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Abstract 
 

Software inspections aim to find defects early in the 

development process and studies have found them to be 

effective.  However, there is almost no data available 

regarding the impact of UML diagram utilization in 

software requirements specification documents on 

inspection effectiveness. This paper addresses this 

issue by investigating whether inclusion of UML 

diagrams impacts the effectiveness of requirements 

inspection. We conducted an experiment in an 

academic environment with 35 subjects to empirically 

investigate the impact of UML diagram inclusion on 

requirements inspections’ effectiveness and the number 

of reported defects. 

The results show that including UML diagrams in 

requirements specification document significantly 

impacts the number of reported defects, and there is no 

significant impact on the effectiveness of individual 

inspections. 

 

 

1. Introduction 
 

Since Fagan’s initial work on inspections [1], a long 
history of experience and experimentation has 
produced a significant body of knowledge concerning 
the effectiveness of software inspections [2]. A 
properly conducted inspection may remove between 
60% and 90% of existing defects [2]. Hence, software 
inspection provides a powerful way to improve the 
quality and productivity of the software process [3]. 

Various researchers have conducted studies to 
improve effectiveness of software inspections [4, 5]. 
Considerable research has been carried out on the 
structure of the inspection process. Researchers have 
developed several new process models that have been 
empirically evaluated and validated. Other studies have 

focused on particular methods, tools and models that 
support the structure of the inspection process. 

Defect detection in requirements documents is one 
of the most effective and efficient quality assurance 
techniques in software engineering [6]. The Unified 
Modeling Language (UML) provides visualization and 
modeling support, and has its roots in object-oriented 
concepts [7]. Object-oriented modeling with UML 
diagrams has an important place in software 
development. Effects of defects in UML models were 
investigated [8]. In practice, it is common to see 
requirements documents that include UML diagrams.  

Software inspections include an individual reading 
step, where inspectors read the artifacts alone and 
record any detected defects. Individual reading of 
artifacts relies on the reader’s attributes, such as the 
inspector’s educational background and experience [5]. 
In this paper, we focus on this individual defect 
detection step. To improve the output of the individual 
reading step, checklists and special reading guidelines 
such as special Object-Oriented Reading Techniques 
(OORTs) have been generated [9, 4, 10]. 

This paper does not propose a new method to 
improve effectiveness of requirements inspections. It 
presents an initial examination of whether inclusion of 
UML diagrams impacts requirements inspections’ 
effectiveness. We undertook a study to investigate the 
following research questions: 

RQ1) For requirements inspections, is the individual 
defect reporting rate affected by utilizing UML 
diagrams in the requirements specification document?  

RQ2) For requirements inspections, is the individual 
inspector’s defect detection rate affected by including 
UML diagrams in Software Requirements 
Specifications (SRSs)? (In other words, we study if 
individual inspection is more effective due to inclusion 
of UML diagrams (use cases and class diagrams) in the 
requirements specification document). 
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2. Study context 
 
For initial work on UML diagrams’ impact on 

requirements inspection effectiveness, we used two 
types of UML diagrams: Use cases and analysis class 
diagrams. We selected these diagrams because these 
are commonly utilized during the requirements 
specification phase. 

 

3. Experimental setup 
 

The study was conducted in classroom settings at 
Bilkent University during the Spring semester of 2009. 
In this study, we examined the following hypothesis 
about requirements inspection effectiveness, reporting 
defects and whether the requirements document 
included UML diagrams. For each hypothesis, the null 
hypothesis is followed by the alternative hypothesis:  

H10: The number of defects reported by an 
inspector is not affected by including UML diagrams 
(use cases and class diagrams) in the requirements 
document inspected.  

H11: The number of defects reported by an 
inspector is affected by including UML diagrams (use 
cases and class diagrams) in the requirements 
document inspected.  

H20: The effectiveness of an inspector (the number 
of defects detected by an inspector) is not affected by 
including UML diagrams (use cases and class 
diagrams) in the requirements document inspected.  

H21: The effectiveness of an inspector (the number 
of defects detected by an inspector) is affected by 
including UML diagrams (use cases and class 
diagrams) in the requirements document inspected.  

 
3.1. Experimental variables 
 

The independent variable in this experiment was 
whether the requirements document contained UML 
diagrams (use case and class diagrams) or not. 

The dependent variables included: 
Number of reported defects: The total number of 

defects reported by each subject reflects the number of 
possible improvements that should be made as a result 
of the individual inspection process. 

Number of correctly detected defects: The total 
number of defects that were correctly detected or found 
by an individual inspector is a measure the of inspection 
process’s effectiveness.  

Some subjects may report defects that do not exist 
in our defect list. Thus, not all of the reported defects 
are defects that are detected correctly. To evaluate if 
UML diagram inclusion in a requirements document 
impacts these variables, we measure them both. 

 

3.2. Subjects 
 

The 35 subjects were volunteer senior students of 
two different sections of CTIS494-Software Quality 
Assurance, a technical elective course. Overall, the 
subjects had programming experience in an academic 
setting and, an average of six months’ experience in 
industrial settings. They had little experience with 
software inspections. They were previously trained on 
individual reading techniques, including checklist-based 
reading, perspective based reading and usage based 
reading. All of the subjects used the same checklist 
used in the study during a class exercise. The subjects 
had experience in software engineering, developing 
UML diagrams, and writing SRS documents. 

 
3.3. Materials 
 

The experiment used two major artifacts from: 
Cause Effect Graphing System (CEGS) and Quality 
Function Deployment Online System (QFDOS). For 
each system, there were two requirements documents: 
One with UML diagrams and another without UML 
diagrams. The UML diagrams used were use case 
diagrams and class diagrams. 

 The artifacts with UML diagrams did not include 
use case descriptions and explanations about class 
diagrams. For both CEGS and QFDOS systems, the 
artifacts with UML diagrams had the same 
requirements set, written in natural language, as the 
corresponding artifact without UML diagrams.  

Table 1 presents UML diagram details of the 
artifacts. 

 
Table 1. Artifacts with UML diagrams 

 
Artifact #  of 

UseCase 
Diagrams 

#  of 
Use 

Cases 

#  of 
Class 

Diagrams 

 # of 
Classes 

CEGS 
UML 

1 5 1 4 

OFDOS 
UML 

3 20 1 10 

 
CEGS had 15, and QFDOS included 18 

requirements. The same defects were seeded to the 
UML and non-UML versions of the requirements 
documents. Five defects were seeded to QFDOS-related 
requirements and six defects were seeded to CEGS-
related requirements. In non-UML versions, 
information presented by UML diagrams was provided 
in natural language as textual explanations and in the 
same place before the functional requirements. 

The subjects were also given a checklist to refer to 
while inspecting the artifacts. The checklist used 
throughout the experiment was the same for all 
artifacts. We used the standard defect report form by 
Carver, Nagappan and Page as the checklist [5]. 

Third International Symposiumm on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE  
507



Has UML?

10

D
e
f
e
c
t
s
 
R
e
p
o
r
t
e
d

20

15

10

5

0

62

QFD

CEG

Case

Has UML?

10

D
e
f
e
c
t
s
 
F
o
u
n
d

6

5

4

3

2

1

0

QFD

CEG

Case

  

 
3.5 Study Design 

 
The subjects previously were informed about 

software requirements inspections and different reading 
techniques. The subjects did not study descriptions of 
the systems previously. The study was conducted in 
two days. Two days after the study was conducted by 
Section 1 students, it was conducted by Section 2 
students. Each student inspected two different artifacts 
(one with UML and one without UML diagrams) one 
after another on the same day. The order of artifact 
distribution is presented in Table 2. 

 
Table 2. Artifact subject distribution 

 
Section I Section II 

CEGS with UML: 2 pages  CEGS: 1 page 

QFDOS: 2 pages  QFDOS with UML: 6 
pages 

Total subjects:13 Total subjects:22 

 
For each artifact, the allotted time for the inspection 

task was 30 minutes. The subjects had to follow the 
checklist and analyze the given artifacts for defects. 
They were requested to document each defect in the 
same form used to describe defect classes (omission, 
ambiguous information, inconsistent information, 
incorrect fact, extraneous and miscellaneous).  

For each defect reported, the subjects were 
requested to state the corresponding defect class and 
write descriptions of the defects.  

 

4. Data analysis and results 
 
We collected 70 valid inspection documents from 

the 35 subjects. Each subject inspected two 
requirements documents. We counted the number of 
defects reported and the number of defects detected by 
each inspector. 

The descriptive statistics are presented in Table 3, 
while the box-plots in Fig. 1 shows graphically the 
number of detects reported and detected for different 
specification documents with or without UML 
diagrams. 

 
Table 3. Descriptive statistics 

 
Defects Reported Defects Detected  

Has Mean Std. 

Deviation 

Mean Std. 

Deviation 

 
N 

0: No 9,54 2,934 1,66 1,259 35 

1: Yes 7,77 2,197 2,17 1,424 35 

Total 8,66 2,723 1,91 1,359 70 

 
For all statistical tests reported in this paper, we 

have used an alpha value of 0.05. 

 

Figure 1. Defects reported and detected and requirements document with (Has UML:1) or without 
UML(Has UML:0).
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4.1. H1: Defect report rate 

 
We used one-way ANOVA to observe the impact of 

including UML diagrams in the requirements document 
on the number of defects reported by individual 
inspectors. All of the assumptions of ANOVA were 
satisfied. 

The ANOVA was significant F (1. 68) = 8.174,    p 
= 0.006, η2 = 0.107 (Table 4).  10.7% of variance in the 
number of defects reported is explained by the 
utilization of UML diagrams. This result allows H10 to 
be rejected in favor of H11. The inclusion of use cases 
and class diagrams in SRS impacts the number of 
defects reported by the subjects. 

 
Table 4. Test of the ANOVA (Defects reported) 

 

  

Sum of 
Squares df 

Mean 
Square F Sig. 

Between 
Groups 

54.914 1 54.914 8.174 0.006 

Within 
Groups 

456.857 68 6.718     

Total 511.771 69       

R Squared = 0.107 (Adjusted R Squared=0.094) 
 

4.2. H2: Defect detection rate (inspection 

effectiveness) 
 

We used one-way ANOVA to observe the impact of 
including UML diagrams in the requirements document 
on the number of defects detected by individual 
inspectors. All of the assumptions of ANOVA were 
satisfied. 

The ANOVA was not significant F (1. 68) = 2.562,    
p = 0.114, η2 = 0.036 (Table 5). 

The subjects reported more defects when they 
inspect requirements documents without UML 
diagrams than when they inspect those with UML 
diagrams. The mean values for both CEGS and QFDOS 
are very close in the case of documents with UML 
diagrams’ inspections. 

 
Table 5. Test of the ANOVA (Defects detected) 

 

  

Sum of 
Squares df 

Mean 
Square F Sig. 

Between 
Groups 

4.629 1 4.629 2.562 0.114 

Within 
Groups 

122.857 68 1.807     

Total 127.486 69       

R Squared = 0.036 (Adjusted R Squared=0.022) 
 

5. Threats to validity 
 
As with any empirical study, this experiment 

exhibits a number of threats to internal and external 
validity. Internal validity investigates if the treatment 
causes the outcome; external validity deals with 
generalization [11]. 

The threat of a selection bias is the primary threat to 
internal validity. The subjects who participated in this 
study may have been the major source of the observed 
result. In this study, the subjects were selected based on 
their sections of an elective course. The participants did 
not receive any compensation for participation in the 
study. Thus, we expect the level of motivation of each 
subject to be similar. 

The subjects are students. They may not be 
representative of real developers. We believe that this 
study helped not only the researchers but provided 
benefits to the students as suggested by [12]. This study 
may be considered as a pilot study during which the 
subjects have had the opportunity to learn and apply 
requirements inspections reading techniques. In 
practice, not the most experienced and qualified 
engineers perform inspections, thus this threat may be 
alleviated to some degree by assuming that the student 
subjects are representative to a reasonable degree [13]. 

The representativeness of the artifacts used is a 
threat to external validity. The requirements documents 
used in the study may not be reflective of an actual 
requirements document. This threat is addressed by the 
fact that the artifacts used in the study are shortened 
versions of real projects on QFDOS and CEGS. 

There is the possibility of experimenter bias. The 
researcher who conducted the experiment and the 
instructor who trained the students on software 
inspections is the same person. Thus, the results of the 
experiment might be influenced by the experimenter. 
On the other hand, since the researcher and the 
instructor is the same, their goals did not conflict [12]. 

Common to any empirical study, researchers cannot 
draw general conclusions based solely on the results of 
one study. 

 

6. Conclusions and future work 
 
The main goal of this study is to investigate the 

impact of UML diagram utilization in SRSs on 
inspection effectiveness and defects reported by 
individual inspectors. 

The analysis is based on empirical data collected 
during an experiment in an academic setting with 35 
participating inspectors. 

We analyzed the impact of UML diagram utilization 
in SRSs on the individual effectiveness and defect 
reporting rate during inspection. The analysis showed 
that inspectors report more defects when they inspect 
documents without UML diagrams. We also observed 
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that the mean values for the number of defects detected 
are almost the same for both CEGS and QFDOS. On 
the average, the inspectors reading documents including 
UML diagrams detected more defects than those who 
inspected requirements documents without UML 
diagrams. 

From a practical point of view we see these results 
as important because they reveal initial information on 
impact of including UML diagrams in SRS documents 
influencing the number of defects reported and detected 
by individual inspectors. However, we need to collect 
more data to establish greater external validity to these 
results. Therefore, we encourage the external 
replication of this study by different researchers.  

We are planning to run the experiment at different 
academic settings and with professional subjects at 
software companies.  
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