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ABSTRACT

PERSISTENT CURRENTS IN CARBON NANOTUBES

Sinem Binicioğlu Çetiner

M.S. in Physics

Supervisor: Prof. Dr. Igor O. Kulik

September, 2003

Carbon nanotubes are one of the most important findings of physics in the

recent years. They are of great interest because of their various electrical, and

mechanical features. All the properties of the nanotubes are being investigated

thoroughly.

In my thesis, two dimensional helical potential is introduced. The problem

takes the type of Kronig-Penney model when Hamiltonian is separated into two

parts. I will investigate the persistent currents in helical nanotubes. Persistent

currents are due to the external vector potential. Vector potential was first in-

troduced as a mathematical tool, later Aharonov and Bohm showed that vector

potential has effect on charged particles even there is no magnetic field (i.e. field

is confined into a solenoid).

Keywords: Carbon Nanotubes, Aharonov-Bohm Effect, Persistent Currents,

Kronig-Penney Model.

iii



ÖZET

KARBON NANOTÜPLERDE DEVAMLI AKIMLAR

Sinem Binicioğlu Çetiner

Fizik, Yüksek Lisans

Tez Yöneticisi: Prof. Igor O. Kulik

Eylül, 2003

Karbon nanotüpler fizikte son yıllardaki en önemli buluşlardan biridir. Kar-

bon nanotüpler, şaşırtıcı elektriksel ve mekaniksel özellikleriyle de büyük önem

taşımaktadırlar. Bütün özellikleri araştırılmaktadır.

Bu tezde, iki boyutlu bir sarmal potansiyel duşünülmüştür. Hamilton

denklemi iki parçaya ayrıldıktan sonra problemin Kronig-Penney tipi oldugu

görülmektedir. Bu tezde karbon nanotüplerdeki devamlıakımlar incelendi.

Devamlıakımlar vektör potansiyel sebebiyle oluşmaktadır. Vektör potansiyel

önceleri bir matematiksel araç olarak kullanıldıysa da Aharonov ve Bohm potan-

siyelin yüklü parçacıklar üzerindeki etkisini göstermiştir, ortamda manyetik alan

olmamasına rağmen (Mesela manyetik alan selenoidin içine hapsedilmiştir).

Anahtar sözcükler : Karbon Nanotüpler, Aharonov-Bohm, Devamlı Akımlar,

Kronig-Penney Modeli.
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Chapter 1

Introduction

As our information about the nature increased, the sizes we are interested de-

creased. This is partly because of just curiosity, and partly to improve the tech-

nology. Carbon nanotubes are one of the most important and interesting subjects

of the nanotechnology. In this thesis, persistent currents in carbon nanotubes is

investigated. In the introduction part of the thesis, a brief summary about car-

bon nanotubes is given. Later, Aharonov- Bohm effect and persistent currents are

discussed, and lastly Kronig-Penney model is explained. We introduce Kronig-

Penney type potential to our problem, since this potential is exactly solvable.

1.1 Carbon Nanotubes

The discovery of the carbon nanotubes was accidental, as it has been the same

for some of the greatest findings of the physics. Carbon nanotubes are fullerene-

related structures which consist of graphene cylinders closed at either end with

caps containing pentagonal rings. They were discovered by Ijima [1] who

was studying the material deposited on the cathode during the arc-evaporation

synthesis of fullerenes [2]. During the experiment, he observed various closed

graphitic structures including nanoparticles and nanotubes, of a type which had

never previously been observed. CNT’s have very remarkable electronic and

1
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Figure 1.1: The Chiral Vector

mechanical properties, also they can be considered as prototypes for a one-

dimensional quantum wire [3].

Although Iijima’s first observations were of multi-wall nanotubes, he observed

single-wall carbon nanotubes less than two years later, in 1993. Many studies

have explored the structure of carbon nanotubes using high-resolution microscopy

techniques. These experiments have confirmed that nanotubes are cylindrical

structures based on the hexagonal lattice of carbon atoms that forms crystalline

graphite. Three types of nanotubes are possible, called armchair, zigzag and chiral

nanotubes, depending on how the two-dimensional graphene sheet is rolled, CNT

is based on this sheet [4].

Figure 1.2: Types of CNT

The chiral vector is defined on the hexagonal lattice as

Ch = nâ1 + mâ2,

where â1 and â2 are the unit vectors, and n and m are integers. The chiral angle,

θ, is measured relative to the direction defined by â1. The diagram in the figure

1.1, has been constructed for (n,m) = (4, 2), and the unit cell of this nanotube

is bounded by OAB′B. To form the nanotube, this cell is rolled up so that O

meets A and B meets B′, and the two ends are capped with half of a fullerene
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molecule, so the size of the nanotube can be as small as the size of a fullerene

molecule [3, 4].

The properties of nanotubes are determined by their diameter and chiral angle,

both of which depend on n and m. The diameter, dt, is the length of the chiral

vector multiplied by 4. At figure 1.2, (5, 5) is an armchair nanotube (top), (9, 0)

is an zigzag nanotube (middle) and (10, 5) is an chiral nanotube.

Armchair nanotubes are formed when n = m and the chiral angle is 30. Zigzag

nanotubes are formed when either n or m are zero and the chiral angle is 0. All

other nanotubes, with chiral angles intermediate between 0 and 30, are chiral

nanotubes.

Figure 1.3: STM map of a wavefunction. The white lines represent the hexagonal
atomic lattice, clearly demonstrating that the electronic wavefunctions have a
different periodicity than that of the atomic lattice. The wavefunction can be
understood by considering the electronic structure of a graphite sheet.

Since each unit cell of a nanotube contains a number of hexagons, each of

which contains two carbon atoms, the unit cell of a nanotube contains many

carbon atoms. If the unit cell of a nanotube is N times larger than that of a

hexagon, the unit cell of the nanotube in reciprocal space is 1/N times smaller

than that of a single hexagon [4].

In a scanning electron microscope, nanotubes can be imaged with atomic res-

olution, and the chiral winding of the hexagons along the tube can be observed.

The nanotube material looks like a mat of carbon ropes. The ropes are between

10 and 20 nm across and up to 100µm long. When examined in a transmission

electron microscope, each rope is found to consist of a bundle of single-wall car-

bon nanotubes aligned along a single direction. The STM can also be used to

obtain spectroscopic information, i.e., to measure the electronic density of states

of the nanotube. It has been found that nanotube spectra fall into two classes:
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metallic and semiconducting . In particular, the size of the observed gaps are

in quantitative agreement with the calculations, by the experiments made with

electron microscope [3].

Figure 1.4: STM view of CNT

The electronic properties of CNT’s are due to the quantum confinement of

electrons normal to the nanotube axis. In the radial direction, electrons are con-

fined by the monolayer thickness of the graphene sheet. Around the circumference

of the nanotube, periodic boundary conditions come into play. For example, if a

zigzag or armchair nanotube has 10 hexagons around its circumference, the 11th

hexagonal will coincide with the first. Going around the cylinder once introduces

a phase difference of 2π.

Because of this quantum confinement, electrons can only propagate along the

nanotube axis, and so their wavevectors point in this direction. The resulting

number of one-dimensional conduction and valence bands effectively depends on

the standing waves that are set up around the circumference of the nanotube.

These simple ideas can be used to calculate the dispersion relations of the one-

dimensional bands, from the well known dispersion relation in a graphene sheet.

In general, an (n,m) carbon nanotube will be metallic when n−m = 3q, where q

is an integer. All armchair nanotubes are metallic, as are one-third of all possible

zigzag nanotubes.

Although the choice of n and m determines whether the nanotube is metallic

or semiconducting, the chemical bonding between the carbon atoms is exactly

the same in both cases. This surprising result is due to the very special electronic

structure of a two-dimensional graphene sheet, which is a semiconductor with a

zero band gap. In this case, the top of the valence band has the same energy

as the bottom of the conduction band, and this energy equals the Fermi energy

for one special wavevector, the so-called K-point of the two-dimensional Brillouin

zone (i.e. the corner point of the hexagonal unit cell in reciprocal space). Theory
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shows that a nanotube becomes metallic when one of the few allowed wavevectors

in the circumferential direction passes through this K-point.

As the nanotube diameter increases, more wavevectors are allowed in the

circumferential direction. Since the band gap in semiconducting nanotubes is

inversely proportional to the tube diameter, the band gap approaches zero at

large diameters, just as for a graphene sheet. At a nanotube diameter of about 3

nm, the band gap becomes comparable to thermal energies at room temperature.
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1.2 Aharonov-Bohm Effect and Persistent Cur-

rents

Aharonov-Bohm effect is one of the most fundamental phenomena in quantum

physics. In the Aharonov-Bohm effect a beam of quantum particles, such as

electrons, is split into two partial beams that pass on either side of a region

containing a magnetic field, and these partial beams are then recombined to form

an interference pattern. The interference pattern can be altered by changing the

magnetic field - even though the electrons do not come into contact with the

magnetic field.

The observation of the interference pattern demonstrates that a single electron

does not choose a particular path but behaves as an extended wave and follows

both paths simultaneously. The interference pattern shifts as the magnetic field

changes, returning to the original pattern when the magnetic flux has changed

by the quantum of magnetic flux, φ0 = hc/e.

The Aharonov-Bohm effect is particularly interesting because it depends on

the electromagnetic vector potential, ~A, which is related to the magnetic field,

~B, through the equation, ~B = ∇× ~A. Originally it was thought that the vector

potential, ~A, did not have a physical meaning (various quantities can be added

to ~A without changing the value of the physical observable, ~B). Scalar potential

φ and vector potential ~A were first introduced as mathematical tools for cal-

culation concerning electromagnetic fields. However, the theoretical prediction

of the Aharonov-Bohm effect, and its subsequent confirmation in experiments,

showed that this is not the case. In quantum theory these potentials appear in

the Schrödinger equation explicitly and therefore they affect all physical quanti-

ties directly. This effect has purely quantum mechanical origin because it comes

from the interference phenomenon.

Persistent (non-decaying) currents were first observed at superconductors. Ex-

istence of non-decaying current in normal-metal rings (where mean free path Lφ

exceeds the circumference of the ring Lφ = 2πR) enclosing a magnetic flux was
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predicted by Kulik in 1970 [6]. Later Büttiker, Imry, and Landauer proposed the

persistent current in the normal one-dimensional disordered ring [7]. In 1990’s,

experimental works confirmed the existence of persistent current in mesoscopic

rings [11, 12]. This current arises due to to the boundary conditions imposed on

the wave function by the doubly connected nature of the loop [9]. As a conse-

quence of the boundary conditions, all physical properties of the ring are periodic

in the magnetic flux φ with a period φ0 = hc/e.

Scattering mechanisms result in decreasing, but not diminishing, of the persis-

tent current. It is believed that inelastic, i.e. electron-phonon interaction, should

be small to make the electronic states in the ring long-lived (phase conserving).

In the literature, the effects of the electron-phonon interaction were studied in

the mesoscopic Aharonov-Bohm rings in metallic and semiconducting links [10].

Figure 1.5: Persistent Current in one dimesional metallic loop

Below calculations show persistent currents in one-dimensional metallic ring:

Magnetic field ~B parallel to the ring axis, so ~A = Ax̂. Direction of x̂ is along

the ring circumference, and φ = x/R. Hamiltonian without ~B:

−h̄2

2mR2

∂2

∂φ2
ψ = εψ

Solution of this equation:

ψ = c · eikφ

By using boundary condition ψ(0) = ψ(2π) and normalization:

ψ =
1√
L

einφ
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εn =
n2h̄2

2mR2

εn is the energy without magnetic field. Calculations with ~B:

−h̄2

2mR2
(

∂

∂φ
− ieAL

hc
)2ψ = εψ

A · L = Φ and hc
e

= Φ0. Where Φ is the flux and Φ0 is the flux quantum.

Solution of the above equation is ψ = c · ek
′
, k

′
= − eAL

hc
± R

h̄

√
2mε.

(only + term is used since there is no potential barrier or well). By using

periodic boundary condition, and normalization, we get the same answer for

wavefunction:

ψ =
1√
L

einφ

For energy:

εn =
h̄2

2mR2
(n− Φ

Φ0

)2

Persistent current In:

In = −c
∂εn

∂Φ
=

h̄2

mR2Φ0

(n− Φ

Φ0

)

When the ring is interrupted by a potential, V = V0δ(x) = V0δ(R · φ), the

Hamiltonian becomes:

−h̄2

2mR2
(

∂

∂φ
− ieAL

hc
)2ψ + V0δ(R · φ)ψ = εψ

For solution at 0 < φ < 2π, we get same k
′
value as above.

k
′
= −eAL

hc
± R

h̄

√
2mε

By saying k = 2mε/h̄, wavefunction becomes:



CHAPTER 1. INTRODUCTION 9

ψ = c1e
i(k+Φ/Φ0) + c2e

−i(k−Φ/Φ0)

By using the boundary condition

ψ(0) = ψ(2π)

and the relation obtained by integrating the Hamiltonian

−h̄2

2mR2

(
ψ
′
(2π)− ψ

′
(0)

)
+ V ψ(0) = 0

we can get the relation:

cos(kL) +
mV0

h̄2k
sin(kL) = cos(2π

Φ

Φ0

)

This is a similar dispersion relation to the one we get from Kronig-Penney

model.
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1.2.1 Aharonov-Bohm Resistance Oscillations in Multi-

walled Carbon Nanotubes

A ring geometry, as the geometry of above calculations, encloses a continuous

flux Φ, this results in a fundamental periodicity Φ0 = hc/e. Such a periodicity

is the result of gauge invariance of vector potential. This periodicity comes from

interference of trajectories which make one half revolution along the ring, as in

figure 1.6.a.

This type currents are sample dependent and have random phases, comes

from interference of the trajectories. This type of the Aharonov-Bohm effect

can be called the usual Aharonov-Bohm effect, or thermodynamic equilibrium

Aharonov-Bohm effect.

I. O. Kulik stated that [6]:

There is no long-range order in this case. The motion of the individual

electrons is independent, and the collisions can cause the electrons

to become redistributed among the states, but the average current

remains different from zero as a consequence of the dependence of the

energies of the individual states, and hence of the total energy on ~A.

The current state corresponds in this case to a minimum of the free

energy, so that allowance for dissipation does not lead to its decay.

Figure 1.6: Illustration of Aharonov-Bohm effect in a ring geometry. (a) Trajec-
tories responsible for hc/e periodicity, (b) trajectories of the pair of time-reversed
states leading to hc/2e periodicity.
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The second type oscillations originates from time-reversed trajectories. The

proper contribution leads to a minimum conductance at ~B = 0. Thus the oscil-

lations have the same phase. They have periodicity hc/2e, so these oscillations

survive in long hollow cylinders. Their origin is a periodic modulation of the weak

localization effect due to coherent backscattering. Aharonov-Bohm oscillations

in long hollow cylinders were predicted by Altshuler, Aronov, and Spivak [15].

[figure 1.6.b]

In a semiclassical picture these oscillations can be qualitatively understood

[16, 17, 18] and have been associated with pairs of time reversed, backscattered

paths enclosing the inner disc [22]. This type can be called resistive Aharonov-

Bohm effect.

In this thesis first approach is used (also several people who calculated per-

sistent currents in carbon nanotubes by using tight binding approximation cal-

culated first type of persistent currents).

In a diffusive and thin-walled metallic cylinder (as in long-hollow cylinders),

interference of the closed electron trajectories results periodicity of resistance

(back-scattering). Phase difference between the trajectory Γ and its time-reversed

state Γ
′
is ∆Φ = hcΦ/2e = 2Φ/Φ0 = Φ/Φ1, so resistance have oscillation with

period hc/2e (Altshuler, Aronov, and Spivak effect).

Figure 1.7: Diagram of a MWNT, composed of a series coaxial cylinders. A
periodic magneto-resistance is expected to originate from quantum interference
of back-scattered electron trajectories
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As mentioned before, at zero magnetic field electrical resistance will increase,

since interference term add up constructively, effect known as weak localization.

Bachtold et. al. measured the electrical transport on multiwalled nanotubes

and results illustrated in fig. 1.8. [5]:

Figure 1.8: (Top left) In the standard Aharonov-Bohm effect the magnetic flux
through the solenoid changes the relative phase of the electron waves in paths
1 and 2, there is an interference pattern forms on the screen. When the flux
is changed, the interference pattern shifts on the screen. (Top right) Carbon
nanotube is placed in a magnetic field parallel to the its axis. In the nanotube,
there are two paths, clockwise and anticlockwise around the nanotube. These
paths interefere and the shift in the interference pattern manifests itself as a
change in the electrical resistance along the nanotube as a function of magnetic
field (bottom). The magnetic field at the peaks can be related to the quantum
of magnetic flux, hc/2e, and the cross-section of the nanotube.

In the compilation of this summary, about Aharonov-Bohm effect, references

[19, 20, 8] were also used.
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1.3 Kronig-Penney Model

The Kronig-Penney model demonstrates that a simple one-dimensional periodic

potential yields energy bands as well as energy band gaps. The periodic potential

is shown in the figure 1.7.

The potential is assumed to be periodic in the Kronig-Penney model. The

potential barriers with width ζ are spaced by a distance η + ζ. The analysis

requires the use of Bloch functions, travelling wave solutions multiplied with

a periodic function which has the same periodicity as the potential. Bloch’s

Figure 1.9: periodic potential

theorem helps us to handle the infinite number of interacting electrons moving

in a periodic potential, like in the field of an infinite number of ions. Essentially,

there are two difficulties to overcome; a wavefunction has to be calculated for each

of the infinite number of electrons which will extend over the entire space of the

solid, and the basis set, in which the wavefunction is expressed, will be infinite.

Periodicity of the potential is the requirement for Bloch’s theorem. Bloch proved

that the solutions of the Schrödinger equation for a periodic potential must be of

the special form [28]

Ψk(r) = uk(r) exp (ik · r)
where uk(r) has the period of crystal lattice with uk(r+T) = uk(r). We can

express the theorem as, the eigenfunctions of the wave equation for a periodic

potential are the product of a plane wave times a periodic function with the

periodicity of the crystal lattice. The width η is taken zero, so the potential

becomes like in figure 1.7, and energy-band diagram becomes as in figure 1.9

[23, 14].
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Figure 1.10: Shaded region indicates allowed energy bands. The band width is
indicated by ∆E

Figure 1.11: The ”reduced zone representation” shows that the bands (i.e., the
values of k) only range within the First Brillouin Zone (FBZ).The width of the
First Brillouin Zone (FBZ) corresponds to the magnitude of the primitive recip-
rocal lattice vector.

These calculations will be shown in more detail in the next chapter. As one

can compare, same results will be obtained, energy-band diagram will be plotted

for different potentials.
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1.4 Organization of the Thesis

The thesis is organized as follows: Chapter 2 introduces the helical potential.

Two dimensional hamiltonian is solved, energy-band diagram is found for one

dimensional Kronig-Penney potential, energy is calculated for full problem, and

density of states is calculated. In Chapter 3, Magnetic field is introduced into

the Hamiltonian. In addition to the calculations similar to chapter 2, persistent

currents are also calculated. In chapter 4, conclusion and future work is presented,

finally in chapter 5 compiler ABC is explained.



Chapter 2

Part I

2.1 Statement of the Problem

While calculating the persistent currents in nanotubes, many physicists take the

problem as electrons move on lattice points along the tube. In this thesis, we

assume a helical potential along a cylinder, with the circumference a = 2πR. See

figure 2.1. x̂ is the direction along the ring circumference.

Figure 2.1: Potential

The Schrödinger Wave Equation for such a problem is:

−h̄2

2µ

(
∂2Ψ

∂x2
+

∂2Ψ

∂y2

)
+ V (x, y)Ψ = εΨ (2.1)

The potential V (x, y) is the helical potential, and as can be seen from the

16
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figure this potential is formulated as:

V (x, y) =
∞∑

n=−∞
δ(

y

b
− x

a
− n)V0 (2.2)

Since potential has both x and y dependence, Hamiltonian is not separable.

To make the Hamiltonian separable, variables should be transformed as:

u =
y

b
− x

a
, v = ax + by

−h̄2

2µ
(

1

a2
+

1

b2
)
∂2Ψ

∂u2
+
−h̄2

2µ
(a2 + b2)

∂2Ψ

∂v2
+

∞∑

n=−∞
δ(u− n)V0Ψ = εΨ (2.3)

By calling;

m1 =
µ

a−2 + b−2

m2 =
µ

a2 + b2

(note that, m1 and m2 are not the physical masses, they are just parameters

used to simplify calculations)

We get the Hamiltonian as below.

(−h̄2

2m1

)
∂2Ψ(u, v)

∂u2
+

(−h̄2

2m2

)
∂2Ψ(u, v)

∂v2
+ V (u)Ψ(u, v) = εΨ(u, v) (2.4)

Since, H(u, v) = H(u) + H(v), Ψ(u, v) can be written as, Ψ(u, v) =

Ψ1(u)Ψ2(v).

If we separate Hamiltonian into two parts we get the following equations.

−h̄2

2m1

(
1

Ψ1

)
∂2Ψ1

∂u2
+ V (u) = ε1 (2.5)

and
−h̄2

2m2

(
1

Ψ2

)
∂2Ψ2

∂v2
= ε2 (2.6)
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Figure 2.2: V(u), u dependent potential

where

ε1 + ε2 = ε

u dependence:
(−h̄2

2m1

)
∂2Ψ1

∂u2
+

∞∑

n=−∞
δ[u− n]V0Ψ1 = ε1Ψ1 (2.7)

We can use Bloch’s theorem. Since Hamiltonian has periodic potential, V (u+

n) = V (u). In fact this potential is the standard Kronig-Penney potential for

one dimensional case Similar calculations can be found at references [23, 14].

At nth (n− 1 < u < n) region, wavefunction have the form

Ψ1(u) = An exp[ik1(u− n)] + Bn exp[−ik1(u− n)] (2.8)

whit k1 =
√

2m1ε1/h̄.

At (n + 1)st region: (n < u < n + 1):

Ψ1(u) = An+1 exp[ik1(u− n− 1)] + Bn+1 exp[−ik1(u− n− 1)]

By using continuity condition at u = n:

An+1 exp(−ik1) + Bn+1 exp(ik1) = An + Bn (2.9)

An − exp(−ik1)An+1 + Bn − exp(ik1)Bn+1 = 0 (2.10)

Integrating equation 2.7:

∫ n+ε

n−ε

(−h̄2

2m1

Ψ′′
1(u) +

∞∑

n=−∞
δ[u− n]V0Ψ1(u)

)
du =

∫ n−ε

n−ε
ε1Ψ1(u)du
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In the limit : ε → 0

Ψ′
1(n + ε)−Ψ′

1(n− ε) =
2m1

h̄2 V0Ψ1(n) (2.11)

Where the Ψ′
1(n + ε) is the derivative of the solution at the (n + 1)st region

and Ψ′
1(n − ε) is the derivative of the solution at the nth region. If we do the

calculation above, we get the relation:

ik1An+1 exp(−ik1)−ik1Bn+1 exp(ik1)−ik1An+ik1Bn =
2m1

h̄2 V0(An+Bn) (2.12)

An − exp(−ik1)An+1 + Bn − exp(ik1)Bn+1 = 0 (2.13)

ik1 exp(−ik1)An+1− ik1An−2gAn− ik1 exp(ik1)Bn+1 + ik1Bn−2gBn = 0 (2.14)

where

g =
m1V0

h̄2

We can use Bloch condition here:

Ψ1(u + n) = exp(iqn)Ψ1(u)

q is the Bloch wave vector, and it is quantized as:

Ψ1(u + M − 1) = eiq(M−1)Ψ1(u) = Ψ1(u) ⇒ q =
2πl

L

With L = M − 1, since u = y/b − x/a and 0 < y < M · b and 0 < x < a, so

0 < u < M − 1.

Since Ψ(u) is the solution at the nth region, Ψ(u + 1) becomes solution at the

(n + 1)st region:
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Ψ(u + 1) = An+1 exp[ik1((u + 1)− (n + 1))] + Bn+1 exp[−ik1((u + 1)− (n + 1))]

= An+1 exp[ik1(u− n)] + Bn+1 exp[−ik1(u− n)] = exp(iq)Ψ(u)

If we look at the equation 2.8, we see that the above equation is satisfied if:

An+1 = exp(iq)An,

Bn+1 = exp(iq)Bn.

Figure 2.3: Kronig-Penney relation with positive g value

Figure 2.4: Kronig-Penney relation for negative g, when potential consists wells
instead of barriers

So,

(1− exp(iq − ik1))An + (1− exp(iq + ik1))Bn = 0

(ik1 exp(iq − ik1)− ik1 − 2g) An + (−ik1 exp(iq + ik1) + ik1 − 2g) Bn = 0

From these two equations, we get:

cos q = cosk1 +
g

k1

sin k1 (2.15)
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Figure 2.5: Energy-band diagram for g=0

−1 < cos q < 1, roots for k1 are in between (−1, 1). q is taken between −π and π.

Energy-band diagrams plotted for various g values are shown in figures 2.6-2.11.

For computational purposes k1 and q are used, since they are dimensionless

variables, and for the energy below expression is used:

ε1

ε0

= k2
1

Where

ε0 =
h̄2(a2 + b2)

2a2b2µ

Second part of the Hamiltonian has only v dependence:

(−h̄2

2m2

)
∂2Ψ2

∂v2
= ε2Ψ2 (2.16)

Ψ2(v) = A exp(ik2v) + B exp(−ik2v) (2.17)

where With, k2 =
√

2m2ε2

h̄
.
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Figure 2.6: Energy-band diagram for g=4

Figure 2.7: Energy-band diagram for g=2

Figure 2.8: Energy-band diagram for g=1
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Figure 2.9: Energy-band diagram for g=-1

Figure 2.10: Energy-band diagram for g=-2

Figure 2.11: Energy-band diagram for g=-4
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2.2 Periodic boundary conditions:

Our wavefunction has two periodicities, first is along the axis of cylinder, other

along the circumference:

Ψ(x, y + b) = exp(iκ)Ψ(x, y) (2.18)

Ψ(x + a, y) = Ψ(x, y) (2.19)

κ is the longitudinal Bloch wave vector, with the below periodicity:

Ψ(x, y + M · b) = eiκMΨ(x, y) = Ψ(x, y)

κ = 2πm/M, m = 0, 1, ..., M − 1 where L = M · b.

From the relation between the (x, y) and (u, v), periodic boundary conditions

can be rewritten for Ψ(u, v):

Ψ(u + 1, v + b2) = Ψ1(u + 1)Ψ2(v + b2) = exp(iκ)Ψ(u, v) (2.20)

Ψ(u− 1, v + a2) = Ψ1(u− 1)Ψ2(v + a2) = Ψ(u, v) (2.21)

Since we have:

Ψ1(u + n) = exp(iqn)Ψ1(u)

We get:

Ψ2(v + b2) = exp(iκ− iq)Ψ2(v) (2.22)

Ψ2(v + a2) = exp(iq)Ψ2(v) (2.23)

Ψ2 = A exp(ik2v) + B exp(−ik2v)

To satisfy boundary conditions, A · B = 0. There are two cases, first B = 0

and second A = 0. For the first case, by using those two boundary conditions,

we get the below relation for k2:
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k2 =
κ

a2 + b2
(2.24)

For the second case, A = 0, k2 becomes:

k2 =
−κ

a2 + b2
(2.25)

For ε2, we calculate k2
2, and it is same for both cases.
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2.3 Summary:

Now we can write the energy ε = ε1 + ε2 as:

εnm =
h̄2k2

1

2m1

+
h̄2k2

2

2m2

(Please note that in this equation k1, k2 are not physical momentums and

m1,m2 not physical masses. They are just used to simplify the calculations.)

εnm =
h̄2(a2 + b2)k2

1

2a2b2µ
+

h̄2(a2 + b2)k2
2

2µ

Where k1 comes from

cos q = cos k1 + g sin k1/k1

and

k2
2 = (

κ

a2 + b2
)2

k1, κ and q are dimensionless variables. µ is the physical mass. We can say

physical momentums are:

P = (
a2 + b2

a2b2
)1/2k1(q)

Q = (a2 + b2)1/2k2 = (
κ2

a2 + b2
)1/2

Then energy becomes

εnm =
h̄2P 2

2µ
+

h̄2Q2

2µ
(2.26)
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2.4 Density of states:

There are various representations for the density of states, in this case the be-

low representation is used, more detailed explanation about this delta function

representation can be found at [21].

N(ε) =
∞∑

n=1

M−1∑

m=0

∫ π

−π

dq

2π

∫ 2π

0

dκ

2π
δ(εnm(q, κ)− ε) (2.27)

To find the density of states the below property of the delta function is used:

δ(f(x)) =
∑

i

δ(x− xi)

|f ′(xi)|

xi’s are the zeros of the function f(x).

By applying this rule, it can be shown that:

N(ε) =
∞∑

n=1

M−1∑

m=0

∑

i

∫

L
dσ

1

|ûdεnm

dq
+ v̂ εnm

dκ
|
εnm(q,κ)i=ε

(2.28)

where L is the line of εnm − ~k plot and σ is the surface of this plot. ~k is the

the wave vector.

~k = ûq + v̂κ

Accurate analytical result for the density of states is not calculated, instead

it is calculated numerically.

Figure 2.12: Density of States for g=0
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While calculating the density of states numerically the program ABC is used.

Same program is also used to calculate the energy. MATLAB is used for plotting.

For density of states we calculated the number of states at an energy interval.

In the following pages, for different values of g number of states is plotted,

both for negative and positive values of g:
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Figure 2.13: Density of States for g=6

Figure 2.14: Density of States for g=4

Figure 2.15: Density of States for g=2
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Figure 2.16: Density of States for g=-2

Figure 2.17: Density of States for g=-4

Figure 2.18: Density of States for g=-6



Chapter 3

Part II

In this part, magnetic field is introduced into the Hamiltonian. First we assume

a magnetic field parallel to the ŷ direction. The field is confined into a solenoid.

The vector potential is assumed to have magnitude only in x̂ direction. Later we

assume that the cylinder is curved as to make a toroid and there is a magnetic field

parallel to the toroid axis. This magnetic field is also confined in a solenoid. The

vector potential can be assumed to have magnitude only in ŷ direction. Below

figure is taken to compare the coordinates that are used in the calculations, with

the cylindrical coordinates. x̂ direction that is used in my calculations corresponds

to rθ̂ direction, ŷ direction corresponds to ẑ direction and ẑ direction corresponds

to r̂ direction.

Figure 3.1: Cylindrical coordinates

31
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3.1 Magnetic Field Parallel to the Cylinder

Axis, ~Bα

Magnetic field, ~Bα, is parallel to the ŷ direction. From the Stokes theorem:
∫

S

~Bα · d~a =
∫

S
(∇× ~A) · d~a =

∮
~A · d~s = Φ

So Aα = Φα

a
. The transformation for px is made, px → px − eAα

c
.

−h̄2

2µ

(
(

∂

∂x
− ie

h̄c
Aα)2 +

∂2

∂y2

)
Ψ + V (x, y)Ψ = EΨ (3.1)

Figure 3.2: ~Bα

By making necessary transformations u = y
b
− x

a
and v = ax + by:

−h̄2

2µ

(
a2 + b2

a2b2

∂2

∂u2
+

2ieAα

h̄ca

∂

∂u
+ (a2 + b2)

∂2

∂v2
− 2ieAαa

h̄c

∂

∂v
− e2A2

α

h̄2c2

)
ψ+V (u)ψ = Eψ

(3.2)

Now the Hamiltonian is separable, it divides into two parts

(−h̄2

2m1

(
∂

∂u
+

ieAαab2

h̄c(a2 + b2)
)2 + V0

∞∑
n=∞

δ(u− n)

)
Ψ1(u) = ε1Ψ1(u) (3.3)
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−h̄2

2m2

(
∂

∂v
− ieAαa

h̄c(a2 + b2)
)2Ψ2(v) = ε2Ψ2(v) (3.4)

where m1 and m2 have the same values as before, and ε1 + ε2 = ε.

First equation has the Kronig-Penney potential term, as solved before. Ψ1(u)

has the solution at nth region:

Ψ1(u) = Ane
i(k1− eAαab2

h̄c(a2+b2)
)(u−n)

+ Bne
−i(k1+ eAαab2

h̄c(a2+b2)
)(u−n)

(3.5)

k1 =

√
2m1ε1

h̄

This eigenfunction also satisfies Bloch condition, since potential is periodic.

Ψ1(u + n) = exp(iqn)Ψ1(u)

and

An+1 = exp(iq)An,

Bn+1 = exp(iq)Bn.

By using the continuity condition at u = n:

An+1e
i(k1−∆1)(−1) + Bn+1e

−i(k1+∆1)(−1) = An + Bn

applying Bloch condition:

(e−i(k1−∆1−q) − 1)An + (ei(k1+∆1+q) − 1)Bn = 0 (3.6)

where ∆1 = eAαab2

h̄c(a2+b2)
.

∫ n+ε

n−ε

(−h̄2

2m1

(
∂

∂v
+

ieAαa

h̄c(a2 + b2)
)2 +

∞∑

n=−∞
δ[u− n]V0Ψ1(u)

)
du =

∫ n−ε

n−ε
ε1Ψ1(u)du

In the limit : ε → 0

Ψ′
1(n + ε)−Ψ′

1(n− ε) =
2m1

h̄2 V0Ψ1(n)
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As in previous calculations, in Part I, Ψ′
1(n+ε) is the derivative of the solution

at the (n + 1)st region and Ψ′
1(n − ε) is the derivative of the solution at the nth

region. After the calculations the below result is obtained:

(i(k1 −∆1)e
−i(k1−∆1−q) − i(k1 −∆1)− 2g)An + (−i(k1 + ∆1)e

i(k1+∆1+q)

+i(k1 + ∆1)− 2g)Bn(3.7)

after combining above equations and calling g = m1V0

h̄2 one can easily obtain:

cos (q + ∆1) = cos k1 + g
sin k1

k1

(3.8)

Figure 3.3: g = 1, (cos γ)2 Φα

Φ0
= 1

2

Figure 3.4: g = 1, (cos γ)2 Φα

Φ0
= 1

3

v dependence:

Ψ2(v) = Aei(k2+∆2) + Be−i(k2−∆2) (3.9)

∆2 =
eAαa

h̄c(a2 + b2)
, k2 =

√
2m2ε2

h̄
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3.1.1 Periodic boundary conditions:

Periodicity conditions are the same as in Part I:

Ψ(x, y + b) = exp(iκ)Ψ(x, y) (3.10)

Ψ(x + a, y) = Ψ(x, y) (3.11)

Ψ2(v + b2) = exp(iκ− iq)Ψ2(v) (3.12)

Ψ2(v + a2) = exp(iq)Ψ2(v) (3.13)

To satisfy the boundary conditions, A ·B = 0. For B = 0:

k2 =
κ

a2 + b2
−∆2 (3.14)

second case, A = 0:

k2 =
−κ

a2 + b2
+ ∆2 (3.15)

Since we need k2
2 to calculate ε2 the result will be the same for both cases.

3.1.2 Summary:

εnm = ε1 + ε2 =
h̄2k2

1

2m1

+
h̄2k2

2

2m2

E =
nF∑

n=1

MF∑

m=0

∫ q
′′

q
′

dq

2π
(
h̄2(a2 + b2)

2µa2b2
k2

1 +
h̄2

2µ(a2 + b2)
(κ− eΦα

h̄c
)2) (3.16)

With the relation:

cos(q +
eΦαb2

h̄c(a2 + b2)
) = cos k1 + g

sin k1

k1



CHAPTER 3. PART II 36

q
′
and q

′′
are determined by the number of electrons, they are simply equal

to −π and π up to fermi level.

We can call cos γ = b√
a2+b2

. Flux quantum Φ0 = hc
e
, will be inserted into the

equations.

Figure 3.5: b = L/M and a is the circumference of the cylinder

Where κ is longitudinal Bloch wave vector, as mentioned before.

κ = 2πm/M, m = 0, 1, ..., M − 1

L = Mb (so 0 < κ < 2π)

E =
nF∑

n=1

MF∑

m=0

∫ q
′′

q′
dq

2π
(
h̄2(a2 + b2)

2µa2b2
k2

1 +
h̄2

2µ
(
2πm

M
− 2πΦα

Φ0

)2)

cos(q +
(2π cos γ)2Φα

Φ0

) = cos k1 + g
sin k1

k1

Periodicity of the ε1n and ε2m can be shown directly:

ε1n(Φα +
Φ0

(cos γ)2
) = ε1n(Φα)

ε2m(Φα + Φ0) = ε2(m−M)(Φα)

(Please note that in this equation k1, k2 are not physical momentums and

m1,m2 not physical masses. They are just to use to simplify the calculations.)

We can say physical momentums are:
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P = (
a2 + b2

a2b2
)1/2k1(q), Q = (a2 + b2)1/2k2

Energy becomes

εnm =
h̄2P 2

2µ
+

h̄2Q2

2µ
(3.17)

3.1.3 Density of states:

Density of states calculations are also similar to Part I.

N(ε) =
∞∑

n=1

M−1∑

m=0

∫ π

−π

dq

2π

∫ 2π

0

dκ

2π
δ(εnm(q, κ)− ε) (3.18)

N(ε) =
∞∑

n=1

M−1∑

m=0

∑

i

∫

L
dσ

1

|ûdεnm

dq
+ v̂ εnm

dκ
|
εnm(q,κ)i=ε

(3.19)

where L is the line of εnm − ~k plot. ~k is the the wave vector.

~k = ûq + v̂κ

Figure 3.6: g=1, Φα = 4Φ0, with b = 1, a =
√

3.
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3.1.4 Persistent Currents:

Persistent currents calculated here are due to thermodynamic equilibrium, mini-

mum of free energy occurs when there is non-decaying current. Below calculations

are similar to those shown in the introduction part.

Inm = −c
∂εnm

∂Φα

First contribution to the current (I1):

∂ε1

∂Φα

=
∂ε1

∂k1

∂k1

∂Φα

∂

∂Φα

(q +
eΦαb2

h̄c(a2 + b2)
) =

∂k1

∂Φα

∂

∂k1

(arccos(cos k1 + g
sin k1

k1

))

∂ε1

∂Φα

=
−h̄2eb2k1

h̄c(a2 + b2)m1

·
√

1− (cos k1 + g sin k1/k1)2

sin k1 − g cos k1/k1 + g sin k1/k2
1

=

(3.20)

−h̄e

a2cµ
· k2

1

√
k2

1 − (k1 cos k1 + g sin k1)2

k2
1 sin k1 + gk1 cos k1 + g sin k1

(3.21)

Second contribution to the current (I2):

∂ε2

∂Φα

=
∂

∂Φα

(
h̄2

2µ(a2 + b2)
(κ− eΦα

h̄c
)2)

∂ε2

∂Φα

=
h̄e

µc(a2 + b2)
(κ− eΦα

h̄c
) (3.22)

Inm =
h̄e

cµ
· ( 1

a2

k2
1

√
k2

1 − (k1 cos k1 + g sin k1)2

k2
1 sin k1 + gk1 cos k1 + g sin k1

− 1

a2 + b2
(κ− eΦα

h̄c
)) (3.23)
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Total current can be written as:

I =
nF∑

n=1

MF∑

m=0

∫ q
′′

q
′

dq

2π

h̄e

cµ
· ( 1

a2

k2
1

√
k2

1 − (k1 cos k1 + g sin k1)2

k2
1 sin k1 + gk1 cos k1 + g sin k1

− 1

a2 + b2
(κ− eΦα

h̄c
))

(3.24)

By looking at above equations one can easily say

I1n(Φα +
Φ0

(cos γ)2
) = I1n(Φα)

I2m(Φα + Φ0) = I2(m−M)(Φα)

Figure 3.7: Persistent current I1, found for electrons fill 3/4 of the first band
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3.2 Additional Magnetic Field, Perpendicular

to the Cylinder Axis, ~Bβ

When magnetic field is parallel to the axis of the torus obtained by curving the

cylinder:

Figure 3.8: ~Bβ is the along the direction perpendicular to the torus axis, ~Aβ is
along the cylinder, ŷ axis.

~Bβ = ∇× ~Aβ = Aβ∇× ŷ

From the Stokes theorem:

Aβ =
Φβ

M · b

py → py − eAβ

c

−h̄2

2m

(
(

∂

∂x
− ie

h̄c
Aα)2) + (

∂

∂y
− ie

h̄c
Aβ)2)

)
Ψ + V (x, y)Ψ = EΨ (3.25)

Using the same transformations in Part I, u = y/b− x/a and v = a · x + b · y.
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(−h̄2

2m1

(
∂

∂u
− iea2b2

h̄c(a2 + b2)
(
Aβ

b
− Aα

a
))2 +

−h̄2

2m2

(
∂

∂v
− ie

h̄c(a2 + b2)
(aAα + bAβ))2

)
Ψ(u, v)

+V(u)Ψ(u, v) = εΨ(3.26)

(−h̄2

2m1

(
∂

∂u
+ i∆1)

2 + V0

∞∑
n=∞

δ(u− n)

)
Ψ1(u) = ε1Ψ1(u) (3.27)

−h̄2

2m2

(
∂

∂v
− i∆2)

2Ψ2(v) = ε2Ψ2(v) (3.28)

So we have the same equations as in the ~Bα case, except constants ∆1 and

∆2.

∆1 =
ea2b2

h̄c(a2 + b2)
(
Aα

a
− Aβ

b
) =

e

h̄c(a2 + b2)
(b2Φα − a2

M
Φβ)

∆2 =
e

h̄c(a2 + b2)
(aAα + bAβ) =

e

h̄c(a2 + b2)
(Φα +

1

M
Φβ)

Figure 3.9: g = 1, (cos γ)2 Φα

Φ0
= (cos γ)2 Φβ

Φ0
= 1

3
,M = 10

Ψ1(u) = Anei(k1−∆1)(u−n) + Bne
−i(k1+∆1)(u−n) (3.29)

cos (q + ∆1) = cos k1 + g
sin k1

k1

(3.30)

Ψ2(v) = Aei(k2+∆2) + Be−i(k2−∆2) (3.31)
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3.2.1 Periodic boundary conditions:

Periodicity and wavefunctions are same, except, the value of constant ∆2.

To satisfy the boundary conditions, A ·B = 0. For B = 0:

k2 =
κ

a2 + b2
−∆2 (3.32)

second case, A = 0:

k2 =
−κ

a2 + b2
+ ∆2 (3.33)

3.2.2 Summary:

εnm = ε1 + ε2 =
h̄2k2

1

2m1

+
h̄2k2

2

2m2

E =
nF∑

n=1

MF∑

m=0

∫ q
′′

q′
dq

2π
(
h̄2(a2 + b2)

2µa2b2
k2

1) + (
h̄2e

µh̄c(a2 + b2)
(κ− Φα − 1

M
Φβ)2)

cos(q +
e

h̄c(a2 + b2)
(b2Φα − a2

M
Φβ)) = cos k1 + g

sin k1

k1

We can recall cos γ = b√
a2+b2

. Flux quantum Φ0 = hc
e
, will be inserted into

the equations.

Where κ is longitudinal Bloch wave vector, κ = 2πm/M, m = 0, 1, ..., M − 1.

(L = Mb, so 0 < κ < 2π)

E =
nF∑

n=1

MF∑

m=0

∫ π

−π

dq

2π
(
h̄2(a2 + b2)

2µa2b2
k2

1 +
h̄2

2µ
(
2πm

M
− (

2πΦα

Φ0

+
2πΦβ

MΦ0

))2)

cos(q + 2π(
(cos γ)2Φα

Φ0

) +
(sin γ)2Φβ

MΦ0

)) = cos k1 + g
sin k1

k1
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Periodicity of the ε1n and ε2m can be shown directly:

ε1n(Φα +
Φ0

(cos γ)2
) = ε1n(Φα)

ε1n(Φβ +
MΦ0

(sin γ)2
) = ε1n(Φβ)

ε2m(Φα +
2mΦ0

M
) = ε2(m−M)(Φα)

ε2m(Φβ + 2mΦ0) = ε2(m−1)(Φβ)

(Please note that in this equation k1, k2 are not physical momentums and

m1,m2 not physical masses. They are just to use to simplify the calculations.)

εnm =
h̄2(a2 + b2)k2

1

2a2b2µ
+

h̄2(a2 + b2)k2
2

2µ

Physical momentums are:

P = (
a2 + b2

a2b2
)1/2k1(q)

Q = (a2 + b2)1/2k2

Energy becomes

εnm =
h̄2P 2

2µ
+

h̄2Q2

2µ
(3.34)

3.2.3 Density of states:

Density of states calculations are also similar to Part I.

N(ε) =
∞∑

n=1

M−1∑

m=0

∫ π

−π

dq

2π

∫ 2π

0

dκ

2π
δ(εnm(q, κ)− ε) (3.35)



CHAPTER 3. PART II 44

Figure 3.10: g=1, Φα = Φβ = 2Φ0, with b = 1, a =
√

2,M = 10.

N(ε) =
∞∑

n=1

M−1∑

m=0

∑

i

∫

L
dσ

1

|ûdεnm

dq
+ v̂ εnm

dκ
|
εnm(q,κ)i=ε

(3.36)

where L is the line of εnm − ~k plot. ~k is the the wave vector.

~k = ûq + v̂κ
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3.2.4 Persistent Currents:

Calculations are similar to chapter 2. But this time there are two persistent

currents caused by two vector potentials, ~Aα, ~Aβ:

Inm(Φα) = −c
∂εnm

∂Φα

Inm(Φβ) = −c
∂εnm

∂Φβ

Inm(Φα) has the same value as before:

I(Φα) =
nF∑

n=1

MF∑

m=0

∫ q
′′

q′
dq

2π

h̄e

cµ
·( 1

a2

k2
1

√
k2

1 − (k1 cos k1 + g sin k1)2

k2
1 sin k1 + gk1 cos k1 + g sin k1

− 1

a2 + b2
(κ−eΦα

h̄c
))

(3.37)

Inm(Φβ) nearly same as the previous value, except constants:

I(Φβ) =
nF∑

n=1

MF∑

m=0

∫ q
′′

q′
dq

2π

(−h̄e)

Mcµ
·( 1

a2

k2
1

√
k2

1 − (k1 cos k1 + g sin k1)2

k2
1 sin k1 + gk1 cos k1 + g sin k1

− 1

M(a2 + b2)
(κ−eΦα

h̄c
))

(3.38)

I1n(Φα +
Φ0

(cos γ)2
) = I1n(Φα)

I1n(Φβ +
MΦ0

(sin γ)2
) = I1n(Φβ)

I2m(Φα +
2mΦ0

M
) = I2(m−M)(Φα)

I2m(Φβ + 2mΦ0) = I2(m−1)(Φβ)
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Figure 3.11: Persistent current I1, found for Φα = Φβ, electrons fill 3/4 of the
first band (nF = 1), and MF = 10.
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Conclusions and Future Work

In this thesis we tried to calculate the persistent currents in carbon nanotubes

exactly, instead of using tight-binding approximation. First carbon nanotubes

are studied to learn the structure deeply. Then Aharonov-Bohm effect is stud-

ied to learn the persistent currents and its types. The Kronig-Penney model,

which helps us to solve the periodic structures such as atoms in a crystal, is also

reviewed.

Trying to solve the problem exactly brought some difficulties, as I know no

similar method was used before. In the literature all the calculations were made

by using tight-binding approximation.

First the helical potential is introduced and the Schrödinger equation is solved

when there is no magnetic field. We choose the potential V (x, y), since it is helical

and exactly solvable, even it does not exactly fit with the real system. Although

the problem seems to be a simple one, it has physical importance.

Later, we numerically calculated the energy-band gap and density of states.

The program ABC is used. As a second step magnetic field is introduced into

the problem. We performed similar calculations as in part one and additionally

we calculated the persistent currents. The calculated current has two terms, first

term is periodic in Φ, but second does not seem to be periodic. By looking at

47
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similar representations for persistent currents, it seems that, after calculating

thermally averaged current, this problem will be eliminated.

Later, we investigated the persistent currents in a torus which is made by

curving the cylindrical conductor. An additional magnetic field is applied, and

we recalculated energy, density of states, and persistent currents for this case.

This time there were two contribution to the current, one from Φα and the other

from Φβ.

With this project, persistent currents and carbon nanotubes attracted my

interest. In the future I am planning to finish all the calculations related to

this thesis (i.e. thermally averaged current) and compare my results with the

calculations made by using tight binding approximation [24, 29]. I will also

search the applications [26, 27].



Chapter 5

Appendix

5.1 ABC

In this thesis the compiler ABC is used. ABC, Advanced Basic/C Com-

piler/Convertor/Programmer produces C-codes and executables. It works in var-

ious hardware/software environments (Windows, Linux and UNIX machines).

The ABC C-code is translated from the QuickBasic environment source code.

It is suitable for various mathematical routines such as complex numbers, ar-

bitrary precision arithmetics, multidimensional integration, eigenvalue problem

for sparse and conventional complex Hermitian matrices, etc (The dimension of

matrix can be up to 1.000.000 if executed on a standard Pentium PC). ABC

assumes a mathematical subspace of Basic environment as it was specified in the

Microsoft QuickBasic. By using the QuickBasic compiler as an editor,there is

an additional advantage of testing the initial program code for possible errors by

trying to execute (but not actually executing) the program thus eliminating most

of (possible) syntax errors. The ABC code accepts complex numbers, special

functions, arbitrary precision floating-point variables and a number of standard

(and some times new) mathematical algorithms written in compliance with the

(pseudo) QuickBasic dielect, so that the error checking is also applicable to these

QuickBasic extensions within the QuickBasic rules. As an example, below is a

49
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program in ABC:

DIM a; b; c; x; y AS DOUBLE : a = 0.111 : b = 0.222

c = integ(x,0,1,y,1-x,1+x,(Sin(pi*a*x*y+b))2

print a;b;c

So problem calculates the integral:

c =
∫ 1

0
dx

∫ 1+x

1−x
dy(sin(πaxy + b))2

In case when program execution is assumed on a machine different from the

one of the ABC, the C-code appropriate to that machine is generated. The codes

thus produced are generally equal, or faster, than the conventional C-codes on

same machine. Unlike similar programs for mathematical calculations (Maple

or Matlab), ABC doesn’t support any sophisticated graphics. Also, dynamic

strings are limited to the scope necessary for easy communication with the com-

piler. The goal is rather in easy programming for non-professionals (physicists,

mathematicians), on a professional level. Special algorithms are implemented in

the routine library of ABC. In particular the eigenvalue problem for extremely

large sparse Hermitian matrices, and user friendly routines for multi-dimensional

numeric integration etc. [25].

As an example below routine is our density of states calculation:

DIM rr, g, k, q, qmin, qmax, kap, kapmin, kapmax, eps AS DOUBLE

DIM i, m, n, nn, mm, ii AS LONG DIM delE, ldoub, emax AS DOUBLE,

DIM l, num AS LONG

eps = 10−10

INPUT ”nn,mm,ii,g,num =”; nn, mm, ii, g, num

DIM r(nn, mm) AS SINGLE DIM E(nn, mm) AS SINGLE
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DIM etot(nn, mm, ii) AS SINGLE

qmin = -pi: qmax = pi kapmin = 0: kapmax = 2 * pi

FOR m = 1 TO mm: q = qmin + (qmax - qmin) * (m - 1) / (mm - 1)

FOR n = 1 TO nn

r(n, m) = root(k, (n - 1) * pi, n * pi, COS(k) + g * SIN(k + eps) /(k + eps)

- COS(q)) E(n, m) = (r(n, m)) 2

FOR i = 1 TO ii kap = kapmin + (kapmax - kapmin) * (i - 1) / (ii - 1)

NEXT i: NEXT n: NEXT m

emax = 0

FOR m = 1 TO mm: FOR n = 1 TO nn: FOR i = 1 TO ii

q = qmin + (qmax - qmin) * (m - 1) / (mm - 1) rr = r(n, m)

kap = kapmin + (kapmax - kapmin) * (i - 1) / (ii - 1)

etot(n, m, i) = rr 2 + kap2

IF etot(n, m, i) > emax THEN emax = etot(n, m, i)

NEXT i: NEXT n: NEXT m

emax = 1.1 * emax

delE = emax / num

DIM D(num) AS SINGLE, X(num) AS SINGLE FOR n = 1 TO num

D(n) = 0: NEXT n

FOR n = 1 TO num: X(n) = emax * n / num: NEXT n

FOR m = 1 TO mm: FOR n = 1 TO nn: FOR i = 1 TO ii
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ldoub = etot(n, m, i) / delE l = INT(ldoub)

IF l > 0 THEN D(l) = D(l) + 1 NEXT i NEXT n: NEXT m

num = plot(D, X)

OPEN ”dos2.m” FOR OUTPUT AS 1

PRINT 1, ”X=[” FOR n = 1 TO num

PRINT 1, X(n): NEXT n PRINT 1, ”];”

PRINT 1, ”D=[”

FOR n = 1 TO num: PRINT 1, D(n): NEXT n

PRINT 1, ”];”

PRINT 1, ”plot(X,D,’-’);”

PRINT 1, ”xlabel(’E’);”

PRINT 1, ”ylabel(’N(E)’);”

PRINT 1, ”title(’Density of states’);”

CLOSE 1

OPEN ”energy1.m” FOR OUTPUT AS 1

PRINT 1, ”q=[” FOR m = 1 TO mm

q = qmin + (qmax - qmin) * (m - 1) / (mm - 1) PRINT 1, q(m)

NEXT m

PRINT 1, ”];”

PRINT 1, ”E=[”
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FOR m = 1 TO mm FOR n = 1 TO nn

r(n, m) = root(k, (n - 1) * pi, n * pi, COS(k) + g * SIN(k + eps) / (k + eps)

- COS(q)) E(n, m) = (r(n, m)) 2

PRINT 1, E(n, m): NEXT n: NEXT m

PRINT 1, ”];”

PRINT 1, ”plot(q,E,’-’);”

PRINT 1, ”xlabel(’q’);”

PRINT 1, ”ylabel(’E’);”

PRINT 1, ”title(’Energy-band diagram’);”

CLOSE 1

END
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