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Abstract — We present fast and accurate solutions of
large-scale scattering problems using a parallel im-
plementation of the multilevel fast multipole algo-
rithm (MLFMA). By employing a hierarchical par-
titioning strategy, MLFMA can be parallelized ef-
ficiently on distributed-memory architectures. This
way, it becomes possible to solve very large problems
discretized with hundreds of millions of unknowns.
Effectiveness of the developed simulation environ-
ment is demonstrated on various scattering prob-
lems involving canonical and complicated objects.

1 INTRODUCTION

The multilevel fast multipole algorithm (MLFMA)
is a powerful method for the fast and efficient solu-
tion of electromagnetics problems discretized with
large numbers of unknowns [1]. Nevertheless, ac-
curate solutions of real-life problems often require
discretizations with millions of unknowns. In or-
der to handle such extremely-large-scale problems,
MLFMA must be parallelized on a cluster of com-
puters [2]–[5]. Unfortunately, efficient paralleliza-
tion of MLFMA is not trivial due to the compli-
cated structure of this algorithm. In this paper, we
present an overview of our efforts to develop par-
allel implementations of MLFMA for the solution
of very large scattering problems discretized with
hundreds of millions. We demonstrate the feasi-
bility of accurately solving large-scale problems on
relatively inexpensive computing platforms without
resorting to approximation techniques.

2 SIMULATION ENVIRONMENT

In this section, we summarize the major compo-
nents of our simulation environment.

2.1 Formulation and Discretization

Problems considered in this paper involve closed
conducting surfaces, which can be formulated with
the combined-field integral equation (CFIE). CFIE
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is the convex combination of the electric-field inte-
gral equation (EFIE) and the magnetic-field inte-
gral equation (MFIE), i.e., CFIE = αEFIE + (1 −
α)MFIE. The coupling parameter α is set to 0.2 for
optimal iterative convergence. CFIE is discretized
with the Rao-Wilton-Glisson functions defined on
planar triangles smaller than λ/10, where λ is the
wavelength.

2.2 Iterative Solutions

Iterative solutions are performed by using the
biconjugate-gradient-stabilized algorithm, which is
known to provide rapid solutions for CFIE. In all
solutions, the relative residual error for the iterative
convergence is set to 10−3. Solutions are further
accelerated by employing block-diagonal precondi-
tioners that are constructed from the self interac-
tions of the lowest-level subdomains in MLFMA.

2.3 Near-Field Interactions

In MLFMA, there are O(N) near-field interactions,
which are calculated directly and stored in memory
to be used multiple times during iterations. We use
singularity-extraction techniques, adaptive integra-
tion methods, and Gaussian quadratures in order
to calculate near-field interactions accurately and
efficiently. Typically, near-field interactions are cal-
culated with a maximum of 0.5% error.

2.4 Far-Field Interactions

For each problem, a tree structure is constructed
by placing the object in a cubic box and recur-
sively dividing the computational domain into sub-
domains, until the box size is about 0.25λ. Then,
far-field interactions are calculated in three stages,
namely, aggregation, translation, and disaggrega-
tion. Truncation numbers, sampling rates for ra-
diated and incoming fields, and numbers of inter-
polation/anterpolation points are selected carefully
such that far-field interactions are calculated with
a maximum of 1% error.

2.5 Parallelization

In order to solve large-scale problems, MLFMA
must be parallelized on a cluster of computers, but
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this is not trivial due to the complicated structure
of this algorithm. Specifically, distributing the mul-
tilevel tree structure among processors has been a
major bottleneck for the efficient parallelization of
MLFMA. Recently, we proposed a hierarchical par-
allelization strategy, which is based on the optimal
partitioning at each level of MLFMA [5]. In this
strategy, both subdomains and their samples are
partitioned among processors by employing load-
balancing algorithms. The hierarchical strategy of-
fers a higher parallelization efficiency than previ-
ous approaches, due to the improved load-balancing
and the reduced number of communication events.

2.6 Computing Platform

Solutions presented in this paper are performed on
a cluster of Intel Xeon Dunnington processors with
2.40 GHz clock rate. The cluster consists of 16 com-
puting nodes, and each node has 48 GB of memory
and multiple processors. For all solutions, we em-
ploy four cores per node (a total of 64 cores).

3 RESULTS

In this paper, we present solutions of scattering
problems involving four metallic objects depicted in
Figure 1, namely, a 1 m × 3.5 m × 0.1 m rectangu-
lar box, a wing-shaped object with sharp edges and
corners, the NASA Almond of length 25.23 cm, and
the stealth airborne target Flamme with a maxi-
mum dimension of 0.6 m.

3.1 Rectangular Box

The rectangular box is investigated at 75 GHz.
At this frequency, the size of the box corresponds
to 875λ and its discretization with λ/10 triangles
leads to matrix equations involving 174,489,600 un-
knowns. The box is illuminated by two plane waves
propagating on the x-z plane at 30◦ and 60◦ angles
from the z axis. The electric field is polarized in
the θ direction. Two solutions are performed in
a total of 13 hours. Figure 2 depicts the co-polar
bistatic RCS (dBms) on the x-z plane as a function
of the bistatic angle θ. In addition to the forward-
scattering direction, RCS values make peaks at two
reflection directions, i.e., at 150◦ and 330◦ for the
30◦ illumination and at 120◦ and 300◦ for the 60◦

illumination.

3.2 Wing-Shaped Object

The wing-shaped object with a maximum dimen-
sion of 1 m is investigated at 150 GHz. The object
is discretized with 172,228,608 unknowns, and it is
illuminated by two plane waves propagating on the
x-y plane at 30◦ and 60◦ angles from the x axis.
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Figure 1: Large metallic objects, whose scattering
problems are solved by the parallel MLFMA imple-
mentation.

The electric field is polarized in the φ direction.
Two solutions are performed in a total of 15 hours.
Figure 3 depicts the co-polar bistatic RCS (dBms)
on the x-y plane as a function of the bistatic an-
gle φ. We observe that RCS values of the wing-
shaped object make peaks at three directions due
to reflections, in addition to the forward-scattering
direction.

3.3 NASA Almond

The NASA Almond is discretized with 203,476,224
unknowns and investigated at 1.1 THz. The maxi-
mum dimension of the target corresponds to 915λ
at this frequency. The target is again illuminated
by two plane waves propagating on the x-y plane
at 30◦ and 60◦ angles from the x axis (from the
nose). The electric field is polarized in the θ direc-
tion. Solutions are performed in a total of 22 hours.
As depicted in Figure 4, the NASA Almond has a
stealth ability with very low back-scattered RCS
compared to the forward-scattered RCS.
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Figure 2: Co-polar bistatic RCS (dBms) of the rect-
angular box in Figure 1 at 75 GHz.

3.4 Flamme

Finally, the stealth airborne target Flamme is inves-
tigated at 440 GHz. The scaled size of the Flamme
is 0.6 m and corresponds to 880λ at this frequency.
Discretization of the target with λ/10 triangles
leads to matrix equations involving 204,664,320 un-
knowns. Similar to the wing-shaped object and the
NASA Almond, the Flamme is illuminated by two
plane waves propagating on the x-y plane at 30◦

and 60◦ angles from the x axis with the electric
field polarized in the θ direction. Solutions are per-
formed in a total of 44 hours. Figure 5 shows that
the back-scattered RCS of the Flamme is very low
due to the stealth ability of this target, similar to
the NASA Almond. In addition, depending on the
illumination, we observe that the Flamme RCS ex-
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Figure 3: Co-polar bistatic RCS (dBms) of the
wing-shaped object in Figure 1 at 150 GHz.

hibits several peaks in various directions.

4 CONCLUSION

This paper presents rigorous solutions of scatter-
ing problems discretized with hundreds of millions
of unknowns using a parallel implementation of
MLFMA in order to demonstrate the feasibility
of accurately solving large-scale problems on rela-
tively inexpensive computing platforms without re-
sorting to approximation techniques.
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Figure 4: Co-polar bistatic RCS (dBms) of the
NASA Almond in Figure 1 at 1.1 THz.
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