to the

downstream buffer and the machine can start processing another part, if any.

In BBS, also called #ype-2 blocking, communication blocking, service blocking
or immediate blocking, machine can start processing only if there is a space available in
the downstream buffer. Otherwise, it has to wait until a space becomes available. BBS

is further classified according to whether the position (space) on the machine may be
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occupied or not while the machine is blocked. These two cases are Blocking Before
Service with Position Occupied (BBS-PO) if the space on the machine is used during
the blockage, and Blocking Before Service with Position Non-Occupied (BBS-PNO) if

the space on the machine is not used during the blockage.

In some systems, machines are prone to failures. In the literature, generally two

types of failures are considered. These are;

1. Operation Dependent Failures (ODFs)
2. Time Dependent Failures (TDFs)

ODFs are failures that are related to the processing of parts and thus can only
occur when the machine is working. The machine is working means that the machine is
up (operational) and it is not idle. On the other hand, TDFs are not related to the
processing of part and thus can occur at any time, including the time when the machine

1s idle.

When failure occurs, the machine cannot process any material, so the upstream
buffer cannot lose material and the downstream buffer cannot gain material. Systems in
which machines can fail are called Flow Lines with Unreliable Machines (FLUMs) and
systems in which machines do not fail are called Flow Lines with Reliable Machines
(FLRMs). In FLRMs, all the randomness is due to the variability of the processing
times, while, in FLUMs, randomness is due to both varying processing times and

failures.

Material arrives at and leaves from the flow line in a variety of different ways. It
is always possible for raw material to be unavailable, or removal of finished goods may
be delayed in real life. Such systems are non-saturated systems. On the other hand, in
the literature, it is almost always assumed that the first machine is never starved and the
last is never blocked. Such systems are called saturated systems. However, it is possible
to model a non-saturated system with a saturated system by adding a non-starving
initial machine as the arrival process and a final machine that is never blocked (means it
has infinite capacity downstream buffer) as the departure process to the line. Hence, the
second machine of the model corresponds to the first machine of the real system and
the machine just before the last machine of the model corresponds to the last machine

of the real system.
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2. 2. General Results Pertaining to Production Rate of a

Production Line

Several measures of performance are of interest when analyzing flow lines. The
most important one is the production rate, P, which is the average number of parts

leaving the system per unit time.

The production rate of a line is limited in two ways. First, the throughput can be
no greater than that of the machine with the smallest isolated production rate. The
isolated production rate of a machine is the rate that it would operate at if it were not in
a system with other machines and buffers. When the machines have different isolated
production rates, their capacities except the lowest are largely wasted. Second, the
unsynchronized disruptions that cause buffers to be empty or full also waste machine
capability. Buffers become empty or full because machines fail or take long time to
process material at different times. If all machines could be perfectly synchronized, not
only in performing operations, but also in failing and getting repaired, buffers would
not affect flow. It is the lack of synchronization that causes machines to be starved or

blocked, and thus to lose the opportunity to work.

A fundamental relationship of flow lines is the conservation of flow which states

that all machines have the same production rates, that is
P] =P2 = e =PN=P.

Conservation of flow holds for FLRMs and also for FLUMs provided that there
is no scrapping of parts. Conservation of flow can be established by using sample path
approach. The sample path behaviour of any flow line can be described by means of
recursive equations. These equations are defined as the evolution equations of the flow

line.

2. 2. 1. Buffer Issues

The production rate increases monotonically as the buffer capacities increase.
This is monotonicity property. Consider two flow lines, L; and L, which have identical

machines but with different buffer capacity vectors K; and K,. The capacity of each
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buffer in L, is at least as large as the corresponding buffer in L. That is, K; < K,. Then

the production rate of the flow line satisfies

P(K;) < P(Ky).

The production rate of a flow line in which one buffer is infinite can be obtained
by decomposing the line into two sub-lines from this infinite capacity buffer. Let L* be
the part of line L that consists only of the first i machines and the first (i — 1) buffers
and similarly let L" be the part of line L that consists only of the last (N - i) machines
and the last (N - i - 1) buffers where the buffer location B; has infinite capacity. Let P*
and PP be the production rates of lines L* and L" respectively. Then, the production rate,

Pinr, of the line with the infinite buffer is
Pine = min(P* , PP).

By combining the above result with the monotonicity property, we obtain the
following upper bound for the production rate of the line where there is no infinite

capacity buffer:

P < min(P*, P

By applying this decomposition several times, we see that the production rate of
a flow line is bounded by the isolated production rate of the machine that has the

smallest isolated production rate as given below:
P <min(p;) i=1toN

Tighter upper bound on the production rate of the original line can be derived

from the decomposition approach and given as
P < min(P"*") i=1 to (N-1)

.
where P**!

Bi, Mi .

is the production rate of the two-machine flow line consisting of M;,

This upper bound can be useful since the production rates of the two-machine

flow lines can be calculated exactly in most cases.
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The monotonicity property can also be used to obtain the following lower bound

on the production rate of the original line:
P'<p

where P’ is the production rate of the flow line with no intermediate storage.

2. 2. 2. Reversibility and Duality

Consider a flow line L', which is obtained from flow line L by reversing the
flow of parts. The first machine in L' is the same as the last machine in L. More
generally, M; in line L' is the same as My.i;; in line L. Also buffers are reversed in line
L'. Then the production rate of the reversed line L is the same as the production rate of
original line L if both lines’ blocking mechanism is BAS. This is reversibility property.
Proof of this property is based on the comparison of the sample paths of the two

systems again using the evolution equations.

Consider now the case of BBS. In that case, there is a much stronger
equivalence between the two systems (L' and L). This equivalence is based on the
concept of job/hole (or part/hole) duality. The idea is that in line L, whenever a part
moves in one direction, a hole (empty space) moves in the other direction. In the case
of BBS, it is easy to check that the behaviour of parts in the reversed system is the same
as the behaviour of holes in the original system. Indeed, starvation in the reversed
system corresponds to blocking in the original system and vice-versa. As a result, the
steady-state distribution of parts in the reversed line is exactly the same as the steady-
state distribution of holes in the original line. This equivalence especially implies that

these two systems have the same production rate.

The concept of job/hole duality still makes sense in the case of BAS. However,
the behaviour of parts in the reversed system is no longer the same as the behaviour of

holes in the original system.

In this chapter we give the brief background of the production lines. It is worth
to give this background since all researches on the production lines in the literature use
any of these classes and features of production lines as the framework while modelling

them and introduce new derivations by basically using the general results pertaining to



CHAPTER 2 : BACKGROUND 9

flow lines. Therefore, the content of this chapter will help the reader understand the

next chapter easily where we will introduce the researches on production lines in the

literature.



Chapter 3

LITERATURE SURVEY

Over the years, a large amount of research has been devoted to the analysis of
production lines. This body of research can be classified as evaluative and generative.
Evaluative studies focused on the performance evaluation of the production lines such
as production rate, average WIP and average sojourn time in the system. Generative
studies dealt with the optimization of these performance measures of the production
lines. Since there is vast amount of work on production lines, we will only deal with the
ones that are directly related to our problem, buffer allocation. However, the review of
production lines written by Gershwin and Dallery[8] can be given as a guide to the

readers who are interested in finding about evaluative studies.

In serial production lines, one of the key questions that the designers face is the
buffer allocation problem, i.e., how much buffer storage to allow and where to place it
in the line. This is an important question because buffers can have a great impact on the
efficiency of the production line. They compensate blocking of the upstream stations
and the starvation of the downstream stations. Unfortunately, buffer storage is
expensive both due to its direct cost and the increase of the work-in-process inventories

it causes. Therefore, there is a trade-off between performance and cost. Thus, the

10
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determination of buffer capacity requirement and the allocation of the buffer capacities
is an important issue.

While solving the buffer allocation problem, determination of the objective and
the assumptions of the models that are worked on are also important for some reasons
such as the tractability, fidelity to reality etc. Objectives that were used in the literature
are basically maximizing throughput, minimizing work-in-process, minimizing sojourn
time and minimizing cost or maximizing profit based on the user defined cost or profit
functions. Minimization of WIP and average sojourn time are positively correlated,
meaning that minimization of one produces the minimization of the other, while these
objectives are negatively correlated with the objective of maximizing throughput. There
are also multi-objective studies aiming to achieve two or more objectives, which were
stated above, at the same time. You can see various studies with these objectives in the
proceeding section. Unless otherwise stated, all proceeding researches used the basic

assumption stated below due to simplicity and tractability;

1. The first machine is never starved and the last machine is never blocked
(Saturated Systems).

2. All random variables (processing times, uptimes, downtimes) are
independent random variables.

3. The transfer through the buffers takes zero time.

4. Manufacturing blocking (BAS) is the blocking criterion, meaning that any
machine can pass the completed part as long as a buffer space is available
(or, when no buffer exists, the downstream machine is idle).

5. Failures are operation dependent failures (ODFs) meaning that any machine
can fail only when it is processing a part. In other words, a machine can not
fail when it is idle (starved or blocked).

6. When a failure occurs, the part stays on the machine; it can be reworked
when the machine is up again; the work resumes exactly at the point it

stops(no scrapping of parts)

Conway et al.[5] analyzed both balanced and unbalanced serial lines with
stations having uniform and exponential processing times via simulation and reported a
number of useful generalizations about the effect of buffers on serial lines. These can

be summarized as follows:
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* Diminishing returns: Throughput increases at a decreasing rate when
successive buffer are placed at a single buffer site, or when successive sets
of buffers are placed at all sites.

*  Non-concavity: Throughput increases in a non-concave fashion when
successive buffers are placed optimally.

*  Sufficiency of small numbers: For lines with low coefficient of variations,
small numbers of buffers at each site are sufficient to recover most of the
throughput lost to stochastic interference.

*  Bowl-phenomenon: Buffers should be allocated evenly to all sites if
possible, with any remaining buffers allocated symmetrically around the
centre of the line.

* Reversibility principle: Any line has the same throughput as its mirror
image.

* Decomposition principle: A single buffer should be placed where an
unlimited buffer would be most effective.

*  Built-up property: The optimal allocation of (n+1) buffers can be built upon

the optimal allocation of n without moving any of the first n.

Anderson and Moodie[2] analyzed the balanced production lines with normal
and exponential operation times to estimate the coefficients for buffer locations that
satisfies the optimal production cost modeled. Multi-product production lines with
equal storage capacity for all buffer locations were considered. Anderson and Moodie
derived mathematical expression for the operation cost of the line for both cases:
normal and exponential service times, and developed minimum cost buffer models
from these expressions. Transient behavior of the line was also considered in order to
observe whether it is beneficial to control the buffer capacities during this period or not.
However, it was observed that there was no cost advantage in controlling the inventory

during the transient period.

In his study, Helber[12] defined the problem of buffer space allocation in
production lines as an investment problem. A model was developed and solution
techniques were described that could be used to determine buffer allocations that
maximize the expected net present value of the investment, including machines, buffers

and inventory. Several examples of flow lines as well as assembly / disassembly
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systems and flow lines with rework loops were analyzed. Optimal buffer allocation was
determined via gradient algorithm based on the assumption of concavity of the function
of the expected net present value of the investment with respect to the buffer capacity
vector. Basic result of this study was that as product quality in a system with a rework
loop improves, an optimally designed system can receive more buffer spaces and may

use more inventory.

A flow-shop type production line where the stations were subject to breakdown
was studied by Altiok and Stidham[1]. The objective was to find the allocation of inter-
stage buffer capacities that maximizes the total profit. The stations, which are modeled
as single-server queuing systems, had completion time distribution of two-stage Coxian
type. After a standard transformation to a phase-type state representation, the new
system gave rise to a Markov chain. The balance equations for this chain were solved
by successive approximations to find the steady-state probability distribution of the
number of items at each station, once the buffer capacities were given. A search

procedure has been employed to find the optimal buffer capacities.

Seong et al.[36] studied the same objective function as Altiok and Stidham[1]
with general linear constraints on buffer sizes and continuous-type product assumption.
Operation times were assumed to be deterministic and equal, while the repairs and
failures were exponentially distributed. They solved the problem with a gradient

projection algorithm.

While allocating the fixed total number of buffers among intermediate buffer
locations optimally, Andijani and Anwarul[3] considered and investigated the trade-off
between three conflicting objectives: maximizing the average throughput rate,
minimizing the average WIP and minimizing the average system time. They used lines
with three and four identical reliable machines with exponential and uniform service
times. Stochastic system simulation was used to generate and construct an efficient set
of buffer allocations which maximizes the average throughput rate and minimizes both
the average WIP and the average system time. Based on these simulation results,
Analytical Hierarchy Process (AHP) was utilized to identify the most preferred
allocation. The objective of this process was to find, for the line, the best buffer

allocation solution to the trade-off between the three conflicting objectives stated.
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Papadopoulos et.al.[25] also tried to allocate the fixed-number of buffers,
servers and fixed amount of workload at the same time as well as individually and in
couples in order to maximize the throughput with minimum average WIP by using
simulated annealing approach. Decision variables considered were the sizes of the
buffers placed between successive workstations of the lines, the number of servers
operating parallel allocated to each workstation and the amount of workload allocated
to each workstation. The study was extended up to 60 stations with 120 buffer capacity
and 120 servers, and it was observed that the approach worked very well compared
with complete enumeration whenever possible as well as produced near-optimal

configurations for relatively large lines in reasonable time.

So[38] studied the buffer allocation problem with the objective of minimizing
the average work-in-process (WIP) subject to a minimum required throughput and a
constraint on the total buffer space. Both the balanced and the unbalanced lines up to
five reliable machines were considered in this study. Exponential and non-exponential
(Erlang-2, Coxian etc.) operation times were assumed in balanced lines while only
exponential operation times were taken into account in the unbalanced lines. So’s
results showed that the optimal strategy of allocating buffer size for this problem
exhibited a rather interesting pattern that was different from the buffer allocation
problem of maximizing the throughput subject to a constraint on the total buffer space.
Specifically, monotonically increasing allocations, where an increasing amount of
buffer space is assigned toward the end of the line, were shown to be optimal for the
most cases investigated. Furthermore, empirical results obtained in this study suggest
that when the line is unbalanced, the slowest operations should be assigned to the
beginning of the line to provide the best throughput and the average work-in-process
trade-off. On the basis of these results, a good heuristic for selecting the optimal buffer
allocations for minimization of work-in-process inventory while achieving minimum

required throughput with constant total buffer space was developed.

Papadopoulos and Vidalis[28] worked on the same optimization problem,
minimizing the work-in-process inventory while achieving the required throughput with
constant total buffer capacity. However, they only focused on the short reliable
balanced production lines with Erlang-k ( k > 2 ) operation times. More specifically,
they studied the average WIP and throughput for all the ordered buffer allocations of a

certain total number of buffer slots among the intermediate buffer locations. The
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vectors of the buffer allocations were classified systematically into equivalence classes,
something that facilitated a lot in the analysis of the evolution of the average WIP and
the throughput as a function of these ordered allocations. Papadopoulos and Vidalis’
results were very similar to the ones So[38] derived. According to these results, each
buffer location takes at least as much buffer slot as the preceding one for the required
throughput levels small relative to the theoretical maximum throughput that is attained
when the buffer slots at hand are placed in order to maximize the throughput of the
whole line. However, while the desired throughput level is increasing to the theoretical
maximum level, buffer slots are transferred to the inner locations gradually resulting in
well-known bowl phenomenon. Also a heuristic algorithm was proposed to find the
optimal buffer allocation (OBA), which reduces the search space by 50% compared to

enumeration in this study.

Another study on the OBA in order to minimize WIP by Kim and Lee[20]
proposed an efficient heuristic algorithm. This algorithm named MNS (Modified Non-
SEVA) is the modified version of the Non-SEVA algorithm (Non-Standard Exchange
Vector Algorithm) which was originally proposed by Seong et al[35] for the
throughput maximization problem. However, since some useful structural properties
such as monotonicity and concavity which hold for the throughput function and are the
basic assumptions of the Non-SEVA algorithm, do not hold for the average WIP.
Therefore, Kim and Lee used the results of Seong et al.[35] in order to obtain a initial
solution which close to the global optimum. Kim and Lee worked on the unreliable
production lines with up to ten machines. The failure rate, the repair rate and the
production rate of each machine were obtained from the same uniform distributions. In
order to compare the efficiency of MNS in the computational tests, also another
heuristic, which was based on one buffer assignment at a time, was proposed called
Simple Heuristic Algorithm (SHA) in this study. The two algorithms were compared
with the solutions obtained by enumeration for short lines with up to 3 or 4 machines
and compared against each other for longer lines with 8 and 10 machines where
complete enumeration is inefficient. For all cases, MNS outperformed SHA in terms of
average WIP levels with reasonable number of iterations. MNS also gave average WIP
levels very close to the optimal solution achieved by enumeration for the cases where

enumeration technique was used.
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Papadopoulos and Vouros[29] presented a prototype model management system
(MMS) for the design and operation of manufacturing systems. The model management
system classifies different models according to the type of the manufacturing system to
which they apply and according to the particular technique employed. The system
comprises three different techniques, namely, analytical, simulation and artificial
intelligence (Al) based techniques for production lines. The first two are evaluative
methods, whereas the last one is a generative (optimization) method that solves the
buffer allocation problem in a production line. Papadopoulos and Vouros studied on
both balanced and unbalanced production lines with reliable stations having
exponential operation times aiming to minimize average WIP by allocating fixed
number of buffer capacity. First contribution of this work was that the development of a
flexible MMS, which provides a simple and intelligible framework for classifying
different, modeling techniques, enables the interaction among these models and does
not restrict the developers to follow a particular model development task. Second one is
the development of a knowledge based system, called Advisor System for Buffer
Allocation (ASBA), which solves the buffer allocation problem in the production lines

with very satisfactory results.

Papadopoulos and Vouros[30] also introduced ASBA2, a knowledge based
system that solves the buffer allocation problem in production lines as an extension of
ASBA. ASBA allocates buffer space in reliable both balanced and unbalanced
production lines, aiming at reducing average WIP subject to a given total buffer space
and a required throughput. However, ASBA2 aims to extend the functionality of ASBA
to unreliable, balanced and unbalanced production lines and allocates the fixed total
buffer space in order to achieve the objective of maximizing throughput. The results
showed that ASBA2 allocates the buffers very close to the optimal ones in a
computationally efficient way by using specific types of knowledge.

Hillier and So[15] also provided a study of the effect of machine breakdowns
and inter-stage storage on the efficiency of production lines. Based on the results they
obtained, Hillier and So developed a simple heuristic method to estimate the amount of
storage space required to compensate for the decrease in throughput due to machine
breakdowns. The study focused on four and five machine production lines with again
operation times from two-stage Coxian distribution. Hillier and So used Coxian

distribution for operation times due to useful interpretation of this distribution. Stage 1
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can be interpreted as corresponding to the normal service for an item at a machine,
whereas Stage 2 corresponds to downtime at the station for whatever reason (e.g.
breakdown of the machine) that interrupts this service where the probability of having
Stage 2 corresponds to the probability that the service is interrupted by down time.
Therefore, their model can be used to study the effect of breakdowns on the allocation
of storage space in a production line. First basic result of this study was that the
throughput of the production line is inversely proportional to the coefficient of variation
of the operation times meaning that increase in coefficient of variation will reduce the
throughput of the line. Secondly, percentage increase in the throughput achieved by
adding one extra unit of buffer space decreases as the buffer capacities increase. Lastly,
while the throughput of a line depends heavily on the average amount of downtime
during one service, the mean length of downtimes can affect the throughput
significantly for fixed average amount of downtime during one service; smaller mean

length of downtimes gives higher throughput than larger mean length of downtimes.

Yamashita and Altiok[41] were concerned with finding the minimum total
buffer number required and its allocation for a desired throughput in both balanced and
unbalanced production lines with three and five stations having phase-type processing
times. One significant difference of this study from others was that the capacity of each
buffer was assumed to be bounded above by a constant value, say C;. They have
implemented a dynamic programming algorithm that uses a decomposition method to

approximate the line throughput at every stage.

Lutz et. al.[21] addressed the problem of buffer location and the storage size in
a manufacturing lines. The question was what buffer sizes should be employed and
where the buffers should be located. Hence, the objectives of Lutz et.al. were to
determine the minimum number of storage spaces needed and the allocation of these
storage spaces among the buffers, so as to maximize the overall throughput of the line.
To achieve these objectives, simulation-search heuristic procedure based on tabu search
was developed. Simulation was used to model the manufacturing process and the tabu
search was used to guide the search to overcome the problem of being trapped at local
optimal solutions. The procedure employs a Swap Search routine and a Global Search
routine. With the Swap Search routine, the procedure identifies good performing buffer
profiles and determines the maximum output level for any given storage level. With the

Global Search routine, the procedure can locate promising neighborhood of buffer



CHAPTER 3 : LITERATURE SURVEY 18

profiles quickly. The procedure is capable of modeling a variety of manufacturing

processes with a variety of scheduling policies and dispatching rules.

Park[31] presented characteristics of the buffer design problem associated with
the production lines and discussed some drawbacks related to the optimization methods
thus far his study applied to the buffer allocation problem. An efficient two-phase
heuristic method, using a dimension reduction strategy and a buffer utilization-based
beam search method, was developed to minimize total buffer storage required while
satisfying a desired throughput rate in unreliable balanced production lines with stations
having deterministic processing times, and geometric failure and repair times. While
Phase I attempts to accelerate the finding of an initial solution by reducing the
combinatorial search dimension to one, Phase II reduces the total buffer storage

required as much as possible while maintaining a desired throughput rate.

Gershwin and Schor [9] described efficient algorithms for determining how
buffer space should be allocated in a flow line. They considered unreliable lines with
deterministic operation times. Two problems were analyzed: a primal and a dual
problem. The goal of the primal problem is to minimize total buffer space required for
the line to meet or exceed a given average production rate, and the goal of dual problem
is to maximize the production rate achievable with a given total buffer space. The dual
problem is solved by means of a gradient method, and the primal problem is solved
using the dual solution. It was also showed how buffer allocation problems with profit

maximization objective could be solved by using essentially the same algorithms.

Sheskin[37] studied the allocation of buffer spaces in systems like Gershwin and
Schor[9]: those with unreliable machines with equal deterministic processing times. In
addition, he assumed time-dependent failures. A decomposition method was used to
produce numerical results for small systems with small buffer capacities. These results
led to some rules of thumb on the allocation of buffer spaces to maximize production

rate.

Soyster et.al.[39] used the same model with Sheskin[37] to study the
maximization of production rate subject to general linear inequality constraints on
buffer sizes. They approximated the production rate for small systems and used an

integer programming package to find optimal allocation of buffer spaces.
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El-Rayah[6] attempted to study the effect of unequal allocation of fixed number
buffer storage and the imbalance in the operation time variabilities on the throughput
and average WIP. He simulated balanced lines in terms of mean operation times where
operation times were assumed to be normal. In the first section of the study, he only
investigated the effect of unequal buffer allocation on the output rate and average WIP
of the lines up to four machines which were also CV-balanced (where all machines
have same coefficient of variation). On the basis of simulation results for this section,
El-Rayah concluded that the output rate of a production line where the buffer capacity
is allocated equally cannot be significantly improved by deliberately unbalancing buffer
allocation. However, if imbalance is unavoidable, throughput is maximized by
assigning larger buffer capacities to the middle buffer locations and smaller capacities
to the end buffer locations on the line. He also observed from the results of the first
section that increasing order of buffer capacities encourages the reduction of average
WIP significantly while affecting the throughput in the decreasing direction so this
knowledge should be taken into account while the objective is to minimize WIP. In the
second section of his study, ElI-Rayah investigated the effect of imbalance of operation
time variabilities on the output rate of the balanced production lines in terms of mean
operation times with no storage buffers and he observed that bowl phenomenon holds
meaning that assigning stations with more variable operation times to the ends of the
line while assigning the ones with less variable operation times to the middle of the line

in order to maximize output rate.

Hillier and So[14] studied the effect of coefficient of variation of operation
times on the optimal allocation of storage space in production lines. They worked on
both p-balanced and CV-balanced lines with operation times having two-stage Coxian
type distributions and considered the throughput as the only performance measure.
Their study showed that the optimal buffer allocation depends on the degree of
variability in the operation times. Specifically, the results showed that the inverted bowl
effect is more pronounced with higher variability in the operation times. Higher
variability meaning increasing coefficient of variations generally increases the

imbalance in the optimal allocation.

Powell[32] provided a detailed study of the unbalanced three-station serial lines
with reliable stations having log-normal processing times with the objective of

maximizing throughput. In this study, imbalances in both means and variances were



CHAPTER 3 : LITERATURE SURVEY 20

considered. The study established a rule, Alternation Rule, for buffer allocation in
unbalanced lines. It was observed that the optimal sequential allocation of buffers to
lines in which one station had a higher mean or variance was to place the first buffer
next to the bottleneck, but then to place subsequent buffers alternately at the two
available sites. In effect, this rule suggests that a balanced allocation is optimal unless
the imbalance in processing times is extreme. Powell also observed that imbalances in
means have stronger effect than imbalances in variances, so that when a line is
unbalanced in both senses one can buffer the bottleneck with the high mean in

preference to that with the high variance unless the imbalances are extreme.

Chow[4] pursued a simple and practical solution for the optimal allocation of
buffers with the objective of maximizing throughput. He adopted an approach similar to
that used in Anderson and Moodie[2] except that the operation times were not
necessarily identical and the number of stations in the line could be arbitrary. At the
end, Chow constructed a dynamic programming procedure for buffer design for optimal

throughput which generates results that consolidates the bowl-phenomenon.

Yamashina and Okamura[42] dealt with the role of buffer stocks in multi-stage
transfer lines by presenting computer simulation results. Lines with unreliable stations
were investigated. Breakdown and repair times were assumed to have geometric
distributions. It was also assumed that breakdown results in the destruction or damage
of the production unit at the affected stage so that the production unit must be removed
from the line as scrap. Yamashina and Okamura observed that bowl phenomenon,
which was stated for balanced lines with reliable stations, also holds for the balanced
lines with unreliable stations. They also obtained the result that uniform buffer storage
capacity allocation does not guarantee the optimum allocation even for balanced
identical lines, but this postulate may be accepted for balanced identical lines in the
sense that the throughput for uniform capacity allocation does not differ very much
from the throughput for optimum allocation. It was also shown that an N-stage line
should be designed such that the lowest stage production rate occurs in the N™ stage,
the second lowest in the first stage, the third lowest in the (N-1)" stage, the fourth
lowest in the second stage and so on, to maximize the line throughput. This study also
demonstrates that the total buffer capacity should be allocated such that the difference

between the production rates of the stages on either side of a storage point is minimized
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and the production rate of the stages before the storage point is slightly greater than that

of the stages following the storage point.

Papadopoulos and Spinellis[23] described a simulated annealing approach for
solving the buffer allocation problem with the objective of maximizing throughput for
fixed amount of buffer slots in reliable production lines with exponential operation
times. Performance of the simulated annealing approach was evaluated by comparing
the results of it with the results of complete enumeration whenever practical for short
lines and the results of the reduced enumeration which is widely used in literature for
the cases of longer lines. Obtained throughput rates by the simulated annealing
approach were quite close to the solutions obtained by complete and reduced
enumerations. However, evaluated configurations in simulated annealing approach
nearly did not change while asymptotically increasing in complete enumeration and
reduced enumeration with respect to the increase in the total buffer slots that will be
allocated among the buffer locations. For this reason, simulated annealing approach is

superior over both enumerative techniques for the lines with large total buffer slots.

Papadopoulos and Spinellis[24] broaden their research[23] by also taking
genetic algorithm into account near simulated annealing and obtained interesting
results. Genetic algorithm showed similar properties to simulated annealing. However,
it gave slightly worse throughput rates than simulated annealing approach with less
evaluative configurations where the difference between the throughput rates decreased
with the increasing total buffer capacity and line length. The most interesting result that
makes genetic algorithm superior to simulated annealing was that the number of
evaluative configurations for simulated annealing is increasing linearly but with
significantly higher rate than the case of genetic algorithm with respect to the increase

in the number of stations in the line.

Hillier et.al.[16] investigated the problem of the optimal allocation of fixed to
total buffer capacity for maximizing the throughput of the whole line. They used
enumeration on balanced lines with identical exponential service times. Their
conclusion was that storage bowl phenomenon holds meaning that interior buffer
locations are given preferential treatment (more buffer slots) over the end buffer
locations. The other key conclusion of this study was the hypothesis that, when the total

amount of storage space also is a decision variable, the overall optimal solution
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commonly follows a storage bowl phenomenon whereby the allocation of buffer
storage space fits an inverted buffer pattern meaning that optimal allocation would have

one additional storage space at each of the internal buffer locations.

Hillier[13] investigated the hypothesis in Hillier et al.[16] with a simple cost
model including a linear revenue function and a linear cost per buffer space. The
objective was to maximize profit with the total buffer space being decision variable in
this study. Hillier worked with balanced and unbalanced four- and five-stations
production lines with a single bottleneck in terms of mean processing times.
Exponential, Erlang-2 and Erlang-4 processing times were used. Hillier observed that
inverted bowl phenomenon was typically optimal for balanced lines but shape became
more and more pronounced with larger numbers of buffer spaces. However, in
unbalanced lines the buffer space pattern deviates from the bowl pattern by reducing
the number of buffer spaces in buffer locations that are not adjacent to the bottleneck
station. Also it was stated that the processing time variability measured by coefficient
of variation was shown to have very little impact on the pattern of buffer space
allocation while the total number of buffer spaces was significantly affected by (being

roughly proportional) coefficient of variation of processing times.

Ho et.al.[17] presented a design algorithm based on the gradient vector of the
throughput with respect to the buffer sizes, and aiming to maximize throughput via
allocation of fixed amount of buffer capacity in transfer lines. They studied the effect of
allocating an additional buffer space at a certain location along the line and predicted
the improvement in the production rate. Proceedingly, they introduced simulation-based
gradient algorithm which solves the buffer allocation problem for unreliable lines

having Markovian property effectively.

Gurkan[11] used simulation-based optimization, sample path optimization, to
find the optimal buffer allocation in serial production lines where machines were
subject to random breakdowns and repairs in contrast to deterministic operation times.
Gurkan’s objective was to maximize throughput with given total buffer capacity but she
used fluid-type single product instead of discrete-type. Gurkan decided to work with
continuous type production line instead of discrete-type since continuous type line
simulation are substantially faster than discrete type line simulations meaning

considerable increase in computational efficiency, the approximations of discrete
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product transfer lines via continuous product transfer lines are quite accurate and she
interested in optimizing systems of large size. Obtained results showed that her method

performed quite well even for very long lines.

Papadopoulos and Vidalis[26] dealt with the optimal fixed amount of buffer
allocation problem with the objective of maximizing throughput in balanced production
lines with reliable workstations having exponential or Erlang-k ( k = 2,3,4 ) processing
times. They presented two basic design rules that were extracted for the optimal buffer
allocation in these types of lines using enumeration and developed a search technique

that gives the optimal buffer allocation very fast.

Papadopoulos and Vidalis[27] also investigated the optimal buffer allocation
giving the maximum throughput in short (with 3,4,5,6 and 7 stations) production lines
with unreliable stations balanced in mean processing times. Repair and failure times
were assumed to be exponential whereas operation times were assumed to have Erlang-
k (k=1,2,4 and 8 ) distribution. They answered the critical questions such as the effect
of the distribution of the service and repair times, the availability of the stations and the
repair rates on the optimal buffer allocation and the throughput of these types of lines.
Papadopoulos and Vidalis also confirmed the validity of reversibility property for

unreliable lines in this work.

Powell and Pyke [34] studied the problem of buffering reliable serial lines with
moderate variability and a single bottleneck in terms of processing time for the
maximization of throughput. Processing times were assumed to have log-normal
distribution. Their analysis showed that bottleneck station drew buffers toward itself,
but the optimal allocation was dependent on the location and the severity of the
bottleneck, as well as the number of buffers available. It was also observed that
relatively large imbalances in mean processing times are required to shift the optimal
buffer allocation away from an equal allocation and line length appeared to have a
relatively small effect on the optimal allocation with a given bottleneck. Furthermore,
in severely unbalanced lines, throughput appeared to be insensitive to the allocation of
buffers. Based on these results, Powell and Pyke suggested that equal buffer allocations

might be optimal except in severely unbalanced lines.
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Jafari and Shanthikumar[19] also aimed to solve the problem of allocation of
given total buffer storage with the objective of maximizing throughput subject to local
buffer storage constraints (i.e. buffer slots no more than C; could be assigned to the
buffer location B;) in transfer lines. They worked on the synchronized transfer lines
with unreliable stations having geometric up- and down-times. It was also assumed that
when station i breaks down, the part being processed by it is either scrapped with
probability B; or it will be completed with probability 1- ; , at the end of the cycle
where the station is repaired. Jafari and Shanthikumar presented a heuristic solution
which was based on dynamic programming and an approximate procedure to compute
the production rate of the transfer line and which was producing quite reasonable

results.

It is worth to conclude this chapter with summary of researches on the optimal
buffer allocation in the literature. Below table named Table 3.1 gives the related

researches with their objectives and types of lines on which they focus on briefly.
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THROUGHPUT
AUTHOR TYPES OF LINES OBJECTIVE ESTIMATION
METHOD
Conway et al.[5] Balanced, Unbalanced Analyzing the N ffe_c t of buffers on Simulation
serial lines
Anderson and Moodie[2] Balanced Analyzing the optimal production cost Simulation
modeled
Helber[12] Several exgmples of flow Maximizing net present value of the Simulation
lines investment
. . . o Analytical
Altiok and Stidham[1]. Unreliable Maximizing the total profit c
approximation
Seong et al.[36] Unreliable Maximizing the total profit
Andijani and Anwarul[3] Balanced Reliable Maximizing throughput, minimizing Simulation
WIP and minimizing time in system
Balanced and Unbalanced . Exact analytical
So[38] Reliable Minimizing WIP solutions(Markovian )
Papadopoulos and . e Exact analytical
Vidalis|28] Balanced Reliable Minimizing WIP solutions(Markovian)
Kim and Lee[20] Unreliable Minimizing WIP Analytical
approximation
Paadonoulos and Exact analytical
pacop Balanced, Unbalanced Minimizing WIP solutions(Markovian),
Vouros[29] . .
Simulation
Papadopoulos and Balanced and Unbalanced Exact analytical
. Maximizing throughput solutions(Markovian),
Vouros[30] Unreliable . .
Simulation
o . Analyzing the effect of breakdowns Exact analytical
Hillier and So[15] Unreliable and buffers on the efficiency of line solutions(Markovian)
Yamashita and Minimizing total buffer slots for Dynamic programming
Altiok[41] Balanced, Unbalanced desired throughput algorithm
Lutz et. al.[21] Several exgmples of flow M1n1m1z1n_g total buffer slots for Simulation
lines desired throughput
Park[31] Balanced Unreliable M1n1m1z1n_g total buffer slots for Anal_ytlca_l
desired throughput approximation
Gershwin and Schor [9] Unreliable M1n1m1z1n_g total buffer slots for Anal_ytlca_l
desired throughput approximation
Sheskin[37] Unreliable Maximizing throughput Analytical
approximation
Analyzing the effect of unequal
El-Rayah[6] Balanced allocation of buffers on throughput Simulation
and WIP
- Analyzing the effect of CV of Exact analytical
Hillier and Sof14] Balanced operation times on OBA of buffer solutions(Markovian )
Powell[32] Unbalanced Reliable Maximizing throughput Simulation
Analytical
Chow[4] Balanced, Unbalanced Maximizing throughput approximation,
Simulation
Yamashina and Unreliable Maximizing throughput Simulation
Okamura[42] g throughp
Papadopoulos and . o Analytical
Spinellis|231,[24] Reliable Maximizing throughput approximation
. o Exact analytical
Hillier et.al.[16] Balanced Maximizing throughput solutions(Markovian)
. oL Exact analytical
Hillier[13] Balanced, Unbalanced Maximizing profit solutions(Markovian)
Ho et.al.[17] Unreliable Maximizing throughput Simulation
Gurkan[11] Unreliable Maximizing throughput Simulation
Papadopoulos and . o Exact analytical
Vidalis|26] Balanced Reliable Maximizing throughput solutions(Markovian)
Papadopoulos and . o Exact analytical
Vidalis[27] Balanced Unreliable Maximizing throughput solutions(Markovian)
Powell and Pyke [34] Reliable Maximizing throughput Simulation
Jafari and . Lo Analytical
Shanthikumar{19] Unreliable Maximizing throughput approximation

Table 3. 1. Summary of Literature Survey




Chapter 4

TWO RELATED ALGORITHMS

Most of the studies, reviewed in the previous chapter, about the optimal buffer
allocation in production lines with the objective of maximizing throughput do not solve
the problem directly. Instead, some generalizations and intuitive ideas about the
characteristic of the optimal buffer allocation or the effects of some parameters (i.e.
repair rate, failure rate etc.) on it are introduced. On the other hand, the ones that solve
the optimal buffer allocation problem are not applicable to all types of production lines.
These types of studies focus on the specific production lines (i.e. balanced lines) or
production lines with special features such as reliable machines etc. However, on the
contrary to these studies, Seong et.al.[35] and Powell and Harris [33] introduced new

heuristic algorithms applicable to all types of production lines.

4. 1. Standard and Non-Standard Exchange Vector
Algorithms (SEVA and Non-SEVA)

Seong et al.[35] worked on unbalanced lines with unreliable machines having
exponential failure and repair times whereas operation times are deterministic or
exponential with different rates. They focused on the optimal buffer allocation problem

(OBAP) with the objective of maximizing throughput with the concavity assumption of

26
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objective function. In their study, OBAP, a non-linear integer-programming problem, is

presented as below mathematical structure;
OBAP: max E(K)
K

s.t. eTK =C

K 1s a non-negative integer

where  E(K) is the throughput with K,
e 1S a unit column vector,
K is a buffer allocation (= (K, ........ ,Kaep)'), and
C is the fixed total buffer capacity available.

Two different versions of the heuristic algorithm for solving OBAP based on
the idea of the local search are presented in this study. Namely, first of all, it is needed
to define a specific neighborhood with respect to a given solution. The best solution in
this defined neighborhood is determined and becomes the next solution. This process is
repeated until no better solution is found. The process of defining the specific
neighborhood is called the line segment selection and the process of finding and

moving to the best solution in the neighborhood is called the point search.

The line segment selection yields a line segment L which is specified by two

integer vectors L', L* and two integer parameters 0; and 0, ( 0, < 8,) as below:
L(L,L,81,8)={L|L=L+6L",8=61,6,+1,...,6}

where L', L? , 0, and 8, are selected in such a way that all points in the set L (

L',L?,0,,8,) are within the feasible region.
In the point search, an optimization problem given below is solved:

max E(L)
st. LinL(L',L*,0:,6,)

which is denoted by PS( E: L',L*,0,,6,).

At this point, it is worthwhile to explain the point search and the line segment

selection in more detail:



CHAPTER 4 : TWO RELATED ALGORITHMS 28

The point search is a process of finding the best integer solution among a set of
integer solutions defined on a straight line. In PS( £: Ll, L’ , 01, 6,), there are (6, - 6, +
1) integer vector points in L. If (8, - 6, + 1) is less than or equal to 4, objective function
is evaluated at each point and the optimum solution can be obtained. However, if (0, -
0, + 1) is greater than 4, solving this problem becomes equivalent to finding an interval
containing 4 consecutive integer vector points defined by an integer value 0 satisfying

the following conditions:
E(L'+0L*) < E(L'+ (68" + L)
E(L'+ (0" +2)L%) > E(L'+(8 +3)L%)

Such an interval can be found in O(log M) time where M (=0, - 8; + 1) is the
number of integer vector points on the line segment L by using modified bisecting
method. Optimum solution is among the one ( L'+ (8" + 1)L? ), (L' + (8" + 2)L? ) with
higher objective value of E(L).

Throughout the algorithm, since the sum of the components of each solution is
equal due to the fixed amount of total given buffer slots, moving from one solution to
the other can be considered as the movement along an integer directional vector 4
whose entries sum up to zero meaning that e’ = 0. Such vector is defined as “exchange
vector”. If a certain exchange vector yields the better production rate, it is called
“improving exchange vector”. Hence, the line segment selection can be thought of as a

process of choosing a line segment along an improving exchange vector.

Two propositions are presented below that are necessary to develop heuristic
algorithms, which differ only in the line segment selection procedure and that are based

on the interesting properties of the feasible region K which is given as
K={K|e'K=C, K>0,K€ RN, K;nteger forallj=1, ..., (N-1)}.

Proposition I: For an arbitrary pair of points K' and K* in the set K, K> — K'
can be represented as a unique integer linear combination of vectors (X', ..., X™?}

defined as
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1 if j=1i
X;= -1 if j=i+1 foralli=1, ..., (N-2).
0 otherwise

Proposition II: The vector Z satisfies €'Z = 0, if and only if Z is a linear

combination of vectors {X Lo XN v

X 'is called “standard exchange vector” since it represents an exchange between

two adjacent buffers, i.e. i" and (i+1)™ buffers.

4. 1. 1. Standard Exchange Vector Algorithm (SEVA)

Proposition I gives the basis for setting up a line segment selection procedure
used for developing the first algorithm, Standard Exchange Vector Algorithm (SEVA).
The basic derivation from Proposition I is the simple fact that all possible exchanges
among the buffers can be represented as a unique linear combination of standard
exchange vectors. In other words, any exchange among buffer allocations can be
achieved by a set of exchanges between adjacent pairs of buffers. This idea is used for

developing SEVA.

In the Figure 4.1, it can be seen how SEVA proceeds for 4-machine production
line with three buffer locations where totally seven buffer slots will be allocated. The
initial solution is K *° (= K °). At this point, two point search procedures are performed,
generating K ™' and K 2. Then K °* is assigned to K '(= K ') and again two more
point search procedure is applied, yielding K "' and K ' where K ' is set to the third
point K * (= K *°) and the algorithm proceeds.
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Figure 4. 1. The illustration of SEVA

SEVA can be summarized as follows;

Step 0: (Initialization) Set m = 0.
Choose an initial feasible allocation K °, which is in the feasible region K.

Step I: Set K™ =K™ .
Step 2: Fori=1, ... ,(N-2),set K ™o be an optimal solution to

PS(E: K™, X', 6,,05)

where 0',=-K™" and 6,=K2".
Step 3: Set KD —gm®N-2)
Step 4: (Termination)

If| E(K™Y)-E(K™)| <€ (gis set to 10° in the applications ), then STOP.

Otherwise set m=m + 1 and go to Step 1.
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4. 1. 2. Non-Standard Exchange Vector Algorithm (Non- SEVA)

The number of elements of the feasible region K becomes huge with the
dramatic increase in the total fixed amount of buffer slots C and the number of
machines N. In such cases, SEVA might have to go through too many point search
procedures and each point search procedure can be slowed down significantly due to
the large number of integer vector points on each selected line segment. Based on the
observation that the selection of a non-standard exchange vector pointing toward the
region with better solutions can improve the efficiency of the algorithm, second

algorithm called Non-Standard Exchange Vector Algorithm (Non-SEVA) is developed.

Figure 4. 2. The procedure how to obtain non-standard integer exchange vector

approximating the gradient vector in Non-SEVA

Proposition II, which is the consequence of Proposition I, is the basis for Non-
SEVA. Proposition II implies a simple fact, that an arbitrary exchange vector can be
represented as a linear combination of the standard exchange vectors, which is used to
develop heuristic procedure for finding a good non-standard integer exchange vector

approximating the gradient of the throughput function.
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Non- SEVA starts with a point in the feasible region K as SEVA does and
improving non-standard exchange vector is obtained which is the approximation of the
gradient of the throughput. However, since the objective function is not differentiable,
pseudo-gradient g is obtained which is the approximation of the gradient of the

throughput function first by finite differencing:
g(K")= (K] ) 8(K(y))'

EC Kl K41 Ky oo ) =B Ky K -1, Ky )

AR O D Jt)> (-1 > (J+1) >

g(Kj)=
(K" +1)—(KI'-1)

ECo Kl K741, Ky ) =BG K K7 =1, K

AR O A D (J+1) > (-1 > (J+1) 2

2

The projection of pseudo-gradient g on the hyper plane ¢’Z = 0 is a non-
standard exchange vector (not necessarily an integer vector) satisfying e’d = 0 and it is

given as
d=(I-ec'e)' ) g. (*)

Due to Proposition II, d can be represented as a linear combination of the

standard exchange vectors satisfying
d=S*d=m X'+ X+ ...+ oy X N2 where S is the scale factor.

By rounding off a;’s to get yi’s, we get an integer vector p approximating the

pseudo-gradient vector g:
p=ni X'+ X+ +'Y(N-2)X(N-2)

The illustration of how Non-SEVA obtains a non-standard integer exchange

vector can be seen in Figure 4.2.

Two different procedures for the round-off are developed. One is for making

“big” steps and the other is for making “small” steps.
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In the big step round-off procedure, vyi’s are defined to be as the following:

For a given allocation K, calculate d using the equation (*). \

Let d; be the jth entry of d:

d,, = min{ld |}

d;#0,j=1,..,(N-1)

min

b
d

d=

I

min

S~
a,=)Yd, forallj=1,... (N-2)
k=1

> **)

Finally, v;’s are determined by rounding off o;’s. /

In the small step round-off procedure, y;’s are defined to be as the following:

For a given allocation K, calculate d using the equation (*). \

Let d; be the jth entry of d:
d_ .= max{‘dj ‘}

max

Finally, y;’s are determined by rounding off a;’s. ]

While Non-SEVA yields a significant improvement, the point search procedure

along the non-standard exchange vectors are performed making “big” steps.

However,

if the reverse is the case meaning that Non-SEVA does not yield a significant

improvement, making “small” steps is invoked during the point search along the non-

standard exchange vectors.
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The systematic representation of Non-SEVA is as follows:
Step 0: (Initialization)
Set m=0. Choose an initial feasible allocation K™, which is in feasible region K.
Step 1: (Big Step)
Obtain a non-standard exchange vector p from K™ by using equation (**).
If p = 0 then go to Step 3.

Otherwise, let K™ be the optimal solution to PS( E: K", p, 0, 6,)

where
0, =min{p }
j=1,....(N-1)
and
[C_Kln
/ lf pj > 0
P,
. K?
p/:<1——-’ if p; <0
P;
k 00 if p =

Step 2: If | E (K™") - E (K™) | <& (8 is set to 10™ in the applications) then go to Step 3.
Otherwise, set m=m + 1 and go to Step 1.

Step 3: (Small Step)
Obtain a non-standard exchange vector p from K™ by using equation (***).
If p = 0 then stop here. K™ is optimal solution.

Otherwise, let K™ be the optimal solution to PS( E: K™, p, 0, 6, ) where 6,

is defined as in Step 1.
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Step 4: (Termination)

If| E(K™Y)-E(K™)|<c¢(eis set to 10° in the applications ) then there
exists no improvement and K™ is optimal solution. Stop here.

Otherwise set m=m + 1 and go to Step 1.

Same balanced initial allocation procedure which is proposed by Hillier and
So[14] is used for both SEVA and Non-SEVA in the study of Seong et.al[35].

According to this procedure, the initial allocation, K, is set as follows:

0o=|_C - ]
K'/_{(N—2)J for j=1,...,(N-2)

N-2
K,y =C=> K} where | x |is the largest integer that does not exceed x.
=1

4. 2. Simple Search Algorithm (SSA)

Powell and Harris [33] developed an efficient simple search algorithm for
determining the optimal allocation of a fixed amount of buffer capacity giving the
maximum throughput in both balanced and unbalanced serial production lines with
reliable stations having log-normal processing times. Simulation was used to obtain the
throughput for every allocation considered in the algorithm. Simple Search Algorithm
is based on two important observations grasped in the execution of Non-SEVA. First
observation is that information on the throughput gradient at any point in the feasible
region is tedious to determine since the central difference approximation to the gradient
requires two simulations for each of the (N-1) buffer locations. Second one is that the
estimated gradient may not suggest a useful search direction either because it leads out
of the feasible region or because its projection onto the feasible region is not itself an
integer vector, so information is lost in approximating the projected gradient with an
integer vector. For these reasons, a simple search procedure that maintains, at each
stage, a collection of feasible buffer allocations that are sorted in order of throughput
values is introduced. The search direction is determined by moving from the point with

the lowest throughput in the current candidates to the one with the highest throughput.



CHAPTER 4 : TWO RELATED ALGORITHMS 36

The Simple Search Algorithm (SSA) has its origins in the sequential search
procedures given by Spendley and Hext [40] and Nelder and Mead [22]. The Spendley-
Hext algorithm starts with a set of candidate solutions that form a regular simplex.
Then, this algorithm identifies a search direction by moving from the centre of the
simplex out through the face opposite the worst candidate solution. A new candidate
called reflection is identified in this search direction while the old worst solution is
discarded and the procedure starts again. The shape of the simplex does not change
from stage to stage, so it may move slowly even when the gradient is steep. In the
Nelder-Mead algorithm, the centroid of all solutions in the simplex except the worst is
determined and the search direction is the one from the worst solution through the
centroid and out beyond the simplex. However, in contrast to Spendley-Hext algorithm,
the algorithm introduced by Nelder and Mead accelerates when the gradient is steep
and decelerates when it flattens out. While adapting these algorithms to the Simple
Search Algorithm, two problems are faced: to ensure that the search can move quickly
when the current candidate allocations are far from the optimal and to ensure that the
new candidate allocation that is determined from the search direction is feasible
meaning that it is an integer vector with entries sum up to total fixed number of buffer

slots.

Firstly, an initial candidate allocation K = (K, , K5, ... , Kn.i) ) 1s selected. This
selection is done based on the studies of Powell[32] and Powell and Pyke[34]. This
initial allocation will be balanced or as close to balanced as possible since these two
studies show that balanced allocations tend to be optimal except for highly unbalanced
lines. Then, (N-2) additional allocations from the closest neighbours to K; are generated
by transferring one unit of buffer slot from the buffer location with the largest capacity
to the each of other buffer locations successively to form the initial simplex. These
candidates are sorted from the best to the worst according to their throughput values
estimated via simulation. In order to find the search direction, the Spendley-Hext
reflection procedure is adapted and, after some experimentation, a reflection procedure
that computes the difference between the double of the buffer allocation vector with the
best throughput and the buffer allocation vector with the worst throughput is
introduced. By this way the second one of the pre-stated problems faced during the
adaptation is overcome. The resulting allocation is always an integer vector with entries

sum up to the total fixed number of buffer slots and can be expected to lie in the
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direction of improving throughput. To make these more understandable, let the vector
(0,0,0,0,5) be the initial buffer allocation for six station production line with the 5
buffer slots. Then the generated neighbours that form the initial simplex with the initial
buffer vector (0,0,0,0,5) become (1,0,0,0,4), (0,1,0,0,4), (0,0,1,0,4), (0,0,0,1,4). Say that
the best allocation is (0,1,0,0,4) and the worst is (0,0,0,0,5). By using these, new

allocation, the reflection point, is obtained as follows:
2*(051a05054) - (070309055) = (092305()’3)

If the estimated throughput of the new allocation is better than the current
worst, it is replaced with the worst allocation and the search procedure begins again on
the new simplex. If the other is the case meaning that the estimated throughput of the
new allocation is worse than the current worst allocation, the search is restarted by
generating an initial simplex via the same method (transferring one buffer slot from the
buffer location with highest capacity to each of the other buffer locations successively)

around the best of the current allocations.

The simplex usually grows as it proceeds, in the sense that new allocations are
farther and farther away from the existing allocations. This feature of the simplex
solves the first pre-stated problem during the adaptation procedure since it allows the

algorithm to accelerate when a good direction is identified.

The reflection may be infeasible. In other words, the reflection may have
negative entries. This is undesirable situation since any buffer location cannot have
negative capacity. If this is the case, reflection is produced from the second worst
allocation in the current candidates. If again an infeasible reflection is obtained by the
second worst, the third worst allocation is used in the reflection procedure and this goes
on until a feasible reflection is achieved. If no feasible reflection is achieved by all
candidates, restarting option is employed which is operated in the case of reflection

with less throughput than the current worst allocation in the simplex.

An important feature of this algorithm is that the simulation run length was
adjusted during the implementation of the algorithm to save simulation run time when
high precision in throughput estimates was not needed, and to ensure the adequate
precision when it was needed. In the first step, based on some judgment and experience,

a minimum (also initial) run length Ry, is determined in a way that the search never
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uses inappropriately short runs and a maximum run length Ry, is determined in a way
that the search will not continue long after an optimal or near optimal allocation is
found. In other words, Ryax is chosen to balance the trade-off between accuracy level

and the desire for short runs.

Secondly, in adjusting the simulation run lengths, the height, H, of the simplex
is computed in order to estimate how close the simplex to the optimal solution at each

step of the algorithm by
H= (Pbest - Pworst) / Pbest .

In the above equation, Ppest and Py are the estimated throughput values of the

best and the worst of the current candidates respectively.

In the next step, a run length constant k is chosen (empirically a value of 100-

200 for k performs well) and run length R is set to
R=k/H.

The closer the simplex is to the optimum, the smaller the height of the simplex
H is expected to be and as a consequence of this the larger the run length R is.
However, this calculated R value is not directly used in the next step. Since large errors
in throughput estimates may make H either increase or decrease substantially, and thus
lead to inappropriately large changes in R, a weighted average of the previous run
length and the current value of R is taken at each stage of the algorithm and the larger
of this weighted sum and current value R is selected as the current run length. By this
way, failing to decline or incline in run length in need of less or more precision

respectively is prevented.

Two conditions must hold simultaneously in order to stop the Simple Search

Algorithm. These conditions are

1. The current reflection must have a lower throughput value than the worst
allocation.
2. Te best allocation must be the initial point in the simplex from which (N-2)

neighbours are generated.
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Since it is probable for the algorithm to stop at inappropriately short run length,
an additional condition of doubling the run length at each iteration until R,y is reached

is integrated as the third stopping condition.
The Simple Search Algorithm can be summarized as below:
Step 0: Choose an initial candidate. (Balanced or as close to balanced as is practical)

Step 1: Generate (N-2) adjacent candidate solutions from the current best candidate to

forma new simplex. (Initial simplex is formed from the initial candidate)

Step 2: Simulate all candidate solutions. (Simulation run length is Ry, for initial

simplex)
Step 3: Sort candidate solutions by their estimated throughput values.
Step 4: Determine the feasible reflection. (Reflection procedure was given before)

If no feasible reflection is found
Go to the Step 1.
Else
Simulate reflection point.
If the throughput of reflection is better than the worst’s
Replace the worst candidate with the reflection.
Calculate the run length. (Technique was stated before)
Go to Step 2.
Else
If the best candidate is same as the initial candidate
If the run length is less than Ryax .
Double run length.
Go to the Step 2.
Else
Stop.
Initial vertex in the final simplex is the optimum.
Else
Go to Step 1.



Chapter 5

LINE BALANCING ALGORITHM (LIBA)

5. 1. Introduction

Before introducing our algorithm for solving OBAP, it is worthwhile to state
some important observations related to production lines. Let L be the N-machine
production line with (N-1) buffers as depicted in Figure 5.1 that we are trying to
allocate the total fixed number of buffer slots among the buffer locations with the

objective of maximizing throughput.

M, B M; B Bn2)y My By M

Figure 5. 1. The N-machine production line L

Now, let L;, L, be two independently operating sub-lines obtained by dividing

the line L into two from the buffer location Bi. Then L, and L, are given as below:

M, Bl M B> M; Bi Mgy Bn2) My By M
e AN _/
YT YT
Sub-line L, Sub-line L,

Figure 5. 2. Two sub-lines L; , L, obtained by decoupling L from the buffer i

40
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The output of L, is the input of L, , so if the throughput of L, is less than the
throughput of L, , L, will starve and if the opposite is the case meaning that the
throughput of L, is more than the throughput of L, , L; will be blocked where both
situations are undesirable. To be able to cope with this unbalance problem between two
sides of buffer B; of the whole line L, we should increase the throughput of the slower
sub-line while not decreasing the throughput of the faster sub-line under the value of
the throughput of the slower one, since we know in advance that the throughput P of the
whole line L is bounded by the minimum of the throughput of these two sub-lines and

given as

P < min(P' , P?) where P' and P* are the production rates of L, and L,

respectively.

The way of achieving this goal is to transfer buffer slots from the buffer
locations belonging to faster sub-line to the buffer locations belonging to slower sub-
line. Applying this procedure, we may increase the production rate of the slower sub-
line with the possibility of decreasing the production rate of the faster one. Hence, we
decrease the difference between the production rates of the two sub-lines, which results
in obtaining more balanced line around the buffer where two sub-lines are separated. In
addition to this, upper limit for the throughput of the whole line is raised to higher
value, since the minimum of P' and P? increases. The idea of separating the whole line
from a buffer location and obtaining more balanced line around it by the buffer slot
transfer from the faster sub-line to the slower one is defined as “Buffer Centric Line

’

Balance”.

By implementing the Buffer Centric Line Balance concept to each buffer
location consecutively, we expect to obtain a more balanced line with increasing
production rate at each step. However, it may not be possible to obtain a production line
with exact balance around each buffer location simultaneously, which is an interesting
property of production lines. There may most probably be imbalance around any other
buffer location even though we achieve an exact balance around any specific one. To

make this property more apparent, think of the below line:
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M; B M, B, M; B; M,
|
P P P
O D0
NG A /)
' '

sub-line L12 ( P12 = P34) sub-line L34

H_/\ ~ /

sub-line L]] ( P]] = P24) sub-line L24
N /H_/
V

sub-line L] 3 ( P] 3 < P44) sub-line L44

Figure 5. 3. Illustration of the property of imbalance around any other buffer

locations even though the exact balance around any specific one in production lines

In the above line, although we have an exact balance around the buffer location
B> (P12=P34), we may not reach an exact balance around the other buffer locations B;
(P11 2 P2g) and B3 (Pj3 < Pas) due to the fact that the expectation of decrease in the
production rate of the line when adding a new machine to it. Based on this fact, the
production rate of the sub-line L;; is expected to be greater than the production rate of
the sub-line L;»(P;; = Py,) while the production rate of the sub-line L4 is expected to be
less than the production rate of the sub-line L34(P24 < P34). Consequently, the production
rate of the sub-line L, is expected to be greater than the production rate of the sub-line
L,4 due to the exact balance around buffer location B, (P = Pj; = P34 = Py4). Therefore,
exact balance around the buffer location B, may most probably produce an imbalance

around the buffer location B; as well as B3, which can be shown by the same logic.

Based on this property and the observations introduced, we develop a new
algorithm called “Line Balancing Algorithm (LIBA)”. The logic behind this algorithm is
the minimization of the sum of the production rate differences between two sub-lines
obtained by dividing the whole line around each buffer location. Thereby, we aim to
increase the throughput of the whole line. The correctness of this logic is supported by
the Table A.4 given in the Appendix A.4. In Table A.4, total imbalance and throughput
value for each feasible allocation for 3-station production line with total fixed number
of buffer slots equal to 15 which is studied in Seong et.al.[35]. The way of decreasing

the total imbalance is to break the initial line into two sub-lines and to apply the buffer
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slot transfer from faster side to slower side that will improve the throughput of the line
we focus on. It should be kept in mind that transfer of the buffer slots from the faster
side to slower side of the line does not always improve the efficiency. The reason is that
to make the whole line more balanced around any arbitrary buffer, will usually increase
the imbalance around some other buffers, which may also result in increase in the sum
of imbalance in the whole line. Hence, we continue to find the improving transfers
during the execution of the algorithm until no more improving transfer condition is

reached.

5. 2. The Algorithm

First of all, throughput of the whole line is obtained. Then the line is divided
ito two sub-lines from the buffer location in the centre of the line. However, if the
number of the machines is odd, there will be two central buffer locations since there is
even number of buffer locations in the whole line. In this case, the one towards the end
of the line, in other words the right one, is selected. This buffer location is called the
main division buffer. In the second step, production rates of the two sub-lines are
evaluated and the one with higher production rate is determined as the potential buffer
slot giver, while the slower one is determined as the potential buffer slot receiver. After
determining the potential giver and potential receiver sides of the line, determination of
the buffer locations that are receiver and the giver is the order that we follow. While
determining these locations, bisection technique is used. This bisection can be

visualized as below figure:
I

O A PO b O o O 5O

i | i
M: B Mix Bin  Mnyn Mi Bi Mg Mgain) BaioMain1  Baey My

N A )
V V
Sub-line L, (P! (P' > P?) Sub-line L, (P?)
— —~ A ~ A —~ A ~— —/

Sub-line L;; (P'") (P''>P') Sub-line L, (P Sub-line L,,(P*") (P*' <P?) Sub-line Ly, (P*)

N A J N A J
Y Y Y Y

Sub-line L;;; (P Sub-line L,;5(P*'?)

Figure 5. 4. Bisection procedure for determination of potential giver and receiver
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For determining the potential giver buffer location, the initial sub-line with
higher throughput will again be divided into two independently working sub-lines from
the central buffer location of the initial sub-line. Among the sub-lines of the initial sub-
line, the one with higher rate is again decoupled from its centre and this procedure will
go until we obtain two sub-lines with at most one buffer location. Among these final
sub-lines, the one with higher rate is potential giver. If this line has two machines, the
buffer location between these two machines is the one we are looking for. However, if
this line has only one machine, the potential giver buffer location is the final division

buffer location, which is just in front of this machine.

Same procedure used while determining the potential giver buffer location is
applied to determine the potential receiver buffer location. Decoupling from the center
of obtained sub-lines with lower rates continues until reaching the final sub-lines that
have at most one buffer location and potential receiver is assigned to the buffer location
between the machines if the lower rate final sub-lie has two machines or to the final
division buffer location which is just in front of the machine if the lower rate final sub-

lie has only one machine.

Buffer slot transfer between these two determined buffer locations has the
highest likelihood to improve the efficiency of the whole line since decoupling
sequence is based on the observation that we mentioned as the basis of our algorithm.
This basis is to decrease the unbalance between two sub-lines obtained. This procedure
supports the imbalance reduction between each sub-line pair formed. To see this more

clearly, let’s take N-machine production line with N equal to 8:

O OO IO IO BON

M, Bb M, B, My B;i My By Ms Bs Mg Bs M; B; Mg

N\ _/
' YT

Sub-line L; (P! (P' > P?) Sub-line L, (P?)
N\ J )\ AN J
Y Y Y Y

Sub-line Ly; (P'") (P''>P'®) Sub-line L;;( P"¥) Sub-line Ly (P*'") (P*' <P*) Sub-line L,, (P?)

Figure 5. 5. Bisection of 8-machine production line until its final sub-lines
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As can be seen from a simple example given above in Figure 5.5, shaded buffer
locations are potential giver and potential receiver. B, is the potential giver and Bs is the
potential receiver. By the buffer slot transfer from B; to Bs, we hope to decrease the
unbalance between the sub-lines L;; and L, for the sub-line L; as well as the unbalance
between the sub-lines L,; and Ly, for the upper sub-line L, since the production rate of
the sub-lines L;; may decrease while the production rate of the sub-line L;> remains the
same and the production rate of the sub-lines L,; may increase while the production rate
of the sub-line Ly, remains the same. Moreover, the unbalance between the upper sub-
lines L; and L, is expected to be decreased, since the possible decrease in the
production rate of L; is accompanied with the possible increase in the production rate of
the L, with this buffer slot transfer. Hence, this transfer option has the highest
likelihood to improve the throughput of the whole line due to the expectation of

achieving maximum imbalance reduction.

After determining the potential giver and receiver buffer locations, buffer slots
are transferred from the potential giver to the potential receiver until no improvement is
achieved in the efficiency of the whole line and we restart the algorithm from the same
main division buffer. However, if any transfer does not increase the throughput of the
whole line, potential receiver is changed to just previous division buffer and it is
checked whether there will be increase in the throughput of the whole line. If this
transfer, from the initial potential giver to the new potential receiver, improves the rate
of the whole line, buffer slots is transferred again until no improvement is achieved. On
the other hand, if no improvement in the throughput of the whole line is achieved, the
potential receiver is assigned to the next division buffer, which is just before the
existing potential receiver. This goes on until the first division point, which is the main
division buffer, in the slower part of the line. If there is still no improvement in the
throughput of the whole line, the potential giver is changed to the just previous division
buffer and potential receiver is assigned to the initial potential receiver buffer location.
If, again, no improvement in the efficiency of the whole line is achieved for this
potential giver after applying the same potential receiver sequence, the potential giver is
changed to the division buffer for the one upper sub-line. This sequence of changing
potential giver continues until the first division point, which is the main division buffer,

in the faster part of the line.
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To make it more understandable, consider the 8-machine production line
example again. Transfer sequence will be as the below order until any improvement of

overall throughput is reached:

B, to B;s
B, to Bg
B;to B4
B, to B;s
B, to Bg
B, to B4
B4to Bs
B4to Bg

o SN h W

If there is still no improvement in throughput although all transfer options are
checked for that main division buffer (it is B4 in our example), we change the main
division buffer to one left buffer location (Bj; in our case) and restart bisection. If, again,
we cannot increase the production rate for this main division buffer, we will change the
main division buffer to one right of the first main division buffer. The next main
division buffer will be two left of the first one and then two right of it if no
improvement is the case. Changing of the main division buffer can be seen as an
oscillation around the center of the whole line. The order of the main division points in

our 8-machine case given in Figure 5.5 is
Bs—» B; —» Bs—» B, —» Bs—» B —» B;.

Up to this point, we assume that each sub-line pair has unequal production rates.
When opposite situation, meaning that the production rates of formed sub-lines are
equal, occurs around the main division buffer, we progress to the next main division
buffer. On the other hand if it occurs around any division buffer obtained during
bisection process, we stop the bisection at that division point and determine that
division buffer as first potential giver if it appears in the faster side of the line or first

potential receiver if it occurs in the slower side.

The stopping criterion for this heuristic algorithm is the failure in the
improvement of the overall throughput for (N-1) consecutive main division buffer since

we return to the same point where we restart the algorithm.



CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA) 47

5. 2. 1. Initial Allocation Procedure

Initial allocation may be any feasible point in our feasible region. The feasible

region is given below as the one stated in the study of Seong et al. [35];
K={K| 'K = C, K>0,K€ R(N'l), K;mteger forallj=1, ..., (N-1)}

The number of elements of the above feasible region namely the number of all
feasible allocations of C buffer slots among the (N-1) buffer locations in an N-machine

serial production line is given by the formula below:

N+C-2) (N+C-2)!
C ) (N-2)O)

In our heuristic algorithm, based on many trials, we have observed that we
might reach different final allocations by starting with different initial allocations. We
also observed that initial allocation has an effect on the number of iterations ( #
iterations is equal to the number of N-machine throughput estimation in our case )
during the implementation of the algorithm. Therefore, we came to the conclusion that
we should try to start with a good initial point, which is close to global optimum, in

order to reach this global optimum with less iteration.

After comprehending the importance of efficient initial allocation, we focused
on how we succeed in realizing our purpose. Before proceeding to the stage of
determination of efficient initial allocation, it may be useful to state some relationships

for production lines that we benefit from:

1 1 1
M= — Hi = r =
T, MTTE, MTTR,
. — MTTF, _
' (MTTE, +MTTR)) (L, +1,)
L *r
pi = A *e i T

) (W, +r,)
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where T; : average processing time of M;
Ai : processing rate of M;
MTTF; : mean time to failure for M;
MTTR,; : mean time to repair for M;
;i : average failure rate of M
ri : average repair rate of M;
e; : efficiency of M; in isolation

pi : production rate of machine M; in isolation

The isolated efficiency, ei, is the average fraction of time that M; would be
operational if it were operated in isolation (never starved or blocked). This quantity is
also seen as the availability of M;. (Note that e; = 1 for reliable machines and ¢; < 1 for

unreliable machines.)

In addition to these relationships, we make use of the set of generalizations

given by Freeman [7] in his study. These generalizations can be paraphrased as follows:

1. Avoid extreme buffer allocation, even in highly unbalanced lines.

2. Allocate more buffer capacity to the station with highest mean downtime.

3. Allocate more buffer capacity between a bad and a mediocre station than a
bad and a good station.

4. The optimum allocation of buffers to the various potential buffer locations is
relatively unaffected by the total number of buffers available.

5. The end of the line is more critical than the front, so if a bad station is
located toward the end it should get more of the available buffer capacity

than if it is toward the front.

Despite the early date of this study and its limited scope, these rules have been

borne out studies except the last one, which violates the reversibility principle.

It can be deduced from the generalization 4 that each buffer location should
have capacities whose ratios to each other are constant. In other words, any change in
the amount of buffer slots that will be allocated should not affect the capacity ratios of
buffer locations to one another. Based on this derivation, as an initial step of the initial
allocation procedure, we assign criticalities to each buffer location, that are independent

on any change in the amount of buffer slots allocated. In the second step, we determine



CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA) 49

the initial capacities of all buffer locations according to their criticalities. By this way,
relative capacities of buffer locations will be independent of the total number of buffer
slots available meaning that any change in the total number of buffer slots available

will not change the ratio of capacities of any of two buffer locations.

During the process of the determination of these criticalities for each buffer
location, we use the information that the capacity K; of any buffer location B; between
two machines M; and M, is inverse proportional with the production rate of these
machines in isolation p; and pi+;. Therefore, the criticality of any buffer location that
will be determined is the monotonically decreasing function of the production rates of
adjacent machines in isolation. We have three candidates for the criticality function

initially. These are

1
fi(pi, pis) = —(——
min{p;,p;,, }
1 1
L(pi, pis) = —+—
Pi  Pin
1
f3(pi , piv1) = —

i i+l

While selecting the most efficient one among these functions, we took the first

three of the above generalizations.

First of all, the first function fi(p; , pi+1) = 1 / min{p;, pi+1} fails to conform the
third generalization while the others conform. To make this clear, consider the example

below:

M; Bi Masy  Bary Mgy

> > )—» »(O—» > ...

pi=5 Ki pir1=2 Kir1  pir2=8

Figure 5. 6. [llustration of determination of criticality function

According to the criticality function fi(pi , pi+1) = 1 / min{pi, pi+1}, both buffer

location B; and B;+1) will have equal criticalities since
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min{p=5 , pir1=2 } = min{ pi1=2, pin=8 } =2

1
fi(pi=3, pin=2) = ————— =

1 1
min{5,2} 2

:f 122,128:—.
1(Pin1=2, pir=8) min{2,8}

Hence, our first candidate is eliminated since it contradicts with the third
generalization, which favors more buffer slots to B; than to Bi:;. For the second and

third candidates, this generalization holds which can be proved by below inequalities:

£(pi=5,pi+1=2) z% + % = 710 > H(pir1=2,pi2=8) = % + % = A

1

_ b1
(5+2)

2+8) 10

B(pi=5,pir1=2) = > f(pin1=2,pir2=8) =

S|~

These remaining candidates conform to the second generalization. However, the
second one contradicts with the first generalization. To see this, let’s rewrite these

functions:

1 1 1 1
L(pi, pis) = —+ = +
Pi  Piu A *e)  pin

1 1
+
MTTF,
MTTF, + MTTR

A *( ) Pix

_ (MTTE, + MTTR ) N 1
(A, *MTTE)) Pi+

1 1
f3(pi , i) = =
(P; *Pin) \*e) +pin
_ 1
MTTF.
(7\‘i *( ; )) + pi+l

MTTF, + MTTR

(MTTF, + MTTR )
(A, *MTTE,) + (p,,, *(MTTE, + MTTR,))
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As mean downtime (Mean Time To Repair) increases production rate in
isolation p decreases which results in increase in both criticality function candidates.
Increase in criticality function means increase in both side buffer location of that

machine which complies with the second generalization.

However, as mean downtime (MTTR) goes to infinity, the second candidate f,
diverges to infinity since it is linear function of mean downtime (MTTR). Increase in
mean downtime also means increase in imbalance. Since the second candidate supports
the extreme allocation in the sense of high imbalance, it becomes against the first

generalization.

On the other hand, as mean downtime (MTTR) goes to infinity the third
criticality function candidate f; converges, so this candidate is consistent with the first

generalization since it does not support extreme allocation despite high imbalance.

Since the third candidate is the only one that conforms to all generalizations,
among these three candidates, it is the most efficient one. This derivation is supported
by the results we obtained in the cases that we worked on so we select this candidate as

the criticality function in our initial allocation procedure.

Based on this derivation, we determine the relative criticality RC; of any

arbitrary buffer location B; by defining the criticalities cr; as below:

1

Ccri = f3(pi 5 pi+1) - cri= ——
(P; *Pin)

RCi = i

chtern o tor, g,

After determining these criticalities, we calculate the amount of buffer slots KI;
that will be allocated initially to the buffer location B; by multiplying the relative
criticality RC; by the total fixed number of buffer slots allocated C:

KL =RC *C fori=12, ... (N-1)

However, KI;’s may not be integer. If this is the case, we first assign the largest

integer value that is smaller than KI;’s (integer part of KI;’s) as the capacity of each
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buffer location. The remaining buffer slots are assigned to the buffer locations
according to decimal part of their KI; values in decreasing order by starting from the
highest until the last remaining buffer slot allocation is completed. During the second
part of this allocation process pertaining to the remaining buffer slots equality of the
decimal parts may be faced. If such an exception arises, buffer location with higher
integer part in KI; value has higher priority. In the situation of exact equality of KI;
values meaning that the equality of both decimal and integer parts is the condition,
higher priority is given to the buffer location closer to the centre of the system.
Moreover, exact equality of KI; values and equal closeness to the centre of the line at
the same time is the case; the buffer location closer to the end of the line has higher

priority for the remaining buffer slot.

5. 2. 2. A Simple Example for Line Balancing Algorithm (LIBA)

In order to understand how LIBA works, we consider the flow line consisting of
four machines that are prone to failure. Processing, failure and repair times for each
machine have independent exponential distributions. This is the case on which is
worked in the study of Seong et.al[35]. Processing, failure and repair rates for each

machine are given in the table below:

Processing rate(;) Failure rate(y;) |Repair rate(r;)
MC#1 3.7 0.07 0.17
MC#2 1.5 0.11 0.37
MC#3 1.1 0.49 0.78
MC#4 3.0 0.19 0.50

Table 5. 1. Processing, failure and repair rates for each machine

From the above table, availabilities and production rates in isolation for all

machines are computed:

Availability (e;) |Prod.rate in isolation (p;)
MC#1 0.70833 2.62083
MC#2 0.77083 1.15625
MC#3 0.61417 0.67559
MC#4 0.72464 2.17391

Table 5. 2. Availabilities and production rates in isolation for all machines
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By using production rates in isolation (p;’s) obtained in the above table, we
determine the initial allocation of buffer slots among the buffer locations. This process

is illustrated in the Table 5.3 given below:

or KL Integer |Remaining | Initial
' ' part of KI; |buffer slots | allocation
Buffer 1 | 0.264755 | 2.279239 2 2
Buffer 2 | 0.545899 | 4.699577 4 1 5
Buffer 3 | 0.350938 | 3.021184 3 3
| Total |1.161592] 10 | 9 | 1 | 10 |

Table 5. 3. Initial buffer allocation where cr; = 1/(pi+ pi+1)

Even though we showed that last one that we use is the most efficient among the
three pre-stated candidates of criticality function, we determine the initial allocation by
means of the other two criticality function candidates in order to show that our selected
candidate is superior and introduce extra examples to the initial allocation procedure.

These procedures are given in Table 5.4 and Table 5.5 respectively:

or KL Integer | Remaining | [Initial
' ' part of KI; | buffer slots | allocation
Buffer 1 | 0.864865 | 2.260944 2 2
Buffer 2 | 1.480186 | 3.869528 3 1 4
Buffer 3 | 1.480186 | 3.869528 3 ** 4
| Total [3.825238] 10 [ 8 | 2 | 10 |

Note: * First Remaining Buffer Slot
** Second Remaining Buffer Slot

Table 5. 4. Initial buffer allocation where cr; =1/min{p;, pi+i}

or KL Integer partf Remaining Initial
' ' of KI; | buffer slots | allocation
Buffer 1 | 1.246423 | 2.253253 2 2
Buffer 2 | 2.345051 | 4.239326 4 4
Buffer 3 | 1.940186 | 3.507421 3 1 4
| Total [5531661] 10 [ 9 | 1 | 10

Table 5. 5. Initial buffer allocation where cr; = (1/p; ) + (1/pi+1)
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We estimate the throughput for each of these initial allocations via simulation.
We simulate the system for 45000 parts. Since we want to estimate the steady-state
throughput value for any buffer allocation, observations during the warm-up period will
have an effect of increasing bias in the estimated throughput value. Therefore, we
should decide the length of warm-up period and we should not take the observations
pertaining to this period into account during the estimation of the throughput. While
predicting the warm-up period, we should achieve two conflicting objectives. The more
data we discard belonging to the warm-up period, the less bias we will have in the
estimation of throughput. On the other hand, the more data we discard belonging to the
warm-up period, the more variability we will have in our estimated throughput value.
Hence, we should compromise between reducing bias and increasing variance for our

throughput estimation.

During the estimation of the warm-up period we use the simplest and the most
practical and the most popular technique named Cumulative Moving Averages

Technique and we come to a conclusion of the warm-up period of 5000 parts.

We use Replication—Deletion Technique while obtaining the estimation of
throughput and variance of this estimation since it is the best-suited technique for the
systems with minimal warm-up period. This technique is also very simple and enables
us to direct use of statistical procedures such as constructing confidence intervals for
the estimation of throughput values. While estimating the throughput value and its
variance, we have two sources of observations: individual observations within each
replication and mean of these individual observations for each replication. Although the
observations within a given replication are dependent, averages of these observations
are independent of each other and it is reasonable to assume that these average values
have normal distributions based on the Central Limit Theorem. By means of these
results, we can construct confidence interval for the throughput. Let X; denote the mean
of individual observations in i" replication for throughput. We can compute the sample
mean Xy, and sample variance S* of X;’s and Xy, from n replications as follows:

-y X
bar n

i=1
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2 _ N (Xi_Xbar)z
S®0 =2 T

$*(X)

Sz( Xbar ) =

Since X;’s are normally distributed, the half-width, h, of the 100(1-a)% CI for

throughput is given as

h = * S(Xbar)'

t(n-n,l-(%)
Consequently 100(1-a)% CI for throughput is centered at Xy, and it is given as

+ *
Xbar - t(n-l),l-(%) S(Xbar)'

At this point, we should decide the number of replications. The smaller the
number of replications is, the fewer the amount of data we discard belonging to the
warm-up period. However, as n decreases, the degrees of freedom for t- statistics will
be smaller, resulting in a larger value for t-statistics and an increasing half-width for the
confidence interval. The next chart, named Chart 1, which is the graph of t-statistics
versus the degrees of freedom for a = 0.05 confidence level that we used in our cases,

shows this trade-off obviously:

t-values for 95% Confidence Interval

t-values

0 10 20 30 40
degrees of freedom

Chart5. 1. t-statistics versus the degrees of freedom for a = 0.05 confidence level
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As can be easily seen from the above chart, the most reasonable number of
replications to use is 10, since improvements in the t-statistics diminish beyond this

point. Based on this fact, we choose the number of replications as 10.

After explaining techniques that we use and the reasons why we use these
techniques, we return to the throughput estimation for the candidates for the
comparison step and we see that the third candidate gives the largest throughput value.

These throughput values are given in the below table with 95% confidence levels:

Case Average(Xp,) | Half- width(h) | (h/ Xy.) % Xpar- h Xpar + h
(2,4,4) 0,6457656 0,002151472 | 0,33316606 | 0,643614128 | 0,64791707
(2,5,3) 0,6490498 0,001997834 | 0,30780903 | 0,647051966 | 0,65104763

Table 5. 6. Throughput values and related computations for the candidate initials

To reach more healthy results, we also use paired-t test for two allocation
alternatives. Below table gives the throughput values for two alternatives and the

throughput differences between them for each replication in the simulation:

Replication Throughput of Throughput of Throughput
Number Allocation (2,5,3) Allocation (2,4,4) Difference(D;)

1 0.645809 0.642097 0.003712

2 0.650929 0.647573 0.003356

3 0.647366 0.644907 0.002459

4 0.651672 0.648316 0.003356

5 0.644689 0.640807 0.003882

6 0.651590 0.647887 0.003703

7 0.646329 0.643114 0.003215

8 0.651822 0.649662 0.002160

9 0.648823 0.645130 0.003693

10 0.651469 0.648163 0.003306

Table 5. 7. Throughput values and differences for two initial allocation alternatives for

each replication

Based on the values given Table 5.7, we obtain the paired-t confidence interval

for the throughput differences as below:

Average(Xpa)
0.0032842

Half- width(h)
0.000402048

(h / Xpa) %
12.24189878

Xpar- h
0.002882

Xpar + h
0.003686
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The superiority of the third candidate can also be seen from the paired-t
confidence interval for the throughput differences for each replication. All these

findings support our design for initial allocation procedure.

Moreover, it is worth to state that our estimation of throughput is extremely
accurate, since the half-width value is very small itself as well as relative to the
estimated throughput value. This can be observed from the column representing the
half-width and its percent ratio to the estimated throughput. Due to this reason, with
contentment, we use the estimated throughput as the exact value of throughput without

focusing on the confidence intervals in the cases we study.

During the implementation of LIBA, we compare the throughput values for any
allocation with each other in order to decide whether to proceed to the better solution or
not. In these steps, to achieve more convenient comparisons of alternative allocations
and more accurate results, we use common random numbers. This means that random
numbers generated for the same operations in the line for each solution will be same.
More clearly, consecutive processing, repair and failure times of any machine will be
equal to each other for every alternative allocation during the simulation. Consequently,
the difference between the alternatives comes only from the capacities assigned to the

buffer locations, which enables us to reach healthier comparisons.

Now, let’s return to our line with initial allocation of (2,5,3) and throughput

P’(2,5,3) = 0.6490498. Execution of the algorithm is given step by step as;

1. Decompose the line into two sub-lines from the buffer location B, :

M] B] =2 M2 B2 =5 M3 B3 =3 M4

» )—» ><D> » )—»

p1 02.261 p2 U1.156 p3 1J0.676 p4 112,174

- A J
Y Y

P12(2,5,3) = 1.0617437 P34(2,5,3) = 0.6683699

Figure 5. 7. Initial decomposition of the line during the execution of LIBA
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1.1. P12(2,5,3) > P34 (2,5,3)
1.1.1. Try to transfer from B, to Bs.
P(1,5,4) = 0.649035 < P"(2,5,3) = 0.6490498 not an improving direction.
1.1.2. Try to transfer from B, to B;.

P(1,6,3) = 0.651497 > P(2,5,3) = 0.6490498 improving direction,
continue to transfer from B, to B..

P (0,7,3) = 0.653132 improving direction.

Cannot continue to transfer from B, to B, since no buffer slot in B;.

New point is (0,7,3) with P*(0,7,3) = 0.653132.

2. Decompose the line from the buffer location B;:

M] B] = 0 M2 B2 = 7 M3 B3 = 3 M4
|

» )—» ><D> » )—»

p1 02.261 p2 01.156 p3 00.676 ps 02.174
g AL ),
N N
P15(0,7,3) = 1.0365077 P34(0,7,3) = 0.6683699

Figure 5. 8. Restart of LIBA from the second buffer location B

2.1. P15(0,7,3) > P34(0,7,3)
2.1.1. Transfer from B, to Bs is infeasible.
2.1.2. Transfer from B, to B, is infeasible.
2.1.3. Try to transfer from B, to Bs.

P(0,6,4) = 0.651336 < P"(0,7,3) = 0.653132 not an improving direction.

No improvement for the main buffer division point B, .

3. Decompose the line from the main division buffer location B;:
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M] B] = 0 M2 B2 = 7 M3 B3 = 3 M4

p1 02.261 p2 01.156 p3 00.676 ps 02.174
N v M — _
P11(0,7,3) = 2.261 P2 (0,7,3) = 0.663712

S~ TN — VY

P»3(0,7,3) =0.6702106  P44(0,7,3) =2.174

Figure 5. 9. LIBA proceeds to the first buffer location
3.1. P11(0,7,3) > P24(0,7,3)
3.1.1. P»3(0,7,3) < P44(0,7,3)
3.1.1.1. Transfer from B, to B, is infeasible.
3.1.1.2. Transfer from B, to B is infeasible.
No improvement for the main buffer division point B .

4. Decompose the line from the main division buffer location B;:

M] B] = 0 M2 B2 = 7 M3 B3 = 3 M4

p1 2.261 p2 U1.156 p3 1J0.676 p4 [12.174

— — A v y
P13(0,7,3) = 0.6590614 P44 (0,7,3)=2.174
— A J
~ ~

P12(0,7,3) = 1.0365077  P33(0,7,3) =0.676
Figure 5. 10. Termination of LIBA

4.1. P44(0,7,3) > P13(0,7,3)
4.1.1. P15(0,7,3) > P33 (0,7,3)

4.1.1.1. Try to transfer from B3 to B;.

59
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P(0,8,2) = 0.651612 < P'(0,7,3) = 0.653132 not an improving direction.

No improvement for the main buffer division point Bs.

5. Stop since no improvement is achieved for every main division point consecutively

and we return to the same point where we restarted.
6. Our optimal solution is (0,7,3) with throughput P'(0,7,3) = 0.653132.

There are 66 feasible points in this example and we obtained the throughput
values of all these feasible points. Results can be seen in the Appendix A.5. By the
algorithm, we reached the global optimum with 5 iterations. Number of iterations in our
case is the number of N-machine simulations where N is the number of machines in the

whole line.

5. 3. Comparison of Algorithms

Any buffer allocation in an N-machine production line with (N-1) buffer
locations and total fixed number of buffer slots C can be described by a vector K = (K],

K>, ..., Kn.y) with non-negative integer entries summing up to the total buffer slots C.
Thus, any alternative solution satisfies the equality C = zg_l) K, . The set of all points

in (N-1)-dimensional space for which this equality holds is an (N-2)-dimensional
hyperplane. Since the buffer allocations must be non-negative integers, the feasible
region, K, is set to the integer lattice including the vectors whose entries are non-

negative on this hyperplane:
K={K]| 'K = C, K>0, K€R(N'l), K;integer forallj=1, ..., (N-1)}

The algorithms (SEVA, Non-SEVA, SSA and LIBA) are all based on the idea
of local search. In other words, the algorithms define a specific neighborhood with
respect to the given solution, find the best solution in this neighborhood and move to
this solution. This procedure repeats until no better solution is obtained. Since the sum
of the components of each solution is equal due to the fixed amount of total given
buffer slots, moving from one solution to the other can be considered as the movement

along an integer directional vector z whose entries sum up to zero meaning that e’ = 0.
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Such vector is defined as “exchange vector” in Seong et.al.[35]. If a certain exchange

vector yields the better production rate, it is called “improving exchange vector”.

All algorithms that we focus on define a neighborhood and determine the best
solution in this neighborhood. The difference between the algorithms comes from the
determination of the neighborhood and the selection procedure of improving exchange
vectors through which the algorithms will proceed. The process of defining the specific
neighborhood in SEVA, Non-SEVA and LIBA is based on the selection of line
segment along an improving exchange vector and containing at least one or more
integer solutions. This process is defined as line segment selection in Seong et.al[35].
However, in SSA, the specific neighborhood from the existing neighborhood is defined
either by the transfer of one buffer slot from the largest capacity buffer location to each
of the other buffer locations for the best allocation in the existing neighborhood or by
replacing the worst allocation with the one obtained by subtracting it from twice the
best one in the existing neighborhood. The new neighborhood has (N-1) allocations
where they do not have to lie along the same line as in SEVA, Non-SEVA and LIBA.
SSA also differs from SEVA, Non-SEVA and LIBA in the selection procedure of
improving exchange vector. In SSA, the improving exchange vector is directly set to
the twofold of the vector obtained by the subtraction of the worst allocation from the
best one in the existing neighborhood. However, SEVA, Non-SEVA and LIBA select a
line segment firstly along the improving exchange vector and extend the improving

exchange vector until maximum throughput is achieved along the line segment.

Although the line segment selection concept is valid for all SEVA, Non-SEVA
and LIBA, the procedures of selecting line segments are different. Both SEVA and
LIBA are based on the concept of the buffer slots transfer between two different buffer
locations, while there may be multiple buffer slot transfer between more than two
buffer locations in Non- SEVA simultaneously. Although the transfer of buffer slots
between two different buffer locations is the case for both SEVA and LIBA, SEVA
uses two adjacent buffer locations for the transfer whereas LIBA does not have to use
adjacent buffer locations for this transfer. The buffer slot transfer occurs in only one
direction from the pre-determined giver to the pre-determined receiver in LIBA.
However, in contrast to LIBA, the buffer slot transfer can be done in two directions,

between two adjacent buffer locations in SEVA.
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Like SEVA, the improving exchange vector in LIBA has only two non-zero
entries which differ in sign only. If we re-introduce the standard exchange vectors
stated in Seong et.al.[35], we can show the improving exchange vector in LIBA as a
linear combination of standard exchange vectors as

-

CD*Q¥( X+ XM+ L+ XDy ifi<j

I~
I
A

Q¥ X'+ X+ .+ XDy ifi>]

\
where Q stands for the amount of buffer slot transferred and B; ,B; are the giver

and receiver buffer locations respectively.

5. 3. 1. Numerical Results

After mentioning the logical and methodological differences between the
algorithms presented, the numerical implementation will be the next step in the
comparison of the relative efficiencies. To see the efficiency of Line Balancing
Algorithm (LIBA), we first focus on the cases that are worked in the study of Seong
et.al[35]. There are 18 cases in this study. The first eight of these cases are synchronous
production lines with deterministic processing times while the others are asynchronous
with independent exponential processing times. In all cases, production lines consist of
unreliable machines with independent exponential failure and repair times. All related
data including the number of machines N, total fixed number of buffer slots C and
processing, failure and repair rates for each machine are given in the Table A.6 given in

the Appendix A.6.

First of all, we determine the upper bound for throughput for each case by
obtaining throughput of each line with the assumption of infinite buffer in each buffer
location. Then, we determine the initial allocations and the throughput of each line with
these initial allocations. Throughput values for each line with initial allocations
determined by the initial allocation procedure of LIBA and infinite buffer can be seen

in the Table 5.8 given below:
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CASE Throughput with Throughput with Efficiency
Initial Allocation Infinite Buffer Percentage

1 0.5806027 0.7341491 79.0851205
2 0.6633516 0.6657005 99.6471536
3 0.6451765 0.7650795 84.3280339
4 0.1725131 0.4382678 39.3624857
5 0.6495863 0.6623969 98.0660236
6 0.5664700 0.5698288 99.4105600
7 0.6637694 0.6662338 99.6300998
8 0.6270106 0.6313999 99.3048304
9 0.6490498 0.6754868 96.0862300
10 0.6359135 0.6453851 98.5324111
11 0.3459187 0.5974446 57.8997115
12 0.9629590 1.1461459 84.0171395
13 1.1207174 1.1210134 99.9735953
14 0.4749513 0.4982646 95.3211005
15 0.6755334 0.6759900 99.9324546
16 1.2726538 1.2754591 99.7800557
17 0.9786912 0.9819490 99.6682312
18 0.5423842 0.5424653 99.9850497

Table 5. 8. Throughput values and efficiency of initial allocations determined by LIBA

initial allocation procedure

The last column in the above table shows the percent ratio of the throughput
with our initial allocation to the one with infinite buffer. This ratio displays the yield of
the line with the allocation of given total fixed number of buffer slots with the proposed
technique. In half of the cases ( ie. case 2,6,7,8,13,15,16,17,18) above the 99% of
throughput value for infinite buffer slots for each buffer locations are satisfied. Due to
this reason, to work with these cases will not contribute us about the efficiency of our
algorithm since increase in the throughput value can be insignificant and so it is not
worth to implement the algorithm for a negligible increase. Therefore, we skip these
cases except Case 2 in the comparison step. We hold the second case, since we want to
see whether LIBA finds better allocation despite the great efficiency of its initial

allocation procedure. The results can be seen in the Appendix A.7.

Although throughput values for the lines are evaluated by the algorithms
developed by Glassey and Hong[10] and Hong et.al.[ 18] in the study of Seong et.al[35],
we do not use the given throughput values directly. Instead, we determine the
throughput values for given optimal allocations via simulation. The results for LIBA as

well as SEVA and Non-SEVA in the Table A.7 in the Appendix A.7, are obtained via
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simulation with Replication-Deletion Technique. We use 10 replications for each
simulation and 45000 parts for each replication for all cases we focused on.
Surprisingly, in all cases, we decide that 5000 parts as a warm-up period is the most

suitable value.

In order to make healthy comparison, we also execute LIBA with initial
allocation determined by the procedure presented in Seong et.al[35]. Final allocations
and optimal throughputs obtained by starting with the initial allocation determined by
the procedure of Seong et.al[35] are also given in the Appendix A.7 with the title LIBA
1 in the sub rows. The last column with the title ITERATION in the Appendix A.7
denotes the number of N-machine throughput evaluation during the execution of the
algorithms. The number of iterations is the measure of time spent during the execution
of the algorithm and so it is another comparison field for the performance of the

algorithms.

With the expectation of decreasing the number iterations during the execution of
LIBA, we introduce a step size concept, where step size stands for the number of buffer

slots that will be transferred during each transfer. Empirically, we decide the step

|l
w=| ¢
5(N -1)

where !—x—| means the smallest integer that is greater than x .

size, w, as

Step sizes for the cases we worked on are given in the below table:

1 2 3 4 5 9 10 11 12 14
3 4 5 10 5 4 4 5 5 6
15 30 12 47 110 10 30 10 15 130
2 2 1 2 6 1 2 1 1 6

Table 5. 9. Step sizes for the cases studied

N: Number machines in the line
C: Total fixed number of buffer slots that will be allocated
w : Step size

When we determine the giving and receiving buffer location, we transfer w

number of buffer slots from the giver to the receiver. If there is no increase in the
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throughput, instead of transferring w , we transfer w, (= \_w/ 2J ) amount of buffer slots
where \_xJ means the largest integer that is smaller than x. If, again, we could not
reach an improvement by this transfer, we reduce the transfer amount from w,to w, (=
| w, /2] ). This reduction procedure for the transfer amount goes on with w.,, equal to
\_wi / 2J in the (i+1)™ trial until an improvement is reached in the throughput value for

the candidate giver and receiver buffer locations or the transfer amount becomes zero.
By this way, we hope to proceed in the increasing direction faster and reach the
optimum with less iteration, which improves the performance and speed of the

algorithm.

Before proceeding to the comparison of LIBA with SEVA and Non-SEVA, it is
worth to mention how the performance of and the results of LIBA if effected by distinct
initial allocations. LIBA may reach to different optimal solutions with different initial
allocation. This can be observed from the Appendix A.7. There are only three cases
(cases 1, 9 and 11) that LIBA achieves to the same final allocation with different
initials. Surprisingly, it is proven by complete enumeration that these final allocations
are the global optima. The only difference between LIBA with its original allocation,
LIBA 2, and LIBA with initial allocation of Seong et.al[35], LIBA 1, is the number of
iterations for reaching the optimal values for these three cases. LIBA with its original
allocation, LIBA 2, reaches the optimal with less iteration. The number of iterations for
LIBA 2 is approximately the half of the number of the iterations done in LIBA 1. For
five cases, LIBA 2 gives better results than LIBA 1, whereas LIBA 1 is better than
LIBA 2 in remaining two cases that we study. Since the initial allocation of LIBA 1
gives worse throughput than the initial allocation of LIBA 2 in all cases we study and
despite this fact in some cases LIBA 1 finds better solutions, we can conclude that the
performance of LIBA is dependent on the initial allocation. In addition to this, LIBA
may reach better solutions with worse initial allocation. However, the likelihood of
reaching better final allocation with better initial allocation is higher than with the
worse one. Interestingly, in all these seven cases better solutions, independently of
whichever LIBA finds, are achieved with more iteration. Hence, we can say that the

more the number of iteration, the better solution LIBA obtains.

When we analyze the results in the Appendix A.7, we observe that LIBA 2 finds
better solutions than both SEVA and Non-SEVA in most of the cases. There are only
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four cases (Case 1, 3, 9, 11)that the equality of solutions occurs for LIBA 2, SEVA and
Non-SEVA where it is shown by complete enumeration that three (Case 1, 9, 11)of
these four solutions are already global optima. Briefly, among the cases we worked on,
there is no one that SEVA or Non-SEVA could overcome LIBA 2. Hence, it can be
said that LIBA 2 is superior to SEVA and Non-SEVA in terms of optimal throughput

value.

On the other hand, there are three cases (Case 2, 10, 12) that LIBA 1 has worse
solution than both SEVA and Non-SEVA. For the cases 1, 9 and 11, LIBA 1 also
reaches the global optimum solution as SEVA, Non-SEVA and LIBA 2. In the
remaining four cases, LIBA 1 finds better results than SEVA and Non-SEVA. Hence, it
can be misleading to claim that LIBA 1 is superior to SEVA and Non-SEVA or vice
versa as we do for LIBA 2.

However, the optimal throughput values are not the only comparison criterion.
The numbers of iterations done for reaching these optimal values are also important.
Therefore, we should take the number of iterations for attaining the optimal allocations
into account during the comparison of the algorithms. From this point of view, LIBA
for both initial allocation procedures uses less number of iterations than both SEVA and
Non-SEVA for less complex cases. The complexity of the case is direct proportional to
the number of machines in the line and the number of buffers slots that will be
allocated, meaning that when the number of machines or the total fixed number of
buffer slots or both increases, solving the allocation problem for that line becomes more
complex. For more complex problems, the number of iterations increases for LIBA
whatever the initial allocation is. This situation is obvious for the cases 4, 5 and 14.
SEVA and Non-SEVA reaches their optimal solutions with less iteration. However,
these are the cases that both LIBA 1 and LIBA 2 find better solutions than SEVA and
Non-SEVA and it should be denoted that the number of iterations for LIBA for
achieving the throughput at least equal to the optimal throughput values of SEVA and
Non-SEVA is approximately the half of the number of iterations for LIBA to achieve
its optimal. Therefore, the number of iterations necessary for LIBA to achieve at worst
the same solution with SEVA or Non-SEVA and the number of iterations for SEVA
and Non-SEVA for optimal solution are approximately the same except Case 4. When

we sum up all these findings, we can conclude that LIBA is superior to both SEVA and
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Non-SEVA for less complex cases, while this superiority diminishes as the complexity

Increases.

We also check how much increase is obtained by LIBA until reaching to the
optimum. Below tables, Table 5.10 and Table 5.11 give these increases in the

percentage form:

Throughput with Initial Throughput with Final Percent
CASE . c
Allocation Allocation Increase
1 0.5806027 0.5806027 0
2 0.6633516 0.6648211 0.2215266
3 0.6451765 0.6458731 0.1079705
4 0.1725131 0.1764558 2.2854497
5 0.6495863 0.6498637 0.0427041
9 0.6490498 0.6531318 0.6289196
10 0.6359135 0.6381569 0.3527860
11 0.3459187 0.3479317 0.5819287
12 0.9629590 0.9727568 1.0174680
14 0.4749513 0.4794121 0.9392121
Table 5. 10. Increase in the throughput value in LIBA 2
Throughput with Initial Throughput with Final Percent
CASE . :

Allocation Allocation Increase

1 0.5666616 0.5806027 2.4602161
2 0.6630851 0.6631803 0.0143571
3 0.6218006 0.6459400 3.8821770
4 0.1703881 0.1765216 3.5997232
5 0.6015092 0.6497500 8.0199605
9 0.6281393 0.6531318 3.9788149
10 0.6277183 0.6375757 1.5703541
11 0.3391255 0.3479317 2.5967378
12 0.9573224 0.9630241 0.5955888
14 0.4400651 0.4793024 8.9162490

Table 5. 11. Increase in the throughput value in LIBA 1

All the percent increases in the throughput values seem reasonable for LIBA 1
except two cases (Case 2 and 12). However, the optimal solutions found in these cases,
are over the 99 percent of the optimal values obtained by LIBA 2, SEVA and Non-
SEVA. Moreover, the number of iterations for reaching the optimum in these cases is
very small compared to the ones pertaining to the other algorithms in question. On the
other hand, interestingly, the percent increases in the throughput values in LIBA 2 are

very small. Based on this result and the knowledge that LIBA 2 attains throughput at
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least equal to the ones reached by SEVA and Non-SEVA, we also examine the ratio of
the throughput values for initial allocations determined by our own procedure to the
optimal throughput values of SEVA and Non-SEVA. These ratios can be seen from the
percentage column of Table A.8 in the Appendix A.8.

Surprisingly, the percent ratios are very high meaning that we can attain
allocation with throughput very close to the optimal throughput of SEVA and Non-
SEVA. Moreover, as occurred in Case 14, we can reach an allocation with higher
throughput than the optimal value of SEVA and Non-SEVA via the initial allocation
procedure of LIBA itself. By combining the results related to the percent increases in
the throughput values and the percent ratios of throughput values to the optimal
throughputs for SEVA and Non-SEVA, we can claim that the initial allocation
procedure that we introduced is very powerful and it can attain very good allocations

close to the optimal solutions by itself without implementing any algorithm.

After comparing the performance of LIBA with SEVA and Non-SEVA, we also
want to see the relative efficiency of LIBA with respect to the Simple Search Algorithm
(SSA) of Powell and Harris[33]. Even though they developed a new heuristic algorithm
for optimal buffer allocation in their study, Powell and Harris[33] basically focused on
some characteristics of the production lines such as the effects of bottleneck stations on
the optimal buffer allocation and bowl phenomenon instead of demonstrating the
performance their algorithm. Hence, the cases that were studied in Powell and
Harris[33] were selected according to this goal. Due to this reason, instead of studying
the all cases in Powell and Harris[33], we selected a small sample of cases which are

more likely to help us to make a healthier comparison and applied LIBA to this sample.

We studied six cases from Powel and Harris[33]. As mentioned before, Powell
and Harris[33] worked with serial production lines with reliable stations having
independent log-normal processing times. The first three of these cases consists of four
machines with a single bottleneck in the third machine, while the last three cases
consist of six machines with a single bottleneck in the fourth machine. The table given
below summarizes the related data including the number of machines N, total fixed

number of buffer slots, C, that will be allocated:
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CASE[ 1 2 3 4 5 6
N 4 4 4 6 6 6
C 3 6 9 5 10 15

Table 5. 12. Data of the cases that we study in Powell and Harris[33]

NOTE: All Machines are reliable having lognormal processing times with

mean = | and standard deviation = 0.5 unless otherwise stated
* Mean of MC#3 in first three cases is equal to 1.25
* Mean of MC#4 in last three cases is equal to 1.25

In contrast to Seong et.al.[35], throughput values is the only comparison
criterion for SSA and LIBA since Powell and Harris[33] did not mention any other one
such as the number of iteration for these cases. It should also be noted that our initial
allocation procedure gave the same initial allocations for all cases with SSA so we do

not need to execute LIBA two times as we did in SEVA and Non-SEVA.

CASE METHOD | ALLOCATION | THROUGHPUT
| SSA (1,L1) 0.751123
LIBA (1,1,1) 0.751123
, SSA (1,3,2) 0.785928
LIBA (1,3,2) 0.785928
; SSA (2,3,4) 0.794758
LIBA (1,5,3) 0.796687
. SSA (LLLLI) 0.743104
LIBA (LLLLY) 0.743104
s SSA (1,2,3,2,2) 0.784251
LIBA (1,2,3,2,2) 0.784251
] SSA (1,3,4,5,2) 0.796078
LIBA (2,3,3,5,2) 0.797372

Table 5. 13. Optimal allocations with estimated throughput values via
simulation for SSA and LIBA

In the above table, the allocations with the estimated throughput values for both
algorithms for each case are given. When we analyze the results, we observe that SSA
and LIBA both find the same solutions for the cases 1,2,4,5 where it is verified by

complete enumeration that these solutions are global optima. However, LIBA finds
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better solutions than SSA in the third and sixth cases. It is worth to state that the lines in
first three cases are the same. The only difference among these three cases is the total
number of buffer slots, C, to be allocated. The same situation also holds for the last
three cases meaning that they have the same system with different total number of
buffer slots. Case 3 and Case 6 are the ones having the most total number of buffer slots
available among the first and last three cases respectively. There is no case that SSA
reaches better solution than LIBA. As a result, we can say that LIBA is superior to SSA
in terms of optimal throughput value and this superiority becomes more apparent as the

number of buffer slots to be allocated increases.



Chapter 6

CONCLUSION

Buffer allocation is a challenging design problem in serial production lines that
is often faced in the industry. Effective use of buffers (i.e. how much buffer storage to
allow and where to place it) in production lines is important since buffers can have a
great impact on the efficiency of the production line. Buffers reduce the blocking of the
upstream station and the starvation of the downstream station. However, buffer storage
is expensive both due to its direct cost and the increase of the work-in-process
inventories it causes. Thus, there is a trade-off between performance and cost. This
means that the optimal buffer capacity and the allocation of this capacity have to be

determined by analysis.

In this thesis, we studied the optimal buffer allocation problem. The objective
was to maximize the throughput of the serial production line by allocating the total
fixed number of buffer slots among the buffer locations and in order to achieve this aim
we introduced a new heuristic algorithm called “Line Balancing Algorithm
(LIBA) applicable to all types of serial production lines meaning that there is no
restriction for the distributions of processing, failure and repair times of any machine,
the disciplines such as blocking, failure etc. and the assumptions during the application

of LIBA in the line.

The aim of LIBA is to make the line more balanced. To obtain more balanced

line. LIBA tries to minimize the total imbalance, which is equal to the sum production

71
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rate differences of the sub-lines obtained by dividing the whole line into two from each

buffer location, by buffer slot transfer between only two different buffer locations.

Although LIBA can be started by any arbitrary initial allocation of buffer slots
among the buffer locations, we observed that LIBA may reach different final
allocations with different initials. Based on this observation, we also integrated to LIBA
a new efficient initial allocation procedure which conforms to generalizations about

optimal buffer allocation in order to reach better solutions.

To see the power of LIBA, we applied it to some of the cases where SEVA,
Non-SEVA and SSA had applied. Even though in some cases LIBA obtains worse
solutions than SEVA and Non-SEVA with same initial allocations determined by
procedure in the study of Seong et. al.[35], it outperforms SEVA and Non-SEVA in all
cases studied with its original initial allocation procedure except the cases where every

algorithm finds the global optima.

Besides the optimal throughput value, the number of iterations done for
reaching the optimal solution is another comparison criterion. The number of iterations
is the number of throughput estimation of the whole line for achieving the optimal
solution. From this point of view, LIBA for both initial allocation procedures uses less
number of iterations than both SEVA and Non-SEVA for less complex cases. The
complexity of the case is proportional to the number of machines in the line and the
number of buffers slots that will be allocated, meaning that when the number of
machines or the total fixed number of buffer slots or both increases, solving the
allocation problem for that line becomes more difficult. For more complex problems,
the number of iterations increases for LIBA whatever the initial allocation is. Briefly,
we came to a conclusion that LIBA is superior to both SEVA and Non-SEVA for less

complex cases, while this superiority diminishes as the complexity increases.

As a final observation, it is worth to state that the initial allocation procedure we
introduced is extremely useful. Interestingly, as an indicator of this power,
improvement in the production rate of the line after the execution of LIBA did not
exceed 2.3 % for all cases that we study. In addition to this, we obtained approximately
same production rates with SEVA and Non-SEV A optimal values, even better results in

some cases, by only implementing our initial allocation procedure. Therefore, we can
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say that our initial allocation procedure by itself, without the execution of LIBA, can be
enough for the systems where the effect of small increase in the throughput is

negligible.

In contrast to SEVA and Non-SEVA, throughput values is the only criterion
which we take into account during the comparison of SSA and LIBA since Powell and
Harris[33] did not mention any other one such as the number of iteration for these cases
in their study. In all cases studied, LIBA also outperforms SSA in terms of throughput
values except the cases where both algorithms find the global optima. The cases that
LIBA gives better solutions are the ones having the most total number of buffer slots
available among the first and last three cases respectively. Therefore, we can say that
LIBA is superior to SSA in terms of optimal throughput value and this superiority

becomes more observable as the number of buffer slots that will be allocated increases.

Finally, although it is the case in the industry, we observed that currently
available algorithms as well as LIBA do not consider the production lines with stations
consisting of parallel machines having individual upstream and/or downstream buffers.
It should be possible to adapt currently available algorithms to or new algorithms can

be introduced for these types of production systems.

Assembly / Disassembly (A/D) operations, which are also the parts of the
manufacturing systems, have been neglected so far. Unlike the machines in the flow
lines, A/D operations have more than one upstream and downstream buffer including
different part types. Starvation or blocking of these operations occurs when one of these
upstream/downstream buffers is empty. Therefore, more investigation is needed on this
issue to see how it affects the performance measure of interest and to provide optimal
buffer allocation generalizations or algorithms of such systems. We believe in that our

algorithm can easily be extended to these types of settings.

Buffer issues may be investigated more. The general assumption on the
behaviour of buffers is that transfer times of the parts both from machines to buffers
and from buffers to machines are zero. However, in real life, these transfer times are
not zero. There are not many studies investigating this issue. Another assumption on the
buffer behaviour is the perfect reliability of buffers. However, buffers may be prone to

failure as machines. This issue has also been neglected. Few papers have been
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published on this issue. Although our algorithm can be readily used by incorporating
these changes in the simulation of the production line, more investigation is required on

this issue.
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APPENDIX

A. 1. The Pseudo-Code LIBA

Line Balancing Algorithm (LIBA) can be given in a systematic way as below:
Step 0: Start with an initial allocation of buffer slots.
Step 1: Evaluate the production rate P of line L.
Step 2: Set “k = 0” and “N = #machines in line L”.
Step 3: (Initial decoupling of the whole from the main division buffer location)

3.1. If “N is even” then

3.1.1. Decouple the line into two sub-lines L; and L, from the buffer

location (I%) + k, which is the main division buffer B i

3.2. If “N is odd” then
3.2.1. Decouple the line into two sub-lines L; and L, from the buffer

location ( (N+1)

) +k, which is the main division buffer B ., .
—)+k
2

Step 4: Evaluate the production rates P' and P> of L, and L.

Step 5: (Proceeding to the next main division buffer location in case of throughput

equality around the existing one)

5.1. If “P' = P*” then
5.1.1. If “k > 0” then

80
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5.1.1.1. If “N is even” and “k = (I%) —1” then

5.1.1.1.1. Set “k = 0"’

5.1.1.1.2. Return to Step 3.
5.1.1.2. Set “k = - (k+1)”.
5.1.1.3. Return to Step 3.

5.1.2. If “k < 0" then
5.1.2.1. TF“N is odd” and “k = - (w
5.1.2.1.1. Set “k = 0",
5.1.2.1.2. Return to Step 3.

5.1.2.2. Set “k = -k”.
5.1.2.3. Return to Step 3.

—1) ” then

Step 6: (Determination of the potential giver and receiver initial sub-lines)

6.1. If “P' > P?” then

6.1.1. L, is the potential giver line with N; machines.

6.1.2. L, is the potential receiver line with N, machines.

6.1.3. Set “N;(1) =N,” and “L,(1) =L,”.
6.1.4. Set “N,(1) = N,” and “L,(1) = L,”.
6.2. If “P' < P*” then

6.2.1. L, is the potential receiver line with N; machines.

6.2.2. L, is the potential giver line with N, machines.

6.2.3. Set “N;(1) =Ny” and “L;(1) = L,".
6.2.4. Set “Ny(1) =N;” and “L,(1) =L,".
6.3. Go to Step 7.

Step 7: (Determination of the potential buffer slot giver candidate sequence)

7.1. Set “T=1".

In(N, (D) -1) _

7.2. While “I <
In2

l} ” do

7.2.1. If “N(I) is even” then
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7.2.1.1. Decouple the line L;(I) into two sub-lines L; (I,1) and L;(1,2) with
Ni (1) and Ny(I,2) machines respectively from the buffer location N;(I),
which is the I" division buffer location.

7.2.2. If “Ny(I) is odd” then
7.2.2.1. Decouple the line L;(I) into two sub-lines L;(I,1) and L;(1,2) with
Ni(I,1) and N;(L,2) machines respectively from the buffer location

+
M , which 1is the '™ division buffer location.

7.2.3. Evaluate the production rates P,(I,1) and P(1,2) of the sub-lines L,(I,1)
and L(I,2) respectively.
7.2.4. 1If “P; (I,1) > P1(1,2)” then
7.2.4.1. Set “N(I+1) =N, (I,1)” and “L;(I+1) = L;( L,1)".
7.2.5. If “Py(1,1) < Py(L,2)” then
7.2.5.1. Set “N(I+1) =N, (I,2)” and “L;(I+1) = Li( L,2)".
7.2.6. If “P;(1,1) = P1(L,2)” then
7.2.6.1. Set initial potential giver to the I"™ division buffer location of line
Li(D).
7.2.6.2. Go to Step 8.
7.2.7. Set “I=1+1".
7.3. If “Ny(I) = 2” then
7.3.1. Set initial potential giver to the buffer location of the line L;(I).
7.3.2. Go to Step 8.
7.4. If “Ni(I) = 1” then
7.4.1. Set initial potential giver to the buffer location, which is the I'"" division
buffer location just in front of the machine.

7.4.2. Go to Step 8.
Step 8: (Determination of the potential buffer slot receiver candidate sequence)

8.1. Set “J =1".

8.2. While “J < M -1|”do
In2

8.2.1. If “Ny(J) is even” then
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8.2.1.1. Decouple the line L,(J) into two sub-lines L,(J,1) and L, (J,2) with
N2(J,1) and N,(J,2) machines respectively from the buffer location N;(J),
which is the J® division buffer location.

8.2.2. If “N»(J) is odd” then
8.2.2.1. Decouple the line L,(J) into two sub-lines L,(J,1) and L»(J,2) with
Na2(J,1) and Ny(J,2) machines respectively from the buffer location

+
w , which 1is the J® division buffer location.

8.2.3. Evaluate the production rates P»(J,1) and P, (J,2) of the sub-lines
L»(J,1) and L, (J,2) respectively.
8.2.4. If “P, (J,1) > P, (J,2)” then
8.2.4.1. Set “N,(J+1) =N, (J,1)” and “L,(J+1) = Ly( J,1)".
8.2.5. If “P, (J,1) <P, (J,2)” then
8.2.5.1. Set “N,(J+1) = N»(J,2)” and “L,(J+1) = Ly( J,2)".
8.2.6. If “P, (J,1) = P, (J,2)” then
8.2.6.1. Set initial potential receiver to the J® division buffer location of
the line Ly(J).
8.2.6.2. Go to Step 9.
8.2.7.Set“J=J +1".
8.3. If “Ny(J) = 2” then
8.3.1. Set initial potential receiver to the buffer location of the line L,(J).
8.3.2. Go to Step 8.
8.4. If “N»(J) = 17 then
8.4.1. Set initial potential giver to the buffer location, which is the J" division
buffer location just in front of the machine.

8.4.2. Go to Step 8.
Step 9: (Determination of transfer locations)

9.1. If “improvement occurs with transfer between existing potential giver and
receiver” then
9.1.1. Transfer the buffer slots from the potential giver to potential receiver
until no improvement.
9.1.2. Set “M = 0".
9.1.3. Go to Step 3.
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9.2. Set “Jmax =17
9.3. While “I > 0” and “no improvement with transfer between existing potential
giver and receiver” do
9.3.1. Set potential giver to the I"™ division buffer location of the line Ly(I).
9.3.2. While “J > 0” and “no improvement with transfer between existing
potential giver and receiver” do
9.3.2.1. Set potential receiver to the J™ division buffer location of the line
L>(J).
9.3.2.2. If “improvement occurs with transfer between existing potential
giver and receiver” then
9.3.2.2.1. Transfer the buffer slots from the potential giver to potential
receiver until no improvement.
9.3.2.2.2. Set “M = 0".
9.3.2.2.3. Go to Step 3.
9.3.2.3. If “no improvement with transfer between existing potential giver
and receiver” then
9.3.2.3.1. Set “J=J-1".
9.3.3. If “J = 0” then
9.3.3.1. Set potential receiver to the main division buffer location.
9.3.3.2. If “improvement occurs with transfer between existing potential
giver and receiver” then
9.3.3.2.1. Transfer the buffer slots from the potential giver to potential
receiver until no improvement.
9.3.3.2.2. Set “M = 0".
9.3.3.2.3. Go to Step 3.
9.3.3.3. If “no improvement with transfer between existing potential giver

and receiver” then

9.3.3.3.1. Set “J = Jmax -

9.3.3.3.2. Set potential receiver to the J™ division buffer location of the
line L,(J).

9.3.3.3.3. Set “I=1-1".

9.4. If “I = 0” then

9.4.1. Set potential giver to the main division buffer location.
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9.4.2. While “J > 0” and “no improvement with transfer between existing
potential giver and receiver” do
9.4.2.1. Set potential receiver to the J™ division buffer location of the line
L>()).
9.4.2.2. If “improvement occurs with transfer between existing potential
giver and receiver” then
9.4.2.2.1. Transfer the buffer slots from the potential giver to potential
receiver until no improvement.
9.4.2.2.2. Set “M =0".
9.4.2.2.3. Go to Step 3.
9.4.2.3. If “no improvement with transfer between existing potential giver
and receiver” then
9.4.2.3.1. Set “J=J—-1".
9.4.3.Set “M=M+1”
9.4.4. If “k > 0” then

9.4.4.1. If “N is even” and “k = (I%) —1” then

9.4.4.1.1. Set “k = 0"
9.4.4.1.2. Return to Step 3.
9.4.4.2. Set “k = - (k+1)”.
9.4.4.3. Return to Step 3.
9.4.5. If “k < 0 then

9.4.5.1. If “N is odd” and “k = - (

@ —1)” then

9.4.5.1.1. Set “k = 0.
9.4.5.1.2. Return to Step 3.
9.4.5.2. Set “k = - k”.
9.4.5.3. Return to Step 3.
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A.2. General Model frame for the simulation of the production lines in

SIMAN V

BEGIN;
CREATE;
ASSIGN:M=ILK+1;

ENTRY QUEUE,INITIAL;
SCAN:NQ(M-1).EQ.0;
DUPLICATE:1,ENTRY;
ROUTE:0,M;

STATION,STATIONSET;
QUEUE,M-1;
SCAN:(NQ(M-numstat).EQ.0).and.(NR(M).EQ.0).and.(MR(M).NE.0);
SEIZE:M;

ASSIGN:PROCESSTIME(M)=1/PROCESS_RATE(M):
FAILTIME(M)=EXPO(1/FAILURE_RATE(M),M-1);

REPAIR IF:(MR(M).EQ.0). AND.(NQ(M+1+(2*numstat)).EQ.1);
DELAY:EXPO(1/RERAIR_RATE(M),M-1);
ALTER:M,1;

DISPOSE;
ENDIF;

WHILE:PROCESSTIME(M).GT.FAILTIME(M);
DELAY:FAILTIME(M);
RELEASE:M;
ALTER:M,-1;
ASSIGN:PROCESSTIME(M)=PROCESSTIME(M)-FAILTIME(M);
ASSIGN:FAILTIME(M)=EXPO(1/FAILURE RATE(M),M-1);
DUPLICATE:1,REPAIR;
QUEUE,M+1+(2*numstat);
SEIZE:M;

ENDWHILE;
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IF:PROCESSTIME(M).LE.FAILTIME(M);
DELAY:PROCESSTIME(M);
ENDIF;

RELEASE:M,;

IF:BUFFERCAPACITY(M).EQ.0;
QUEUE, M-+numstat;

SCAN:(NR(M+1).EQ.0).and.(NQ(M+1+numstat).EQ.0).and.(MR(M+1).NE.0);

ENDIF;

IF:BUFFERCAPACITY(M).EQ.1;
IF:NQ(M).EQ.1;
ASSIGN:HESITATE(M)=0.0000000001;
ELSEIF:NQ(M).EQ.0;
ASSIGN:HESITATE(M)=0;
ENDIF;
QUEUE,M-+numstat;
SCAN:(NQ(M).LT.BUFFERCAPACITY(M));
DELAY:HESITATE(M);
ENDIF;

IF:BUFFERCAPACITY(M).GT.1;
QUEUE,M-+numstat;
SCAN:(NQ(M).LT.BUFFERCAPACITY(M));

ENDIF;

IF:M.EQ.MEMBER(STATIONSET,SON+1);
ROUTE:0,EXITSYSTEM;
ENDIF;

ROUTE:0,M+1;
STATION,EXITSYSTEM,;

ASSIGN:PART=PART+1:
RATE=PART/TNOW;

IF:PART.GT.WARMUP;
ASSIGN:CSUM=CSUM+RATE;
ENDIF;

IF:PART.EQ.MC(1);
WRITE,AVGRATE:CSUM/(PART-WARMUP);
ENDIF;
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COUNT:OUTPUT, 1;
DISPOSE;

END;

38
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A.3. Experimental frame of the production line given in Seong

et.al.[35] as Case 9 for the simulation in SIMAN V

BEGIN; THESIS,CASE 9,SEONG ET.AL.[35];
VARIABLES:BUFFERCAPACITY(11),1000,1,5,4,0,0,0,0,0,0,1000:

FAILURE RATE(12),1000,0.07,0.11,0.49,0.19,0,0,0,0,0,0,1000:
REPAIR RATE(12),1000,0.17,0.37,0.78,0.5,0,0,0,0,0,0,1000:
PROCESS RATE(12),1000,3.7,1.5,1.1,3,0,0,0,0,0,0,1000:
PROCESSTIME(12):FAILTIME(12):HESITATE(12):
PART:RATE:CSUM:

numstat,10: WARMUP,5000:

ILK,1: SON,4;

STATIONS:MCO0:MC1:MC2:MC3:MC4:MC5:MC6:
MC7:-MC8:MC9:MC10:EXITSYSTEM;

SETS:STATIONSET,MCO0,MC1,MC2,MC3,MC4,MC5,MC6,MC7,MC8MCI9,MC10;

QUEUES:BUFFERQO:BUFFER1:BUFFER2:BUFFER3:BUFFER4:BUFFERS:
BUFFER6:BUFFER7:BUFFER8:BUFFER9:BUFFER10:
DUMMY1:DUMMY2:DUMMY3:DUMMY4:.DUMMYS5:
DUMMY6:DUMMY7:DUMMY8:DUMMY9:DUMMY 10:
RESUMEO:RESUME1:RESUME2:RESUME3:RESUME4:RESUMES:
RESUME6:RESUME7:RESUME&:RESUME9:RESUME10:INITIAL;

RESOURCES:MACHINEO:MACHINE1:MACHINE2:MACHINE3:
MACHINE4:MACHINES:MACHINE6:MACHINE7:
MACHINE8:MACHINE9:MACHINE10;

FILES:AVGRATE,"out.txt",SEQ,FOR;
COUNTERS:OUTPUT, 45000, YES;
REPLICATE, 10;

END;
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A.S. Throughput values for all feasible allocations in the sample problem given as Case 9 in Seong et. al.[35]
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Table.A.5. Throughput values for all feasible allocations in the sample problem given as Case 9 in Seong et. al.[35]
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A.6. Processing, failure and repair rates for production lines in

92

Seong et.al.[35]
CASE 1 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18
N 3 10 5 5 8 9 4 5 5 5 6 8 9 10 10
C 15 30 12 47 110 | 200 | 110 | 155 10 30 10 15 115 ] 130 | 125 | 200 | 310 | 315
M 1 1 1 1 1 1 1 1 3,7 3 1,2 1 2,8 2,6 3 1 2,5 2,7 2,4
MCH#1 V) 0 04 1 0.2 0 0,1 0,1 0 0,3 0,1 0,4 0,1 0,3 0,1 0,3 0,3 0,2 0,1 0,4
r 0,1 0,7 1 0,7 0 0,3 0,2 1 0,7 0,2 0,5 0,3 0,6 0,4 0,2 0,5 0,7 0,8 0,5
M 1 1 1 1 1 1 1 1 1,5 1 1 1,7 3 1 3,6 1,5 1,8 1,7
MC#2 H2 0 021 0.2 0 0,1 0,2 0,1 0,2 0,1 0,3 0,3 0,4 0,2 0,5 0,2 0,1 0,2 0,2
I 0,1 08 | 0,7 0 0,4 0,3 0,9 0,6 0,4 0,6 0,5 0,8 0,4 0,5 0,5 0,6 0,3 0,6
A3 1 1 1 1 1 1 1 1 1,1 2 3 2,5 34 1,2 1,7 2,8 2,1 2.8
MCH#3 U3 0 021 0.2 0 0,2 0,3 0,1 0,4 0,5 0,4 0,5 0,5 0,2 0,1 0,2 0,3 0,3 0,3
r3 0,1 0,7 1 0,7 0 0,4 0,4 0,9 0,7 0,8 0,5 021 08 0,6 0,3 0,6 0,8 0,5 0,5
M 1 1 1 1 1 1 1 3 3,6 2 34 4,7 1,8 1,4 3,6 23 22
MC#4 4 0,1 0,2 0 0,2 0,2 0 0,2 0,2 0,5 041 04 0,2 0,2 0,3 0,2 0,2 0,4
ry 0,6 | 0,7 0 0,5 0,4 1 0,5 0,5 0,4 0,3 0,9 0,5 0,1 0,5 0,8 0,5 0,5
s 1 1 1 1 1 1 1,8 1,9 1,5 1,5 2,8 2,1 1,6 2,1
MCH#5 Hs 0,2 0 0,2 0,1 0,2 0,2 0,2 1 0,1 0,1 0,3 0,2 0,1 0,3 0,3
Irs 0,7 0 0,4 0,3 0,7 0,6 0,1 0,7 0,3 0,2 0,5 0,7 0,8 0,5
e 1 1 1 2 2,7 1,9 2,7 2,5
MCH#6 He 0 0,2 0,1 0,4 0,4 0,1 0,3 0,4
I's 0 0,6 0,5 0,3 0,5 0,6 0,7 0,4
M 1 1 1 1,6 2,7 1,5 1,1
MC#7 M7 0 0,3 0,4 0,3 0,3 0,1 0,3
ry 0 0,5 0,7 0,7 0,8 0,6 0,5
s 1 1 1 1,2 3 1,5 1,3
MCH#8 Hs 0 0,1 0,3 0,2 0,2 0,2 0,3
s 0 0,9 0,8 0,4 0,5 0,6 0,5
o 1 1 2 1,2 1,6
MC#9 Ho 0 0,2 0,3 0,1 0,3
Iy 0 0,5 0,6 0,6 0,5
Aro 1 2,6 0,8
MC#10 | o 0 03] 02
Ryo 0 0,4 0,5

Table A.6. Processing, failure and repair rates for production lines in Seong et.al.[35]
Ai: processing rate for machine i
Mi: failure rate for machine i
ri: repair rate for machine i
C: total fixed number of buffer slots that will be allocated

N: number of machines in the production line

NOTE: Processing times are deterministic for the cases from Case#l to Case#8

Processing times are exponential for the cases from Case#t 9 to Case#18

Failure and Repair times are all exponential for all cases
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A.7. Optimal allocations with estimated throughput values via
simulation for SEVA, Non-SEVA and LIBA

CASE N K METHOD ALLOCATION THROUGHPUT ITERATION

A (7.8) 0.5806027 8

B (7,8) 0.5806027 3

1 3 15 C (7,8) 0.5806027 3

LIBA 1 (7,8) 0.5806027 7

LIBA 2 (7.8) 0.5806027 4

A (20,8,2) 0.6646476 48

B (19.9.2) 0.6647446 25

2 4 30 C (20,8,2) 0.6646476 29

LIBA 1 (19,11,0) 0.6631803 4

LIBA 2 (18,9,3) 0.6648211 15

A 2,4,42) 0.6458731 34

B 2,4,4,2) 0.6458731 25

3 5 12 C 2,44.2) 0.6458731 30
LIBA 1 (3,34,2) 0.6459400 19

LIBA 2 (2,4,4,2) 0.6458731 17
A (0,3,8,8,9,8.,8,3,0) 0.1756255 333

B (0,5,5,10,10,5,5,5,2) 0.1752594 41

4 10 47 C (0,4,7,8,9,8,6,4,1) 0.1757494 58
LIBA 1 (0,4,8,8,8,9,5,5,0) 0.1765216 407
LIBA 2 (0,5,6,9,8,9,4,6,0) 0.1764558 274
A (22,27,38,23) 0.6494134 141

B (22,28,36,24) 0.6497027 36

5 5 110 C (22,28,36,24) 0.6497027 43
LIBA 1 (19,35,34,22) 0.6497500 77

LIBA 2 (23,30,35,22) 0.6498637 81

A 0,7,3) 0.6531318 26

B (0,6,4) 0.6513359 16

9 4 10 C 0,7,3) 0.6531318 24

LIBA 1 0,7.3) 0.6531318 3

LIBA 2 0,7.,3) 0.6531318 5

A (11,16,3) 0.6380394 53

B (11,16,3) 0.6380394 37

10 4 30 C (11,16,3) 0.6380394 24
LIBA 1 (10,18,2) 0.6375757 23

LIBA 2 (10,16,4) 0.6381569 28

A (1,3.4,2) 0.3479317 31

B (1,3,4,2) 0.3479317 48

11 5 10 C (1,3.4,2) 0.3479317 48
LIBA 1 (1,3,4,2) 0.3479317 24

LIBA 2 (1,3,4,2) 0.3479317 15

A (4,6,3,2) 0.9719334 74

B (4,6,4,1) 0.9708824 25

12 5 15 C (4,6,4,1) 0.9708824 25

LIBA 1 (4,7,4,0) 0.9630241 8

LIBA 2 4,7,3,1) 0.9727568 14

B (26,45,26,16,17) 0.4611404 58

14 6 130 C (23,38,47,14.8) 0.4448229 83
LIBA 1 (15,36,23,42,14) 0.4793024 177
LIBA 2 (15,31,28,42,14) 0.4794121 178

Table A.7. Optimal allocations with estimated throughput values via simulation for

A: SEVA

SEVA, Non-SEVA and LIBA

B: Non-SEVA with both big and small steps
C: Non-SEVA with only small steps

LIBA 1: LIBA with initial allocation determined in Song et.al.[35]

LIBA 2: LIBA with initial allocation determined by its original procedure

NOTE: SEVA was not applied to Case 14
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A.8. Efficiency evaluation of initial allocation procedure of LIBA

CASE N K METHOD ALLOCATION THROUGHPUT PERCENTAGE
A (7.8) 0.5806027 100
B (7,8) 0.5806027 100
1 3 15 C (7.8) 0.5806027 100
initial (7,8) 0.5806027 -
A 20,8,2) 0.6646476 99.81
B (19.9,2) 0.6647446 99.79
2 4 30 C (20,8,2) 0.6646476 99.81
initial (11,10,9) 0.6633516 -
A 2,4,42) 0.6458731 99.89
B 2,4,4,2) 0.6458731 99.89
3 5 12 C 2,4,4.2) 0.6458731 99.89
initial (3,3,3.3) 0.6451765 -
A (0,3,8,8,9,8,8,3,0) 0.1756255 98.23
B (0,5,5,10,10,5,5,5,2) 0.1752594 98.43
4 10 47 C (0,4,7,8,9,8,6,4,1) 0.1757494 98.16
initial (5,5,5,5,6,6,5.,5,5) 0.1725131 -
A (22,27,38,23) 0.6494134 100.03
B (22,28,36,24) 0.6497027 99.98
5 5 110 C (22,28,36,24) 0.6497027 99.98
initial (27,27,28,28) 0.6495863 -
A 0,7,3) 0.6531318 99.38
B (0,6,4) 0.6513359 99.65
9 4 10 C 0,7.3) 0.6531318 99.38
initial 2,5,3) 0.6490498 -
A (11,16,3) 0.6380394 99.67
B (11,16,3) 0.6380394 99.67
10 4 30 C (11,16,3) 0.6380394 99.67
initial (10,12,8) 0.6359135 -
A (1,3.4,2) 0.3479317 99.42
B (1,3,4,2) 0.3479317 99.42
11 5 10 C (1,3.4,2) 0.3479317 99.42
initial 2,3.2,3) 0.3459187 -
A (4,6,32) 0.9719334 99.08
B (4,6,4,1) 0.9708824 99.18
12 5 15 C (4,6,4,1) 0.9708824 99.18
initial 4,5,3,3) 0.9629590 -
B (26,45,26,16,17) 0.4611404 102.99
14 6 130 C (23,38,47,14.8) 0.4448229 106.77
initial (22,27,25,31,25) 0.4749513 -

Table A.8. Efficiency evaluation of initial allocation procedure of LIBA
A: SEVA
B: Non-SEVA with both big and small steps
C: Non-SEVA with only small steps
Initial: Initial allocation determined by our own procedure
N: Number of machines in the production line

K: Total fixed number of buffer slots that are to be allocated

NOTE: SEVA was not applied to Case 14



