
An Experiment to Observe the Impact of UML Diagrams on the Effectiveness

of Software Requirements Inspections

Özlem Albayrak
Computer Technology and Information Systems

Bilkent University

Ankara, Turkey

ozlemal@bilkent.edu.tr

Abstract

Software inspections aim to find defects early in the

development process and studies have found them to be

effective. However, there is almost no data available

regarding the impact of UML diagram utilization in

software requirements specification documents on

inspection effectiveness. This paper addresses this

issue by investigating whether inclusion of UML

diagrams impacts the effectiveness of requirements

inspection. We conducted an experiment in an

academic environment with 35 subjects to empirically

investigate the impact of UML diagram inclusion on

requirements inspections’ effectiveness and the number

of reported defects.

The results show that including UML diagrams in

requirements specification document significantly

impacts the number of reported defects, and there is no

significant impact on the effectiveness of individual

inspections.

1. Introduction

Since Fagan’s initial work on inspections [1], a long
history of experience and experimentation has
produced a significant body of knowledge concerning
the effectiveness of software inspections [2]. A
properly conducted inspection may remove between
60% and 90% of existing defects [2]. Hence, software
inspection provides a powerful way to improve the
quality and productivity of the software process [3].

Various researchers have conducted studies to
improve effectiveness of software inspections [4, 5].
Considerable research has been carried out on the
structure of the inspection process. Researchers have
developed several new process models that have been
empirically evaluated and validated. Other studies have

focused on particular methods, tools and models that
support the structure of the inspection process.

Defect detection in requirements documents is one
of the most effective and efficient quality assurance
techniques in software engineering [6]. The Unified
Modeling Language (UML) provides visualization and
modeling support, and has its roots in object-oriented
concepts [7]. Object-oriented modeling with UML
diagrams has an important place in software
development. Effects of defects in UML models were
investigated [8]. In practice, it is common to see
requirements documents that include UML diagrams.

Software inspections include an individual reading
step, where inspectors read the artifacts alone and
record any detected defects. Individual reading of
artifacts relies on the reader’s attributes, such as the
inspector’s educational background and experience [5].
In this paper, we focus on this individual defect
detection step. To improve the output of the individual
reading step, checklists and special reading guidelines
such as special Object-Oriented Reading Techniques
(OORTs) have been generated [9, 4, 10].

This paper does not propose a new method to
improve effectiveness of requirements inspections. It
presents an initial examination of whether inclusion of
UML diagrams impacts requirements inspections’
effectiveness. We undertook a study to investigate the
following research questions:

RQ1) For requirements inspections, is the individual
defect reporting rate affected by utilizing UML
diagrams in the requirements specification document?

RQ2) For requirements inspections, is the individual
inspector’s defect detection rate affected by including
UML diagrams in Software Requirements
Specifications (SRSs)? (In other words, we study if
individual inspection is more effective due to inclusion
of UML diagrams (use cases and class diagrams) in the
requirements specification document).

Third International Symposiumm on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE
506

2. Study context

For initial work on UML diagrams’ impact on

requirements inspection effectiveness, we used two
types of UML diagrams: Use cases and analysis class
diagrams. We selected these diagrams because these
are commonly utilized during the requirements
specification phase.

3. Experimental setup

The study was conducted in classroom settings at
Bilkent University during the Spring semester of 2009.
In this study, we examined the following hypothesis
about requirements inspection effectiveness, reporting
defects and whether the requirements document
included UML diagrams. For each hypothesis, the null
hypothesis is followed by the alternative hypothesis:

H10: The number of defects reported by an
inspector is not affected by including UML diagrams
(use cases and class diagrams) in the requirements
document inspected.

H11: The number of defects reported by an
inspector is affected by including UML diagrams (use
cases and class diagrams) in the requirements
document inspected.

H20: The effectiveness of an inspector (the number
of defects detected by an inspector) is not affected by
including UML diagrams (use cases and class
diagrams) in the requirements document inspected.

H21: The effectiveness of an inspector (the number
of defects detected by an inspector) is affected by
including UML diagrams (use cases and class
diagrams) in the requirements document inspected.

3.1. Experimental variables

The independent variable in this experiment was
whether the requirements document contained UML
diagrams (use case and class diagrams) or not.

The dependent variables included:
Number of reported defects: The total number of

defects reported by each subject reflects the number of
possible improvements that should be made as a result
of the individual inspection process.

Number of correctly detected defects: The total
number of defects that were correctly detected or found
by an individual inspector is a measure the of inspection
process’s effectiveness.

Some subjects may report defects that do not exist
in our defect list. Thus, not all of the reported defects
are defects that are detected correctly. To evaluate if
UML diagram inclusion in a requirements document
impacts these variables, we measure them both.

3.2. Subjects

The 35 subjects were volunteer senior students of
two different sections of CTIS494-Software Quality
Assurance, a technical elective course. Overall, the
subjects had programming experience in an academic
setting and, an average of six months’ experience in
industrial settings. They had little experience with
software inspections. They were previously trained on
individual reading techniques, including checklist-based
reading, perspective based reading and usage based
reading. All of the subjects used the same checklist
used in the study during a class exercise. The subjects
had experience in software engineering, developing
UML diagrams, and writing SRS documents.

3.3. Materials

The experiment used two major artifacts from:
Cause Effect Graphing System (CEGS) and Quality
Function Deployment Online System (QFDOS). For
each system, there were two requirements documents:
One with UML diagrams and another without UML
diagrams. The UML diagrams used were use case
diagrams and class diagrams.

 The artifacts with UML diagrams did not include
use case descriptions and explanations about class
diagrams. For both CEGS and QFDOS systems, the
artifacts with UML diagrams had the same
requirements set, written in natural language, as the
corresponding artifact without UML diagrams.

Table 1 presents UML diagram details of the
artifacts.

Table 1. Artifacts with UML diagrams

Artifact # of

UseCase
Diagrams

of
Use

Cases

of
Class

Diagrams

 # of
Classes

CEGS
UML

1 5 1 4

OFDOS
UML

3 20 1 10

CEGS had 15, and QFDOS included 18

requirements. The same defects were seeded to the
UML and non-UML versions of the requirements
documents. Five defects were seeded to QFDOS-related
requirements and six defects were seeded to CEGS-
related requirements. In non-UML versions,
information presented by UML diagrams was provided
in natural language as textual explanations and in the
same place before the functional requirements.

The subjects were also given a checklist to refer to
while inspecting the artifacts. The checklist used
throughout the experiment was the same for all
artifacts. We used the standard defect report form by
Carver, Nagappan and Page as the checklist [5].

Third International Symposiumm on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE
507

Has UML?

10

D
e
f
e
c
t
s

R
e
p
o
r
t
e
d

20

15

10

5

0

62

QFD

CEG

Case

Has UML?

10

D
e
f
e
c
t
s

F
o
u
n
d

6

5

4

3

2

1

0

QFD

CEG

Case

3.5 Study Design

The subjects previously were informed about

software requirements inspections and different reading
techniques. The subjects did not study descriptions of
the systems previously. The study was conducted in
two days. Two days after the study was conducted by
Section 1 students, it was conducted by Section 2
students. Each student inspected two different artifacts
(one with UML and one without UML diagrams) one
after another on the same day. The order of artifact
distribution is presented in Table 2.

Table 2. Artifact subject distribution

Section I Section II

CEGS with UML: 2 pages CEGS: 1 page

QFDOS: 2 pages QFDOS with UML: 6
pages

Total subjects:13 Total subjects:22

For each artifact, the allotted time for the inspection

task was 30 minutes. The subjects had to follow the
checklist and analyze the given artifacts for defects.
They were requested to document each defect in the
same form used to describe defect classes (omission,
ambiguous information, inconsistent information,
incorrect fact, extraneous and miscellaneous).

For each defect reported, the subjects were
requested to state the corresponding defect class and
write descriptions of the defects.

4. Data analysis and results

We collected 70 valid inspection documents from

the 35 subjects. Each subject inspected two
requirements documents. We counted the number of
defects reported and the number of defects detected by
each inspector.

The descriptive statistics are presented in Table 3,
while the box-plots in Fig. 1 shows graphically the
number of detects reported and detected for different
specification documents with or without UML
diagrams.

Table 3. Descriptive statistics

Defects Reported Defects Detected

Has Mean Std.

Deviation

Mean Std.

Deviation

N

0: No 9,54 2,934 1,66 1,259 35

1: Yes 7,77 2,197 2,17 1,424 35

Total 8,66 2,723 1,91 1,359 70

For all statistical tests reported in this paper, we

have used an alpha value of 0.05.

Figure 1. Defects reported and detected and requirements document with (Has UML:1) or without
UML(Has UML:0).

Third International Symposiumm on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE
508

4.1. H1: Defect report rate

We used one-way ANOVA to observe the impact of

including UML diagrams in the requirements document
on the number of defects reported by individual
inspectors. All of the assumptions of ANOVA were
satisfied.

The ANOVA was significant F (1. 68) = 8.174, p
= 0.006, η2 = 0.107 (Table 4). 10.7% of variance in the
number of defects reported is explained by the
utilization of UML diagrams. This result allows H10 to
be rejected in favor of H11. The inclusion of use cases
and class diagrams in SRS impacts the number of
defects reported by the subjects.

Table 4. Test of the ANOVA (Defects reported)

Sum of
Squares df

Mean
Square F Sig.

Between
Groups

54.914 1 54.914 8.174 0.006

Within
Groups

456.857 68 6.718

Total 511.771 69

R Squared = 0.107 (Adjusted R Squared=0.094)

4.2. H2: Defect detection rate (inspection

effectiveness)

We used one-way ANOVA to observe the impact of
including UML diagrams in the requirements document
on the number of defects detected by individual
inspectors. All of the assumptions of ANOVA were
satisfied.

The ANOVA was not significant F (1. 68) = 2.562,
p = 0.114, η2 = 0.036 (Table 5).

The subjects reported more defects when they
inspect requirements documents without UML
diagrams than when they inspect those with UML
diagrams. The mean values for both CEGS and QFDOS
are very close in the case of documents with UML
diagrams’ inspections.

Table 5. Test of the ANOVA (Defects detected)

Sum of
Squares df

Mean
Square F Sig.

Between
Groups

4.629 1 4.629 2.562 0.114

Within
Groups

122.857 68 1.807

Total 127.486 69

R Squared = 0.036 (Adjusted R Squared=0.022)

5. Threats to validity

As with any empirical study, this experiment

exhibits a number of threats to internal and external
validity. Internal validity investigates if the treatment
causes the outcome; external validity deals with
generalization [11].

The threat of a selection bias is the primary threat to
internal validity. The subjects who participated in this
study may have been the major source of the observed
result. In this study, the subjects were selected based on
their sections of an elective course. The participants did
not receive any compensation for participation in the
study. Thus, we expect the level of motivation of each
subject to be similar.

The subjects are students. They may not be
representative of real developers. We believe that this
study helped not only the researchers but provided
benefits to the students as suggested by [12]. This study
may be considered as a pilot study during which the
subjects have had the opportunity to learn and apply
requirements inspections reading techniques. In
practice, not the most experienced and qualified
engineers perform inspections, thus this threat may be
alleviated to some degree by assuming that the student
subjects are representative to a reasonable degree [13].

The representativeness of the artifacts used is a
threat to external validity. The requirements documents
used in the study may not be reflective of an actual
requirements document. This threat is addressed by the
fact that the artifacts used in the study are shortened
versions of real projects on QFDOS and CEGS.

There is the possibility of experimenter bias. The
researcher who conducted the experiment and the
instructor who trained the students on software
inspections is the same person. Thus, the results of the
experiment might be influenced by the experimenter.
On the other hand, since the researcher and the
instructor is the same, their goals did not conflict [12].

Common to any empirical study, researchers cannot
draw general conclusions based solely on the results of
one study.

6. Conclusions and future work

The main goal of this study is to investigate the

impact of UML diagram utilization in SRSs on
inspection effectiveness and defects reported by
individual inspectors.

The analysis is based on empirical data collected
during an experiment in an academic setting with 35
participating inspectors.

We analyzed the impact of UML diagram utilization
in SRSs on the individual effectiveness and defect
reporting rate during inspection. The analysis showed
that inspectors report more defects when they inspect
documents without UML diagrams. We also observed

Third International Symposiumm on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE
509

that the mean values for the number of defects detected
are almost the same for both CEGS and QFDOS. On
the average, the inspectors reading documents including
UML diagrams detected more defects than those who
inspected requirements documents without UML
diagrams.

From a practical point of view we see these results
as important because they reveal initial information on
impact of including UML diagrams in SRS documents
influencing the number of defects reported and detected
by individual inspectors. However, we need to collect
more data to establish greater external validity to these
results. Therefore, we encourage the external
replication of this study by different researchers.

We are planning to run the experiment at different
academic settings and with professional subjects at
software companies.

Acknowledgment

We wish to thank the subjects who collaborated
with us.

References

[1] M. E. Fagan, “Design and code inspections to reduce
errors in program development”, IBM Systems Journal,
Vol. 15, No. 3, 1976, pp. 182–211.

[2] Ackermann, C., F. Shull, R. Carbon, C. Denger, and M.
Lindvall, ”Assessing the Quality Impact of Design
Inspections,” Proc. of the First International Symposium
on Empirical Software Engineering and Measurement.
2007, pp.470-472.

[3] A. Aurum, H. Petersson, and C. Wohlin, 2002. “State-
of-the-art: Software Inspections After 25 Years,”

Software Testing, Verification and Reliability.vol. 12,
2002, pp.133-154.

[4] R. Conradi, P. Mohagheghi, T. Arif, L. C. Hegde, G. A.
Bunde, and A. Pedersen, “Object-oriented Reading
Techniques for Inspection of UML Models . An
Industrial Experiment,” Proc. ECOOP 2003, LNCS
2743, 2003, pp. 483-500.

[5] J. Carver, N. Nagappan, and A. Page, “The Impact of
Educational Background on the Effectiveness of
Requirements Inspections: An Empirical Study”, IEEE
Trans. on Software Engineering, vol.34, 2008, pp.800-
812.

[6] A. Porter, L. Votta, V. Basili, “Comparing Detection
Methods for Software Requirements Inspections: A
Replicated Experiment,” IEEE Trans. on Software
Engineering, vol. 21, 1995, pp.563-575.

[7] Booch, G., J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide. Addison-Wesley,
1999.

[8] C.F.J. Lange, and M.R.V. Chaudron, “Effects of Defects
in UML Models – An Experimental Investigation,”
Proc. ICSE 2006, May 20–28, 2006, pp.401-410.

[9] G.H. Travassos, F. Shull, J. Carver, and V.R. Basili,
“Reading Techniques for OO Design Inspections,”
Proc. Twenty-Forth Annual Software Engineering
Workshop, NASA-SEL, Greenbelt, MD, Dec. 1999.

[10] O. Laitenberger, C. Atkison, and K. El-Emam, “Using
Inspection Technology in Object-Oriented Development
Projects” Technical Report NRC/ERB-1077, June 2000.

[11] Wohlin, C., P. Runeson, M. Höst, M. C. Ohlsson, B.
Regnell, and A. Wesslen, Experimentation in Software
Engineering: An Introduction, Kluwer Academic
Publishers, 1999.

[12] J. Carver, L. Jaccheri, S. Morasca, and F. Shull, “Using
empirical studies during software courses,” ESERNET
2001-2003, 2003, pp.81-103.

[13] S. Biffl, and M. Halling, “Investigating the Influence of
Inspector Capability Factors With Four Inspection
Techniques on Inspection Performance,” Proc. IEEE
Symp. Software Metrics (METRICS 02), 2002, pp.1-11.

Third International Symposiumm on Empirical Software Engineering and Measurement

978-1-4244-4841-8/09/$25.00 ©2009 IEEE
510

