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ABSTRACT

EARLY DIAGNOSIS OF BREAKDOWN THROUGH
TRANSFER LEARNING

Seren Özbek

M.S. in Computer Engineering

Advisor: H. Altay Güvenir

Co-Advisor: Hamdi Dibeklioğlu

May 2019

Breakdown prediction of equipment is an essential task considering the manage-

ment of resources and maintenance operations. Early diagnosis systems allow

creating alerts on time for taking precautions on production. A significant chal-

lenge for diagnosis is to have an insufficient size of data, yet, transfer learning

approaches can alleviate such an issue when there is a constrained supply of train-

ing data. We intend to improve the reliability of breakdown prediction when

there is a limited quantity of training data. We recommend similarity correlation

on Remaining Useful Life of these equipment. To do this, we offer learning a

common feature space between the target and the source equipment, where we

acquire prior knowledge from the source that has different measurements than

the target. Within the learned joint feature matrices, we train our model on the

vast amount of data of different equipment and finetune it using the data of our

target equipment. In this way, we aim to obtain an accurate and reliable model

for early breakdown prediction.

Keywords: Transfer Learning, Predictive Maintenance, Fault Diagnosis, Deep

Learning, LSTM, Canonical Correlation Analysis.
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ÖZET

TRANSFER ÖĞRENİMİ İLE KESTİRİMCİ BAKIM

Seren Özbek

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: H. Altay Güvenir

İkinci Tez Danışmanı: Hamdi Dibeklioğlu

Mayıs 2019

Kestirimci Bakım, arıza kaynaklı sistem kesintilerini en aza indirgeyerek

bakım maliyetlerinin azaltılmasını amaçlamaktadır. Erken tanı sistemleri,

arızalar konusunda önlem almak için zamanında alarm oluşturulmasına olanak

sağlamaktadır. Arıza teşhisi için önemli bir zorluk, yetersiz veri örneğine sahip

olmaktır, ancak Transfer Öğrenimi yaklaşımları kısıtlı bir eğitim verisi olması

sorununu hafifletebilmektedir. Bu çalışmada, hedeflenen ekipman ve kaynak ekip-

man arasında ilişki kurularak, kaynak ekipman üzerinde öğrenilen bozulma bilgi-

leri hedef ekipmana transfer öğrenimi ile aktarılmaktadır. Aktarım yapılabilmesi

için ekipmanlar arasında ortak benzerlik kümesi oluşturulması gerekmektedir.

Bu küme, ekipmanların Kalan Yararlı Ömür niteliği üzerinden elde edilmekte-

dir. Ortak benzerlik kümesinde; hedef ekipmandan farklı ölçümlere sahip olan

bir kaynaktan bilgi aktarılmaktadır. Öğrenilen ortak nitelik kümelerinde, model

farklı ekipmanların geniş miktarda verisine göre eğitmektedir ve öğrenilen bilgi,

hedef ekipmanın arıza teşhisi için kullanılmaktadır. Çalışmada, kısıtlı veri olması

durumunda erken arıza tahmini için transfer öğrenme ile güvenilir bir model elde

edilmesi amaçlanmaktadır.

Anahtar sözcükler : Transfer Öğrenmesi, Kestirimci Bakım, Arıza Tanısı, Derin

Öğrenme, LSTM, Kanonik Korelasyon Analizi.

iv



Acknowledgement

First, I would like to declare my honest gratitude to my advisor Prof. H. Altay
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Chapter 1

Introduction

Predictive Maintenance arises to replace the Scheduled Maintenance that is the

standard way to handle maintenance operations. Scheduled maintenance has a

series of maintenance procedures defined at the design stage. To prevent break-

downs, scheduled maintenance manages diagnosis operations in a specified num-

ber of periods. Nowadays, scheduled maintenance goes out of date since this kind

of service cannot offer value. Scheduled maintenance makes a piece of equip-

ment scrap when an industry applies a certain number of maintenance operation.

Additionally, scheduled maintenance requires operations to stop when an unex-

pected breakdown occurs independently from the planned maintenance schedule.

Therefore, scraps and unexpected breakdowns make the scheduled maintenance

expensive for the equipment partners considering logistic cost, inventory cost,

and labor cost. Moreover, due to the unexpected downtimes, customers may not

get the requested services.

Predictive maintenance aims to mitigate the undesired consequences of scheduled

maintenance. Predictive maintenance proposes an optimal investigation and re-

placement decision considering the failure cost before a breakdown happens. This

approach continuously observes the equipment behavior and makes the mainte-

nance decision by collecting data from the equipment. When there is a possibil-

ity of breakdown, above a predefined threshold, a predictive maintenance system

1



CHAPTER 1. INTRODUCTION 2

raises an alert. Thanks to generated alerts and continuous tracking of a piece of

equipment, the early diagnosis of a breakdown work well in advance [1].

Although there are several predictive maintenance approaches, most of the pre-

dictive maintenance solutions are not adaptable to many facilities, mostly due

to the limited access to data [2]. Since industrial companies may not be willing

to share their data reservoir, predictive models are not able to afford significant

decision supports in case of detecting faults.

Machine learning algorithms have been used to learn predictive models from

existing data. Models learned by machine learning algorithms concentrate on

adjusting the information gained from a labeled source space to unlabeled target

space. Many learning strategies work well under when there is a good number of

training instances. Even though machine learning demands an adequate amount

of data, it is possible to cope with a data quantity problem. New data can be

enriched by consuming lots of human labor and time to interpret and label large

amounts of training data. However, regular hand-operated labeling is costly,

unreasonable, and impractical. Therefore, insufficient amount of labeled data

brings out Transfer Learning studies.

Transfer Learning is considered as a powerful technique, where the model learned

with one dataset can be reused to learn a model in a different but related domain.

The intuitive principle behind this methodology is to receive suitable feature

representation for similar feature spaces [3]. Transfer Learning minimizes the

distinctions between diverse domains to minimize the cross-space prediction error.

Transfer Learning utilizes knowledge to transfer across domains. A common

representation is constructed between comparable domains. With the help of

this common representation, the source and the target space turn out to be

progressively related and comparable.

In the literature, transfer learning is mostly applied to computer vision and clas-

sification tasks. Motivated by the achievement of the transfer learning in such

jobs, in this study, we aim to construct a bridge between different data spaces for
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the early diagnosis problem. When a neural network is in deficiency for predict-

ing the failure status of industrial equipment due to the insufficient size of data,

we infer knowledge from a piece of different equipment; therefore, our network

gains more information for solving the diagnosis problem. To acquire the knowl-

edge from the different equipment having diverse measurements/ calibrations, we

create a common representation on both equipment. By learning the common

representation, we carry the knowledge from the source to the target equipment

on the joint space. Starting from this point, we assume that the source equipment

has a larger data size than the target equipment.

1.1 Objective of the Thesis

This thesis investigates how transfer learning improves predictive model success

on the correlated feature space when there is a deficient amount of data for

predicting the breakdown of an equipment. We believe that our approaches can

help industries in making effective decisions on early diagnosis of the failure.

In this manner, industries can maintain their operating duties proficiently while

reducing their maintenance cost.

The key contributions of this study can be listed as follows:

• For the first time in the literature, we design a system for accurate predic-

tion of the health status of equipment in case of insufficient training data,

through transfer learning.

• We show that transfer learning can be applied between feature spaces with

different measurements, learning a common subspace, for early diagnosis of

breakdown.

• We evaluate our system on five different datasets using four different com-

mon representation learning methods. The results demonstrate that the

accuracy of predicting health status of pieces of equipment can be signifi-

cantly improved, employing transfer learning on jointly projected datasets.
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1.2 Organization of the Thesis

The rest of the paper is structured as follows:

• Chapter 1 - Introduction

This chapter is presented here.

• Chapter 2 - Related Work

This chapter presents the related work mostly considering transfer learn-

ing studies with predictive maintenance objective. We define how transfer

learning becomes attractive and why it is applicable on predictive mainte-

nance.

• Chapter 3 - Methodology

This chapter presents the proposed methodologies for the best results for

breakdown classification. The proposed methodologies are for obtaining

labels (including feature normalization, remaining useful life, health status

label, the source and the target space matching) learning the common repre-

sentation between two different domains (including the other representation

methods), modeling and transfer learning.

• Chapter 4 - Experiments

This chapter presents experimental results. It includes the sections for

database (Turbofan Engine dataset, Wind Turbine dataset, Milling Ma-

chine Cutter dataset, Hard Drive dataset, Semiconductor dataset), experi-

ments, settings, effects of the different parameters and comparison to other

methods.

• Chapter 5 - Conclusion

This chapter presents the overall evaluation and offers some future study

in order to extend the research.



Chapter 2

Related Work

Transfer Learning was sprung up during the Neural Information Processing Sys-

tems 1995 Workshop with this definition: Knowledge Consolidation and Transfer

in Inductive Systems is believed to have offered the underlying inspiration to

investigate in. From that point onward, terms, for example, Learning to Learn,

Knowledge Consolidation, and Inductive Transfer have been utilized alternatively

with transfer learning. In the celebrated book, Deep Learning [4] defines transfer

learning is as per the following: “Situation where what has been learned in one

setting is exploited to improve generalization in another context.”

As a formal definition, the essential motivation behind transfer learning is to

shift prior knowledge from one to another domain. Transfer Learning grows more

attractive when there is a limited amount of training data due to the several

reasons such as data being limited, data being high-priced to gather and label or

data being out of reach.

Most neural networks which aim to solve complicated issues expect lots amount of

data and getting the immense size of labeled data can be extremely troublesome,

considering the time and effort it takes to label data. A candid example would

be the ImageNet dataset, which has a vast number of pictures relating to various

classes, through years of hard work beginning at Stanford [5]. However, getting

5
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such a dataset for each specialty is difficult. Additionally, most profound learning

models are extremely specific to a unique domain or even a particular task. These

objectives structure why studies attend more consideration for transfer learning.

Transfer learning yields to store knowledge gained while solving a learning prob-

lem and apply this prior knowledge to different but related problems. Thanks

to the gained knowledge, transfer learning avoids expensive data labeling effort

by improving the performance of learning [3]. There are many machine learning

applications that transfer learning has been effectively applied to including senti-

ment text classification [6], image classification [7], human activity classification

[8] software defect classification and voice processing [9].

Even though transfer learning is mostly available for computer vision, we focus

on its application on time series data, and there is yet a lot to be examined

in developing deep neural networks for time series datasets [10]. For detecting

anomalies in time series and grabbing the breakdowns, Dynamic Time Warping

(DTW) classifier was employed to execute with the aim of transfer learning [11].

DTW algorithm maps the relation between two-time series, which may vary in

time or momentum [12]. Next, a transfer learning approach for an auto-encoder

was applied to predict the power of wind speed in a farm [13]. The authors

assigned knowledge from the past wind farm to a new one through training a

model on the historical wind speed data of an old farm and tuning it using the

data of the new farm.

Based on the previous studies, we decide to investigate transfer learning for solv-

ing breakdown prediction. Several Deep Learning models have been already

applied to fault diagnosis until now [14]. Long-Short Term Memory (LSTM)

networks were proposed to classify failures on equipment based on Remaining

Useful Life (RUL) label [15]. Bi-directional Long-Short Term Memory (BLSTM)

was designed to obtain the bidirectional long-range dependences of features and

intended to increase the prediction of RUL[16]. Additionally, several researchers

conducted asset health classification with deep neural networks for predicting

failure and non-failure conditions. The previous study proposed by Microsoft

Azure classified the asset health status with 97 % accuracy in 2017 with LSTM
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networks [17]. Another study combined LSTM networks with survival analysis

for pointing out the breakdowns on assets [18]. Researchers proposed an Extreme

learning machine using quantum-behaved particle swarm optimization (Q-ELM)

for turbine fan engine fault diagnosis with 93 % accuracy [19]. [20] used Support

Vector Machines (SVM) to model faults while employing a multilayer perceptron

(MLP) to estimate the number of the faults with 96.8 % accuracy. Real-Time

Adaptive Performance Model (RTAPM) Kalman filter is implemented to estimate

engine dynamic states [21].

Perhaps, the recent work [22] is the most related to our study in terms of applying

transfer learning for early diagnosis of breakdown. The authors have transferred

gained knowledge between different but similar working conditions of a turbo-

fan engine to predict the remaining useful life (RUL). Our study distinguishes

from this study since we propose transfer learning to classify breakdown by shift-

ing knowledge between different equipment that is more or less related, instead

of moving knowledge between different conditions of the same asset. To move

knowledge from one material to target material, we utilize the study [23] that

they minimized the differences between distributions with Canonical Correlation

Analysis (CCA) where CCA learns the shared space from different domains. This

study transferred the knowledge on the cross-domain area as we aim to do for

breakdown classification.



Chapter 3

Methodology

We propose an architecture for early breakdown prediction on sequential data

spaces with transfer learning that works on common represented feature space.

Our goal is to enhance the reliability of breakdown prediction when there is an

insufficient amount of training data.

First, we obtain the labels on our source and target feature spaces, where we aim

to shift the knowledge from the source to the target equipment. We use similarity

correlation on the obtained label (remaining useful life). Next, we match both

datasets based on the remaining useful life in decreasing order. Second, we learn

the joint representation of the associated source and target feature vector. Third,

we offer LSTM architecture, where we pretrain the source network. Last, we

finetune the pretrained network to the target vector, to shift the prior knowledge.

Figure 3.1 shows the flow that we propose in this study.

As shown in Figure 3.2, first we learn the common representation between the

source and target equipment where source equipment has a large data size of

other equipment. We propose to learn a common feature space between the

data of our target equipment and that of another equipment that includes differ-

ent/uncalibrated measurements, using a similarity correlation on the remaining

useful life (RUL) of this equipment. Then, in the learned common feature space,

8
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Figure 3.1: Proposed stream

we train our model on the more significant amount of data of other equipment

and finetune it using the data of our target equipment. Therefore, we learn earlier

knowledge from the source space and adjust the gained knowledge on the target

equipment to predict failure. We evaluate the proposed model using a different

pair of source and target datasets to enhance our target task.

3.1 Obtaining Labels

In order to shift the knowledge to the target equipment from other equipment

that different and plentiful size of features, we intend to acquire a joint feature

space. To learn a common feature space, we require a shared feature on the source

and the target equipment. Therefore, we adjust the data vectors to obtain the

common labels on feature vectors.

First, we normalize our feature vectors, second, we generate the common labels

(remaining useful life and health status). As the last, we match a pair of feature

vectors based on the remaining useful life label.
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Figure 3.2: System overview



CHAPTER 3. METHODOLOGY 11

3.1.1 Feature Normalization

As the first step, we normalize our vectors belonging to the data of our target

equipment and that of another equipment considering the minimum and maxi-

mum scale (3.1). We scale the features with Min-Max Scaler that subtracts the

minimum value in the feature vector and divides by the range. The range is the

difference between the global maximum and global minimum. Min-Max Scaler

maps feature values into the range between zero and one without transforming

the raw data remarkably [24].

The formula given below (3.1) represents the feature scaling, where X is the

raw feature and X
′

is the scaled feature based on global maximum and global

minimum, these are Xmax and Xmin.

X ′ =
X −Xmin

Xmax −Xmin

(3.1)

3.1.2 Remaining Useful Life Label

In the second step, we obtain the Remaining Useful Life (RUL) label that indi-

cates the time left until breakdown. Since we have to get a common representation

with similarity correlation on RUL of the source and the target equipment, we

need to calculate the RUL value for each sample feature vector in both data

vectors as suggested by [25]:

RUL = Time to Failure − Current Age (3.2)

Figure 3.3 depicts how RUL value decreases as the equipment operates in a time

cycle. For each equipment unit and each time cycle, we calculate the exact RUL

values. We assume that when the equipment unit has 200 cycles (time), the

remaining useful life for this unit is equal to 200. As the equipment operates, this

value decreases and converges to zero.
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Figure 3.3: Remaining useful life vs time cycle

When we proportion RUL value to time to failure as below formula, we get a label

of RUL percentages that depicts the remaining life in portion. The rate of RUL

percentage changes between zero and one continuously. This value converges to

zero as the equipment starts to fail. We assume that the equipment deteriorates

when the RUL percentage is lower than 0.15.

RUL(percentage) =
RUL

Time to Failure
(3.3)

3.1.3 Health Status Label

Additional to RUL, we generate binary labels for the source and target vectors.

Binary labels represent the equipment status, whether it runs or failures. The

motivation behind this labeling is that we predict the breakdown of equipment

based on the binary labels.

We pretend that the equipment deteriorates when RUL is lower than 0.15. At

this deterioration range, we assign the equipment health class as a failure and

equipment status label as 1. Otherwise, we assign the status label as 0 as we

depict in Table 3.1.
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RUL Value Engine Health Class Engine Status Label

0< = RULi< = 0.15 Failure 1

0.15<RULi< = 1.0 Run 0

Table 3.1: Engine health status label

Table 3.2 points out the our generated features (RUL, RUL percentages and

status label) with a data example.

Unit # Cycle # RUL RUL % Status
1 1 192 0.994 0
1 2 191 0.989 0
1 3 190 0.984 0
1 ... ... ... ...
1 191 2 0.005 1
1 192 1 0.005 1
2 1 287 0.996 0
2 2 286 0.993 0
2 ... ... ... ...
2 287 1 0.003 1

Table 3.2: Data sample of the generated labels

3.1.4 Source and Target Space Matching

As the last process, for each of the RUL value between zero and one, we match our

source and target spaces one-to-one in decreasing order. During sample matching,

Euclidean distance is used to compare RUL values. In this way, we ensure that the

correlation between the measurements/features in the source and target datasets

are computed correctly (based on RUL).

Once we match two vectors on the RUL percentages, later, we propose to learn a

common feature space between our target equipment and the source equipment

using a similarity correlation on RUL of this equipment. We pretend to gain
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prior knowledge based on associated RUL percentages, and we assume to transfer

knowledge by using this label.

3.2 Learning the Common Representation

To transfer the knowledge between different feature vectors belonging to our

source and target equipment, we may reduce the difference across domains. When

we learn the common representation between feature vectors, we get the corre-

lated feature space in which we shift the knowledge to our target equipment from

another equipment.

To obtain a common representation for associating data spaces, we employ Canon-

ical Correlation Analysis (CCA). In this process, the data matrices (feature vec-

tors as rows) of source and target datasets are transformed, by linear projection,

onto a new space where the columns are maximally correlated. CCA provides a

common representation of two different feature spaces by maximizing the corre-

lation, and derived matrices are applicable for solving cross domain classification

problems. Figure 3.4 shows how CCA enables us to represent the feature vectors.

Suppose x ∈ Rp and y ∈ Rq are two column vectors of random variables. x′ =

W T
x x and y′ = W T

y y are the transformed vectors to the joint embedded space,

where x′, y′ ∈ Rmin(p,q). Wx ∈ Rp×min(p,q) and Wy ∈ Rq×min(p,q) maximize the

similarity coefficient between these variables with linear combinations since CCA

aims to find a joint embedded space with optimal linear transformation between

x and y as follows:

ρ = max Wx, Wy

WT
x Cxy Wy√

WT
x CxxWx ·WT

y CyyWy
, (3.4)

where, Cxx and Cyy are the within set covariance matrices, and Cxy is the between-

sets covariance matrix [26].

Notice that solution of Eqn. 3.4 would not be influenced by rescaling Wx and Wy

unitedly or separately. The optimization of ρ equals to maximizing the number

subject to below expression.
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Figure 3.4: Learning the common representation with CCA

W T
x CxxWx = 1

W T
y Cyy Wy = 1

(3.5)

The canonical relationship between between x and y can be found with Eigenvalue

equations with Langrange multiplier.

CxxC
−1
yy CyxWx = λ2CxxWx

CyxC
−1
xx CxyWy = λ2CyyWy

(3.6)

As Figure 3.4 shows, CCA generates common feature subspaces with the optimal

linear transformation between different data spaces that are x and y. Therefore,

we learn the joint representation of varying feature spaces, x′ and y′. This derived

representation enables us to transfer prior knowledge from the source space to

target space at maximally correlated matrices. We also test the label of the target

testing data in this commonly derived subspace.

As a limitation, CCA restricts the joint matrices to be orthogonal, therefore,
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narrows the search space for the optimal solution [27]. When we have the common

represented feature space, CCA is bounded to the least dimensionality of x and y;

therefore, we get the maximum number of canonical correlations as the smallest

dimension. For instance, if the dimension of the source and the target space is 9

and 4, we get the maximum number of canonical correlations as 4 [28].

Since CCA defines the common representation of matrices obtained from the

source and the target vectors by maximizing the similarity correlation, we utilize

maximally represented matrices on cross-domain transfer learning.

3.2.1 Other Methods to Learn Common Representation

• Different from CCA, we implement Mahalanobis Distance Metric Learn-

ing, which maximizes the distance between the classes (faulty and healthy

states) and minimizes the distance within each class while finding a common

representation space between two different datasets. Through reducing the

corresponding entropy between two distributions on the source and target

datasets, the learned representation gather the same class on the source

close together, while pushing away the differently labeled samples [29].

Mahalanobis distance between xi and xj is calculated as dA (xi, xj) where

the Equation 3.7 depicts which A ∈ R d×d is positively semidefinite where

the task of Mahalanobis Distance Metric Learning is to learn a shared dis-

tance A across domains Ds and Dt under which distributions of Ps(Ds) and

Pt(Dt) is explicitly reduced [30].

dA (xi, xj) = (xi − xj)
T A (xi − xj)

Ds = {(xs1, ys1), ..., (xsn, ysn)}
Dt = {xt1, ..., xtm}

(3.7)

CCA and Mahalanobis Distance Metric Learning works similarly to the

source and target spaces as where Figure 3.4 depicts.
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• Siamese Network based approaches find a common representation between

two datasets through a Siamese Network with shared weights. Siamese net-

work has two identical networks with different inputs [31]. Each subnetwork

of the Siamese structure is a two layered LSTM where the first and second

layers have 100 and 50 units, respectively. The Siamese network is trained

to minimize the Euclidean or Cosine distance between data pairs (matched

samples based on RUL value) in the learned representation space.

3.3 Modeling

To classify the health status of the equipment, we build a transfer learning ar-

chitecture on jointly represented spaces with Long-Short Term Memory (LSTM)

cells.

LSTMs were presented in 1997 and researchers utilized LSTMs effectively in sev-

eral products, for example, Google Allo, Google Translate, Amazon Alexa and

Apple Siri [32]. LSTM overwhelms the boundaries of standard Recurrent Neu-

ral Networks (RNN). Rather than storing extended term dependency knowledge,

LSTM is designed to use storage elements to pass information from past out-

puts to current outputs in a selective manner. As previous studies offer, LSTM

networks are more efficient than other architectures considering sequential data

spaces [33].

LSTMs offer three more layers to Vanilla RNNs that has a single neural network

layer such as Tanh [34]. These three signals are current input (xt), nonlinear

function activated by weighted sum of input (σ) and previous hidden state (ht−1).

Depending on these signals, LSTM utilizes these three gates for processing the

knowledge. These gates are the forget gate ft, input gate it, and output gate ot,

and can be defined as the Equation 3.8. Forget gate is responsible for forgetting

the information retrieved from previous state. Input gate decides whether to

update cell with current input or not. Output gate decides whether to pass on

hidden state ht for the next iteration or not [35].
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ft = σ(Wfxt +Hfht−1 + bf ),

it = σ(Wixt +Hiht−1 + bi),

ot = σ(Woxt +Hoht−1 + bo),

(3.8)

As Figure 3.5 points out the inside structure of LSTM cells, we represent the

layers with yellow rectangles. Each line shifts the entire vector of values among

nodes and layers. LSTM can transform the information originating from the

straight line in the top of the cell. Red circles handle the pointwise processes on

the vectors such as multiplication and summation.

Figure 3.5: Simple LSTM units

In the beginning, LSTM cells remove outdated information with the multiplica-

tion (X) operation. Then, three Sigmoid neural network layers decide the amount

of data to be discarded or processed by setting the output between zero and one.

When information passes to a cell, LSTM determines what current information

to store in the cell state. Tanh layer creates the vector of new values which is

multiplied by the output of the Sigmoid layer. Summation (+) process adds re-

vealed new vector to the cell state. In the end, LSTM cell state produces the

final output. All these operations are implemented by squashing the values be-

tween −1 and 1 and utilizing the Tanh operation pursued by a Sigmoid layer that

decides which benefits to output [36].

Once we find the maximally correlated representation space between our source

and target feature vectors, we can use the transformed features in our learning
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model on LSTM networks. We aim to transfer knowledge from pretrained net-

work to target in the common feature space. The source (pretraining) and target

(finetuning) models are designed using the same LSTM architecture that has 2

layers. For each of the LSTM layers dropout is used. There is final dense layer

with a single unit for the binary classification task of health status of devices

(faulty/healthy). Sigmoid function is used for activations. To train the model,

the binary cross-entropy loss is minimized. Hyperparameters of our architecture

is optimized using 10-fold cross validation. Considered values for the hyperpa-

rameters of the network are given in Table 3.3.

Hyperparameter Considered values
Number of units for the first LSTM layer {100, 128, 256}
Number of units for the second LSTM layer {50, 64, 128}
Dropout rate for the first LSTM layer {0.2, 0.4, 0.6, 0.8}
Dropout rate for the second LSTM layer {0.2, 0.4, 0.6, 0.8}

Table 3.3: List of the considered hyperparameters

As Figure 3.2 depicts, once we pretrain our model for the source task, we freeze

the first layer of the network, and we finetune the pretrained model.

3.4 Transfer Learning

To transfer prior knowledge from the source equipment to target equipment we

benefit from transfer learning, which we engage this on commonly represented

feature matrices. We learn the joint representation for our source and target

space, where the source space is as the relatively large dataset that we pretrain

our model and the target is the dataset that we use to finetune the pretrained

model. With the commonly represented matrices, we favor the target equipment

to predict the failure with the data of another equipment having the different

measurements/calibrations.

Instead of starting to learning process from scratch, transfer learning enables the
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model to learn from already processed previous models on different tasks. There-

fore, this simplified approach leverages the past learnings, inferences the previous

patterns and prevents to re-learning process for varying a different problem. In-

dustries can transfer the one overtaken knowledge to various tasks, and acquired

knowledge can match different domains just by adjusting the parameters.

This methodology copes with the fragility when there are unknown or unsat-

isfying issues in industries. For instance, when we are not able to estimate the

equipment performance in a different environment, transferring the obtained prior

knowledge to this unestimated environment makes the equipment more powerful.

Therefore, Transfer Learning enables equipment to fit any situation by estimating

their behavior with enriched prior information.

We aim to transfer the knowledge on the learned common feature space using

a similarity correlation based on the remaining useful life (RUL) of this equip-

ment. Transfer learning by commonly associated matrices enables us to shift the

knowledge earned from a pretrained model and the knowledge is reusable when

training the model on another dataset [37].

Transfer learning draws its strength from the pretrained models. A pretrained

model is a model that is trained on an extensive benchmark dataset to take care

of an issue like the one that we need to solve. We pretrain the predictive model

on the commonly represented source dataset. To utilize the pretrained model, we

start by finetuning the base model that exposes the prior knowledge. Refining the

original pretrained model can be implemented with in two ways: (1) by training

the entire model or (2) by training some layers and freezing the other ones.

Training the entire model is high-priced since the original model re-runs from the

scratch. As the finetuning strategy demands a lot of computational capability,

we prefer the other option for this research, that is training some layers and

freezing the others. Technically, when we have a small dataset and a large number

of parameters, we have to freeze more layers on the primary pretrained model.

Therefore, more frozen layers solve the over-fitting problem. Contrarily, when we

have a large dataset and the small number of parameters, we can use exceeding
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layers from the pretrained model since over-fitting is not an argument for the

new task. Briefly, we convey less frozen layers on the pretrained network, since

we have a large amount of source dataset in our problem. We freeze the first

one layer which we do not want to train and shift the parameters to the target

network. Figure 3.6 presents an overview of the transfer learning.

Figure 3.6: Transfer learning overview

As in [38], the parameters for transfer learning can be represented as:

Ds = {Xs, Ts},
Dt = {Xt, Tt},

(3.9)

where, Ds, Xs, Ts, Dt, Xt, and Tt denote the source domain, source samples,

source labels, target domain, target samples and target labels, respectively. Note

that both domains Ds and Dt are assumed to be related but not same/similar.

The relationship between the model weights of the source domain and the target

domain can be given as:

Ws = W0 +W1,

Wt = W0 +W2,

Ys = fs(Xs +Ws),

Yt = ft(Xt +Wt),

(3.10)

where, Ws and Wt show the parameters in the source and target problems, re-

spectively. Wo is the common parameter where W1 and W2 are the different ones
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that play role for the transfer learning. Real outputs of the models are Ys and Yt

which depends on the learning models represented with fs and ft mapping the

sample inputs to the related task labels. Parameters are transferred from Ws to

Wt by making use of the common parts Wo and fine tuning the different parts

called W1 and W2. It is essential to remark that, in this research, we project

our source and target data onto a shared feature space and then apply transfer

learning.

We follow the below steps to engage transfer learning, and we intend to leverage

information from the pretrained network to solve a different task:

• We represent the source and the target vectors on commonly associated

space.

• We pretrain our neural network on the source matrix derived from the

common space.

• We finetune the pretrained network by freezing some layers.

• We use the trained weights to initialize a new neural network.
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Experiments

Our method aims to classify the health status of equipment, even with a limited

size of training data. In this way, we enable any industrial system to have early

breakdown alert on time independently from data size. To assess the reliabil-

ity of our proposed method, we handle a series of experiments using multiple

(source/target) pairs of datasets.

During the experiments, we evaluate how transfer learning increases the accuracy

of predicting health status of equipment by exploiting prior knowledge learned

in terms of a common representation from a relatively larger dataset. We assess

the effect of using varying size of target (training) data and different embedding

representations (for learning a common subspace between target and source).

Furthermore, we evaluate how similarity level of source and target devices would

influence the accuracy.

We conduct our experiments using five different datasets so as to obtain five

different source/target pairs. We evaluate our experimental cases with the Area

Under the Curve (AUC) value in percentages. During the experiments, we aim

to have higher score confronting with the primary task; that is classifying the

equipment condition into failure or non-failure classes without the favor of transfer

learning by commonly represented feature matrices.

23
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In the rest of this section, details and results of our investigations will be provided.

4.1 Datasets

In each experiment, we use a pair of datasets (Ds and Dt), where Ds and Dt

denote the transformed (onto the common feature space) data of the source and

target equipment.

As shown in Table 4.1, in our experiments, we employ five different source/target

pairs as wind turbine - turbofan engine, milling cutter - turbofan engine, hard

drive - semiconductor, hard drive - turbofan engine, semiconductor - turbofan

engine.

Source Data Target Data

Wind Turbine Turbofan Engine

Milling Machine Cutter Turbofan Engine

Semiconductor Turbofan Engine

Hard Drive Turbofan Engine

Hard Drive Semiconductor

Table 4.1: Employed source/target data pairs in the experiments

Table 4.1 depicts the information flow between the source and target spaces. We

have the source datasets from the wind turbine, milling machine cutter, and hard

drive, where we select the turbofan engine and semiconductor as our target equip-

ment. We assume that the source vectors have a full size of data than the targets

and source equipment have different measurements and calibrations than the tar-

get vectors. Those vectors are appropriate for the breakdown classification task.

We project these vectors on common representation matrices, and we shift the

prior information from the source to target vector through the derived matrices.
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4.1.1 Turbofan Engine Dataset

The Turbofan Engine Degradation dataset (Turbofan Engine) [39] is available by

NASA Prognostics Center of Excellence repository to public. It is open to research

concerning engine health status classification, and early breakdown alert.

The dataset has 20,631 training samples, where a 29-dimensional feature vector

represents each sample. Three of these features represent the operational settings;

21 of them are the sensor measurements, and the remaining ones include unit

number (engine) and cycle number. As described in the methodology, we have

also obtain three labels such that Remaining Useful Life (RUL), RUL percentages,

and binary failure labels. Details of the turbofan engine degradation dataset are

given in Table 4.3.

Turbofan engine data analysis
# of training samples 100
# of test samples 100
Minimum life span (cycles) 128
Maximum life span (cycles) 362
Average life span (cycles) 206

Table 4.2: Statistical numbers of the Turbofan Engine

For the train and test set, we have a hundred different units (engines) that record

the cycle of the engine. Cycles represent the life span and decreases during the

engine continues its operation. Table 4.2 points out the maximum life span and

minimum life span reported at units. The maximum number of cycles equals 362,

and the minimum number of cycles equals 128 where the average life span is 206.

We provide the features on Table 4.3 that includes the original features and the

obtained labels.

Turbofan engine dataset has several multivariate time series separated into train-

ing and test subsets. Each time series outlines the different engine that starts

with particular degrees of initial corrosion. At the starting of each time series,

each motor starts its operations ordinarily, and a fault occurs at some point as

the engine continues the service. Corresponding dataset feed from several sensors
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Engine Settings
Settings No Description
1 Unit number
2 Cycle
Operational Settings
Settings No Description
1 Altitude
2 Mach number
3 Throttle resolver angle
Sensor Measurements
Sensor No Description
1 Total temperature at fan inlet (R)
2 Total temperature at LPC outlet (R)
3 Total temperature at HPC outlet (R)
4 Total temperature at LPT outlet (R)
5 Pressure at fan inlet (psia)
6 Total pressure in bypass-duct (psia)
7 Total pressure at HPC outlet(psia)
8 Physical fan speed (rpm)
9 Physical core speed (rpm)
10 Engine pressure ratio (P50/P2)
11 Engine pressure ratio
12 Ratio of fuel flow to Ps30 (pps/psi)
13 Corrected fan speed (rpm)
14 Corrected core speed (rpm)
15 Bypass Ratio
16 Burner fuel-air ratio
17 Bleed Enthalpy
18 Demanded fan speed (rpm)
19 Demanded corrected fan speed (rpm)
20 HPT coolant bleed (lbm/s)
21 LPT coolant bleed (lbm/s)
Obtained Labels
Label No Description
1 Remaining useful life (RUL)
2 Remaining useful life (RUL) - percentages
3 Health status label

Table 4.3: Training and test features of the turbofan engine



CHAPTER 4. EXPERIMENTS 27

that collect features as temperature, engine pressure, fuel and coolant blend data

from the turbofan engine.

We analyze the feature distribution where some features have a normal distribu-

tion as shown in Figure 4.1. There is that there is a high variation between units

considering the maximum number of cycles. As expected, the test set has shorter

the number of cycles than a train set as we provide in Figure 4.2.

Figure 4.1: Turbofan engine feature distribution

4.1.2 Wind Turbine Dataset

Wind turbine dataset has been collected from 3 MW direct-drive turbines which

generate power to a biomedical devices plant. The measures has been collected for

11 months, thus, it has a sequential series of wind turbine operations produced on

SCADA (Supervisory Control and Data Acquisition) system which observes the
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Figure 4.2: Max cycles per unit in train and test set

wind turbine continuously [40]. This dataset stores the data of the Wind Turbine

components such as real and reactive energy, voltages, heats with 10-minutes

time intervals.

The dataset includes 29 features and 39,210 training and 9,878 test samples

mostly related to bearing temperature, angle, rotation, and power. We normalize

the features because of some features, e.g., energy output extends from zero to

thousands, whereas heat varies from zero to tens

According to generated operational data, the dataset has status data to point out

the labels related to faults, warnings and turbine status, as Table 4.4 points out.

Turbine status displays the state of the turbine when it is delivering conventional

energy during the wind speed is below than required or when the storm mode is

on. The dataset represents the turbine status with a message included inside the

status data. When the state of the turbine changes, status message is generated

with a time-stamp.

Status messages show that wind turbine faults occur due to feeding fault, gen-

erator heating fault, compressor bleed band failure and excitation fault. Feeding

fault occurs with a defect inside the power feeder cables. Generator excitation

system includes excitation failure, and heating fault indicates to the overheating.
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According to status data, data has a label as ”fault” and ”no-fault.” If a status

message includes fault, corresponding time-band generate a ”fault” label. For

instance, if an excitation fault occurs between 11:39-13:42, the label of this time

band set as a ”fault.” According to a fault and no-fault labels, we obtain the

labels as described in Section 3.1.

Timestamp Main Status Sub Status Status Text

13/07/2014 13:06:23 0 0 Turbine in operation

14/07/2014 18:12:02 62 3 Feeding fault

14/07/2014 18:12:19 80 21 Excitation error: Overvoltage

14/07/2014 18:22:07 0 1 Turbine starting

14/07/2014 18:22:28 0 0 Turbine in operation

Table 4.4: Status data of the Wind Turbine

4.1.3 Milling Machine Cutter Dataset

BEST lab at UC Berkeley provides experiments on a milling machine for vari-

ous speeds, feeds, and deepness of cut. The dataset represents high-speed CNC

milling machine cutters with 29 features and 45,745 data points [41].

Milling operation removes metal by pivoting with a cutter that has single or

multiple cutting edges. A milling cutter shapes the bowed or even surfaces with

an excellent finish. A milling machine also feasible for drilling, slotting, making

a round form and material cutting by having fitting attachments. The cutting

rates in high-speed milling are usually as high as 10,000 to 50,000 RPM, and

the feeds are additionally very high, which deliver items with surface quality and

high capability. However, this compelling operation generates cutting deteriora-

tion [42]. As long as milling cutters serve the operation, deterioration increases

and industries require an early diagnosis for a milling machine to continue their

service.
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4.1.4 Hard Drive Dataset

Hard-drives are fundamental components for information storage. Hard drive

diagnosis is crucial in case of danger of information disaster. Sensors notice a

hard-drive breakdown, and they generate alerts. These alerts show that there is

some problem with the drive, and users have to replace the hard drive soon. We

employ the hard drive dataset introduced by [43]. The dataset has 3843 samples

with 10 features including quantities such as time, serial number, type, capac-

ity bytes, and failure. It is accessible from the Center for Magnetic Recording

Research (CMRR) University of California, San Diego.

4.1.5 Semiconductor Dataset

Semiconductor production has a complicated process with a hundred steps. The

fundamental processes in semiconductor production are as the following: Making

of silicon wafers from raw silicon material, fabrication of combined circuits onto

the new bare silicon wafers, adjustment by setting the combined circuit inside a

package to form a ready-to-use output, and testing of the complete products [44].

Sensors monitor all of these processes and generate data to track breakdowns.

In our experiment, we employ a semiconductor dataset from [44]. It has 1567

samples with 591 features. Since several features are assumed to be redundant

and correlated [44], we reduce its dimensionality to 10 using Principal Component

Analysis .

Number of training and tests examples in each of the aforementioned datasets

are reported in Table 4.5.
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# of Samples
Dataset Training Test
Turbofan Engine 20,631 13,096
Wind Turbine 39,210 9,878
Milling Cutter 45,725 29,821
Hard Drive 3,843 1,647
Semiconductor 1,158 374

Table 4.5: Number of training and tests samples in datasets

4.2 Settings

Hyperparameters of our model are optimized using 10-fold cross-validation.

Based on the minimum validation error: (1) the number of units of first and

second LSTM layers have been set to 128 and 64, respectively; (2) dropout rates

for both layers have been determined as 0.2. Adam optimizer is used and the

maximum number of epochs is set to 50, employing early stopping. Considered

values for minibatch size are {10, 50, 100, 150, 200}. The offered settings utilize

the transfer learning (with transformed features) to perform well.

4.3 Influence of Transfer Learning

In the first experiment, we assess the benefit of exploiting transfer learning for

early diagnosis of breakdown. To this end, we randomly choose 500 training sam-

ples from the turbofan engine dataset to train our model without using transfer

learning. In other words, our model is solely trained on those 500 samples. Fur-

thermore, we train two different models using our transfer learning framework,

where the wind turbine and the milling cutter datasets are used as pretraining

source. For a fair comparison, we set the number of finetuning samples (turbofan

engine) to 500 for each of these models.

As reported in Table 4.6, transfer learning drastically enhance the reliability of

detecting faulty states of commercial equipement. While a correct classification
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Pre-training Data Classification AUC
n/a 0.54
Wind Turbine 0.75
Milling Cutter 0.72

Table 4.6: Influence of enabling transfer learning for classifying faulty and healthy
states

rate (AUC) of 54% can be achieved with solely learning from 500 samples, ex-

ploiting knowledge obtained from the milling machine cutter and the wind turbine

datasets increases this rate by 33% and 39%, respectively.

4.4 Influence of the Size of Training Data

In order to explore how much improvement can be achieved through transfer

learning while the amount of training (finetuning) data changes, we train several

models where the milling machine cutter and the wind turbine datasets are used

as pretraining data.

Figure 4.3: Effect of transfer learning with different amount of training data
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As shown in Figure 4.3, while the contribution of transfer learning decreases when

we increase the number of training (finetuning) samples of the target task, still

there is a significant improvement compared to results obtained without transfer

learning.

4.5 Influence of Domain Similarity

To evaluate the impact of domain similarity in transfer learning (pretraining),

we train different models for distinguishing between faulty and healthy states of

turbofan engines employing knowledge transfer from the wind turbine, milling

machine cutter, hard drive, and semiconductor datasets. For a detailed analysis,

we also use different number of finetuning samples (turbofan engine).

# of Finetuning Samples (Turbofan Engine)
Pre-training Data 500 10,000 20,000
Wind Turbine 0.75 0.98 0.94
Milling Cutter 0.72 0.90 0.91
Hard Drive 0.63 0.75 0.75
Semiconductor 0.59 0.70 0.70
n/a 0.54 0.78 0.79

Table 4.7: AUC rates for transferring knowledge from different domains using
different number of finetuning samples

As Table 4.7 shows, using all four different datasets increase the correct clas-

sification rate (AUC) in case of very limited number of training samples. On

the other hand, while similar domains such as using the wind turbine and the

milling cutter knowledge in the modeling of the turbofan engine data works well,

knowledge obtained from less-similar or unrelated domains such as hard drive

and semiconductor, would even decrease the classification accuracy once we have

sufficient amount of training samples.

When we examine the operating principle of the wind turbine and turbofan en-

gine, wind turbine working principle is similar to turbofan engines where both

avail from the air.
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Wind turbine operates on the rotor that two or three propeller-like edges around

it. The rotor connects to the inner shaft, which turns a generator to make energy.

Wind turbines are fixed on a tower to catch the most energy. At 100 feet (30

meters), they can utilize fleeter and less turbulent breeze. Wind turbines can be

reserved to create power for a single place or building or public power grids.

Turbofan engines have a working system that takes air into the front of the motor

using a fan. From there, the engine compresses the air, combines fuel with it,

burns the fuel/air mixture, and fires it out the back of the engine, creating force.

4.6 Influence of Using Different Methods for

Learning a Common Representation

To evaluate the reliability of CCA for learning a common representation between

two different set of features/measures, we implement three competitor meth-

ods by modifying our framework replacing the CCA module with three different

approaches, namely: Mahalonobis Distance, Siamese Network based Euclidean

Distance, Siamese Network based Cosine Distance (Table 4.8).

Common representation learning methods
1- Canonical Correlation Analysis
2- Mahalonobis Distance
3- Siamese Network, Cosine Distance
4- Siamese Network, Euclidean Distance

Table 4.8: Methods to learn common representation

To evaluate the influence of methods that learn the joint representations, we

represent the pair of datasets (the source and the target) on the common space

and we train several models where we use our source datasets as pretraining and

our target dataset as the finetuning. We compare how common representation

embeddings behave on different data pairs respectively.
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We compare the different methods to learn a common representation with differ-

ent pretraining datasets (wind turbine, milling machine cutter, hard drive and

semiconductor) on the turbofan engine. We aim to understand which common

representation outperforms to results obtained without transfer learning consid-

ering different pretrain datasets and finetuning samples.

4.6.1 Wind Turbine and Turbofan Engine

First, we analyze which method that learns the common representation performs

well for transforming the wind turbine and the turbofan engine to commonly

represented space. To analyze this, we pretrain the network with the transformed

subspace (wind turbine); then, we finetune the samples (turbofan engine).

As Figure 4.4 shows, CCA is well ahead among the common representations, by

transforming the feature vectors on similarity based common space on which we

predict the breakdown of the turbofan engine (AUC). We compare the embedding

methods for each finetuning samples (turbofan engine).

CCA improves the correct classification rate (AUC) by 39%, 26%, 20%, (abso-

lute) on average using finetuning samples 500, 10,000, 20,000, respectively. Other

methods increase the AUC relatively little, where Siamese Network with Cosine

distance enhances AUC by 31%, 2%, 4%, Siamese Network with Euclidean dis-

tance increases AUC by 20%, 0%, 2%, and Mahalanobis distance decreases AUC

at some samples by 2%, -4%, -1%, respectively. Table 4.9 shows the comparison

with the correct classification rates for using different methods to learn common

representation with different number of finetuning samples.

Since the working principle of the wind turbine and the turbofan engine is simi-

lar/relevant, CCA outperforms the other methods. The reason behind this result

is that CCA projects the vectors onto subspace with the connectivity projec-

tion matrix. This representation reveals the most positive associations with the

related pretraining and finetuning datasets.
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Figure 4.4: The impact of different common representation learnings on Transfer
Learning

Pretraining: Wind Turbine
# of Finetuning Samples

Methods 500 10,000 20,000
CCA 0.75 0.98 0.94
Mahalonobis Distance 0.67 0.75 0.77
Siamese Network, Euclidean Distance 0.65 0.78 0.79
Siamese Network, Cosine Distance 0.71 0.80 0.81
n/a 0.54 0.78 0.78

Table 4.9: AUC rates for using different methods for learning a common repre-
sentation using different number of finetuning samples
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4.6.2 Milling Machine Cutter and Turbofan Engine

Next, we change our source dataset to analyze different relation. We transform

the milling machine cutter and the turbofan engine dataset with the proposed

methods. We aim to analyze how different representation methods perform on

the pretraining dataset (milling machine cutter) and finetuning dataset (turbofan

engine) to improve the breakdown classification. As Figure 4.5 shows, we evaluate

the changes on the AUC considering the data samples of the finetuning as 500,

10,000, 20,000, relatively.

CCA improves the AUC by 33%, 15%, 16% (absolute) on average using finetuning

samples; 500, 10,000, 20,000. Siamese Network with Cosine distance increases

AUC very few as 3%, 0%, 0%. Siamese Network with Euclidean distance increases

AUC by 2%, 1%, 1%. Mahalanobis distance changes the AUC as 5%, -4%, -4%.

Except for CCA, the other methods that learn the common representation has a

slight impact on the breakdown classification, where CCA overperforms the other

representation learning methods with high impact (Table 4.10).

Even though the working principle of the milling machine cutter and the turbofan

engine is not similar/relevant, milling machine cutter proposes an huge amount of

pretraining data to finetune. Therefore, the methods - especially CCA, learn the

common representation well, in particular for the limited supply of pretraining

dataset such as 500 samples.

Pretraining: Milling Cutter
# of Finetuning Samples

Methods 500 10,000 20,000
CCA 0.72 0.90 0.90
Mahalonobis Distance 0.57 0.77 0.75
Siamese Network, Euclidean Distance 0.57 0.79 0.79
Siamese Network, Cosine Distance 0.56 0.77 0.78
n/a 0.54 0.78 0.78

Table 4.10: AUC rates for using different methods for learning a common repre-
sentation using different number of finetuning samples
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Figure 4.5: The impact of different common representation learnings on transfer
learning

4.6.3 Hard Drive and Turbofan Engine

Next, we replace the pretraining data to hard drive dataset that is less similar

to the turbofan engine. We aim to show how different common representation

methods perform for the less similar/related pretraining dataset (hard drive) for

improving the breakdown correct classification rate on the finetuning dataset

(turbofan engine).

As Figure 4.6 and Table 4.11 shows, CCA changes the AUC little by 16%, -3%,

-3% (absolute) on average using finetuning samples relatively. Siamese Network

with Cosine distance impacts the AUC almost negatively as 2%, -14%, -9%,

Siamese Network with Euclidean distance changes AUC with 7%, -12%, -9%.

Mahalanobis distance impacts the AUC by 11%, -5%, -4%.

Since the pair of pretraining and finetuning datasets are not relevant, and the hard

drive feature vector does not consist huge amount of data, common representation

embeddings are not supporting the transfer learning well.
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Figure 4.6: The impact of different common representation learnings on transfer

learning

Pretraining: Hard Drive
# of Finetuning Samples

Methods 500 10,000 20,000
CCA 0.63 0.75 0.75
Mahalonobis Distance 0.61 0.74 0.75
Siamese Network, Euclidean Distance 0.58 0.69 0.70
Siamese Network, Cosine Distance 0.55 0.68 0.70
n/a 0.54 0.78 0.78

Table 4.11: AUC rates for using different methods for learning a common repre-
sentation using different number of finetuning samples
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4.6.4 Semiconductor and Turbofan Engine

As the last case on the finetuning data (turbofan engine), we replace the pretrain-

ing data to semiconductor. Again, the goal is to analyze how different methods

behave when we have a less related and less sized pretraining dataset.

As Figure 4.7 points out, CCA changes the AUC little by 9%, -8%, -8% (absolute)

on average using finetuning samples relatively. Siamese Network with Cosine

distance impacts the AUC negatively as -4%, -14%, -9%, Siamese Network with

Euclidean distance decreases AUC with -2%, -14%, -9%. Mahalanobis distance

changes the AUC negatively with -7%, -11%, -11% (Table 4.12).

When the pair of the pretraining and finetuning datasets are not similar, and

the pretraining feature vector does not consist huge amount of data, common

representation methods are not supporting the transfer learning as expected.

Figure 4.7: The impact of different common representation learnings on transfer
learning

Briefly, when we have similar pair of pretraining (wind turbine and milling ma-

chine Cutter) and finetuning (turbofan tngine) datasets, as shown in Table 4.9

and Table 4.10, CCA outperforms all the candidate methods significantly. Over
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Pretraining: Semiconductor
# of Finetuning Samples

Methods 500 10,000 20,000
CCA 0.59 0.70 0.70
Mahalonobis Distance 0.58 0.69 0.69
Siamese Network, Euclidean Distance 0.53 0.67 0.71
Siamese Network, Cosine Distance 0.52 0.67 0.71
n/a 0.54 0.78 0.78

Table 4.12: AUC rates for using different methods for learning a common repre-
sentation using different number of finetuning samples

the best competitor (Siamese Network based Cosine Distance Method), CCA im-

proves the AUC by 10%, 15%, and 13% (absolute) on average using 500, 10,000,

and 20,000 finetuning samples, respectively.

The reason behind the success of CCA may be defined by the certainty that

CCA projects the target and source data on to subspace with the connectivity

projection matrix. Thus, CCA reveals the most positive correlation between both

source and target spaces [28].

4.7 Influence of the Optimizer on Canonical

Correlation Analysis

To evaluate the influence of the optimizing parameters of the methods that learn

common representation, we engage Canonical Correlation Analysis, where this

representation outperforms the other competitors.

CCA has a regularization parameter: number of components to keep. This pa-

rameter decides the number of components to preserve while projecting the sub-

spaces. Empirically, we evaluate this regularization parameter for finding the

best-related subspaces between the source and the target sets. We aim to choose

the suitable regularization parameter that maximizes the CCA score. The best

possible CCA score is 1, and the decline in this score shows that the pair of
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pretraining and finetuning datasets are not similar/related.

When we decide the number of components to keep, CCA is bounded to the

smallest dimensionality of the pretraining and the finetuning datasets. CCA

assumes the smallest dimension as the maximum number of the component to

keep [28].

We select the smallest dimension for the pretraining (wind turbine) and the fine-

tuning (turbofan engine) datasets. We choose the number of preserved com-

ponents as 26, which is the raw feature dimension (without obtained labels)

belonging to the turbofan engine.

We experience the number of components between 2 and 26. When the number

of components increases, the CCA performs a better correct classification rate -

AUC as we describe in Table 4.13.

# of Components CCA Score Transfer Learning AUC
26 -0.14 0.94
10 -0.18 0.87
15 -0.20 0.86
10 -0.21 0.77
5 -2.98 0.77
2 -3.01 0.67

Table 4.13: Comparison to number of components on CCA

4.8 Canonical Correlation Analysis for Normal-

ization

To analyze how CCA influences on transfer learning effectiveness by itself as nor-

malization, we engage CCA on the finetuning dataset (turbofan engine) without

the pretraining on the source space.
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Figure 4.8 points out the impacts of CCA on the transfer learning and the impact

line is between the baseline and the transfer learning as expected. Since the im-

pact trend is between the baseline and our best line (proposed), transfer learning

has more importance for having high confidence in prediction than the methods

that learn the common representation. Table 4.14 provides this analysis for each

finetuning samples.

Pretraining: Wind Turbine

Data samples of

Turbofan Engine
No-pretraining Pretraining

Pretraining

Normalization

500 0.54 0.75 0.68

1000 0.73 0.78 0.74

2000 0.75 0.87 0.79

3000 0.76 0.87 0.79

4000 0.76 0.93 0.80

5000 0.76 0.95 0.82

6000 0.77 0.95 0.82

8000 0.77 0.95 0.82

9000 0.78 0.95 0.83

10000 0.78 0.98 0.84

12000 0.78 0.94 0.84

16000 0.78 0.94 0.84

20000 0.78 0.94 0.84

20631 0.78 0.94 0.84

Table 4.14: Detailed comparison on the turbofan engine dataset
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Figure 4.8: CCA for normalization

4.9 Analysis of Transformation Coefficients of

Canonical Correlation Analysis

To understand how CCA associates the features of the source (pretraining) and

the target (finetuning) datasets, we analyze the transformation coefficients (trans-

formation matrix) of CCA. CCA generates two transformation matrices; one of

them is for the source (pretraining) and the other one is for the target (finetuning)

dataset.

The transformation matrices represent the linear transformations of the source

and the target datasets. These matrices would be used for selecting the features

by ranking the absolute values of the weights.

In this experiment, for each dimension of the learned common space, we select the

most important three features of the source and the target datasets by ranking

the corresponding weights in the transformation matrices. Table 4.15 reports the

top three ranking features. Here, we expect to see a relation between conceptually

associated features in two different datasets.
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As expected, temperature related features on the source and the target datasets

are clearly associated in the common representation space. More specifically, for

20 of 26 dimensions of the common space, temperature related features of both

datasets are in the top three most weighted features.

Furthermore, we also analyze the most important features in our experiments.

For the source dataset (wind turbine), rear bearing temperature has the highest

weight on the 6 of 26 features considering the first ranking. For the top three

rankings, rear bearing temperature has the highest weight on the 7 of 26 features.

For the target dataset (turbofan engine), LPC temperature has the highest weight

in the 8 of 26 features. Our results suggest that rear bearing temperature (wind

turbine) is conceptually the most associated feature with HPC temperature (tur-

bofan engine) since these features are observed to highly contribute in 6 of 26

dimensions (of the common space).

4.10 Influence of Remaining Useful Life in

Matching Quality

In this work, the source and the target datasets are matched based on a common

label, namely, the Remaining Useful Life (RUL). RUL provides promising results

for predicting the failures on the target equipment by transfer learning with a

common representation.

To assess the effectiveness of RUL in terms of matching quality, we compare RUL

based matching with two other matching approaches. First, we match the source

and the target datasets based on the classes that indicate the health status of

the equipment (healthy/faulty). Once we associate both datasets on the health

status, we randomly match data samples within the same classes. Second, we

randomly match the source and the target datasets without considering health

status or RUL. In these experiments, 20,000 samples are used for finetuning.

Table 4.16 shows the AUC values achieved by different matching approaches. As
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Finetuning Dataset: Turbofan Engine
Pre-training Data RUL Class Random
Wind Turbine 0.94 0.90 0.82
Milling Cutter 0.91 0.87 0.81
Hard Drive 0.75 0.68 0.58
Semiconductor 0.70 0.64 0.57

Table 4.16: AUC rates for transferring knowledge from different domains with
different matchings

expected, class based matching and random matching performs worse than RUL

matching, suggesting the informativeness of RUL values.

4.11 Application to a Different Domain

Until this study, we studied on the engine related domain. To assess how the

methods that learn common representation engage on a different domain, we

select the different finetuning (semiconductor) with the pretraining (hard drive).

These pair of datasets has a common domain: the electronics circuitry.

As Table 4.17 and Figure 4.9 points out, CCA changes the AUC little by 4%,

1%, -1% (absolute) on average using finetuning samples 500, 1,000 and 1,200

relatively. Siamese Network with Cosine distance impacts the AUC negatively

as -12%, -4%, -5%, Siamese Network with Euclidean distance decreases AUC

with -2%, -4%, -2%. Mahalanobis distance changes the AUC by 3%, 5%, -1%

(Table 4.12).

Even though the pair of the pretraining and finetuning datasets are from the

similar domain, the pretraining feature vector does not consist huge amount of

data. Therefore, the methods that learn the common representation are not

supporting the transfer learning as expected.
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Figure 4.9: The impact of different common representation learnings on transfer
learning

Pretraining: Hard Drive
Finetuning: Semiconductor
# of Finetuning Samples

Methods 500 1,000 1,200
CCA 0.93 0.93 0.92
Mahalonobis Distance 0.92 0.93 0.92
Siamese Network, Euclidean Distance 0.87 0.90 0.91
Siamese Network, Cosine Distance 0.78 0.88 0.88
n/a 0.89 0.92 0.93

Table 4.17: AUC rates for using different methods for learning a common repre-
sentation using different number of finetuning samples
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4.12 Comparison to Other Methods

To evaluate the overall performance of our recommended method for early diag-

nosis of breakdown, we compare it to three state-of-the-art methods, namely [19],

[20], and [21] which report results on the turbofan engine dataset. Notice that

the reported accuracy and AUC of our method is obtained with a pre-training on

the wind turbine dataset, and finetuning the model using all the training samples

of the turbofan engine dataset.

[19] propose an Extreme learning machine using quantum-behaved particle swarm

optimization (Q-ELM) for turbine fan engine fault diagnosis. [20] use Support

Vector Machines (SVM) to model faults while employing a multilayer perceptron

(MLP) to evaluate the quantity of the faults. In [21], Real-Time Adaptive Perfor-

mance Model (RTAPM) Kalman filter is performed to evaluate dynamic engine

states.

Method AUC Accuracy
Proposed Method 0.94 0.98
[19] - 0.93
[20] - 0.97
[21] 0.81 -

Table 4.18: Comparison to other methods on the turbofan engine dataset

As shown in Table 4.18, our proposed method reaches an accuracy of 98%, while

that of the best performing competitor [20] is 96.8%. [19] and [21] perform sig-

nificantly worse than the proposed method.
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Conclusion

A significant challenge for predicting a breakdown using a classification model

built by a machine learning algorithm, is the lack of a sufficient amount of train-

ing data. To cope with this issue, we exploit prior knowledge obtained from

diverse but approximately related tasks for the breakdown classification. To this

end, a common representation space is learned using CCA, and in this learned

representation space, transfer learning is applied.

We have assessed the reliability of our method through extensive experiments.

Our experimental results show that transfer learning from another database with

different/uncalibrated measures, can be effectively applied to the task of break-

down detection by learning a common representation space. Therefore, the data

insufficiency problem can be handled. In order for transfer learning to be suc-

cessful, the source and the target dataset must have at least one common feature.

We have showed that our proposed architecture improves the state of the art in

the area. For example, In terms of AUC, the model obtained by transfer learning

achieved 94%, where as the Kalman Filter model proposed by [21] reached 81%

only. The model constructed by transfer learning approach for the turbofan

engine breakdown classification task can achieve an accuracy of 98%, while the

next best performing competitor offering the Support Vector Machines (SVM)

50
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with a multilayer perceptron (MLP) [20] attained 96.8%.

We evaluated the proposed method with different data pairs that have different or

similar features, our study can be applied to other breakdown prediction problems

such as electronics circuitry, transportation vehicles, production lines, as long as

large amount of training data from the source domain is available. As a future

work, we will spread our recommended method for regression problems such as

the remaining useful life prediction problem.
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