Turk J Phys
27 (2003) , 395 — 417.
© TUBITAK

Persistent Currents in Mesoscopic Loops and Networks

Igor O. KULIK
Department of Physics, Bilkent University, Ankara 06533, TURKEY

Received 28.08.2003

Abstract

The paper describes persistent (also termed “permanent”, or “non-decaying”) currents in mesoscopic
metallic and macromolecular rings, cylinders and networks. The current arises as a response of system to
Aharonov-Bohm flux threading the conducting loop and does not require external voltage to support the
current. Magnitude of the current is periodic function of magnetic flux with a period of normal-metal flux
quantum ®o = hc/e. Spontaneous persistent currents arise in regular macromolecular structure without
the Aharonov-Bohm flux provided the azimuthal periodicity of the ring is insured by strong coupling to
periodic background (a “substrate”), otherwise the system will undergo the Peierls transition arrested
at certain flux value smaller than ®g. Extremely small (nanoscopic, macromolecular) loop with three
localization sites at flux ® = ®¢/2 develops a A-shaped energy configuration suitable to serve as a qubit,
as well as at the same time as a “qugate” (quantum logic gate) supporting full set of quantum transitions
required for universal quantum computation. The difference of the Aharonov-Bohm qubit from another
suggested condensed-matter quantum computational tools is in the radiation free couplings in a qubit
supporting the scalable, long-lived quantum computation.

1. Introduction

It was predicted in 1970 that normal-metallic rings and hollow cylinders support the non-decaying (“per-
sistent”) currents [1, 2] in presence of Aharonov-Bohm flux [3] and periodically changing their amplitude
as a function of flux without the external source of voltage electromotive force (e.m.f.). It was pointed in
[2] that weak scattering or any other source of dissipation does not decay the current. Counterintuitively,
the current is finite at zero temperature rather than infinite as it may be deduced from the naive idea of
infinite conductivity in the ideal periodic system. Rather, a d.c. conductivity of double connected mesoscopic
conductor is zero at non zero e.m.f., and has certain critical value at Vj . = 0 decreasing with the increasing
scattering and temperature. Buttiker, Imry, and Landauer [4] further supported this conclusion by consid-
ering the impure metal, and showed the equivalence of the arbitrary impure ring of length L to the periodic
one-dimensional structure of period L. This paper drived experimental investigations in, at that time ready,
mesoscopic physics resulted in a direct detection of persistent currents in metallic [5] and semiconducting [6]
rings. In a paper [7], periodic variation of magnetization with magnetic field in macromolecular structure
was observed which, to our opinion, may be related to Aharonov-Bohm persistent currents. Recently, is was
shown by Barone at al. [8] that persistent-current ring with resonantly coupled quantum dots can serve as
an element of quantum computer when static electric field is applied perpendicular to magnetic field in the
loop. Further, it was shown that persistent current can be excited in an extremely small (“nanoscopic”)
loop without the Aharonov-Bohm flux [9]. These developments will be considered in chapters 3,4.

Actually, the idea of persistent current traces back to the work of Teller [10] who showed that Landau
diamagnetism in metals can be interpreted as an effect of orbital currents in a magnetic field. Most clearly this
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can be demonstrated if one considers metal as a periodic network of “sites” (centers of electron localization)
on atomic or mesoscopic “loops” which can be termed “mesoscopic network”. Overall magnetization in
mesoscopic network in the low-field limit nicely fits to the estimation of Landau diamagnetic susceptibility
X = %N (er)p% where N(ep) is density of electron states at Fermi energy ep and pp is the Bohr magneton.

2. Persistent currents in metals

It was generally believed that currents in conductors, in particular in metals, are necessary related
to voltages which are driving forces for collective motion of electrons. The only exception is the case of
superconductor when due to infinite conductivity of superconductor, current may exist even at zero voltage.
This was a prejudice, however. External fields other than the electric field can also produce a stationary
permanent currents. In particular, this happens when the magnetic field, or the field of magnetic vector
potential, is applied to normal (nonsuperconducting) metal. The current appears without the electrical
electromotive force. Equivalently, this is a statement that the magnetization of conductor exists at zero
e.m.f. This is a quantum effect, the permanent magnetization (current) in metal in a magnetic field vanishes
if the motion of electrons be considered within the classical (Newtonian) mechanics. The proof of the above
statement is known as the Van Leeuwen theorem [11].

Classical trajectory of electron in magnetic field is a small circle, the Larmour orbit (Fig.1). At first
sight, such motion necessary creates permanent magnetization since circular current of rotating electron
J will create a magnetic moment M = (1/¢)JS (S is a surface embraced by the current). Nevertheless,
the electrons near the surface of metallic sample are moving along the extended orbits bending to surface
and performing overall rotation in a direction opposite to that of the “bulk” electrons. Because of much
larger embraced area X of the trajectory of these electrons, their magnetic moment is as large as sum of
magnetic moments of electrons in the bulk. It turns out that these two contributions exactly cancel each
other, and total magnetization remains zero. Such cancellation is a direct consequence of the above theorem.
There exists a number of phenomena related to quantization of orbital motion, in particular the de Haas-van
Alphen and Shubnikov - de Haas effects [12]. Shortly after the Landau paper [13], Teller have shown[10]
that the diamagnetism in metal can be interpreted as an effect of orbital electron currents. The currents are
flowing near the metallic surface. This permanent current is nevertheless not much sensitive to scattering
of electrons since such scattering, in case when the mean free path of electron is larger than the cyclotron
(Larmour) radius, only slightly shifts the electron orbits (Fig. 1) and is not crucially related to phase shifts
of the electron wave function (the effect known as a finite “phase breaking length” of electron, I,,).

In quantum mechanics, instead of following the electron trajectory, we solve the Schrodinger equation
for the electron wave function and find the current distribution as

; 2
§= SRV~ gy) — Ay (1)

2m

The magnetization related to this current is exactly the Landau diamagnetism. The current in normal metal
is not exactly the same thing as the Meissner current in superconductor. Unlike the latter, normal current
fluctuates in time and changes temporarily from one piece of metal to another, but the average current
remains constant and does not decay in time.

With these ideas, I considered [2] in 1970 the case of more complex topology of conducting pathes in
metal, the one in which electron trajectory is restricted between two barriers embracing the Aharonov-
Bohm flux like in a hollow cylinder (Fig.2), i.e. the double connected metallic sample. Quantum dynamics
of electron in a double connected geometry is specified by the Aharonov-Bohm effect. Aharonov and Bohm
predicted [3] that double connected geometry makes, quantum mechanically, vector potential A a physically
meaningful quantity rather than pure mathematical abstraction like in case of classical physics in which
magnetic field alone B = curlA determines the electron motion. The vector potential determines the change
in phase of the wave function which, unlike in classical physics, can not be arbitrary but rather is restricted
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Figure 1. Electron orbits in a magnetic field. 1 - bulk electrons; 2 - surface electrons; 3 - electron orbit perturbed
by scattering. Vertical arrow shows direction of rotation of surface electrons opposite to the sense of rotation of bulk
electrons.

by the requirement of phase quantization which follows from the requirement of singe-valuedness of the wave
function. The wave function becomes “rigid”, to a certain extent, in a way similar to London’s treatment of
the rigidness of the wave function in a superconductor.

Current density in a metal is given by an expression

_Ne e

i= m(P—EA) (2)

where the first term related to momentum p is called “paramagnetic current” whereas the second one is the
“diamagnetic current”. In classical physics, both current components cancel each other, in compliance with
the van Leeuwen theorem, but quantum mechanically paramagnetic current

ieh

s * 1k 3
o = 5 VU — V) 3)
attains only discreet values since the wave function in the ring
1 inf
p=—=e""  n=0,%1,+2 ... (4)

has a quantized value of the phase nf (6 is the azimuthal angle in a ring). Thus, the cancellation between j,
and jq is only possible at discrete values of magnetic flux ® = n - he/e. Therefore the current is a periodic
function of flux with a period
he
By = —. ()
e
The above explanation of persistent (or “permanent”, or “non-decaying”) current is similar to London
interpretation of persistence of current in a superconductor arguing that it is a result of “rigidness” of its
wave function such that it remains same at finite vector potential A as it is at A = 0 when there is no current,
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Figure 2. Aharonov-Bohm loop of radius R, cross sectional area Sy = L1 L2, and the source of magnetic flux in form
of thin solenoid piercing the ring.

but the current appears at A # 0 since paramagnetic current remains frozen to zero. The microscopic theory
of superconductivity proves that the rigidness of the wave function is the consequence of the existence of the
energy gap A[15], and that the flux quantum in a superconductor

_he

i J—
8 2e

(6)

is twice smaller than ®y due to electron pairing.
The rigidness of the wave function in normal metal is insured by an effective gap in the excitation
spectrum of electrons equal to the distance between the quantized eigenstates at Fermi energy

hUF
Ae = — 7

where vp is the Fermi momentum of electron and L = 27w R is the circumference of the ring. Observation
of persistent current requires low temperature T' < Ae and is therefore the “mesoscopic” effect existing at
small L (typically, L < 1um) and corresponds to the value of persistent current of the order

Jmax == Jon1 (T)n2(Ne) (8)

where
evEp

and

m =~ exp(—2m2Ae/T) (10)
is a temperature factor[2]. 1y is the geometric factor taking into consideration the contribution of all
electrons with the quantized energies

h? P h? h?
Enning = W(” - 2 3 5 (11)
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Figure 3. Persistent current as a function of number of electrons N. in the 1d ring. 1 - maximal value of J(®)
normalized to Jo = evr/L, at given N; 2 - amplitude of first harmonic J ) /Jo; 3 - maximal current estimated as
ratio of AE((ID) between ® = —®(/2 and ® = $y/2 to g. Lower curve shows spontaneous persistent current (see
below).

including the states along the ring (quantum number n = 0,+1,...) and the discrete states in the perpen-
dicular direction (n172 = 1,2,...). The value of 79 is larger than 1 due to large number of perpendicular
channels (typically, Jmax > 10 — 100 nA at L < lum). Some estimates give 1y ~ Ni/ 2 where N | is the
number of perpendicular channels (the number of states with quantized perpendicular momenta at Fermi
energy, N| = k%5p/2m%; Sp is the cross section of the ring, see Fig.2).

Fig.3 shows dependence of maximal persistent current on the number of electrons in 1d ring (N, = 1),
and Fig.4 in the 3d ring with a finite cross section Sy (We assume the fixed-N, sample.) In the latter case,
the dependence is not regular and not periodic. The states (11) with corresponding flux shifts add to total
current in an almost chaotic way such that only few last (largest energy) contributions make the main effect.
Nevertheless, other states also contribute making drift of Jmax up, i.e. to higher than evp/L values. At
large N, the dependence J(®) at fixed N, is nonsinusoidal (see Fig.5) and can be presented as sum of
harmonics

S 70 i 9 ™2
J(®) = Z JU™ sin 27'('? (12)

m=1 0

corresponding to “flux quanta” with multiple charges e, 2e, 3e, ....

Persistent current is a voltage-free non-decaying current which exists as a manifestation of the fact
that the ground state of a double connected conductor in a magnetic field is a current-carrying one. This
statement was proved for the ballistic loops [2] as well as for the diffusive rings [4]. There is no principal
difference between these two extremes. Ballistic mesoscopic structure doesn’t show infinite conductivity at
a finite d.c. voltage, and a d.c. resistance of the loop is infinite rather than zero when an electric field
is applied to system. In case when the current is fed through the structure, no voltage appears provided
the magnitude of the current is smaller than the critical value. This applies to both elastic and inelastic
scatterings. The magnitude of critical current in the ballistic ring smoothly matches the current of the
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Figure 4. Persistent current as a function of number of electrons in the ring with the circumference to cross-sectional
dimensions ratio L : Ly : Ly = 10 : 3 : 3. Upper curve - maximal current in units of Jy corresponding to given N.;
middle curve - amplitude of normalized first harmonics; lower curve - spontaneous persistent current, also in units
of Jo. These dependences are illustrative, for simplicity we consider the case of “spinless” electrons.
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Figure 5. Illustrative examples of persistent current versus Aharonov-Bohm flux dependences taken at N. = 100.
Lower curve corresponds to 1d ring, the upper curve (shifted for convenience up and normalized, as well as the upper
one, to maximal current at given Ne and L) in a ring with L : Ly : Ly =10: 3 : 3.

400



KULIK

diffusive ring when the mean free path becomes large. In a dirty limit, | < L, where [ is the elastic mean
free path of electron, critical value of persistent current decreases proportional to I/L according to Ref
[16], or to (I/L)*/? according to numeric simulation [14]. The persistent current doesn’t even require severe
restriction on the so called “phase breaking” mean free path [,. In fact, the normal-metal supercurrent is an
analogue of the “incoherent” Josephson current [17, 18], the one in which the phase of the pair wavefunction
in superconductor is considered as a classical variable. Stronger criteria (the dephasing length larger than
the system size, and the analogous requirement in the time domain, that the “decoherence time” is larger
than the characteristic time of observation) apply to persistent current rings as quantum computational
tools mentioned above, which are the analogues of the macroscopic quantum tunneling [19, 20, 21].

Observation of persistent currents have been done in an indirect [22,23] as well as in the direct [5,
6, 7] experiments showing the single-flux-quantum periodicity in the resistance, and in the first harmonic
nonlinear output, in thin Nb wires [22], networks of isolated Cu rings [23], and in stand-alone metallic
[5], semiconducting [6] and macromolecular [7] Aharonov-Bohm loops. The last experiment was actually
interpreted by authors in terms of the antiferromagnetic ordering regardless their own mentioning of the
nonmagnetic character of given macromolecule (a “ferric wheel” [Fe(OMe)2(O2CCHCl)|10). In recent
publications [8, 24, 25], macromolecular and nanoscopic Aharonov-Bohm structures have been suggested as
elements of quantum computers.

3. Spontaneous persistent currents

In special symmetric configuration, mesoscopic loop can support persistent current even when Aharonov-
Bohm flux is not applied to system [9]. This accomplishes as a bistable state such that infinitely small nonzero
flux triggers the loop into one of its two equal-energy opposite-direction persistent current configurations.
On the other hand, the lattice (the atomic configuration of the loop) can respond to such a degenerate
ground state by making the atom readjustment similar to Peierls transition (doubling of the lattice period
in one-dimensional atomic chain). In fact, such possibility clearly shows up in the case of 1d loop with the
discrete quantum states (11) at n1 = ne = 0 corresponding to energies

hQ

= W(”—Jf)2 (13)

En
where n = 0,+1,42,... and f = ®/Pg is magnetic flux threading the loop in units of flux quantum ¥y =
4-107"Gs - em?. In Figs.3,4, we showed persistent current in 1d and 3d rings as function of electron
population. The current vanishes when all states =4 at given electron number N, are equally populated at
f=0.

As an example, the loop with 3 electrons has energies

1 LJg
B(f) = eolf? + 5(+1 = P+ 52 () (14)
corresponding to two spin-1/2 states with n = 0, and one state with n = 1 or n = —1. The last term in

Eq.(14) is the magnetic inductive energy and L is an inductance (of the order of the ring circumference, in
the units adopted). The current

J= —%é)E/é)f (15)
equals to

J(f) = Jo(£1=3[f]), Jo=eeo/h (16)
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Figure 6. Lower curve: Current versus magnetic flux in the 3-site loop with 3 noninteracting electrons. Upper
curve: Energy vs flux for N = 3,n = 3 loop at the value of hopping parameter to = —1. Energy is rescaled and
arbitrarily shifted up for clarity.

“

and is nonzero at f = 0 in either of states “4” or “—”, see Fig.6. The ratio of magnetic energy to kinetic

energy is of the order

n= LI§ € 6%
2c2eg ~ 4mmc2R R

where ag is the Bohr radius. This is a very small quantity, and therefore the magnetic energy is unimportant

(17)

in the energy balance of the loop. The flux in the loop f = fest + 2nj(f) where fe,+ is an external flux and
J(f) = J(f)/Jo. Correction to externally applied flux is only essential at fe,: ~ 1 otherwise we can ignore
this contribution.

The property of nonzero persistent current thus demonstrated for the noninteracting electrons, survives
strong electron-electron coupling but collapses when the coupling to the lattice is included (see below).
Nevertheless, when the loop is on the rigid background (say, cyclic molecule on a substrate of much harder
bound solid) the degeneracy may be not lifted, or may remain in a very narrow interval of externally applied
fields. We will investigate this possibility in the tight binding approximation [14], in which electrons are
tightly bound to certain atomic locations (traps), and make the loop conducting by resonant tunneling
between these locations.

In the tight binding approximation, Hamiltonian of the loop in the second quantized form reads

N N N N
. 1
H= Z(tjajgajﬂﬁewﬂ +h.c. + UZanu +V , Z NigMNi+1,07 + §K Z(GJ - 9j+1)2 (18)
i=1 i=1 i=1,0,0' j=1
where ¢; is the hopping amplitude between two near configurational sites, j and j + 1,
tj =to+9g(0; — 0j11) (19)
and

Nig = a;t,aw (20)
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Figure 7. Spontaneous persistent current versus flux for to = —1 and various values of Hubbard parameter U: 1 -
U=0;2-U=-2,3-U=2,4-U=-5;5-U=5;6-U=-10;7-U = 10.

is the number operator. «; is the Aharonov-Bohm phase (a Peierls substitution for the phase of hopping
amplitude)

2 f

aj =~ + (0 = 0+1) f. (21)
ajg is the creation (and aj,, the annihilation) operator of electron at site j with spin 0. 6; with j =1,2,..... N
are the angles of distortion of site locations from their equilibrium positions GJQ = 27j/N satisfying the

M09
J=1"j
property that the hopping amplitude depends on the distance between the localization positions and assumes

that the displacement 6; — ;44 is small in comparison to 2r/N. U and V are Hubbard parameters of the

requirement » =0, and g is the electron-phonon coupling constant. The interaction (19) reflects the

on-site and intra-site interactions. The parameters are assumed such that system is not superconductive
(e.g., U > 0; and anyway, the superconductivity is not allowed for 1d system; it is ruled out for small system).
The last term in Hamiltonian (18) is the elastic energy and K is the stiffness parameter of the lattice.

In the smallest loop, the one with three sites (N = 3), only two free parameters of the lattice displacement,
X1 and X5, remain

0 =X1+Xo, Ob=—-X1+Xo, 03=-2X, (22)

which are decomposed to second-quantized Bose operators by, by as

3K K

X1 =( " )AL+ b)), Xy = 3(@)1/4(52 +b3). (23)

The system (18) is solved numerically with the ABC compiler [26] which includes the creation-annihilation
operators as its parameter types. These are generated as compiler macros with sparse matrices

A, = (u@)N1+N2 (@) (24)
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Figure 8. Energy vs flux in a loop with noninteracting electrons coupled to lattice with the value of coupling
parameter g = 1 and various values of the stiffness parameter K: 1 - K=2; 2 - K=3; 3 - K=5; 4 - K=10; 5 - K=20.

where a,u, v are 2 x 2 matrices (® is the symbol of Kronecker matrix product)

SISO AR

] -1 at n=12..,MN Fermionic sector
= 1, at n=N+1,.... N+ N> Bosonic sector

and 7 is a parameter
(26)

Bosons are considered as ”hard-core bosons” such that there are only two discrete states for each mode of
displacement. We calculate the ground state of Hamiltonian (18) as function of magnetic flux f (a classical
variable). In application to real atomic (macromolecular) systems, we can consider X;, X5 as classical
variables since quantum uncertainties in the coordinates (AX; o ~ (h/Mw)'/?) are typically much smaller
than the interatomic distances (M is the mass of atom and w ~ 10'3s7! is the characteristic vibration
frequency). The energy of the loop is calculated as function of X7, X5 and further minimized with respect
to X1, Xo for each value of f. The nonzero values of X7, Xy will signify the ”lattice” (the ionic core of the
macromolecule) instability against the structural transformation which is analogous to Peierls transition.

In the noninteracting system (U, V, g = 0), the energy versus flux f shows kink with a maximum at f =0
(Fig. 6) in the half filling case, i.e. at the number of electrons n equal to the number of sites, N, as well as
in a broader range of near the half-filling values of n at larger V. Actually, such dependence is typical for
any N > 3 system for a number of (fixed) values of n.

The 3-site loop E(f) dependence is shown in Fig.6 together with the dependence of the current on f.
The latter shows discontinuity of current J(f) at f = 0 of the same order of magnitude as the standard value
of persistent current. The current at f = 0 is paramagnetic since energy vs flux has mazimum rather than
minimum at f = 0. On-site interaction reduces the amplitude of persistent current near zero flux (Fig.7)
but doesn’t remove its discontinuity at f = 0. Therefore, the most strong opponent of the Aharonov-Bohm
effect, the electron-electron interaction, leaves it practically unchanged.

404



KULIK

-0.5 -0.3 -0.1 0.1 0.3 0.5

Figure 9. Energy vs flux for a loop with coupling constant g = 1 and various values of stiffness K: 1 - K=2; 2 -
K=3; 3 - K=5; 4 - K=10; 5 - K=20.

On the other hand, the electron-phonon interaction flattens the E(f) dependence near the peak value, see
Fig.8. At large stiffnesses, K, this flattening remains important only for small magnetic fluxes, much smaller
than the flux quantization period A® = ®3. Mention that persistent current peak reduces in its amplitude
only slightly near the zero flux. As is seen from Fig.9, electron-phonon interaction splits the singularity at
® = 0 to two singularities at ® = £, 4. Outside the interval —®g;pg < ® < Pgip4, Peierls transformation
is blocked by the Aharonov-Bohm flux. The range of magnetic fluxes between —®g;,4 and ®;,4 determines
the domain of the developing lattice transformation which signifies itself with the nonzero values of lattice
deformation X7, Xs. The latter property allows us to suggest that the spontaneous persistent current state
(a peak of dissipationless charge transport at, or near, the zero flux) remains at the nonzero flux when the
electron-phonon coupling is not too strong or when the lattice stiffness is larger than certain critical value.

4. Aharonov-Bohm qubits and qugates

Quantum computation [27] is a promising field for solving intractable mathematical problems, those in
which the number of computational steps (if solved with a classical computer) increases exponentially with
the number of computational units (M), e.g., number of spins in the Heisenberg ferromagnet, number of
electrons and lattice sites in the Hubbard model of solid, number of binary digits in a large integer to be
factorized, etc. If these units (spins, atoms, digits) are represented as ”quantum bits” and processed by
unitary transformations acted upon by the logical quantum gates, at least some of these problems can be
solved in a polynomial time in M (e.g., the Shor’s algorithm [28] for factorizing large integers). Basically, the
fundamental gates are unitary time evolutions for given Hamiltonians executed on qubits or on pairs of qubits
and for certain time intervals. Fundamental gates are known to be the unitary operations such as the single
qubit bit-flip, phase-flip and the Hadamard transformations and the double qubit controlled-NOT (CNOT)
operation [27]. Workers in the field at earlier times considered qubit realizations as quantum optical or
atomic systems, and shifted at more recent times to other methods employing mesoscopic condensed matter
structures (quantum dots [29], superconducting Cooper-pair boxes [30, 31, 32, 33|, flux-state Josephson
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Figure 10. Operational diagram of the Aharonov-Bohm qubit. Curves 1 and 3 are energy versus magnetic flux
dependences in the degenerate states carrying opposite currents +j = —cde/d® (full and dashed lines). Curve 2
corresponds to the zero-current virtual state at the operating point of qubit at half-flux quantum ® = ®4/2 (a control
state, the dotted line). This state couples qubit to the logical qugate.

junctions [34, 35, 36]). In Ref.[37], the necessary conditions for quantum computation have been specified,
not all of which have already achieved perfect realization (the problems with the solid-state qubits are
documented in Refs. [38, 39]). This leaves space for more suggestions of the instrumental realization of
qubits, especially those that use the solid state technology. We investigated this new possibility[8] employing
the three state quantum logic with doubly degenerate qubit states accompanied by a third (auxiliary) level
based on 3-site Aharonov-Bohm loop.

The auxiliary level is used to coherently couple the operational qubit states to the computational envi-
ronment including the other qubits as well as the input-output devices. The proposed structure is naturally
realized with the quantum states of the ring of metallic islands (or atomic sites) connected by resonant
tunnelling in the presence of the Aharonov-Bohm flux threading the ring, a persistent-current, and placed
in an external electric field perpendicular to the magnetic flux to perform the qugate manipulation in the
invariant subspace of two degenerate states. We focus in this work on the quantum mechanical aspects of
qubit and qugate operations with persistent current (PC) loops.

In the mesoscopic ring of a normal metal of size L, smaller than the phase-decoherence length of the
electrons, the charge current is produced under the influence of the Aharonov-Bohm flux. Physically, the
shifted energy minimum in the presence of the Aharonov-Bohm flux is counterbalanced by a net charge flow
producing a persistent current in the absence of resistive effects. The magnitude of the persistent current
in a clean metallic ring of circumference L is typically given by Eq. (7). In a nanoscopic (atomically small)
ring with discrete sites and with one electron, the magnitude of the persistent current is

2er . w
Jmax = N7 Sy ~ 21er /hN? (27)
where N is the number of sites in the discrete ring and 7 is the electron hopping amplitude between the
sites. The PC is created individually by single electrons hence the fundamental flux quantum ®y = hc/e is

twice larger than the Abrikosov or Josephson flux quantum ®s; = he/2e. This very fact may permit new
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Figure 11. A sketch of the magnetically focused lines of the magnetic field from the superconducting fluxon trapped
in the opening of superconducting foil (.S), compressed by ferromagnetic crystal (F') and directed into the interior of
PC ring (R).

effects to arise when a single Josephson vortex or Abrikosov fluxon is used to manipulate the single electron
current in the PC ring.
The Hamiltonian of the system is

N—-1
H=—7> (afant1e’™ +a,  ane”™®) (28)
n=0

where a;! is a fermionic operator creating (and a,, annihilating) electron at site R,, in a ring with the periodic
boundary condition ay = ag, and « is the phase related to the Aharonov-Bohm flux threading the ring by
a = 27P/N®y. The Hamiltonian (28) is diagonalized by the angular momentum (i.e., m =0,1,..., N — 1)
eigenstates A ]0)

—1

1 .
A+ - eQﬂ'zmn/Nal—i- 29
with the site energies
2 P
Em = —2T coS Wﬂ(m - (}TO) (30)

plotted against the normalized flux ®/®, in Fig.10.

Since two ground states are degenerate at ®y/2, they can be used as the components of the qubit while
the third one couples the qubit to a qugate, to be discussed below. Omne possible practical realization of
the qubit with an appropriate architecture is sketched in Fig.11. The horizontal ring (R) may be realized
as a three-sectional normal-metal intersected by insulating tunnelling barriers (or consisting of overlapping
metallic films separated by thin oxide layers). Creating strong magnetic field to operate the qubit at the
half quantum flux is suggested with the help of superconducting fluxon trapped in a hole inside the super-
conducting film, with the magnetic field lines further focused by a mesoscopic ferromagnetic cylinder near
the ring.

The isolated qubit structure can in principle be realized as a three-site defect in an insulating crystal,
similar to the negative-ion triple vacancies (known as Fj-centers) in the alkali halide crystals (e.g., see [40]).
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Figure 12. A sketch of the bit flip. Loop C' is an output coil, V’s are the electrodes creating electric field perpen-
dicular to the magnetic field (normal to sheet) in a qubit.

Yet another possibility may be to use the natural molecular conductors, the carbon nanotubes [41], with a
proper configuration of carbon atoms in a helical tube, or the nanotubes covered by metallic nanolayers [42].
In such a structure, the single qubit related gate manipulations are provided by applying an electric field
perpendicular to the Aharonov-Bohm flux. It will be shown below that, facilitated by the auxiliary level as
well as the crossed electric and Aharonob-Bohm fields, all fundamental qugate operations can be performed
in the qubit subspace.

In the eigen basis of the operators A,, (the angular momentum basis), the Hamiltonian (28) in the
absence of the electric field is transformed into the diagonal form (we scale all energies in units of 7)

-1 0 0
Hy = ngA;gAm =0 2 o]. (31)
m 0 0 —1

Once the static electric field is on the generated electrostatic potential between the metallic islands is given
by V,, = Vycos(2nn/3) where for n = 0, Vj is the reference potential referring to the zeroth island. The
electrostatic potential, as depicted in Fig.12, is represented in the angular momentum basis by the constant
nondiagonal symmetric matrix

0
H (Vo) = | v (32)

S O <
o <

where v = V/27. For the manifestation of the single qubit qugates, two more interaction terms are defined.
The first one is the static site potential Vg represented by the Hamiltonian Ho

Hy = vsdiag(1,1,1) (33)

where v, = V, /7. The second term receives by shifting magnetic flux away from ®4/2. It is described by
the diagonal Hamiltonian Hjs

H3 = diag(AEl, AEQ, AEg) (34)
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Figure 13. Energy versus electrostatic potential. 1 and 3 (solid line and dotted line) are the energies which become
degenerate at Vo = 0, and 2 (the dashed line) is an energy of the auxiliary control state |c). The arrows indicate the
values of the potential V; corresponding to the operational points of the bit-flip (i.e. G1) and G3 (i.e. Hadamard)
gates.

where A;’s are shifts in energy corresponding to non-half integer flux. It is shown below that the first two
Hamiltonians Hy and H; are sufficient in the realization of the fundamental single qubit gates except the
phase shift. On the other hand, the Hamiltonians Ho and H3 generate relative phase shifts between the qubit
states. If one denotes an arbitrary superposition state in the angular momentum basis, the time dependence
of the amplitudes Cy,(t) are given by

Cn(t) = Z[eXp(_th)]mnCm(o) (35)
m
in which, in general, H = (Hy + Hy + Hs + Hs). Different terms in the total Hamiltonian H are controlled
by the time dependent ideal step function switches.
Let us first consider the case Vg = 0 and ® = ®(/2 when both Hs and Hj are switched off. When the
interaction H; is turned on by a step function switch for a time ¢, the amplitudes are found by

C(t) =Y St (Vo) 488,01 (Vo) Cin (0) (36)
m,k

where Ej(Vp) are the eigenenergies of Hamiltonian Hy + Hy(Vp) and Sy, (Vo) are the unitary matrices
transforming from the noninteracting eigenbasis (the one corresponding to Hp) to the eigenbasis of the
full Hamiltonian Hy + H;. It is indicated by Eq.(36) that, at fixed Vj, the time evolution of the states
is performed by the interplay of the three different eigenenergies. This is sufficient evidence that if the
eigenenergies are appropriately adjusted the population of the auxiliary state (in the angular momentum
basis) can be made to vanish under certain initial conditions. At these moments, the three state system
instantaneously collapses onto the qubit subspace without loss of any information if the auxiliary state was
unoccupied initially. Furthermore, we also require the Hamiltonian to have performed the given qugate
in the qubit subspace. A necessary condition for the instantaneous collapse onto the qubit subspace is a
commensuration condition between the eigenenergies E(Vp), (k = 1,2, 3) so that exponential factors in Eq.
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(37) destructively interfere at fixed time instants to destroy the nondiagonal correlations. The eigenenergies
Ei (V) are plotted in Fig.13. The required commensuration condition can be manifested by

Es— Ey = K (Ey — E3) (37)

for integer K. Eq. (36) guarantees the periodic collapses of the wavefunction onto the desired basis and the
next step is to search whether the desired qugate operations could be realized simultaneously in this desired
basis. Since the integer K is at our disposal, it can be changed numerically to search for the desired qugate
operations. For the corresponding values of the potential respecting Eq.(37) we find

2
Vo(K):—3—K[K2+K+1+(K—1)\/K2+4K+1]. (38)
In particular we mention that for K = 1 one has VO(I) = —2; and at K = 3 one has VO(?’) =-2(13+

24/22) = —4.9735 and we succeeded in finding two qugates in our first few attempts. As shown below, these
two cases yield the bit-flip and Hadamard transformations. The K = 1 case can be explicitly proved by
checking the identity

-1 -1 -1 l1+c+s S —1l+c+s
. 1
exp{—it [-1 2 -—-1]}= 5 s 2(c— ) s (39)
-1 -1 -1 —1l+c+s S l1+c+s

where it is defined that ¢ = cos(tv/6), s = i\/gsin(t\/g). At s =0 (i.e. ¢ = =£1), the transformation matrix
of Eq.(39) block-diagonalizes in a subspace of states 1,3 (i.e. |0), |1}, the qubit states) and the upper state 2
(i.e. |¢), the auxiliary “control” state). In particular, for ¢ = —1 the bit-flip is performed between the qubit
states.

In Figs.14,15 the populations of the states p,(t) = |C,(t)|? are plotted for the mentioned cases K = 1 and
K = 3. The instantaneous collapse onto the qubit subspace is obtained at t = t; for K = 1, and at t = t3
for K = 3, if the auxiliary level is unoccupied at ¢ = 0. We found these critical times as (in units of i/7)

™ s

t) = —==1.2825, t3= =0.7043 40
G * 7 2ABx(Vh) — Ba(Vo)lkes (40)
where the eigenenergies are
1+V/2 3
o) = 2 23 N v B = -1 - Va2 (41)

for Vo < 0. We notice that the configuration (¢;, K = 1) performs the bit-flip |0) < |1) whereas (¢35, K = 3)
creates the equally populated Hadamard-like superpositions of |0) and |1). These operations are presented
in the qubit subspace by the matrices (overall phases are not shown)

Gi = ((1) é) and Gy = % (_12 _1’> . (42)

The G gate manifests the bit-flip whereas G3 is different from the standard Hadamard by a relative
/2 phase. The relative phase in G can be corrected by an additional procedure by turning on the Hy and
Hj;. Since these terms are diagonal, the occupation probabilities are unchanged and an appropriate time
evolution can nondemolitionally correct for the phase between the qubit states. More specifically, H3 can be
used to correct the relative phase within a single qubit subspace, and Hs corrects the overall phase of the
qubit which may become important for double-qubit operations such as controlled-NOT.

The relative phase between the qubit states can be changed using the phase rotation matrix

G- () ) (a3
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Figure 14. Evolution diagrams of quantum gate G.

Solid and dashed lines show the time dependence of the
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Figure 15. Evolution diagrams of quantum gate Gs.

Solid and dashed lines show the time dependence of the

population of the states |0) and |1) which are degenerate at Vo = 0. The dotted lines show the time dependence of the
auxiliary population. The arrows indicate the “operational point” of the qugate, the time of evolution corresponding

to the return to the invariant qubit subspace.
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Figure 16. A-shaped level diagram of the persistent-current qubit. Arrows indicate the virtual transitions to the
auxiliary state at the fixed-time interval (quenched) Rabi oscillation.

in the form of an Euler-type transformation Go(—m/4) G3 Go(—n/4). The fixed phase value —7w/4 can be
obtained by turning off H; and Hs and turning on Hjs [i.e. H = (Hy,0,0, H3)] for the required time.
Since both Hamiltonians are diagonal, the qubit subspace is invariant under this transformations for all
evolution times. On the other hand, the overall qubit phase is corrected with the unitary matrix in the
H = (Hy, 0, Ho,0) configuration at the fixed values (¢*, VO(*)) which can be easily determined.

The gate operations described in this section can be regarded as the (quenched) Rabi oscillations in a
A-shaped level configuration of the qubit with two degenerate groundstates and one excited state (Fig.16),
mostly effected by the nondiagonal matrix elements generated by Hi;. In summary, the transformations
between the degenerate states are achieved through a virtual transition to an auxiliary eigenstate |c) with a
sufficiently higher energy level. Switching off the interaction, when the auxiliary state is depopulated, maps
the final configuration unitarily onto the qubit subspace. The standard procedures of quantum computation
are the initialization (input), the logic gate transformations in one ring, the controlled bit flips on the desired
qubit pairs (the CNOT), and the reading of the output to a classical device.

(a) Initialization. Adiabatically shift the magnetic flux in each ring from half flux quantum and allow the
system to relax to the nondegenerate lowest energy state |0) by spontaneous emission. By applying G5, we
receive a state of equally superposed degenerate levels which is conventionally the initial state in some quan-
tum computing algorithms, in particular in the Shor’s factorization algorithm [28]. In this perspective, the
initialization scheme is not drastically different from other quantum computation schemes in the literature.

(b) CNOT. The realization of the controlled operations with double qubits is a fundamental requirement
of any mechanism of quantum computation. It is possible to obtain a CNOT gate in the quantum system
we propose. Two three-level systems are initially prepared to be in their qubit subspaces and they are
connected by a quantum nondemolitional measurement device which reads the first qubit and depending on
its state, induces a static potential VO(I) in the second qubit to perform the bit flip. The experimental scheme
is shown in Fig.17 which employs two mesoscopic rings, a Hall bar in the full integer quantum regime and a
superconducting loop. The persistent current J; in the qubit Q; creates a current in the superconducting
loop J{ = nJp by induction where 7 is the efficiency in the transformation of the current. The current Jj is
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Q1

Figure 17. A sketch of the CNOT quantum gate. The loop of the qubit No.1 couples via the superconducting loop
C to quantum Hall bar (H) in the form of a Corbino disk. The voltage output R,,J; from the disk is supplied (after
subtracting a constant value Vp, not shown on figure) to potential electrodes V thus controlling the flip transition in
the qubit No.2.

then fed into the Corbino disk and converts it to the voltage
, h
Voy = RayJ1 = nne—Jl (44)
2

where R, is the Hall resistance at the n’th plateau, viz. Ry, = n - 27kQ. Here the efficiency parameter
depends on the effective mutual inductance between the qubit ring Qi and the superconducting loop.
The reference point of the Hall voltage V,, is adjusted to adopt the binary values: either VO(I) or zero
corresponding to the fixed value of the current flowing in one or the other direction. The Hall bar is
connected to the V electrodes of qubit Q2. If the voltage is VO(I), the bit flip of the second qubit is realized
after time ¢; or if the voltage is zero no change is made. The procedure may in principle be executed
in a totally reversible way provided that the Hall bar is in the manifestly quantum regime. According to
the measurements [43], longitudinal currents in the contactless realization of the quantum Hall effect (the
Corbino disk geometry) persist for hours, i.e. the longitudinal resistance R, practically vanishes considering
the short time scales relevant for quantum computation.

(¢)Qugate operation with two coupled rings. The objective is to implement quantum mechanically the
“control-NOT” operation which flips the state of one of the two qubits (the control) provided the second
(target) qubit is in one of its particular states. This means, for example, that the bit No.l should be
nondemolition-measured and, if up, the second bit is flipped. The two states | 1> and | |> differ in the
direction of their currents. We use this to design an interaction between the qubits ;) ® H §2) where  is
a current operator (in proper units) j = diag(1,—1,0) in the representation of operators A, , and upper

indices (1,2) correspond to the qubits No.1,2.

The realization of the controlled operations with double qubits is an essential requirement of any mech-
anism of quantum computation. It is possible to obtain a CNOT gate in the quantum system we propose.
Both three level systems are initially prepared to be in their qubit subspaces and they are connected by
a quantum nondemolitional measurement device which reads the first qubit and depending on its state,
induces a static potential VO(I) in the second qubit to perform the bit flip. The experimental scheme is
schematized in Fig.18 which employs two mesoscopic rings, a Hall bar in the form of a Corbino disk [44] in
the full quantum regime and the superconducting loop. The persistent current J; in the loop of qubit Q4
creates a current in the superconducting loop J| = nJ; where 7 is the efficiency of current transformation
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Figure 18. A sketch of the CNOT quantum logical gate. Q1, Q2 are qubits No.1,2, V are voltage electrodes and
V1, V2 the voltage shift sources, S1, Sz are their respective switches. H is the Quantum Hall bar. Filled dots
represent schematically metallic islands resonantly coupled to each other along the solid lines.

and converts it to voltage
! h !
V =RyyJi =n—J; (45)
€2

on the center of n-th Hall plateau. The system is assumed to be initiated such that current in a loop is zero
at zero persistent current in a qubit loop; the other possibility could be to include the —®y/2 compensating
coil between Q1 and H to exclude the large static flux ®4/2 in the qubit. Estimate shows that due to a
large value of Ry, (27K on the main Hall plateau), the voltage V' is large enough to drive the qubit at the
efficiency n ~ 0.1.

The Hall voltage generated in the bar is designed so that either VO(I) or zero voltage is produced corre-
sponding to the fixed value of the current flowing in one or the other direction. The Hall bar is connected to
the V electrodes of qubit Q2. If the voltage is VO(I), the bit flip of the second qubit is realized after time ¢ or
if the voltage is zero no change is made. The procedure may in principle be executed in a totally reversible
way if the Hall bar operates in the manifestly quantum regime.

(d)Reading the output. Reading the result, i.e. the population of the qubit when computation concludes
can be realized with a Hall device as shown in Fig.17. Since the readout breaks the reversibility we may
assume that it can also be manifested by the classical Hall effect. By measuring the magnetic field output B’
from the persistent current in a loop and applying this field to a Hall bar with a large current J we receive
a sufficiently large voltage V/ = Ry JB’ the magnitude and the polarity of which reports on the magnitude
and the direction of current in the qubit. This device is analogous to a Stern-Gerlach sensor of the NMR
qubit in Ref.[45] , or to the Ramsey-zone measuring device of the optical beam polarization qubit in Ref.[46].

5. Discussion

We considered Aharonov-Bohm effect in angular-periodic macromolecular loop like, e.g., aromatic cyclic
molecule, and found that the Aharonov-Bohm flux applied to loop arrests the lattice instability (rearrange-
ment of molecular atoms or blocks within the molecule). This is a consequence of the fact that weak-coupling
effect of electron hopping between the sites of electron localization can not provide enough energy for initi-
ating the atoms (blocks) shifting from periodic locations, except at quite small magnetic fields. As a result,
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the ground state of system at certain electron concentration becomes a current-carrying one at zero (or very
small) magnetic fluxes, the state with the spontaneous persistent current. This effect suggests a possibility
of using appropriately engineered macromolecular structures as elementary qubits, the degenerate or near
degenerate states seeked for processing of quantum information. As was shown in a sect.IY, the three-site
Aharonov-Bohm loop supports all logical operations (the quantum logical gates) required for quantum com-
putation and quantum communication, which are effected by static voltages applied to loop perpendicular to
magnetic flux and such that the loop is driven to a A-shaped energy configuration with the two degenerate
ground states making elements of qubit, and the third, higher energy state accomplishing the radiation-free
quantum logical gates. Very strong magnetic fields are required for formation of such states (corresponding
to magnetic flux equal to half of flux quantum).

We proposed a new mechanism for quantum computation based on manipulation of the quantum states
of the Aharonov-Bohm (non-superconducting) persistent-current states in mesoscopic (nanoscopic) loops
(i.e. quantum dots; the vacancies in ionic crystals; the conducting molecular nanowires; the macromolecular
aggregates). The mechanism is ultimately related to the unique property of a three-site loop, the presence of
a double degenerate ground state at fixed spin orientation at the value of the Aharonov-Bohm flux in a loop
equal to half of the normal-metal flux quantum. The central point is a A-shaped energy configuration of a
three-site loop (Fig.16) with two degenerate ground states, and the existence of the unique transformations of
qubit populations (Fig.14,15) accomplished with a radiation free (employing static voltages at pulse heights)
external perturbations which are not subject to any quantum restrictions. The loop in the crossed electric
and magnetic fields displays both the static (magnetic) and the dynamic (electric) Aharonov-Bohm effects
and, as a result of the latter, it allows the reversible operations constituting, in their entirety, the full set of
transformations expected in universal quantum computation. The estimated magnitudes of the persistent
currents show that these currents, being quite small, nevertheless are in principle sufficient to operate the
quantum logic gates (qugates).

The major advantage of the suggested mechanism from the currently investigated solid state (super-
conductive) qubits are in that, the qugate manipulations are effected by static pulsed voltages in a totally
radiation free environment. Namely, no external coupling to a resonant laser field is necessary. ]In the
proposed mechanism, the decoherence may be further reduced effectively by the fact that the qubit and
the qugate, being a single unit, optimize the adiabatic evolution by minimizing the number of external
switches required. Add to this that certain estimates [24] conclude on the quite small decoherence effects, at
appropriate choice of the system parameters, related to the qubit interaction with a radiative environment.

It is very likely that the simplicity of the theoretical mechanism and the flexibility in the conducting
molecular structures may also permit persistent current states. Some difficult parts of the scheme (the
requirement of quite strong magnetic fields to operate the qubit; the low level of electromagnetic signals
in the loops; the severe limitation on precision of voltage amplitude and time duration in logical gates;
the low temperature environment needed to enter the regime when the persistent current becomes a non-
exponentially small effect) may be overcome by a due extension of the model. These issues are not discussed
in present paper in any practical detail except of mentioning that spontaneous persistent currents discussed
in sect.IIT allow to reduce these fields by orders of magnitude. If not the goal of building a real quantum
computer, the very existence of the nonzero persistent currents at vanishingly small magnetic fields deserves,
to our opinion, a basic physical interest.
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