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ABSTRACT

INVESTIGATION OF THERMOELECTRIC
PROPERTIES OF 2D β-SILICON MONOTELLURIDE

(SITE)

Muhammad Hilal

M.S. in Physics

Advisor: Oğuz Gülseren

September 2018

Thermoelectric properties of novel 2D silicon monotelluride (SiTe) are stud-

ied using first principles calculations. The plane wave method based on den-

sity functional theory as implemented in Vienna ab initio simulation package

(VASP) is used to calculate the electronic structure. For the exchange correlation

functionals, the generalized gradient approximation developed by Perdew-Burke-

Ernzerhof (PBE-GGA) is taken into account. The calculated band gap for β-SiTe

is 1.83 eV which is in consistence with the previous theoretical data.

The electronic and lattice transport properties are investigated using the Boltz-

mann transport equation. For the electronic transport properties, BoltzTraP code

is used which relies on the Fourier interpolation of electronic band structure and

thus requires a large k-sampling to optimize the interpolation and produce better

results. The Seebeck coefficient obtained at room temperature is 290 µV/K and

the figure of merit with κ` = 0 is 0.98.

The density functional perturbation theory (DFPT) is used to calculate the 2nd

order harmonic and 3rd order anharmonic force constants. The phonon dispersion

and density of states are computed from the 2nd order harmonic force constants

using Phonopy code. The lattice thermal conductivity and other lattice depen-

dent transport properties are calculated using both the harmonic and anharmonic

force constants via ShengBTE program. The specific heat and lattice thermal

conductivity at room temperature is 305.5 J/mol K and 1.35 × 10−3 W/m K,

respectively. The figure of merit ZT for β-SiTe at room temperature using the κ`

obtained from ShengBTE is 0.78 at 800k.

Keywords: 2D material, Density fuctional theory (DFT), Boltzmann transport

equation (BTE), Density fuctional perturbation theory (DFPT), Seebeck coeffi-

cient, lattice thermal conductivity, Figure of merit (ZT).
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ÖZET

TÜRKÇE BAŞLIK

Muhammad Hilal

Fizik, Yüksek Lisans

Tez Danışmanı: Oğuz Gülseren

Eylül 2018

Özgün 2 boyutlu silikon monotellür (SiTe) moleküllerinin termoelektrik özellikleri

temel ilke hesaplar ile araştırıldı. Elektronik yapının hesaplanması için yoğunluk

fonksiyonel teorisine dayalı artırılmış düzlemsel dalga metodu “Vienna Ab

Initio Simulation Package” (VASP) kullanılarak uygulandı. Değişim bağıntı

fonksiyoneli için, Perdew-Burke-Ernzerhof (PBE-GGA) tarafından geliştirilen

genelleştirilmiş gradyan yakınsaması hesaba katıldı. Beta-SiTe için hesaplanan

bant genişliği 1.83eV , teorik veri ile uyum içinde bulunmuştur.

Elektronik ve kafes taşıma özellikleri Boltzmann taşıma denklemi kullanılarak

araştırıldı. Elektronik taşıma özellikleri için elektronik bant yapısının Fourier in-

terpolasyonunu kullanan Boltz-TraP kodu kullanıldı, bu sebeple interpolas-yonu

küçültmek ve daha iyi sonuçlar elde etmek için büyük bir k örneğine ihtiyaç

duyuldu. Oda sıcaklığında Seebeck sabiti 290 µV/K ve κl = 0 için liyakat figürü

0.98 olarak bulundu.

İkinci mertebeden harmonik ve üçüncü mertebeden anharmonik kuvvet sabitleri

VASP yardımı ile yoğunluk fonksiyoneli tedirginlik teorisi kullanılarak hesap-

landı. Fonon dağılmı ve durum yoğunluğu, Phonophy kodu kullanılarak ikinci

mertebeden kuvvet sabitleri ile bulundu. Kafes termal iletkenliği ve diğer kafese

bağlı taşıma özellikleri ShengBTE programı yardımıyla, harmonik ve anharmonik

kuvvet sabitleri ile hesaplandı. Oda sıcaklığında özısı 305.5 J/molK olarak ve

kafes termal iletkenliği 1.35 × 10−3W/mK olarak bulundu. Beta-SiTe için ZT

liyakat figürü, ShengBTE’den elde edilen κl kullanılarak, oda sıcaklığında 0.78

olarak bulunmuştur.

Anahtar sözcükler : 2B malzeme, Yoğunluk fonksiyoneli teorisi (YFT) Boltzman

taşınım denklemi (BTE), Yoğunluk fonksiyoneli tedirgenlik teorisi (YFTT), See-

beck sabiti, örgü ısı iletkenliği, Liyakat figurü (ZT).
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ment of Physics, Bilkent University) for his help and kind supervision during this

research work.

I acknowledge Arash Mobaraki, Ph.D. student of Prof. Gülseren who helped

me during this research as a friend and colleague. I also acknowledge Luqman

Saleem, and Bahovadinov Murod, MS Physics students at Bilkent University for

their help in my research work. I would also like to thank Umutcan Güler for his
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Chapter 1

Introduction

Thermoelectric materials have drawn vast attention due to their key role as alter-

nate source of power generation and refrigeration, where waste heat from internal

combustion engines and other electrical appliance is converted directly and re-

versibly into useful electrical energy . Since there are no moving parts or any

greenhouse emissions, these thermoelectric devices can be characterized as envi-

ronmental friendly clean energy sources [1, 2].

Thus, the development of highly efficient thermoelectric materials has become

more significant during the last few decades [3, 4]. Currently the investigation

of energy harvesting technologies is carried out by automotive industry in order

to generate electrical power from the engine’s waste heat, which can be used in

next-generation vehicles [5, 6, 7]. NASA’s deep space exploration missions such as

Voyager and Cassini missions utilizes the radioisotope thermoelectric generators

(RTGs) [8, 9, 10, 11]. Thermoelectric refrigeration on the other hand also has

vast applications such as electronic component cooling that prevents any damage

to the electronic components caused by high temperature. Additionally the per-

formance of computer processors can also be enhanced significantly using these

economical thermoelectric refrigerators as the rise in temperature greatly effect

the performance of these computer processors [12, 13].

However, the most challenging hurdle is the low efficiency of thermoelectric

1



materials, which is determined by a dimensionless quantity called figure of merit

ZT. The figure of merit ZT can be expressed as

ZT =
S2σT

κe + κ`
(1.1)

Where σ is the electrical conductivity, S is the Seebeck coefficient, κe and κ`

is electronic and lattice thermal conductivity, respectively and T is the absolute

temperature [14, 15, 16, 17]. Currently the highest achieved value for ZT is

between 1.5 and 2 [18, 19] and in order to compete with the existing technologies,

a well above 3 value is required for ZT.

From the figure of merit expression, it can be easily deduced that the two

main factors affecting the performance of thermoelectric materials are the power

factor (PF = S2σ) and thermal conductivity (both electronic and lattice). To

enhance the power factor either Seebeck coefficient or electrical conductivity must

be increased. Different techniques can be used to raise the electrical conductivity

such as varying the doping concentration, decreasing the band gap or by the

introduction of new resonating bands [20]. Whereas, the Seebeck coefficient can

be enhanced by either varying the material’s composition or by searching new

materials with high Seebeck coefficient [21, 12, 22, 23]. The electronic thermal

conductivity can not be controlled since it is directly proportional to electrical

conductivity and any attempt on decreasing the electronic thermal conductivity

will results in the reduction of σ. However, lattice thermal conductivity can

be reduced by different techniques such as the introduction of various defects

[21, 17, 22].

1.1 Context and Background

Investigation of novel materials for enhanced thermoelectric properties is crit-

ical in order to expedite the process. Properties of novel 2D group IV-VI

materials have been studied recently for their potential applications in flexible

2



electronics, battery electrodes devices, optoelectronic and thermoelectric devices

[24, 25, 26, 27, 28]. Silicone based binary sheets have finite band gap which make

them potential candidates for switching devices and other electronic applications

but a very limited study is available on these materials. 2D silicon monotelluride

(SiTe) falls in this group but despite of it’s compatibility with the existing silicon-

based technology not much attention has been given to this material. For a long

time Si2Te3 was considered to be the only stable crystal in silicone-telluride se-

ries [29]. Only recently Yu Chen et al theoretically prove the structural stability

of two different lattice arrangements of silicon monotelluride i.e. α-SiTe and β-

SiTe and calculate its electronic and mechanical properties using first principle

calculations [30]. Wang et al on the other hand investigate the thermoelectric

properties of QL-, α- and β-Site [84].

In this work, thermoelectric properties of β-SiTe has been studied using first prin-

ciple calculations. Density functional theory (DFT) among others is a well tested

technique used to calculate the ground state electronic properties of materials.

In this approach, a ground state density is obtained using variational principle,

which is then used to compute all the electronic properties of a material such as

electronic density of states, molecular spectra, band structure etc. The electronic

and lattice transport properties are then calculated using Boltzmann transport

equation.

1.2 Thesis Organization

This thesis includes three chapters. The first chapter provides a detail description

of density functional theory, its back ground and different approximations used

in electronic structure calculation.

In the second chapter, Boltzmann transport theory is discussed in detail. The

electronic and lattice transport are addressed in separate sections.

In third chapter all the results obtained using the density functional theory and

Boltzmann transport equation are presented. Since β-SiTe is a novel material

there is no such experimental data to compare our results with. The last chapter

conclude this research work and provide some major findings of this project.
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Chapter 2

Density Functional Theory

2.1 First-principles study

First-principles study includes pure quantum mechanics calculations and is con-

sidered a powerful tool for the prediction of a vast set of materials properties.

Major advancements have been made in this field during the last few decades.

The recent development in computational power led to the formulation of highly

efficient predictive methods which can be used both to investigate the unknown

properties of new materials and to get insight into the existing materials proper-

ties. This chapter gives a comprehensive analysis of these methods.

2.1.1 Wave Function (Ψ)

At quantum level a system is represented by a wave function ψ. Wave function

plays a very significant role in quantum mechanics since it contain all the required

information about a system [31, 32, 33]. The amplitude square of wave function

|ψ|2 also known as probability density gives the particle’s position at some point

4



in a system [31, 34]. Max Born provided this interpretation in 1926 [35] as∫
|ψ|2dx =

∫
ψ∗ψdx = 1 (2.1)

Thus for a wave function ψ, that represents a particle somewhere in space, the

integral over |ψ|2 should be equal to 1 [36].

2.1.2 Schrödinger Wave Equation

An appropriate wave equation is required to obtain the wave function for a system

[31, ?]. Erwin Schrödinger developed a partial differential wave equation in 1926

[37] known as the Schrödinger wave equation to describe the time evolution of a

physical system’s quantum state.

−~2

2m

∂2Ψ

∂x2
+ VΨ = i~

∂2Ψ

∂t2
(2.2)

Eq. 2.2 is time-dependent Schrödinger equation in one dimension applied to

a particle of mass m moving in x direction in a potential V (x, t). The presence

of imaginary number (i) indicates that the time dependent Schrödinger equation

has complex solution [31, ?]. Solving the time-dependent Schrödinger equation

is a very difficult job and we need to separate the time dependent term in order

to achieve a much simpler time-independent Schrödinger equation.

−~2

2m

∂2ψ

∂x2
+ VΨ = Eψ (2.3)

Eq. 2.3 is time-independent Schrödinger Equation in one dimension. More

generally we can write the three dimensional time-independent Schrödinger Wave

Equation as:
−~2

2m
∇2ψ + VΨ = Eψ (2.4)

where ∇2 in cartesian coordinates is written as

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.5)
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From the solution of the Schrödinger wave equation we get the Hamiltonian,

which represents the states with definite total energy

Ĥ =
−~2

2m
∇2 + V (2.6)

Thus we can write the Schrödinger equation more compactly as

ĤΨ = EΨ (2.7)

solving Eq. 2.4 for a single particle system with three spatial variables is an

easy task but things get much more complicated when we try to solve the same

equation for a many body system.

Reduce Mass

A combine effect of two masses in a system is known as reduced mass system

which reduces an interactive two body problem to a one body problem [34, 38].

m =
m1m2

m1 +m2

(2.8)

and the center of mass where the reduced mass is observed is written as

rcm =
m1r1 +m2r2
m1 +m2

(2.9)

Using reduced mass system one can easily solve the time-independent

Schrödinger equation for two body problem.

2.1.3 Many Body Problem

At quantum level a smallest physical system under observation consists of billions

of interacting particles. For a system of N number of particles the number of

spatial variables goes up to 3N which makes it nearly impossible to solve the

6



Schrödinger equation for such a system. The wave function to such system contain

a large amount of information and thus is too complicated. Finding ground

state wave function for interacting electrons in an external local potential is the

main problem in such systems. To solve this problem many approaches and

approximations have been introduced over the last few decades. So far Density

Functional Theory is the most convenient approach among all.

2.2 Density Functional Theory (DFT)

Density functional Theory (DFT) is a useful technique to investigate the ground

state properties of materials. DFT is not only successful for ordinary bulk materi-

als but is also found useful in determining the properties of complex materials like

proteins and nanotubes. The basic idea behind DFT is to investigate a system

of interacting fermions using its charge density instead of its wave function.The

number of independent variables reduced to 3 rather than 3N if density is used as

a basic variable for an N electron system in a coulombic potential obeying Pauli

Exclusion principle, since many body wave function depends on 3N variable while

density only depend on 3 spatial variables. Additionally, using E(ρ) instead of

E(Ψ) significantly reduces the computational power required to investigate the

ground state properties. Results obtained using DFT calculations are very close

to the data achieved experimentally.

2.3 Derivation and Formalism

To determine a system’s ground state containing N interacting electrons under a

nuclear potential, the Schrödinger equation can be written as

Ĥ|ψ〉 = E|ψ〉 (2.10)

where Ĥ is the Hamiltonian operator corresponds to the system’s total energy.

Here the Hamiltonian is equal to the total kinetic energy of electrons T̂ , the

7



electrons coulombic interaction with each other V̂ee , and the external potential

i.e. interaction between nuclei and electrons V̂ext . The kinetic energy of nuclei

is neglected here as we apply Born Oppenheimer approximation where nuclei are

consider stationary relative to the motion of electrons. So the Hamiltonian is

written as:

Ĥ = T̂ + V̂ee + V̂ext (2.11)

or

Ĥ =
N∑
i

(
−~
2mi

∇2
i

)
+

N∑
i<j

U(~ri, ~rj) +
N∑
i

V (~ri) (2.12)

putting in Eq. 2.10 we get

Ĥ|ψ〉 =

(
N∑
i

(
−~
2mi

∇2
i

)
+

N∑
i<j

U(~ri, ~rj) +
N∑
i

V (~ri)

)
|ψ〉 = E|ψ〉 (2.13)

Eq. 2.13 is a second order differential equation and is extremely difficult to

deal with since it contain 3N independent variables.

2.4 Ritz Variational Principle

Ritz variational principle is a very useful tool to investigate the ground state of

a system by solving the second order differential equation consist of 3N indepen-

dent variables [39]. The system’s ground state energy is minimized using this

technique.

E0 = Minψ→N〈ψ|Ĥ|ψ〉 (2.14)

In the first step a Hamiltonian is set up for the system under observation.

Eq. 2.11 shows that the only information we obtain from the molecule is the

number of electrons N in the system and external potential V̂ext. V̂ext gives

complete information about the positions and charges of all the nuclei in the

particular molecule. The electron-electron repulsion and total kinetic energy

8



(of electrons) terms are independent of the molecule. In the following step the

eigen function ψ and the corresponding eigen values of the Hamiltonian Ĥ are

determined. Variational principle is the recipe for systematically calculating the

wave function of a ground state which in turns gives the lowest energy state.

The expectation value of any observable, as is known from the standard quantum

mechanics, is represented by an operator Ô, using a trial wave function.

〈Ô〉 = 〈ψtrial|Ô|ψtrial〉 (2.15)

Variational principle states that the energy obtained via Eq. 2.15 as an expec-

tation value of Hamiltonian operator Ĥ using any guessed wave function ψtrial is

an upper bound to the true ground state energy.

〈ψtrial|Ô|ψtrial〉 = Etrial ≥ E0 = 〈ψ0|Ĥ|ψ0〉 (2.16)

The equality holds only if ψtrial is the actual ground state wave function ψ0.

In this way the minimized ground state is obtained.

2.5 Density as a Basic Variable

Up till now, wave function of a system with N number of particles is considered

that depends on 3N spatial coordinates and is nearly impossible to solve. In

order to simplify the problem, density as a basic variable is introduced which can

be expressed as

ρ(r) = N
∑
S1

. . .
∑
S2

∫
. . .

∫
(|Ψ(r1, S1, . . . rN , SN)|2) dr1dr2 . . . drN (2.17)

ρ(r) = 〈ψ|ρ̂|ψ〉 (2.18)

where the density operator is given as

ρ(r) =
N∑
i

∑
Si

δ(r − ri) (2.19)
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Previously it is concluded about the Hamiltonian operator that it is uniquely

characterized by the nuclei’s positions RA and charges ZA and the number of

electrons N in a system. Once the Hamiltonian of the system is known the

Schrödinger equation can be solved in principle.

From the knowledge of electron density properties the following conclusions are

made:

1. By integrating density the number of e− in a system is obtained i.e.∫
ρ(r)dr = N

2. The density maxima occurs at the positions of nuclei RA.

3. the density contain information regarding the nuclear charge ZA at the

positions of nuclei.

Thus all the necessary information about the system is provided by the electron

density and all the molecular properties can be determined using electron density

as a basic variable.

2.6 Thomas Fermi Model

Thomas and Fermi developed a theory known as Thomas and Fermi theory for

many body system using density as a basic variable for the first time[40, 41].

Their approach is valid only for the case of infinite nuclear charge. It only deals

with the kinetic energy quantum mechanically where as V̂ee and V̂ext are treated

classically. Using uniform electron density, Thomas and Fermi expressed the

kinetic energy as

TTF (ρ(r)) =
3

10
(3π2)2/3

∫
ρ(r)5/3dr (2.20)
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combining Eq. 2.20 with electron-electron interaction and nuclear-electron po-

tential the well known Thomas-Fermi expression for the atom’s energy is obtained

ETF (ρ(r)) =
3

10
(3π2)2/3

∫
ρ(r)5/3dr − Z

∫
ρ(r)

r
dr +

1

2

∫ ∫
ρ(r1)ρ(r2)

r12
dr1dr2

(2.21)

This expression fails to yield good quantitative prediction but can give a good

description of an atom’s energy and shows that the density of electrons can be

used as a basic variable to obtain the energy of an atom [42]. TF model gives

a perception of how to get energy from density without using any additional

information by expressing energy in terms of density. The ground state is achieved

by using the variational principle and is assumed to be associated with electron

density, that yields the lowest energy.

2.7 Hohenberg and Kohn Theorems

Thomas and Fermi did not have any actual physical basis to support their model.

The justification of expressing energy as a functional of density was not possible

at that time. Density Functional theory replaced TF model when Hohenberg and

Kohn [42] published their landmark work based on 2 fundamental theorems in

physics review. These two theorems lay the foundation for DFT. A brief insight

of HK-theorems is given:

2.7.1 Theorem 1

The first HK theorem states that “the external potential V (r) is determined

by electronic ground state density ρ(r) of the system . The electronic

density thus uniquely determine the systems Hamiltonian, its ground

state wave function and all its electronic properties.” This theorem

provide justification for the wave function with physical meaning to be associated

uniquely with certain density. Thus the total energy of many electrons system in
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external potential is given as

E[ρ] = T [ρ] + Vee[ρ] + VNe[ρ] (2.22)

where the external potential is given as

VNe =

∫
V (r)ρ(r)dr (2.23)

and the electron-electron repulsive interaction can be expressed as

Vee[ρ] = U [ρ] + Exc[ρ] (2.24)

where U(ρ) is the classical coulombic part and can be expressed as

U [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)

r − r′
d3rd3r′ (2.25)

while Exc(ρ) is the non-classical part of electron-electron repulsive potential

including all the effects of coulombic corelation and self interaction correction.

The kinetic energy term T (ρ) and the electron-electron repulsive potential Vee(ρ)

do not depend on the system. The only term that depends on the actual system

is the external potential VNe(ρ). So Eq. 2.22 can be expressed as

E[ρ] = FHK [ρ] +

∫
V (r)ρ(r)dr (2.26)

where FHK(ρ) is called the HK-functional and can be expresses as

FHK [ρ] = Minψ→ρ(r)〈ψ[ρ]|T̂ + V̂ee|ψ[ρ]〉 (2.27)

The Schrödinger equation can be solved exactly and not approximately if the

FHK(ρ) is known. The HK-functional absorbs all the information about the
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intrinsic properties of an electronic system. It is independent of the system and

can be applied well from a single H-atom to a gigantic molecules such as DNA.

Information of positions and charges of nuclei are associated only with the electron

density in ground state and the excited state electron density can not be used.

2.7.2 Theorem 2

The 2nd HK-theorem states that “The electron density yields the ground

state energy satisfying variational principle. The electron density,

that gives the minimum ground state energy is the true ground state

density.”

The ground state energy can be determined using the Ritz variational principle

as

Ev,0 = Minψ′→N〈ψ′|Ĥ|ψ′〉 (2.28)

A trial density n′(r) is associated with every trial wave function since the

electron density uniquely determines a quantum state of a system with many

electrons. The minimization of energy is performed in two steps. At first, a

trial electron density n′(r) and the corresponding class of wave functions ψ′αn′ are

considered. Then the energy minimum is expressed as

Ev(n
′(~r)) = Minα〈ψ′αn′ |Ĥ|ψ′αn′〉 =

∫
v(~r)n′(~r)d~r + F [n′(~r)] (2.29)

where FHK is the Hohenberg-Kohn functional given as

FHK ≡Minα〈ψ′αn′ |T̂ + Û |ψ′αn′〉 (2.30)

Here it is important to note that any explicit knowledge of external potential V (~r)

is not required for the HK functional. In the next step, the energy minimization

is evaluated for all trial densities n′(~r) using variational principle. The functional
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delivers the lowest energy if the trial density is the actual ground state electron

density.

2.8 Kohn-Sham Equation

To deal with the N interacting electrons is a very difficult job and a feasible

scheme is needed to treat the system. Kohn and Sham solve this problem by

developing a method of mapping the system of interacting electrons to a fictional

non-interacting electrons system, which yields the exact density of electrons in

the ground state and thus the exact energy of ground state as produced by the

interacting electrons system. In such systems the electrons do not interact with

one another but the combine effect of all these electrons is felt by every single

electron in the system. The wave function Φ[ρ] of Kohn-Sham system minimizes

the constrained search minimization. The kinetic energy functional Ts[ρ] of such

non-interacting system is expressed as

Ts[ρ] = n
l Y 〈Φ[ρ]|T̂ |Φ[ρ]〉 = Minψ→ρ(r)〈ψ|T̂ |ψ〉 (2.31)

the exchange energy is expressed as

Tx[ρ] = 〈Φ|V̂ee|Φ〉 − U [ρ0] (2.32)

and the correlation energy is written as

Ec[ρ] = 〈ψ[ρ]|T̂ + V̂ee|φ[ρ]〉 − 〈Φ[ρ]|T̂ + V̂ee|Φ[ρ]〉 (2.33)

the total energy is then expressed as

E[ρ] = T [ρ] + Vee[ρ] +

∫
V (r)ρ(r)dr (2.34)

E[ρ] ≡ Ts[ρ] + U [ρ] + Exc +

∫
V (r)ρ(r)dr (2.35)
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where the exchange-correlation functional Exc(ρ) is given as

Exc[ρ] = Ex[ρ] + Ec[ρ] (2.36)

which can also be expressed as

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− U [ρ] (2.37)

All the unknown contribution is absorbed by the exchange-correlation func-

tional Exc, and now the main problem is to find an expression that can determine

the exchange-correlation functional Exc in a more exact manner. The constraint

on the variational problem, introduced in the second HK-theorm that the number

of electrons must remain conserved leads to

δ

[
E[ρ]− µ

(∫
ρ(r)dr −N

)]
(2.38)

The Euler-Lagrange expression of Kohn-Sham theory is obtained by varying

the total energy w.r.t density

µ =
δE[ρ]

δρ
=
δTs[ρ]

δρ
+
δU [ρ]

δρ
+
δExc[ρ]

δρ
+ V (r) (2.39)

the potential of KS theory is defined as

Vs(r) = V (r) +
δU [ρ]

δρ
+
δExc[ρ]

δρ
(2.40)

Vs(r) = V (r) + VH(r) + Vxc(r) (2.41)

thus the Lagrange multiplier becomes

µ =
δTs[ρ]

δρ
+ Vs[ρ] (2.42)

the Hartree potential VH(r) in Eq. 2.41 is expressed as

VH(r) =

∫
ρ(r′)

r − r′
dr (2.43)
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and the exchange correlation potential in Eq. 2.41 is given as

Vxc(r) =
δExc[ρ]

δρ
(2.44)

Kohn and Sham originally introduced the concept of orbitals φi(r) replacing

the wave-function ψ for a non-interacting fictitious system. The Hamiltonian

applied to KS orbitals characterizes a non-interacting many electrons system.

The Slater’s determinant is used to determine the ground state of such non-

degenerate systems

|Φ〉 =
1

N !
det[φ1(r), φ2(r), . . . φn(r)] (2.45)

using Slater determinant to express the ground state, density ρ(r) is deter-

mined from the KS orbitals which is equivalent to interacting systems ground-

state density ρ0

ρ(r) =
N∑
i=1

|φi(r)|2 (2.46)

there is no simple method for the construction of energy functional but sepa-

ration of exchange and correlation parts is certainly possible. The same is true

for the exchange-correlation potentials, the derivatives of energy functionals w.r.t

density

Vx(r) =
δEx[ρ]

δρ
Vc(r) =

δEc[ρ]

δρ
(2.47)

the exchange energy functional in DFT is defined by the expression

EDFT
x ≡ Ex[ρ] ≡ 〈Φ[ρ]|V̂ee|Φ[ρ]〉 − U [ρ] (2.48)

where the term 〈Φ(ρ)|V̂ee|Φ(ρ)〉 is not the true electron-electron repulsive po-

tential energy but is the repulsive interaction between electrons of KS state. The

correlation energy absorb the difference between the actual electron-electron in-

teraction and the expectation value 〈Φ(ρ)|V̂ee|Φ(ρ)〉 and it also contained the

difference between the K.E of actual system and KS non-interaction electrons
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system. Now to derive the correlation energy, the exchange-correlation energy

expression is given as

Exc(ρ) = T (ρ)− Ts(ρ) + Vee(ρ)− U(ρ) (2.49)

and we know that

Exc(ρ) = Ex(ρ) + Ec(ρ) (2.50)

so

Ex(ρ) + Ec(ρ) = T (ρ)− Ts(ρ) + Vee(ρ)− U(ρ) (2.51)

putting the values of Ex(ρ) we get

〈Φ(ρ)|V̂ee|Φ(ρ)〉 − U(ρ) + Ec(ρ) = T (ρ)− Ts(ρ) + Vee(ρ)− U(ρ) (2.52)

and finally we get

Ec(ρ) = T (ρ)− Ts(ρ) + Vee(ρ)− 〈Φ(ρ)|V̂ee|Φ(ρ)〉 (2.53)

so we can determine the correlation function if the four terms on the right

hand side are known.

2.9 Approximate Exchange Correlation Func-

tionals

To calculate the exchange-correlation functional we need to solve their integrals

Exc = Ex + Ec (2.54)

Ex =

∫
ρ(r)εx(ρ(r))dr Ec =

∫
ρ(r)εc(ρ(r)) dr (2.55)
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different approximations are used to calculate the exchange correlation func-

tional. Some important approximations used to solve these functionals are local

density approximation (LDA), local spin density approximation (LSDA) and gen-

eralized gradient approximation (GGA).

2.9.1 Local Density Approximation (LDA)

Kohn-Sham formalism treats exactly most parts of the system’s total energy

including a major portion of the kinetic energy. However, the remaining un-

known contributions are absorbed in the exchange-correlation functional Exc(ρ),

which includes the electron-electron (non-classical) interaction as well as the self-

interaction correction. The K.E component which is not included in the fictitious

non-interacting system is also absorbed in the exchange-correlation functional.

LDA developed by Kohn and Sham is one of the most well-known technique used

to calculate exchange correlation functional. Kohn and Sham considered an elec-

trically neutral homogeneous electron gas system under the influence of positive

charge. The density of electrons ρ approaches to a constant value as volume of gas

V and number of electrons N reaches infinity. Thus for every point in the space

the density of electrons ρ(r) remains the same. The exchange-correlation energy

Exc of a homogeneous system is used for the non-homogeneous system such as

atom, molecules and solids. LDA approximation is more suitable for systems with

slowly varying densities. Thus for those systems where the density varies rapidly,

LDA has no comparable impact. In LDA approximation, the exhange-correlation

energy of a system is obtained by integrating over the parameter εLDAxc (ρ(r)) times

the local density ρ(r) at every point in space.

ELDA
xc =

∫
ρ(r)εLDAxc (ρ(r)) dr (2.56)

Separating the exchange and correlation terms

ELDA
x =

∫
ρ(r)εLDAx (ρ(r))dr ELDA

c =

∫
ρ(r)εLDAc (ρ(r)) dr (2.57)
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and the functional derivatives of these energies gives the exchange and corre-

lation potential

V LDA
xc (r) =

δELDA
xc [ρ]

δρ
= εLDAxc (ρ(r)) +

δεLDAxc (ρ(r))

δρ
(2.58)

Dirac originally derived the exchange energy part, however an explicit expres-

sion for correlation energy does not exist. Ceperley and Alder used the Monte

Carlo scheme to calculate the total energy of a homogeneous system and deter-

mined the correlation part by subtracting the exchange and K.E terms[43]. The

LDA developed by Vosko et al in 1980 is widely used [44]. However, LDA scheme

developed by Perdew and Wang yield much better results [45].

2.9.2 Local Spin Density Approximation (LSDA)

LSDA is a small modification to the LDA scheme. In this case the spin polar-

ization of electrons is taken into account for more accuracy. Here the electron

density is divided into two segments i.e. spin-up density denoted by ρα(r) and

spin-down density denoted by ρβ(r) [46].

ELDA
xc =

∫
ρα(r)εLDAxc dr ELDA

xc =

∫
ρβ(r)εLDAxc dr (2.59)

2.9.3 Generalized Gradient Approximation (GGA)

Since the basis for LDA and LSDA is a homogeneous gas model with uniform

density, the exchange correlation potential obtained using these approximation

may not be accurate enough. A more realistic approach was proposed in early

1980s considering electrons not distributed uniformly but actually spread in a

gradient over a system. In this method, the non-homogeneous behavior of rapidly

varying electron density is mimicked using the electron density ρ(r) at some point

r and the gradient of this electron density ∇ρ(r) [47]. The exchange correlation

term now become

EGGA
xc [ρ] =

∫
fGGAxc (ρ(r),∇ρ(r)) dr (2.60)
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this approach is called generalized gradient approximation and is expressed

with a functional which includes the gradient of density ∇ρ(r), explicitly. The

exchange and correlation terms are dealt with individually in this case as well

EGGA
xc [ρ] = EGGA

x [ρ] + EGGA
c [ρ] (2.61)

the exchange part is given as

EGGA
x [ρ] =

∫
ρ(r)εGGAx [ρ]F (s) dr (2.62)

where F (s) is a scaling function and can have a very complicated form de-

pending on the type of approximation. From the derivative of GGA exchange-

correlation functional, the exchange-correlation potential is derived as [47]

V GGA
xc =

[
δfxc
δρ
−∇

( δfxc
δ∇ρ

)]
(2.63)

GGA functional often give better results compared to LDA. However, some

of these functionals consist of fitting parameters which are used solely for spe-

cific boundary conditions and yield better results in appropriate computing time.

Some significant and most widespread GGAs are

• Becke’s exchange functional (B88) [48, 49].

• Perdew, Burke and Ernzerhofs exchange-correlation functional (PBE) [50,

51].

• Lee, Yang and Parrs correlation functional (LYP) [52, 53].

• Perdews 1986 correlation functional (P86) [54, 55, 56, 57].

• Perdew and Wangs correlation functional (PW91) [58, 59].

• Engel and Voskos (EV) correlation functional [85][60].

• Wu and Cohen density gradient functional (WC) [86][61].
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2.9.4 Hybrid Fucntionals

The Hartree-Fock theory, a predecessor of DFT, is a well known formalism used

widely to calculate the electronic structure of materials. Their model only account

for the exact exchange energy leaving the correlation effect completely untreated.

Post HF methods are introduced in DFT in order to explicitly determine the ex-

change correlation parameters. Previously discussed, DFT based first-principles

methods such as LDA, LSDA and GGA etc give fine results with some limita-

tions. These approximations usually underestimate or overestimate the band gap

of materials.

Becke proposed the use of a portion of exact Hartree-Fock exchange energy along

with conventional GGA correlation [62, 63]

EHyb
xc = EGGA

xc [ρ] + α[EHF
x [φsel] + EGGA

x [ρsel]] (2.64)

where α is a semi-empirical parameter obtained from the fitting of experimental

data, φsel are the orbitals selected (correlated d-electrons) for the exact exchange

and ρ is the density of these selected electrons. Applying the exact exchange to

these localized electrons has the same effect as PBE+U. Hybrid functionals have

benefit over the PBE+U scheme as they do not rely on any system dependent

parameters.

2.9.5 Heyd-Scuseria-Ernzerhof (HSE)

The exact Hartree-Fock exchange interaction is essentially long range and is

highly dependent on the system. This exact HF exchange can be implemented

to the selected orbitals by Hybrid functions, discussed in the previous section,

relatively efficiently. However, it’s implementation to the entire system can make

the calculation difficult to handle. Generally, to deal with such problem the HF

exchange is screened. The HSE functional divide the full (1
r
) Coulomb poten-

tial into two partitions i.e. short range (SR) and long range (LR) Coulombic
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potential. The HSE functional is expressed as:

EHSE
xc = EHSE,SR

x + EPBE,LR
x (ω) + EPBE

c (2.65)

where

EHSE,SR
x =

1

4
EFOCK,SR
x (ω) +

3

4
EPBE,SR
x (ω) (2.66)

Where ω is the screening parameter that determines the partition into short

range (SR) and long range (LR) terms [63]. In the short range, the HSE exchange

includes a fraction (α = 1
4
) of exact Fock exchange and a portion (1-α) of PBE

functional while the long range exchange is given solely by PBE functional. The

HSE functional produce much better results for the structural properties band

gaps of many metallic and semi-conducting materials compare to the traditional

PBE techniques [63, 64].

2.10 The Full Potential LAPW Basis

The linearized augmented plane wave (LAPW) method is a very accurate tech-

nique to calculate the electronic structure. This technique is basically derived

from the APW scheme. APW scheme suggest that the behavior of wave-functions

are nearly spherical and hugely varying close to the nuclear potential and are

much smoother between the atoms. Thus the whole unit cell splits in two parts

i.e. atomic spheres and interstitial regions. The solution to the Schrödinger equa-

tion is radial for the atomic sphere while that for the interstitial region is plan

wave.

φ(r) =
∑
lm

Almul(r)Ylm(r) . . . r ∈ spherical region (2.67)

φ(r) =
1

V 1/3

∑
G

CGe
i(G+k)r . . . r ∈ interstitial region (2.68)

22



where the quantities Alm and CG are the expansion coefficients and V is the

unit cell volume. Thus we obtain[
− d2

dr2
+
l(l + 1)

r2
+ V (r)− El

]
rul = 0 (2.69)

where El is the band energy and ul is the regular solution. This scheme is

known as Muffin-Tin approximation, it gives good results for closed pack materi-

als. A linear combinations of radial functions are used as the basis function in the

LAPW method. These basis functions are matched with values of plane waves

on the sphere boundaries in the non-relativistic approach.

2.11 Pseudopotentials

Contrary to the valance electrons which interact strongly with the nearby atoms

and thus greatly effect the ground state properties, the core electrons interact

only weakly with the neighboring atoms and have a very small effect on the

ground state properties. These core electrons tend to be more localized and have

much deeper energy levels in the respective host atomic potential compare to the

valance electrons. Thus the interaction between core and valance orbital wave

functions have a very small effect on each other.

Pseudopotentials are introduced in DFT to justify these considerations and com-

pute the ground state properties where instead of modeling the full atomic poten-

tial and taking all the electrons in each atom into account, only valance electrons

are considered which are important to determine the material properties. This

significantly reduces the system’s complexity without compromising the predic-

tive power.

A fictitious pseudo potential is constructed, which when act on the electrons

placed in a potential, produces the orbital wave functions which replicate the

characteristics of exact valance orbital wave functions. Beyond a specific cutoff

radius, these pseudo wave functions match the exact wave functions. The ac-

curacy of the system might be increased by selecting a small radius cutoff but

this makes the DFT calculation more expensive. A long cutoff radius on the
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other hand decrease the computational cost but effect the predictive power of

the material model. In some cases, certain core electrons strongly interact with

the valance electron and affect the ground state properties, these core electrons

must also be treated in the same way as valance electrons while constructing the

pseudo-atom.
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Chapter 3

Boltzmann Transport Equation

Heat transport in 2-D materials is of great significance in several applications,

including thermoelectric materials, thermal management materials and emerging

micro electronics [24, 25, 26, 27, 28].At such small scales, the classical transport

theories like Fouriers law are not plausible and therefore the phonon transport

is more efficiently described by Boltzmann transport equation. In the follow-

ing chapter a brief review of the semi-classical Boltzmann transport theory is

presented.

3.1 Boltzmann transport equation (BTE)

Boltzmann transport equation, a semi-classical approach, is a useful tool to gain

insight into material’s transport [65, 66, 67]. However solution to the BTE is

far from trivial. There are several different models to solve the BTE. These

models are classified into two different classes. The first class of models are of

semi-empirical nature, as they include parameters obtained experimentally such

as effective masses of electrons or holes, dielectric constant, phonon frequencies

and band gaps. Using these adjustable parameters the calculated results are fit-

ted to the experimental measurements. These models gives impressive results for
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the variation in material properties with temperature but they have no predic-

tion power and are restricted to only those materials whose experimental data

is available. In such models, the relaxation time approximation (RTA), which is

expressed as energy’s power law function, is usually used to treat the scattering

processes. Thus the characteristics of elastic and inelastic scattering determined

by the band structure obtained using ab initio techniques are ignored in these

models since the scattering rates specially the inelastic ones do not follow the

power law distribution functions[68, 69].

The second class, include models that depend on the ab initio band struc-

ture of materials instead of relying on the experimentally determined parameters.

Usually for simplification most of these models also rely on relaxation time ap-

proximation RTA for the solution of BTE. Restrepo et al used the BTE-RTA to

determined silicon’s mobility for various carrier concentrations while considering

the electron-phonon interactions to be elastic and the electron distribution at

equilibrium [70].

Constant relaxation time approximation CRTA allows the closed-form expression

for electronic transport such as Seebeck coefficient and conductivity which simpli-

fies the problem even more. These models give good results for materials where

the relaxation time is constant or nearly constant [71]. These models have good

predictive power and can predict the properties of novel materials. However, the

inclusion of inelastic scattering processes alter the energy of electrons and there-

fore greatly influence the prediction power of these models.

To investigate the transport properties (both electronic and lattice) using Boltz-

mann transport theory, an appropriate treatment of scattering mechanisms, elas-

tic and inelastic, should be combined with the ab initio band structure calculation.

3.2 Electronic Transport

The function f(r, k, t), which describes the occupation probability of an electron

state, describes the dynamics of charge carriers. This distribution function can

be determined using Boltzmann transport equation (BTE)
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∂f(r, k, t)

∂t
|fields +

∂f(r, k, t)

∂t
|scattering +

∂f(r, k, t)

∂t
|diffusion = 0 (3.1)

where the external fields, carrier diffusion and scattering among the charge

carriers are assumed to be the only factors affecting the charge carriers behavior

described by the distribution function. Here the time derivative term df(r,k,t)
dt

is

not included since the thermoelectric properties are calculated in principles for

quasi-static systems near equilibrium. The linearized BTE is expressed as

∂f0(r, k, t)

∂εi(k)
+

(
εi(k)− µ

T
∇T +∇µ

)
.vi(k) =

f1(r, k, t)

τ
(3.2)

where f0(r, k, t) is the Fermi-Dirac distribution function that gives the dis-

tribution of electrons or holes at thermodynamic equilibrium. The Fermi-Dirac

distribution function is given as

f0(r, k, t) =
1

e
ε−µ
kbT + 1

(3.3)

f1(r, k, t) in Eq. 3.2 give the charge carriers distribution in a system where

the external forces are applied. µ is the electrochemical potential while ∇µ is the

change in chemical potential due to external forces. vi(k) and Ei(k) are the group

velocity and corresponding eigenenergies of the charge carriers. The term f1(r,k,t)
τ

on the R.H.S describes the scattering of charge carriers using the relaxation time

approximation

∂f(r, k, t)

∂t
|scattering =

f1(r, k, t)

τ(εn(k))
=
f(r, k, t)− f0(r, k, t)

τ(εn(k))
(3.4)

where τ(εn(k)) is the relaxation time, which represents the average meantime

between scattering encounters for charge carriers of specific energy E with band
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index n and momentum k. The relaxation time is considered to be energy de-

pendent and can be determined from first principles or obtained experimentally.

Various components of relaxation time can be obtained using Matthiessens rule

1

τ
=

1

τcr
+

1

τim
+

1

τp
+

1

τb
(3.5)

where τcr is the contribution of crystallographic defects to the relaxation time,

τim represents the scattering from charge impurities, τp is the contribution from

electron-phonon interactions and τb is due to the boundary or edge states. The

group velocity vi(k) is from the band structure data as

~v(n,~k) =
1

~

(
∂ε(n,~k)

∂~k

)
(3.6)

once the non-equilibrium distribution function f1(r, k, t) in Eq. 3.2 is known,

the thermodynamic transport properties can be obtained using the electrical and

heat current densities.

Je = −16πe
√

2m

3h3

∫
E

3
2 τ(ε)

∂f0
∂E

(
E − µ
T
∇T +∇µ+ eE0

)
dE (3.7)

and

JQ = −16π
√

2m

3h3

∫
E

3
2 (E − µ)τ(E)

∂f0
∂E

(
E − µ
T
∇T +∇µ+ eE0

)
dE (3.8)

which leads to the Onsager reciprocal relations expressed as

~j = σE0 − σS∇T (3.9)

and
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~j = σSTE0 − κ′∇T (3.10)

where σ is the electrical conductivity, S is the Seebeck coefficient, E0 is the

external electric field and∇T is the temperature gradient. The κ′ term represents

the electronic thermal conductivity which is obtained from electrical conductivity

using Wiedmann-Franz law and is in principles an approximation to the true

thermal conductivity. Now in order to calculate the electrical and heat current

densities, we need to determine these thermoelectric coefficients.

3.2.1 Electrical Conductivity

One of the most important components in the current density equations is the

electrical conductivity, which is the ability of a material to conduct electric cur-

rent. The electrical conductivity can be expressed as

σ =
ne2τ(Ef )

m
(3.11)

where n is the carriers concentration, e is the electronic charge, m represent

the effective mass of charge carriers and τ(εf ) stands for relaxation time.

3.2.2 Seebeck Coefficient

Another important constituent of the current density expressions is the Seebeck

coefficient also called the thermopower. It gives the magnitude of thermoelec-

tric voltage generated by the temperature gradient in a material. The Seebeck

coefficient is calculated using Boltzmann transport equation as

S = −π
2k2B
3e

∂

∂E
ln
[
E

1
2 τ(E)

]
E=µ

(3.12)
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where the sign of Seebeck coefficient depends on the nature of charge carriers.

The Seebeck coefficient is positive for p-type thermoelectric material where holes

are the majority charge carriers, while for n-type where electrons are the majority

charge carriers, the Seebeck coefficient is negative.

3.2.3 Electronic Thermal conductivity

Thermal conductivity is the material’s ability to conduct heat. The thermal con-

ductivity in metals is in accordance with the electrical conductivity as the free

valance electrons transfer both electric and heat current. However, in non metals

there is also contribution from lattice vibrations. Thus for such materials the

electrical and thermal conductivities do not have a direct correlation. However,

the Wiedmann-Franz law [72] can be used to obtain the electronic thermal con-

ductivity. The Wiedmann-Franz law is based on the premise that both electrical

and thermal transport involve free electrons in the system and can be expressed

as

κ′e = LσT (3.13)

where L represents the Lorentz number for free electrons which can be ex-

pressed as

L =
π2k2B
3e2

= 2.44× 10−8WΩK−2 (3.14)

By increasing the average velocity of charge particles, the forward transport

of energy increases which in turns increase the thermal conductivity. However,

the electrical conductivity reduces as particle velocity increases since the elecrons

divert from the forward transport due to collisions.
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3.2.4 BoltzTraP

BoltzTraP code was developed by Georg Madsen and David Singh in 2006 which

can be used calculate all the thermoelectric properties except the lattice thermal

conductivity [71]. The electric current j in the presence of an external electric

and magnetic field and a temperature gradient can be expressed as

ji = σijEj + σijkEjBk + vij∇jT (3.15)

where σij and σijk are the conductivity tensors, and vij is the group velocity.

The group velocity and inverse mass tensor are the two components of conduc-

tivity tensor that directly exploit the band structure data obtained from DFT

calculation. The group velocity is obtained from the slope of energy bands as

vα(i,~k) =
1

~
∂ε(i,~k)

∂kα
(3.16)

and the inverse mass tensor is determined from the energy band dispersion as

M−1
βµ (i,~k) =

1

~
∂2ε(i,~k)

∂kβ∂kµ
(3.17)

the conductivity tensors can be expressed as

σαβ(i,~k) = e2τvα(i,~k)vβ(i,~k) (3.18)

and

σαβγ(i,~k) = e3τ 2ζγuvvα(i,~k)vβ(i,~k)M−1
βu (3.19)

where ζωuv is the Levi-Civita symbol, which is equal to zero if any of the indexes
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are equal and is ±1 depends on the direction of permutation. The transport

tensors can then be computed from the conductivity distributions.

σαβ(T ;µ) =
1

Ω

∫
σαβ(ε)

[
− ∂fµ(T ; ε)

∂ε

]
dε (3.20)

vαβ(T ;µ) =
1

eTΩ

∫
σαβ(ε)(e− µ)

[
− ∂fµ(T ; ε)

∂ε

]
dε (3.21)

kelecαβ (T ;µ) =
1

e2TΩ

∫
σαβ(ε)(e− µ)2

[
− ∂fµ(T ; ε)

∂ε

]
dε (3.22)

σαβγ(T ;µ) =
1

Ω

∫
σαβγ(ε)

[
− ∂fµ(T ; ε)

∂ε

]
dε (3.23)

where ke is the electronic part of thermal conductivity, Ω is the unit cell volume,

µ is the chemical potential and fµ(T ; ε) is the distribution function. Once these

values are calculated the Hall and Seebeck coefficients can be obtained;

Sij = Ei(∇jT )−1 = (σ−1)σivαj (3.24)

Rijk =
Eind
j

jappli Bappl
k

= (σ−1)αjσαβk(σ
−1)iβ (3.25)

Thus by choosing the relaxation time and calculating the conductivity tensors

all the components of figure of merit can be obtained except kl which can be

obtained from molecular dynamics calculations.
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3.3 Lattice Transport

Lattcie thermal conductivity kl plays a significant role in various applications

which require materials with tuned thermal conductivities. In order to investigate

kl a parameter free model with great prediction power is required. Similar to the

electronic part, kl can also be obtained from the Boltzmann transport equation.

3.3.1 Heat Transport

Heat is transfer in materials by both electrons and lattice vibrations (Phonon)

due to the temperature gradient ∇T . In semi conducting materials, the heat

transfer by electrons is smaller compare to that transfer by phonons. The heat

current J induced by the temperature gradient ∇T can be obtained as

J =
∑
p

∫
fλ~ωλvλ

dq

(2π)3
(3.26)

where λ contain both the phonon branch index p and wave vector q, fλ is the

distribution function of phonons, ωλ and vλ are the angular frequency and group

velocity of phonon mode λ, respectively. The Bose-Einstein distribution function

gives the phonon distribution at thermal equilibrium as

f0(ωλ) =
1

e
ε−µ
kbT − 1

(3.27)

The phonon distribution function fλ deviates from f0 under the influence of

a temperature gradient ∇T . BTE is used to determine such deviation. The

main factors affecting the phonon distribution includes the diffusion caused by

temperature gradient ∇T and scattering. The change in phonon distribution

w.r.t time vanishes under steady state conditions, which is expressed by BTE as

[73, 74]:
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dfλ
dt

=
∂fλ
∂t

∣∣∣∣
diffusion

+
∂fλ
∂t

∣∣∣∣
scattering

= 0 (3.28)

where the change in the distribution function in time caused by diffusion is

obtained as

∂fλ
∂t

∣∣∣∣
diffusion

= −∇T.vλ
∂fλ
∂T

(3.29)

The rate of change due to scattering ∂fλ
∂t

∣∣∣∣
scattering

depends on particular scat-

tering processes, that can be analyzed by perturbation theory. In single crystal

systems, the phonon scattering is mainly caused by phonon-phonon collision and

impurities such as isotopes. Boundary scattering play an important role at very

low temperature as the real bulk samples have finite sizes, but its treatment is

not covered in this study.

3.3.2 Linearized Boltzmann Transport Equation

Generally, the temperature gradient ∇T has a small norm which enable us to

expand the distribution function fλ up to first order in ∇T

fλ = f0(ωλ) + gλ (3.30)

where gλ is linearly dependent on temperature and can be expressed as

gλ = −Fλ.∇T
df0
dT

(3.31)

When the only scattering sources are the two and three phonon processes, the

resulting linearized BTE are expressed as [75, 76, 77, 78]:
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Fλ = τ 0λ(vλ + ∆λ) (3.32)

where the relaxation time τ 0λ can be determined using the perturbation theory

which is generally used in RTA. The term ∆λ has the dimensions of velocity and

it gives the deviation of specific phonon mode population and the corresponding

heat current from the results obtained using RTA. Thus taking ∆λ equals zero is

similar to operating in RTA. More explicitly, the relaxation time τ 0λ and ∆λ are

obtained as

1

τ 0λ
=

1

N

( +∑
λ′λ′′

Γ+
λλ′λ′′ +

−∑
λ′λ′′

1

2
Γ−λλ′λ′′

∑
λ′

Γλλ′

)
(3.33)

and

∆λ =
1

N

+∑
λ′λ′′

Γ+
λλ′λ′′

(
ξλλ′′Fλ′′ − ξλλ′Fλ′

)
+

1

N

−∑
λ′λ′′

1

2
Γ−λλ′λ′′

(
ξλλ′′Fλ′′ + ξλλ′Fλ′

)
+

1

N

∑
λ′

Γλλ′ξλλ′Fλ′ (3.34)

where the Brillouin zone is discretized into Γ-centered grid with N = N1 ×
N2 ×N3 q points. The term ξλλ′ is the ratio of angular frequencies given as

ξλλ′ =
ωλ′

ωλ
(3.35)

The quasimomentum is conserved if the relation q′′ = q ± q′ + Q is satisfied

where Q is some reciprocal lattice vector for which the vectors q, q′ and q′′ lies in

the same Brillouin zone.
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3.3.3 Interatomic Lattice Potential

In order to go beyond the framework of RTA and directly calculates the three-

phonon scattering rates, investigation of the inter atomic lattice potential Φ which

describes the inter atomic forces is required. Using Taylor series this potential

can be expressed as

Φ =Φ0 +
∑
lkα

Φα(lk)uα(lk) +
1

2

∑
lkα

∑
l′k′β

Φαβ(lk; l′k′)uα(lk)uβ(l′k′)+

1

3!

∑
lkα

∑
l′k′β

∑
l′′k′′γ

Φαβγ(lk; l′k′; l′′k′′)uα(lk)uβ(l′k′)uγ(l
′′k′′) + ..... (3.36)

where l represents the unit cell and k refers to an atom in that unit cell. µα

describe the deviation of atoms from their orignal positions at equilibrium and α,

β and γ are the Cartesian coordinates. The first term on R.H.S is constant and

can be ignored while the second term is the measure of force on each atom due to

all the other atoms in the system. In equilibrium conditions, this force should be

equal to zero and can be ignored as well. The only terms of interest in Eq. 3.36

are those which include the harmonic and third order anharmonic interatomic

force constants (IFCs) represented by Φαβ and Φαβγ respectively. These IFCs

can be written as

Φαβ(lk; l′k′) =
∂2Φ

∂uα(lk)∂uβ(l′k′)

∣∣∣∣
~u=0

(3.37)

and

Φαβγ(lk; l′k′; l′′k′′) =
∂3Φ

∂uα(lk)∂uβ(l′k′)∂uγ(l′′k′′)

∣∣∣∣
~u=0

(3.38)

The phonon frequencies and eigenvectors can be determined from harmonic

IFCs. Phonons do not interact with each other in the harmonic approximation.
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The interaction term is embedded into Eq. 3.38 and is considered to be the

perturbation in the harmonic approximation. The calculation of harmonic IFCs

has been carried out extensively and extremely good agreement has been found

with experimental measurements. Calculation of the anharmonic IFCs on the

other hand is more complex job and only now the parameters obtained from

them begins to yield good results.

3.3.4 Harmonic interatomic force constants

The third term in the interatomic potential equation represents the harmonic

part of interatomic potential, which gives the phonon eigenvectors and the cor-

responding eigenvalues. In harmonic approximation, the equation of motion for

atoms is given as

Mküα(lk) = −
∑
l′k′β

Φαβ(0k; l′k′)uβ(l′k′) (3.39)

where Mk represents the mass of kth atom. To solve Eq. 3.39 , the atomic

displacement is assumed to have the formalism

uα(lk) =
1√
Mk

∑
~q

Uα(~q; k)exp[i(~q.~x(l)− ωt)] (3.40)

where ~x(l) represents the lth unit cell equilibrium position. Putting Eq. 3.40

into Eq. 3.39 yields

ω2Uα(~q; k) =
∑
k′β

Dαβ(kk′; ~q)Uβ(~q; k′) (3.41)

A non-trivial solution is obtained from Eq. 3.41 using the form
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∣∣Dαβ(kk′; ~q)− ω2δαβδkk′
∣∣ = 0 (3.42)

The dynamical matrix, Dαβ(kk′; ~q), can be expressed as the Fourier transform

of Φαβ

Dαβ(kk′; ~q) =
1√
MkM ′

k

∑
l′

Φαβ(0k; l′k′)exp[i~q · ~x(l′)] (3.43)

if the harmonic IFCs are known, the dynamical matrix can be constructed for

any arbitrary ~q and thus all eigenvector and phonon frequencies can be calculated.

3.3.5 Third-order anharmonic interatomic force constants

Eq. 3.38 gives the third order anharmonic IFCs. Here, it is convenient to give

an expression for the displacement of atoms in terms of raising and lowering

operators

uα(lk) =

(
~

2NMk

) 1
2 ∑
j,~q

ω
− 1

2
j (~q)eα(k|j~q)ei~q. ~Rl(aj~q + a+−j~q) (3.44)

where eα(k|j~q) is the αth component of eigenvector. Substituting the atomic

displacement into the fourth term of Eq. 3.36, the third-order part of interatomic

potential is obtained

Φ3 =
1

3!

∑
lk

∑
l′k′

∑
l′′k′′

∑
αβγ

Φαβγ

(
~

2N

) 3
2 1√

MkM ′
kM

′′
k

∑
λ1λ2λ3

eλ1αke
λ2
βke

λ3
γk√

ωλ1ωλ2ωλ3

ei~q1·
~Rlei~q2·

~R′lei~q3·
~R′′l × (aλ1 + a+−λ1)(aλ2 + a+−λ2)(aλ3 + a+−λ3) (3.45)

where λ contain both the wave vector ~q and branch index j. Similarly, −λ
is used to designate j and −~q. The addition of lattice vector,R to Rl, Rl or Rl
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should not alter φ3 since the interatomic potential obeys translational invariance.

Hence the addition of ~R leads to the condition

ei(~q1+~q2+~q3)·
~R = 1 (3.46)

~q1 + ~q2 + ~q3 = ~K (3.47)

The sum over l can be eliminated in Eq. 3.45 as the third-order IFCs do not

depend on the absolute positions of ions but only on their relative positions.

Therefore

Φαβγ(lk; l′k′; l′′k′′) = Φαβγ(0k; l′ − lk′; l′′ − lk′′) (3.48)

By redefining l′ to l′ − l and l to l′′ − l , φ3 can be expressed as

Φ3 =
1

6

(
~

2N

) 3
2

N
∑
k

∑
l′k′

∑
l′′k′′

∑
αβγ

Φαβγ
1√

MkM ′
kM

′′
k

∑
λ1λ2λ3

eλ1αke
λ2
βke

λ3
γk√

ωλ1ωλ2ωλ3
ei~q2·

~R′lei~q3·
~R′′l × (aλ1 + a+−λ1)(aλ2 + a+−λ2)(aλ3 + a+−λ3) (3.49)

The extra term N comes from the redefinition of l and the evaluation of sum

over l. It is clear from the expansion of parentheses containing the raising and

lowering operators that Eq. 3.49 describes processes where each phonon is either

created or destroyed. Since the energy should remain conserved therefore all the

three phonon scattering processes are energetically not possible and the terms in

Eq. 3.49 corresponding to these processes should be disregarded.
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3.3.6 Three-phonon scattering processes

The terms, Γ±λλ′λ′′ in Eq. 3.33 and Eq. 3.34 are the three-phonon scattering rates,

which can be obtained as

Γ+
λλ′λ′′ =

~π
4

f ′0 − f ′′0
ωλωλ′ωλ′′

∣∣V +
λλ′λ′′

∣∣2δ(ωλ + ωλ′ − ωλ′′) (3.50)

and

Γ−λλ′λ′′ =
~π
4

f ′0 + f ′′0 + 1

ωλωλ′ωλ′′

∣∣V −λλ′λ′′∣∣2δ(ωλ − ωλ′ − ωλ′′) (3.51)

The quantity, Γ+
λλ′λ′′ represents the absorption processes, where the two inci-

dent phonons combine to produce a single resultant phonon with energy equal to

the sum of individual incident phonon energy.

ωλ + ωλ′ = ωλ′′ (3.52)

Whereas the quantity, Γ−λλ′λ′′ corresponds to the emission process, where energy

of a single incident phonon splits into two phonons.

ωλ = ωλ′ + ωλ′′ (3.53)

The Dirac delta distribution in Eq. 3.50 and Eq. 3.51 enforces the energy con-

servation in both the absorption and emission processes. To successfully calculate

the quantities, Γ±λλ′λ′′ , elements of the scattering matrix, V ±λλ′λ′′ are required, which

can be obtained as

V ±λλ′λ′′ =
∑
i∈u.c.

∑
j,k

∑
αβγ

Φαβγ
ijk

eαλ(i)eβp′,±q′(j)e
γ
p′′,−q′′(k)√

MiMjMk

(3.54)
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which in turn depend on the anharmonic IFCs Φαβγ
ijk = ∂3E

∂rαi ∂r
β
j ∂r

γ
k

and the nor-

malized eigenfunctions ep,q of phonons involved such processes. The indexes i, j

and k in these expressions are the atomic indices whereas α, β and γ represent the

Cartesian coordinates. Mi & rαi represents the mass of the ith atom and its dis-

placement from equilibrium, respectively. Lastly, eαλ(i) denotes the α component

of the ith atoms eigenfunction of phonon mode λ.

3.3.7 Isotopic impurity scattering

In BTE framework the crystals are considered to be isotopically pure and thus

only three-phonon scattering is included but actual physical samples under ex-

perimental study are not infinite or isotopically pure. While various pure samples

have been artificially synthesized and measured, still a small concentration of iso-

topic impurities exist in these samples. The presence of such impurities modifies

the thermal conductivity kL through different isotopic masses. The elastic scat-

tering effect between isotopic impurities and phonons is introduced to the BTE

formalism and its rate is expressed as

Γλλ′ =
πω2

2

∑
i∈u.c.

g(i)
∣∣e∗λ(i) · eλ′(i)∣∣2δ(ωλ − ωλ′) (3.55)

where g(i) is the Pearson deviation coefficient and is given as

g(i) =
∑
s

fs(i)
[
1−Ms(i)/M̄

]2
(3.56)

where Ms(i) is the mass of s isotope of ith atom, obtained using relative fre-

quency 0 < fs(i) ≤ 1 and their average M̄(i) =
∑

s fs(i)Ms(i).
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3.3.8 Lattice thermal conductivity

The lattice thermal conductivity can be expressed in terms of F as

καβ` =
1

kBT 2ΩN

∑
λ

f0(f0 + 1)(~ωλ)2vαλF
β
λ (3.57)

where Ω represents volume of the unit cell. The lattice thermal conductivity

and other related properties are calculated using the ShengBTE code. In this

approach the linearized BTE can be solved iteratively for Fλ beginning from

a zero-order approximation F 0
λ = τ 0λvλ. The iterative process ends when the

relative variation in conductivity tensor calculated using Eq. 3.57 is less than a

default value of 10−5. The iterative process may greatly affect the calculations

while investigating materials with high k` values such as diamond where the

three-phonon processes are of great importance, since the normal processes are

considered resistive in the RTA [79]. However, in systems with strong umklapp

scattering such as Si and Ge, the iterative process usually add only 10% to k`

at 300 k as compare to the results obtained with RTA [80]. It may take a huge

amount of time to calculate the phonon scattering rates Γ±λλ′λ′′ . Therefore, only

q points lying inside the BZ must be selected from the grid. The effect of such

reduction can be maximized by choosing N1, N2 and N3 in such manner that

the crystal symmetry of the sample remain unchanged. A particular choice that

guarantee the preservation of symmetry is N1 = N2 = N3 .

3.3.9 Specific Heat

Although the main results obtained from ShengBTE program is the thermal con-

ductivity, k`, for bulk and nanowires but other important quantities might also be

calculated to gain additional information about the thermodynamics of materials.

The specific heat per unit volume Cv is an important quantity calculated using

harmonic approximations. The specific heat per unit volume can be expressed as
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Cv =
kB
ΩN

∑
λ

(
~ω
kBT

)2

f0(f0 + 1) (3.58)

=
kB

(2π)3

∫
BZ

(
~ω
kBT

)2

f0(f0 + 1)d3q (3.59)

3.3.10 Small grain limit reduced thermal conductivity

Another significant quantity calculated by ShengBTE is the small-grain-limit

reduced thermal conductivity κ̃SG. A new kind of contribution arise from the

introduction of nanostructuring in the bulk material to the scattering rate of

phonons. This contribution become dominant by making the size small and

therefore the mean free path is limited to a constant value Λ. Thus by substituting

F β
λ = Λvβλ/|vλ| into Eq. 3.57 κ` becomes proportional to Λ. κ̃SG can be expressed

as the proportionality tensor

κ̃αβSG =
1

kBT 2ΩN

∑
λ

f0(f0 + 1)
vαλv

β
λ

|vλ|
~2ω2

λ (3.60)

This quantity shows how the conductivity of materials is influenced by their

harmonic properties. Sometimes, it is useful to calculate the phonons mean free

path which are most relevant to the thermal conductivity. For which ShengBTE

also gives the cumulative thermal conductivity, where only those phonons are

considered which has mean free path smaller than certain threshold length.

3.3.11 Phase space

Another important factor that affects the thermal properties is the portion of

three-phonon processes allowed by energy conservation. This factor is called

phase space and can be studied individually by removing other probabilities from

the picture. The phase space is expressed as
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P3 =
Ω

(6πn)3

∑
p,p′,p′′

∫ ∫
BZ

δ[ωp(q) + ω′p(q
′)− ω′′p(q + q′ −Q)]d3q′d3q (3.61)

it can be easily seen that 0 ≤ P3 ≤ 1. The actual values of phase space

are strongly correlated with thermal conductivity k` and are much lower than

the upper limit5. ShengBTE give both the global value of P3 and individual

contributions from modes and q points. Finally, the total and partial phonon

density of states (DOS) and (PDOS) is also from ShengBTE.

3.3.12 Mode Grüneisen parameter

Mode Grüneisen Parameter is of great significance as it provide the measure

of anharmonicity of the crystal. The term is generally used to describe a single

thermodynamic property γ, which is an average of many individual parameters γi

included in the original Grüneisens expression in terms of phonon nonlinearities.

The mode Grüneisen Parameter can be calculated using two different schemes.

The first scheme requires only the harmonic IFCs while the second method involve

both the harmonic and anharmonic IFCs.

3.3.13 Second-order IFC method

The mode Grüneisen Parameter can be defined as the variation in phonon mode

frequency with a small variation in crystal volume

γj(~q) = − V

ωj(~q)

∂ωj(~q)

∂V
(3.62)

In order to determine the Grüneisen Parameter numerically, the phonon fre-

quencies are calculated at the lattice constants slightly different from those at

equilibrium and evaluating the following expression
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γj(q) = − V 0

ω0
j (~q)

ωj(a+ δa)− ωj(a− δa)

V (a+ δa)− V (a− δa)
(3.63)

where ω0
j (~q) represent the phonon frequency, V 0 is the unit cell volume at

equilibrium lattice constant and V (a ± δa) is the unit cell volume at the lattice

constant slightly different from the equilibrium value. The Grüneisen Parameter

obtained from the above equation is dependent on δa. In order to get rid of

any possible dependence, phonon frequencies are computed for a set of lattice

constants which includes the equilibrium lattice constant, where each calculation

requires a new set of harmonic IFCs for a given lattice constant. Linear regression

techniques are then used to calculate the gradient ∂ωj(~q)/∂V and the Grüneisen

Parameter is computed for the considered j, ~q pair.

3.3.14 Third-order anharmonic IFC method

Since the Grüneisen Parameter is the measure of anharmonicity in the crystal,

it is only logical to use anharmonic IFCs to calculate the Grüneisen Parameter.

The expression for Grüneisen Parameter in terms anharmonic IFCs is given as

γj(~q) = − 1

6ω2
j (~q)

∑
k

∑
l′k′

∑
l′′k′′

∑
αβγ

Φαβγ(0k, l
′k′, l′′k′′)

ej
∗

αk(~q)e
j
βk′(~q

′)√
MkM ′

k

eiq·
~R′l~rl′′k′′γ

(3.64)

The harmonic IFCs are still needed to calculate the eigenvectors, ejαk(~q) and

phonon frequencies. The Grüneisen Parameter obtained from both methods can

be compared to check the accuracy of anharmonic IFCs.

3.3.15 Sum rules for anharmonic IFCs

For any global displacement the invariance in the lattice potential requires that
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∑
k

Φαβγ
ijk = 0 (3.65)

which is also valid for summation over i or j because of permutation symme-

tries. Eq. 3.65 is very crucial for the calculation of low frequency scattering rates.

In principles, no ab initio package exactly satisfies these sum rules while calcu-

lating the force constants, and some sort of manipulation is required to enforce

them while simultaneously varying the IFCs. The main goal is to compensate

every non-zero IFC in order to satisfy these conditions. A reasonable choice is the

minimization of the sum of squares of these minor compensations, that results

into a well-posed minimization problem [81]. However, enforcing all the sum

rules is not necessary since the partially symmetrized third-order IFCs satisfy

some of them. Imposing the sum rules on a minimal set of anharmonic IFCs φj

results in minimizing 1
2

∑
J φ

2
J where φJ is the small compensation to φJ , under

the influence of a set of linear constraints

∑
J

AIJ(ΦJ + φJ) = 0 (3.66)

where all the subscripts and superscripts are summarized in the index J . To

solve this a Lagrange multiplier λl is introduced for each constraint which leads

to

∑
J

[∑
M

AIMAIM

]
λJ = −

∑
J

AIJΦJ (3.67)

the values of φj canbe obtained from its solution as

φJ =
∑
I

λIAIJ (3.68)
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Chapter 4

Results and Discussion

The aim of this chapter is to provide a detailed description of different computa-

tional parameters used to study the thermoelectric properties of novel 2D Silicon

Telluride. The results obtained using these parameters are reported in this chap-

ter. The comparison of the phonon dispersion with previous theoretical data is

also presented here.

4.1 Computational detail

β-SiTe monolayer has an isotropic puckered structure where each silicon atom

makes covalent bond with 3 telluride atoms, which results in a hexagonal unit

cell. The space group of β-SiTe is P3m1. The optimized lattice constants for

β-SiTe are a = b = 3.83Å. Buckling appears at various sites in the unit cell.

The buckling parameter ∆z that gives the vertical distance between two adjacent

atomic planes is 1.53Å [30]. The geometrical structure of 2D β-SiTe is given in

fig. 4.1.
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(a)

(b)

Figure 4.1: Geometric structure of 2D β-SiTe. (a) side view (b) real space lattice

for β-SiTe

The energy cutoff is taken as high as 520 eV and the convergence of total

energy and force is achieved at 1× 10−7eV and 1× 10−5eV Å−1, respectively. For

the band energy calculation a K mesh of (19× 19× 1) is used in the irreducible

Brillouin Zone. A ∼ 20Å vacuum space is introduced along the ẑ direction for

2 dimensional calculations in order to avoid any interaction between neighbor

images. The structure is relaxed fully using the conjugate gradient method with

no symmetric constraints.

The density functional perturbation theory (DFPT) is used to calculate the nec-

essary force constants in order to verify the dynamic stability and estimate the
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thermodynamic properties of β-SiTe. The phonon dispersion and density of states

are then computed using PHONOPY code [82]. The energy cutoff for the force

constant calculations is set to 520 eV . To calculate the 2nd order force constants,

a 10×10×1 supercell is used along with a K mesh of 3×3×1. For 3rd order force

constant calculation, a 5 × 5 × 1 super cell is used along with 7 × 7 × 1 special

k-points. A minimum set of displacements are generated for the calculation of

3rd order force constant using Third order.py code, which is far more efficient

and computationally economic compare to phono3py program which generates

almost three times more displaced supercell configurations.The lattice thermal

conductivity and other important lattice dependent properties are calculated us-

ing ShengBTE program [83] the 2nd and 3rd order force constants are taken into

account. A mesh of 16× 16× 1 special q-points is used for these thermodynamic

calculations.

4.2 Electronic Density of States (DOS)

To determine the band energies and structural properties of β-SiTe the electron

density of states are computed, which shows the electronic states distribution in

various energy levels. The total and partial density of states are given in fig. 4.2

where a forbidden energy gap can be seen between the valance and conduction

band. The Fermi level Ef lies between the conduction and valance band at 0 eV .

From the partial density of state (PDOS), the contribution of each individual

atomic states can be observed. The p-state of Te atom has main contribution to

the valance band while Si-s and Si-p states also have considerable contributions.

The conduction band has almost equal contribution from Si-p and Te-p states

while the contribution from Si-s and Te-s is relatively much smaller. The high

peak near Fermi-level indicates a flat valance band maxima.
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Figure 4.2: Total and Partial density of states of β-SiTe
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4.3 Band structure

The electronic band structure of β-SiTe calculated using PBE-GGA is given in

fig. 4.3 which indicates that β-SiTe has an indirect band gap. The band gap of

β-SiTe is 1.823 eV where the valance band maximum (VBM) occurs at Γ point

while the conduction band minimum (CBM) occurs at M ′ point in the Brillouin

Zone. The flatness of valance band top results in large density of states and heavy

holes.

Figure 4.3: Electronic band structure of β-SiTe
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4.4 Electronic Transport properties

In this work, the electronic transport properties are computed using Boltzmann

transport equation implemented in BoltzTraP code. The necessary transport co-

efficients are determined using a well-tested Fourier interpolation of electronic

band structure. The results obtained using this approach are very close to the

data obtained experimentally and can be used to gain insight into the thermo-

electric properties of novel materials.

To derive the carrier concentrations from chemical potentials for p or n-type

doping the Fermi level is lifted up and down. Thus for any material only the

electronic band structure calculation is required. The transport coefficients are

computed using a constant relaxation time. The Seebeck coefficient is determined

free of relaxation time. However, the electrical conductivity and electronic ther-

mal conductivity can only be computed with respect to the relaxation time. The

electrical conductivity and electronic thermal conductivity of β-SiTe computed

using BoltzTraP code w.r.t relaxation time σ/τ and κ/τ are plotted against chem-

ical potential for different temperatures in fig. 4.4a and fig. 4.4b, respectively. It

can be observed from the fig. 4.4b that electrons dominate the thermal conduc-

tivity unless µ is inside the band gap.
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Figure 4.4: Electrical conductivity and electronic thermal conductivity versus

chemical potential for different Temperatures
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To obtain a high value for figure of merit (ZT), the thermal conductivity

must decreased while keeping the electrical conductivity maximum. Since the

thermal conductivity has contribution from both electronic and lattice conduc-

tivities, therefore reducing lattice thermal conductivity can greatly improve the

thermoelectric performance of materials.

The performance of thermoelectric materials directly depends on the Seebeck co-

efficient, which measures the thermoelectric voltage induced by the temperature

gradient across the material. The Seebeck coefficient for β-SiTe is plotted against

chemical potential at different temperatures in fig. 4.5. The maximum value of

Seebeck coefficient at room temperature is 290 µV/K.
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Figure 4.5: Seebeck versus chemical potential of β-SiTe

The thermoelectric efficiency of materials is centered on a dimensionless pa-

rameter known as the figure of merit, which can be expressed as

ZT =
S2σT

κe + κ`
(4.1)
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Up till now we use only BoltzTrap code for the investigation of thermoelectric

properties which does not calculate the lattice thermal conductivity. So the figure

of merit obtained using BoltzTraP code does not contain κ`. The figure of merit

(ZT) for β-SiTe obtained using BoltzTraP code versus chemical potential is plot-

ted for different temperatures in fig. 4.6. The difference in ZT can be observed for

different temperatures. The figure of merit value for β-SiTe at room temperature

is 0.96. The relaxation time canceled out since σ and κe are both calculated with

respect to relaxation time and thus we get a figure of merit free of τ .
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Figure 4.6: ZT versus chemical potential of β-SiTe

The relaxation time canceled out since σ and κe are both calculated with

respect to relaxation time and thus we get a figure of merit free of τ .

55



4.5 Phonon Dispersions

The Phonon dispersions curves show the dependence of phonon energies on q

vector along various high symmetry directions within the Brillouin Zone. For 2D

β-SiTe the phonon dispersions are calculated using density functional perturba-

tion theory (DFPT). PHONOPY package is used to get these dispersions from

the 2nd order force constants. Fig. 4.7a shows the phonon dispersions obtained in

this work while fig. 4.7b shows the phonon spectra obtained by YU Chen et al.

Our computed results are in excellent agreement with their data except for the

negative frequencies near Γ point, which can be achieved by using a huge supercell

but those calculations will be computationally much more expensive.
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(a)

(b)

Figure 4.7: Phonon dispersions curves of β-SiTe
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4.6 Phonon Density of States

To investigate the thermdynamic properties, the phonon density of states are

required. Fig. 4.8 shows the total and partial phonon density of states versus

frequency for β-SiTe. The contribution of atomic vibrations to the particular

frequency range can be seen from the partial Phonon DOS, Where the heavy Te

atom mainly contribute to the lower phonon branches while the light Si atom has

great contribution to the upper phonon branches.
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Figure 4.8: Total and partial phonon density of states of β-SiTe.
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4.7 Lattice Thermal conductivity

The lattice thermal conductivity of β-SiTe is calculated from the harmonic and

third-order anharmonic force constants determined using density functional per-

turbation theory (DFPT). A mesh of 16× 16× 1 q-points with the default scale-

broad value of 1.0 is used. The lattice thermal conductivity of β-SiTe versus

temperature is given in fig. 4.9, where one can see the decreasing behaviour of

thermal conductivity with temperature. At room temperature the lattice ther-

mal conductivity is 0.13525× 10−2W/mK, which is 3 order of magnitude smaller

than the value obtained by wang et al [84]. The very low value of lattice thermal

conductivity is due to the negative phonon frequencies.

Figure 4.9: Lattice thermal conductivity versus temperature of β-SiTe
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4.8 Lattice thermal conductivity (RTA)

The lattice thermal conductivity in relaxation time approximation is given in

fig. 4.10, where the quantity ∆λ in the expression Fλ = τ 0λ(vλ + ∆λ) is taken

as zero, which gives the deviation of phonon mode and corresponding heat cur-

rent from RTA prediction. One can see the effect of this deviation on thermal

conductivity by comparing fig. 4.9 and fig. 4.10

Figure 4.10: Lattice thermal conductivity versus temperature of β-SiTe within

RTA
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4.9 Cumulative Thermal conductivity

The cumulative lattice thermal conductivity versus maximum mean free path

(MFP) at room temperature is given in fig. 4.11, where only phonons below

a threshold mean free path are considered as these phonons are more relevant

to the thermal conductivity. These quantities play a significant role since they

predict the effects that the size of materials has on lattice thermal conductivity.

It can be observed from the plot that with the increase of MFP, the cumulative

lattice thermal conductivity increases until the MFP reaches a threshold value.

The cumulative thermal conductivity reaches it’s maximum value at of 0.135 ×
10−2W/mK at maximum mean free path of 14.17 nm.
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Figure 4.11: Cumulative lattice thermal conductivity versus maximum MFP of

β-SiTe
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4.10 Specific Heat

Heat capacity Cv is of great importance in condensed matter physics since it pro-

vide essential information about the vibrational properties of the system. The

heat capacity Cv of β-SiTe is plotted against the temperature in fig. 4.12. The

rapid increase in the Cv with the rise in temperature below 300K can be seen

from the plot. The Cv is nearly propertional to T 3 which results from the an-

harmoic approximation. As the temperature increases this anharmonic effect on

heat capacity reduces and thus above the room temperature, Cv approaches to a

constant value [Cv(T ) = 3R], obeying the Dulong-petit law. Additionally, it can

also be inferred from the strong dependence of Cv on temperature below 300K

that the atomic interaction favorably occur at low temperatures.
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Figure 4.12: Heat capacity of β-SiTe versus temperature
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4.11 Scattering Rates

The room temperature frequency dependent scattering rates of β-SiTe are pre-

sented in fig. 4.13 where the rates below 20 THz corresponds to the acoustic

modes while those above 40 THz corresponds to the optical phonon modes. The

total thermal conductivity has higher contribution from acoustic branches com-

pare to that from the optical modes. Such high scattering rates greatly reduces

the lattice thermal conductivity.
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Figure 4.13: Phonon scattering rates in β-SiTe at room temperature calculated

using 16× 16× 1 q-point grid.
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4.12 Figure of Merit

Finally the total figure of merit for β-SiTe is obtained after calculating the lattice

thermal conductivity and is expressed as

ZT =
S2σT

κe + κ`
(4.2)

The constant relaxation time as obtained by Wang et al for β-SiTe is 31fs and

81fs for electrons and holes, respectively [84]. The figure of merit (ZT) is plotted

versus temperature in fig. 4.14. An increasing behaviour of figure of merit With

the addition of κ` can be observed.

Figure 4.14: Figure of merit versus temperature of β-SiTe
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At room temperature, the ZT has a value of 0.831 for a chemical potential of µ−
µ0 = 1.7091(eV ). The room temperature results for thermodynamic properties

are given in table 4.1

Table 4.1: The room temperature results for thermoelectric coeffcients and figure
of merit ZT of β-SiTe

Seebeck Coefficient ZT(κ` = 0) κ` Specific Heat (Cv) ZT (κ` 6= 0)

290 µV/K 0.96 (300k) 0.13× 10−2W/mK 305.5 J/mol K 0.78 (800k)
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Chapter 5

Conclusions

In this work the thermoelectric properties of novel 2 dimensional β-SiTe are in-

vestigated. Density functional theory was used along with Boltzmann transport

equation to describe these thermoelectric properties. Firstly, to examine the elec-

tronic structure, the generalized gradient approximation developed by Perdew,

Burke and Ernzerhof (PBE-GGA) was used. The electronic band structure and

density of states were found in consistence with the previous theoretical data.

Then the BoltzTraP code was used to calculate the electronic transport coeffi-

cients such as the conductivities and Seebeck coefficient. The figure of merit ZT

was calculated using these transport coefficients while keeping the lattice thermal

conductivity equals to 0 in the first part.

The second-order harmonic and third-order anharmonic force constants were cal-

culated using Phonopy code and thirdorder.py respectively. Using these harmonic

and anharmonic force constants the lattice thermal conductivity and all the lat-

tice dependent transport properties were computed using Boltzmann transport

equation implemented in ShengBTE code. Finally the calculated lattice thermal

conductivity was added to the figure of merit ZT equation which characterizes

the efficiency of thermoelectric materials.
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Some major findings of this work are as follows:

• The maximum value of Seebeck coefficient of β-SiTe at room temperature

is 290 µV/K.

• The room temperature figure of merit of β-SiTe for κ` = 0 as obtained from

the BoltzTraP code is equal to 0.98

• The Specific heat Cv and lattice thermal conductivity κ` at room temper-

ature is 305.5 J/mol K and 1.35× 10−3 W/m K, respectively.

• The figure of merit obtained after adding the lattice thermal conductivity

to the equation is ZT = 0.78, at 800k.

• β-SiTe is a potential candidate as thermoelectric material at high temper-

atures.
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