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Adaptive Human Pilot Model for Uncertain Systems

S. S. Tohidi! and Y. Yildiz!

Abstract— Inspired by humans’ ability to adapt to changing
environments, this paper proposes an adaptive human model
that mimics the crossover model despite input bandwidth
deviations and plant uncertainties. The proposed human pilot
model structure is based on the model reference adaptive
control, and the adaptive laws are obtained using the Lyapunov-
Krasovskii stability criteria applied to the overall closed loop
system including the human pilot and the plant. The proposed
model can be employed for human-in-the-loop stability and
performance analyses with different controllers and plant types.
A numerical example is used to demonstrate the effectiveness
of the presented method.

I. INTRODUCTION

Unique abilities of humans such as adaptive behavior
in dynamic environments, and social interaction and moral
judgment capabilities, make humans essential elements of
many control loops, operating in close collaboration with
autonomy. Compared to human control, autonomy provides
higher computational performance and multi-tasking capa-
bilities without any fatigue, stress, or boredom [1], [2].

Apart from their individual strengths, humans and auton-
omy have their own weaknesses. Compared to automatic
control, the probability of human error causing system failure
is higher. Moreover, humans may have anxiety, fear and
unconsciousness during operations. In the tasks that require
increased attention and focus, humans may tend to provide
high gain control inputs which can cause undesired oscil-
lations. One example of this phenomenon, for example, is
the occurrence of pilot induced oscillations (PIO), where
undesired and sustained oscillations are observed due to an
abnormal coupling between the aircraft and the pilot [3], [4],
[5], [6]. Similarly, there exists cases, where the autonomy
fails due to an uncertainty, fault or cyber-attack [7]. Thus,
it may be more preferable to design systems where humans
and automation work in harmony, complementing each other,
resulting in a structure that benefits from the advantages of
both.

A mathematically rigorous investigation of human in the
loop dynamics help develop safe control mechanisms, and
provide a better realization and understanding of human
control actions and limitations [8], [9], [10]. To achieve this
purpose, reliable human mathematical models are required.
One of the first human models in aeronautics is proposed
by McRuer in [11] as a quasi-linear model which can be
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used in closed loop stability analysis [12]. In [13], [14] and
[15], it is emphasized that every control infention has to be
translated to a body movement by the neuromuscular system,
and a transfer function model is proposed illustrating this
observation. Crossover model, another human pilot model
defined in [16], is motivated from the empirical observation
that human pilots adapt their responses in such a way that the
overall open loop system dynamics resembles that of a well-
designed feedback system. Several approaches are developed
to identify the parameters of the two fundamental models,
McRuer and neuromuscular models. In [17], a two-step
method using wavelets and a windowed maximum likelihood
estimation method are exploited for the estimation of time-
varying pilot model parameters. In [18], the Linear Param-
eter Varying model identification framework is incorporated
to estimate time-varying human state space representation
matrices. Subsystem identification is used in [19] to model
the control strategies of the human in the loop.

There also exist pilot models in the literature that mimics
the adaptation ability of humans. In [20] and [21], the
behavior of human in the loop is formulated and adaptive
rules are provided based on expert experiences about human
adaptive behavior in the control loop. The human pilot mod-
els proposed in [20] and [21] are shown, using simulations,
to follow the crossover model. A survey on various human
models can be found in [22] and [23].

In this paper, we built upon the earlier successful models
and propose an adaptive human pilot model that modifies
its behavior based on deviations in the forcing function
(reference input) bandwidth and plant uncertainties. The con-
tribution of this work is developing an adaptive human model
that is shown, using rigorous mathematical analysis, to follow
the crossover model, in the presence of plant uncertainties
and time delays. To the best of authors’ knowledge, this
has not been achieved earlier in the literature. The adaptive
laws are obtained based on the Lyapunov-Krasovskii stability
criteria.

This paper is organized as follow. Section II presents the
crossover law, and introduces the dynamics of the plant,
human neuromuscular system and the reference model. Ob-
taining reference model parameters is discussed in Section
III. Section IV presents the human adaptive control strategy
and the stability analysis. Numerical examples are used in
Section V to illustrate the effectiveness of the proposed
methodology in the simulation environment. Finally, Section
VI concludes the paper.
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Fig. 1: The block diagram of the human adaptive behavior
and decision making in closed loop system.

II. PROBLEM STATEMENT

According to McRuer’s crossover model [16], human
pilots in the control loop behave in a way that results in
an open loop transfer function

You(s) = Ya(9)¥(s) = “—, 1)

near the crossover frequency (w.), where Y}, is the transfer
function of the human pilot and Y}, is the transfer function
of the plant. 7 is the effective time delay, including transport
delays and high frequency neuromuscular lags.

Consider the following plant dynamics
&p(t) = Apxp(t) + Bpuy(t), 2)

where z, € R" is the plant state vector, u, € R™» is
the input vector, A, € R"»*"» is an unknown state matrix,
B, € R">™» is an unknown input matrix.

The human neuromuscular model [24], [11] is represented
in state space form as

Zn(t) = Apzn(t) + Bpu(t — 1) 3)

yh(t) = Chﬁh(t) + Dhu(t — T)7
where z;, € R"™ is the neuromuscular state vector, A; €
R™*™n g the state matrix, B, € R™ ™ is the input
matrix, C, € R™»*"h ig the output matrix and D, €
R™»>™n ig the control output matrix. v € R™" is the
neuromuscular input vector, which represents the control
decisions taken by the human and fed to the neuromuscular
system, y, € R™» is the output vector, and 7 € RV is a
known, constant delay. The neuromuscular model parameters
are assumed to be known and the output of the model, yy,
is used as the plant input u, in (2), that is y;, = up(see fig.
1).

By combining the human pilot and plant states, we obtain

the open loop human-plant dynamics as
|:{,.Ch(t)] _ |: Ah OnthP] [.Z‘h(t):|
ip(t) B,Ch Ap zp (1)
—— S——
Enp(t) Anp

By,
+ {BpDh] u(t — 1),
—_————

Bhp

Thp(t)

“4)

which can be written in the following compact form
Lhp(t) = Anpnp(t) + Brpul(t —7), (5)
T T|T ¢

where z,, = [z} ] Rwtmn) A, €
R(n,,+nh)><(np+nh), Bhp c R(n,,—&-nh)xmh.

The goal is to obtain the input w(¢) in (3), which is
the control decision of the pilot, such that the closed loop
system consisting of the adaptive human pilot model and the
plant follow the output of a unity feedback reference model
with an open loop crossover transfer function. The closed
loop transfer function of the reference model is therefore
calculated as

We o—T$ wce—-rs
GCl(S) = 1 ;ﬂefrs = s +wce*75' (6)
s

An approximation of (6) can be given as

. b 8™ + byy_18™ 4+ . 4+ bg .

G, = 7
1(s) §" 4 ap_18" L+ ... +ag )

where n = nj, + n,, m < n are positive real constants, and
a; and b; for i =0,...,n—1and j =0,...,m — 1, are real
constants to be estimated. The reference model then can be
obtained as the state space representation of (7) as

Em (t) = Ap@m () + Bpr(t — 1), (8)

where z,, € R(™ntn0) is the reference model state vec-
tor, A,, € RMmntnp)x(nntnp) jg the state matrix, B,, €
R(ntnp)xmn jg the input matrix, and r € R™" is the
reference input.

I1I. REFERENCE MODEL PARAMETERS

The crossover transfer function (1) contains the crossover
frequency, w., which is not known a priori. Experimental
data, showing the reference input (r(t)) frequency band-
width, w;, versus crossover frequency w., is provided in [14]
and [16], for plant transfer functions K, K/s and K/s?. We
fit polynomials to these experimental results to obtain the
crossover frequency of the open loop transfer function given
a reference input frequency bandwidth. These polynomials
are given in Table I. It is noted that when the reference input
has multiple frequency components, the highest frequency is
used to calculate the crossover frequency.

Remark 1. In this work, we use the polynomial relationships
provided in Table I for zero, first and second order plant
dynamics with nonzero poles and zeros. Further experimental
work with humans are planned by the authors to obtain more
precise crossover vs reference input frequency relationships.
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TABLE 1

Plant transfer Crossover frequency of the
function open loop transfer function
K we = 0.067w? + 0.099w; + 4.8
K/s we = 0.14w; + 4.3
K/s? we = —0.0031w} — 0.072w? + 0.29w?
—0.13w; + 3

IV. HUMAN CONTROL COMMAND

The adaptive human decision command, u(t), is deter-
mined as

u(t) = K Kpxpp(t +7) + Kor(t) 9)

where K, € R™»*(mntnp) and K, € R™»*™n Using (9)
and (5), the closed loop dynamics can be obtained as

.ihp(t) = (Ahp + B;LPKT.K,J)JJ}LP(LL) + BhpKTT(t - 7).
(10)
Equation (9) describes a non-causal decision command
which requires future values of the states. This problem can
be eliminated by solving the differential equation (5) as a
T-seconds ahead predictor as

Tpp(t +7) = eAhpTxhp(t) + /

—T

0
e~ A By u(t + n)dn.

an
Assumption 1. There exist ideal parameters K and K
satisfying the following matching conditions
Ahp + BhpK:K; =A,,
By K = Bp,.
By substituting (11) into (9), the control input can be
written as
u(t) = K, Kpe ap,,(t)

o, 13)
e~ 2l Byou(t + n)dn + Kr(t).

By defining 6,(t) and A\(t,n) as
0,(t) = K, (t) K (t)et T,

(12)

+ K. K,

A (14)
A(t,m) = K (t)Ka(t)e™ """ By,
the controller (13) can be written as (see fig. 1)
0
u(®) = 0O (®) + [ Mttt + mdn+ K, ()r(t),

- (15)

The ideal values of 6, and A\ can be obtained as

0; = KiKjetrT

(16)

N () = K} Kle m" By,
Since Ap, and Bp, are unknown, ¢, and A need to be
estimated. The closed loop dynamics can be obtained using
(5) and (15) as
Enp(t) = AnpTnp(t) + Bupba(t — T)np(t — 7)
0
+ [ BupAlt = 7,n)u(t +n—7)dn

-7

+ BhpKrT(t — 7'),

a7

Defining the deviations of the adaptive parameters from
their ideal values as 6, = 0, — 03 and A = A — \*, and
adding and subtracting A,,zp,(t) to (17), and using (12),
we have

Thp(t) = AmThp(t) — Brp K K xny(t)
+ BipK(t = 1)K (t = 7) (M7 (= 7)

0 (18)
+ / e~ A By u(t +n— T)dn)

—T

+ Bpp K, (t — 1)r(t — 7).
Using (11), (18) is rewritten as

x.hp(t) = Amxhp(t) - BhpK:Kixhp(t)

+ Bpp K (t — 7) K (t — 7)zpp(t) (19)
+ Bpp K, (t — T)r(t — 7).
Defining the tracking error as e(t) = xpp, — T, and

subtracting (8) from (19), and using (12), and following the
same procedure as given in [25] for unknown input matrices,
we have

B(t) = l"hp - jjm,
= Ape(t) + Bp (Ku(t — 7)zny(t)
+ B (K = K7 (t— 1)K (t— 1)Ko (t — T)Zhp(t)

4+ B (KX V= KNt — 1) Ko (t —7)r(t — 7).
(20)
Using (11) and defining ® = K~' — K, we can rewrite
(20) as

é(t) = Ame(t) + Bp K N (K K, (t —7) — K*K?)
0
X (eA’LPTxhp(t —7)+ / e By u(t 41 — T)dn)
4 B ®(t — 1) (Kr(t Kt — 1) (eAhFTxhp(t )

0
+ / e_AhP"Bhpu(t +n— T)dn)

—T

F KAt —T)r(t— T)).

21
Using (16) and (21), we obtain that
e(t) = Ame(t) + B Ko (t —7) (eAhpTxhp(t —7)
0
+ / e_A"P"Bhpu(t + 17— T)dn)
— B K} (e;xhp(t —7) (22)

+ X (u(t+n— T)dn)

-7

+ B, ®(t — 7)u(t — 1)
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Using (14) and (22), we obtain that

é(t) = Ape(t) + By ((K;l(t — )0t —7) — K1 7L0)

X eyt — ) + / (K7t — At — 1)

— KT () u(t + 5 = 7)dn)
+ B ®(t — m)u(t — 7).
(23)
Defining #; = K, '6, and \; = K, ')\, and using their
deviations from their ideal values 6; = 6; — 07 and A =
A1 — A5, where 07 = K*710* and A} = K*~')\*, we can
rewrite (23) as

é(t) = Ame(t) + Bmby (t — T)app(t — 1)
0
+ B, / ME—rnut+n—T1)dy  (24)
+ B ®(t — )u(t — 1),
Theorem 1. Given the initial conditions 91(5) (& n), ®(8)
and zp,(§) for £ € [—7,0], and w(¢) for ¢ € [—27,0],
there exists a 7* such that for all 7 € [0,7*], the human-

plant system (5), with the controller (15), and the following
adaptive laws

07 (t) = —wnp(t — 7)e(t)" PByy, (25)
®T(t) = —u(t — 7)e(t)' PB,,, (26)
/.\lT(t, n)=—u(t+n-— T)e(t)TPBm, 27

where P is the symmetric positive definite matrix satisfying
the Lyapunov equation AL P+ PA,,, = —Q for a symmetric
positive definite matrix ), follow the crossover model (8),
while all the signals remain bounded. It is noted that the
controller parameters can be obtained using KT = KTCbKT,
0. (t) = K, (t)01(t) and A\(t) = K,-(t)A1(¢).

Proof. Consider a Lyapunov-Krasovskii functional ([26];
[27])

V(t) = eTP€+t7“(‘I>T( )‘1>( ) +tr(6] (1)6:1(¢))

+[ tr()\l (t,n)M(tm))dU

0 t 0 . .
+[T /t+v [TtT(A{(f’n)Al(faW))dﬂdfdv,

8)‘1 . The derlvatlve 0f V( ) can be calculated by
(v)dy = F(b(6) G ~
f (a(t))d‘;?), and the trace operator property tr(X7X) =

(28)

where )\1
using Le1bn1z s rule, that is % f o f

1X||%, as
V(t) = e ()T Pe(t) 4 €T (t)Pé(t) + 2tr(§1T(t)§1(t))

0 .
+2tr(<i>T(t)<I>(t)) +/_ 2tr(5\1T(t,77)5\1(t7n))dn

. o .
+r||01<t>\|%—/ 161 (¢ + 0)|[2.dv

0
+T||<I><t)\|%f/ 16 (t +0)[3dv

—T

e [ Iz

/ / |)\1 (t +v,n)||%dndv.
T (29)

Using (24)-(27), the upper bound of (29) can be obtained as
V(t) < —eT(1)Qe()
+ 27tr(e(t)x£p(t — T anp(t — 7)e(t))tr(PB,, BL P)
+ 2rtr (e(t)u” (t — 7)u(t — 7)e(t)")tr (PB,, B P)

+ 27 /0 tr(e(t)u”

3 t—1+nult—T1+ n)e(t)T)
x tr(PBy, B}, P)dn
< A @le(t)]
[y — m)e(t) |3 BLPI
+ 27 Ju(t — 7)e(t)T| 3| BL P2
0
+or / Ju(t + 17— 7)e(t)T |3 [ BLP|2.dy

-7

< = Amin(@)l]e(t)][?
+ 27l (t = 7)|Plle®)]1* |1 By PllE
+2r(Ju(t — 7)[*[le(®)I || By Pl

0
w2r [t +n =) Pl PIBL Py

- Anin (@)
= IBLPUIOIP( - (5 p

t2r (gt = )| + lult ~ 7|
0
+ [ e+ n=lPdn).

-7

(30)

AninlQ) for the non-positiveness of V(t), we

Defining q¢ = BT P2
need to satisfy

q =27 ([lonp(t = T)I* + [Ju(t -

0
+/ ult + 17— 7)|[dn) > 0.

—T

)lI*+
(31)

It can be shown using proof by induction that (31) is
satisfied for all ¢ > ¢o and 7 € [0,7*], and all the signals
of the system are bounded. Then, using Barbalat’s Lemma,
it can be shown that the error between the human-in-the-
loop system output xj, and the reference model output z,,
converges to zero. It is noted that the error dynamics (24),
the adaptive laws (25)-(27), the Lyapunov function candidate
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Fig. 2: Evolution of human adaptive parameters 6,, and 6,,.

(28) and the inequality (31) that needs to be satisfied to show
the non-positiveness of the Lyapunov function candidate are
similar to those given in [26]. Therefore, the procedure that
needs to be followed to complete the proof can be found in
[26] and omitted here.

The above analysis implies the global stability in
{e, 6,,9, :\1} space. However, we are interested in
{e, 9~1, K,, 5\1} space since K., not @, is used in the calcula-
tion of the control signal. Since ® = K* ' — K !, to ensure
the boundedness of all signals in the closed loop system,
projection algorithm [30] can be used in the adaptive law
for K, as:

K, = Proj(K,, - K, BL Pe(tyu” (t — 7)K,).  (32)

Remark 2. In order to implement the control signal (15),
the integral term is approximated as

0
A(t,m)u(t +n)dn
-7 (33)

~ (Al(t)u(t — A+ o+ A (Bt — mAt)) At.

V. SIMULATION RESULTS

A first order plant Y,(s) = 3%1 is considered. The

neuromuscular dynamics of the human is given as Y} (s) =
2136*0‘38, where the time delay 7 = 0.3 is the effective
time delay, including human decision making delay and
neuromuscular lags. The reference signal r(t) is generated
as a sum of the sinusoid functions with frequencies of
0.16, 0.4, 0.86, 1.33 and 4.2 rad/s with the same amplitude
of 0.2. Thus, the highest frequency component, which is
used in crossover frequency calculations, is w; = 4.2 rad/s.
Employing Table I for the first order plant Y, the crossover
frequency is calculated as w. = 4.88 rad/s. Furthermore,
the reference model can be determined as the state space

representation of G (s) = %670'33, which is
. . . ) ’ —0.3s .
obtained by approximating G (s) = FEfs—os using

MATLAB system identification toolbox.

The overall system, whose block diagram is given in figure
1, is simulated using the mentioned reference signal and
introducing an anomaly at ¢{ = 25 s, which is modeled by
changing the plant model to Y,(s) = 5. Figures 2-4
illustrate the time evolution of human adaptive parameters,
the adaptation laws that are used to obtain which are provided
in (25)-(27). It is noted that a four-point discretization is

4

E=ee

0 10 20 25 30 40 50

Timels]

Fig. 3: Evolution of human adaptive parameters \;, ¢ =
1,2,3 and 4.

20 25 30 40 50
Time[s]

0 10

Fig. 4: Evolution of human adaptive parameter K.

—reference model
—HIL system

0 20 25 40
Time[s]

Fig. 5: Time evolution of the human-in-the-loop (HIL) sys-

tem output ', and the reference model output x,,.

0 20 25 40
Time[s]

Fig. 6: Human adaptive decision-making signal » and the

human output (y3).

2942



used to approximate the integral in (15). Figure 5 shows
how the human-plant system output xy,, is able to follow the
crossover reference model output z,,, before and after the
anomaly at ¢ = 25 s. In figure 6, the human decision-making
signal wu(t) is depicted together with the neuromuscular
system output yy. It is seen that the neuromuscular dynamics
slightly amplifies and delays the decision signal.

VI. CONCLUSIONS

In this paper, an adaptive human pilot model with time
delay, operating based on model reference adaptive control
principles, is proposed. This model mimics the pilot decision
making process by making sure that the overall closed loop
system follows the crossover model in the presence of plant
uncertainties. The stability of the system is shown using
the Lyapunov-Krasovskii stability criteria. It is shown via
simulations that the proposed pilot model is able to track the
crossover model even after an anomaly is introduced to the
system.
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