
Comput Optim Appl (2008) 41: 151–183
DOI 10.1007/s10589-007-9096-y

Implementation of warm-start strategies
in interior-point methods for linear programming
in fixed dimension

Elizabeth John · E. Alper Yıldırım

Received: 11 May 2006 / Revised: 12 December 2006 / Published online: 9 November 2007
© Springer Science+Business Media, LLC 2007

Abstract We implement several warm-start strategies in interior-point methods for
linear programming (LP). We study the situation in which both the original LP in-
stance and the perturbed one have exactly the same dimensions. We consider differ-
ent types of perturbations of data components of the original instance and different
sizes of each type of perturbation. We modify the state-of-the-art interior-point solver
PCx in our implementation. We evaluate the effectiveness of each warm-start strategy
based on the number of iterations and the computation time in comparison with “cold
start” on the NETLIB test suite. Our experiments reveal that each of the warm-start
strategies leads to a reduction in the number of interior-point iterations especially for
smaller perturbations and for perturbations of fewer data components in comparison
with cold start. On the other hand, only one of the warm-start strategies exhibits bet-
ter performance than cold start in terms of computation time. Based on the insight
gained from the computational results, we discuss several potential improvements to
enhance the performances of such warm-start strategies.

Keywords Linear programming · Interior-point methods · Warm-start strategies ·
Reoptimization

This research was supported in part by NSF through CAREER grant DMI-0237415.

E. John
Automatic Data Processing, Inc., Edgewood, NY 11717, USA
e-mail: lizjohn1@gmail.com

E.A. Yıldırım (�)
Department of Industrial Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey
e-mail: yildirim@bilkent.edu.tr

mailto:lizjohn1@gmail.com
mailto:yildirim@bilkent.edu.tr

152 E. John, E.A. Yıldırım

1 Introduction

Having solved an optimization problem, the computational effort of solving another
closely related optimization problem can in general be reduced if one can properly
take advantage of the information gained during the course of the solution of the orig-
inal problem. The techniques aimed at identifying an advanced starting point for the
solution of a nearby optimization problem using the information gained from the orig-
inal one are referred to as “warm-start strategies.” Many optimization algorithms such
as sequential linear/quadratic programming, branch-and-bound, and decomposition
methods require the solution of a sequence of closely related optimization problems.
Therefore, the development of effective warm-start strategies is essential in order to
reduce the computational cost of such widely used sequential algorithms.

Since Karmarkar’s pathbreaking work [19], interior-point methods (IPMs) have
dominated research in continuous optimization in the last two decades. These meth-
ods have proved to be effective in solving a rather large class of convex optimiza-
tion problems both in theory and in practice. Despite the fact that IPMs are well-
understood in the broad context of convex optimization (see, e.g., [25, 28]), the de-
velopment of warm-start strategies is still an active area of research.

Unlike the simplex method for linear programming (LP), IPMs generate a se-
quence of interior-points that converge to an optimal solution in the limit. An op-
timal basis of an LP problem usually serves as an excellent warm-start to resolve
another closely related LP problem using the simplex method. However, IPMs work
with interior-points and tend to generate much better search directions at points that
are away from the boundary of the feasible region. Therefore, an optimal or a near-
optimal solution of the original LP problem is in general not a very good candidate to
be used as a warm-start for the solution of a nearby problem. This major difference
between the simplex method and IPMs makes the development of effective warm-
start strategies in IPMs a nontrivial problem.

For LP, research on warm-start strategies in IPMs has focused on two cases. In the
first case, a nearby LP problem is obtained by adding constraints and/or variables to
a given LP problem. This situation arises, for instance, in cutting plane schemes (see,
e.g., [15, 22–24]) and in the context of branch-and-bound methods [6]. In addition,
similar warm-start strategies have been developed for analytic center cutting plane
methods in the case of central and deep cuts (see, e.g., [12, 13] and the references
therein).

In the second case, the nearby LP problem has exactly the same number of con-
straints and variables as the original problem but the data is perturbed. This situation
arises, for instance, in the sequential linear programming algorithm for nonlinear
optimization and in the branch-and-bound method for integer programming for two
sibling subproblems. This case has been studied in [2, 10, 11, 16, 17, 20, 27, 34].
Furthermore, the reader is referred to [7, 8] for warm-start strategies for convex mul-
ticriteria optimization problems and to [3, 9] for more general nonlinear optimization
problems.

Several different approaches are proposed in the existing literature on warm-start
strategies and reoptimization in the context of IPMs. Each of the suggested meth-
ods relies on having a solution or a set of solutions for the original optimization

Implementation of warm-start strategies in interior-point methods 153

problem that satisfies a set of desirable properties such as near-feasibility, near-
optimality, and/or proximity to the central path. Typically, after perturbing the origi-
nal LP problem, the previous solution fails to satisfy primal feasibility or dual feasi-
bility or both. The existing methods propose different ways to handle this situation.
For LP, while some strategies rely on computing an adjustment or several adjust-
ments to the previously stored iterate to regain feasibility for the perturbed problem
(see, e.g., [6, 15–17, 22–24, 34]), other methods modify the perturbed problem using
judiciously chosen penalty or barrier parameters so that the stored iterate can be used
as is (see, e.g., [2, 10, 11, 20, 27]). Computational results indicate varying degrees of
success of some of these methods (see, e.g., [2, 16, 17, 22, 23]). The question of how
to perform reoptimization in the context of IPMs does not seem to have been settled
at the time of writing this manuscript. As a result, warm-start strategies in IPMs still
remain an exciting avenue of research.

In this paper, we focus on the implementation of warm-start strategies in IPMs
for LP and mainly rely on the theoretical framework developed by Yıldırım and
Wright [34]. These strategies can be applied in the case in which the perturbed LP
problem has the same dimensions as the original one. In their setting, the original
LP problem is solved using a feasible primal-dual path-following IPM and a subset
of the iterates generated during the course of the solution is stored. Given the per-
turbed LP problem, the proposed warm-start strategies are based on computing an
adjustment at an iterate of the original problem so that the adjusted iterate is strictly
feasible for the perturbed problem and is relatively well-centered. The procedure is
started from the last stored iterate in an attempt to obtain an advanced starting iterate
for the perturbed problem with a small duality measure. If the computed adjustment
fails to produce an acceptable starting point for the perturbed problem, one retreats
to an earlier iterate in the sequence of stored iterates and repeats the same proce-
dure. If none of the stored iterates yields an acceptable starting point, the perturbed
problem then is solved from scratch (i.e., “cold start”). In [34], two adjustments are
proposed, namely a least-squares adjustment and a Newton step adjustment. The au-
thors establish sufficient conditions on the size of the perturbation as a function of
the problem data and certain algorithmic parameters in order for the adjusted iterate
to be used as an acceptable starting point for the perturbed problem. These sufficient
conditions lead to improved iteration complexity estimates to solve the perturbed LP
problem using an IPM starting from the computed warm-start for small perturbations.
As one would expect, these theoretical results indicate that warm-start strategies have
a greater potential for reduced computational effort for smaller perturbations. To the
best of our knowledge, this study presents one of the first complexity results for reop-
timization using warm-start strategies. However, the theoretical results of this study
are not accompanied with computational experiments.

It is well-known that neither of the assumptions of feasibility and proximity to the
central path is enforced in any of the existing interior-point LP solvers. Therefore,
the main objective of this paper is to evaluate the performance of these warm-start
strategies in a more practical and realistic setting in an attempt to gain insight into
the practical implications of the favorable theoretical results of [34] established under
more restrictive assumptions.

In addition to the two adjustments suggested in [34], we consider and experiment
with several other adjustments in this paper. We use state-of-the-art interior-point

154 E. John, E.A. Yıldırım

code PCx [5] in our implementation. The warm-start strategies are tested on the stan-
dard testbed of NETLIB problems.1 Our extensive computational results indicate that
warm-start strategies are indeed effective in reducing the number of iterations for re-
optimization of the perturbed problem especially for smaller perturbations and for
perturbations of fewer data components. In terms of the computation time, our re-
sults reveal that warm-start strategies that can quickly identify an acceptable starting
point lead to the most significant savings in comparison with cold start.

This paper is organized as follows. We define our notation in Sect. 1.1 and give
a general overview of warm-start strategies in Sect. 2. The details of the implemen-
tation of warm-start strategies are presented in Sect. 3. Section 4 is devoted to the
presentation and the discussion of the computational results. Finally, we conclude the
paper with some future research directions in Sect. 5.

1.1 Notation

We reserve upper case Roman letters for matrices. For a vector u ∈ R
n, ‖u‖ is the

Euclidean norm of u, ui is the ith component of u, and U denotes the diagonal matrix
whose entries are given by the components of u. The members of a sequence are
identified using superscripts. We use e to denote the vector of ones in the appropriate
dimension.

2 An overview of warm-start strategies

Consider an LP problem in standard form:

(P) min
x

cT x s.t. Ax = b, x ≥ 0,

where A ∈ R
m×n, b ∈ R

m, and c ∈ R
n are given and x ∈ R

n is the decision vari-
able. We assume that the matrix A has full row rank without loss of generality. The
associated dual LP problem is given by

(D) max
y,s

bT y s.t. AT y + s = c, s ≥ 0,

where y ∈ R
m and s ∈ R

n are the corresponding decision variables.
We use d = (A,b, c) to denote the data of the original (unperturbed) LP prob-

lem. Note that d completely specifies an instance of a primal and dual pair of LP
problems in standard form. The perturbed instance is denoted by d + �d , where
�d := (�A,�b,�c) satisfies �A ∈ R

m×n, �b ∈ R
m, and �c ∈ R

n. This implies
that the original and the perturbed primal (dual) LP problems have precisely the same
number of constraints and variables. We assume that the coefficient matrix A + �A

continues to have full row rank.

1http://www.netlib.org/lp/index.html.

http://www.netlib.org/lp/index.html.

Implementation of warm-start strategies in interior-point methods 155

2.1 An overview of infeasible path-following methods

The most effective variant of IPMs in practice are the infeasible primal-dual path-
following methods. These methods generate iterates (xk, yk, sk) ∈ R

n × R
m × R

n,

k = 0,1, . . . with xk > 0 and sk > 0 that somewhat loosely follow the so-called
central path C , which is defined as the set of solutions (x(μ), y(μ), s(μ)) ∈
R

n × R
m × R

n to the following nonlinear system of equations and inequalities para-
metrized by the scalar μ > 0:

Ax = b, AT y + s = c, XSe = μe, x > 0, s > 0. (1)

Under the assumption that both (P) and (D) have feasible solutions that strictly sat-
isfy the nonnegativity constraints (such solutions are called strictly feasible), it is
well-known that the central path is well-defined and converges to an optimal solution
of (P) and (D) as μ decreases to zero.

Infeasible primal-dual path-following IPMs generate iterates (xk, yk, sk) ∈ R
n ×

R
m × R

n with xk > 0 and sk > 0 that are not necessarily feasible for the primal
or dual problems. As such, they offer greater flexibility as the issue of computing
a feasible primal-dual solution is circumvented. Instead, the central path is used to
guide the iterates towards feasibility and optimality simultaneously. For an iterate
(xk, yk, sk), the corresponding duality measure μk is defined by

μk := ((xk)T sk)/n, k = 0,1,

A typical interior-point iteration at (x, y, s) := (xk, yk, sk) consists of taking a New-
ton step towards a point on the central path whose duality measure is not greater than
that of (x, y, s). This amounts to solving the following Newton system:

A�x = rb, (2a)

AT �y + �s = rc, (2b)

X�s + S�x = −XSe + σμe, (2c)

where μ is the duality measure of (x, y, s), σ ∈ [0,1], and rb and rc are respectively
the primal and dual infeasibility residuals given by

rb := b − Ax, rc := c − AT y − s. (3)

The Newton system (2) is most commonly solved by eliminating �s and �x from
the system using (2c) and (2a), respectively, which leads to the following so-called
normal equations form:

ADAT �y = rb + A(Drc + x − σμS−1e), (4)

where D = XS−1. Once �y is computed using a Cholesky factorization of ADAT ,
�s and �x can be computed using (2b) and (2c), respectively:

�s = rc − AT �y,

�x = −x + σμS−1e − D�s.

156 E. John, E.A. Yıldırım

Finally, a step length β ∈ (0,1] is chosen to ensure that x + β�x > 0 and
s + β�s > 0. The reader is referred to the book by Wright [30] for a comprehen-
sive treatment of IPMs.

The major computational effort in an interior-point iteration is the computation
and the factorization of the m × m positive definite matrix ADAT in (4). The per-
formance of an interior-point solver highly depends on how effectively linear algebra
subroutines can handle special structures such as sparsity and dense columns arising
in normal equations.

2.2 A generic warm-start algorithm

In this subsection, we present the generic warm-start framework developed in [34].
Since our goal in this paper is to assess the practical performance of these warm-
start strategies, we shall exclusively use the phrase “warm-start strategies” to refer to
those proposed in [34]. As stated in Sect. 1, we stress that there exist several other
warm-start strategies that handle warm-starts in different ways.

Suppose that the original instance d is solved using a primal-dual path-following
IPM. Let {(xk, yk, sk) : k = 0, . . . , l} denote the set of iterates generated during the
course of the solution of d and let T ⊆ {0, . . . , l} be a subset of the indices of these
IPM iterates. The generic warm-start algorithm proposed in [34] is outlined in Algo-
rithm 2.1.

Algorithm 2.1 Generic warm-start algorithm
Require: d,�d, l, T ⊆ {0, . . . , l}

1: (beginning of the search stage)
2: flag ← false.
3: For k = l downto 0, k ∈ T do
4: loop
5: Compute an adjustment (�xk,�yk,�sk) as a function of (xk, yk, sk) and �d .
6: if (xk, yk, sk)+ (�xk,�yk,�sk) is an “acceptable” starting point for d +�d

then
7: flag ← true.
8: t ← k.
9: Break.

10: end if
11: end loop
12: (end of the search stage)
13: (beginning of the reoptimization stage)
14: if flag = true then
15: Solve d + �d starting with (xt , yt , st) + (�xt ,�yt ,�st).
16: else
17: Solve d + �d using cold start.
18: end if
19: (end of the reoptimization stage)

Implementation of warm-start strategies in interior-point methods 157

We now describe Algorithm 2.1 in detail. Given an LP instance d , a perturba-
tion �d , and a subset T of the indices of the iterates generated during the course
of the solution of d , the algorithm starts with the most advanced iterate (xk, yk, sk),
k ∈ T and computes an adjustment (�xk,�yk,�sk), which depends on d + �d

and may also depend on (xk, yk, sk). Then, if the adjusted iterate (xk, yk, sk) +
(�xk,�yk,�sk) is an “acceptable” starting point for d + �d , the Boolean vari-
able “flag” is updated to indicate that a successful warm-start has been computed and
the perturbed instance d + �d is solved with an IPM starting from this warm-start.
Otherwise, the algorithm retreats to the next most advanced iterate among the sub-
set of stored iterates and repeats the same procedure. If none of the stored iterates
yields an acceptable warm-start, then the algorithm simply reverts to cold start to
solve d + �d .

The main motivation in developing a warm-start strategy is the expectation that
two closely related optimization problems should in general share similar character-
istics. Note that the description of Algorithm 2.1 is mainly driven by this observa-
tion. In particular, Algorithm 2.1 relies on the set of stored iterates of the original
instance d in an attempt to compute an acceptable warm-start for the perturbed in-
stance d + �d . This is in contrast with the classical reoptimization approach using
the simplex method or with several other warm-start strategies using IPMs which
store only a single, advanced (or optimal) iterate of the original instance d and al-
low for several adjustments. Since Algorithm 2.1 computes a single adjustment for
each stored iterate of the original instance d , having a set of stored iterates in general
increases the likelihood of successfully computing an acceptable warm-start for the
perturbed instance. Using a single adjustment as opposed to several adjustments en-
ables one to prove sufficient conditions on the perturbation �d so that a successful
warm-start can be computed under certain assumptions [34]. At the same time, Algo-
rithm 2.1 offers the flexibility of retreating to an earlier iterate in an attempt to absorb
the infeasibility arising from a larger perturbation in a single adjustment. Therefore,
Algorithm 2.1 is in general designed to deal with general perturbations and does not
require any prior information about the perturbation as long as the dimension of the
perturbed instance coincides with that of the original one.

Note that we have intentionally used the ambiguous adjective “acceptable” in the
description of the warm-start algorithm. An acceptable starting point may be defined
in various ways. At the very least, the adjusted iterate (x + �x,y + �y, s + �s)

should satisfy x + �x > 0 and s + �s > 0 since it will be used as the initial point to
solve the perturbed instance using an IPM. For instance, if d + �d is known to have
strictly feasible primal-dual solutions, one may insist on obtaining such a starting
point. Furthermore, one may even require that the starting point lie in some neighbor-
hood of the central path for d +�d in an attempt to obtain a well-centered point. Note
that complexity analyses of IPMs are carried out under the assumption that iterates
lie in some well-defined neighborhood of the central path. In fact, in the theoretical
framework of [34], it is assumed that both d and d + �d have strictly feasible so-
lutions and that d is solved using a feasible IPM with a central path neighborhood
restriction. Under these assumptions, sufficient conditions on the size of �d and the
duality measure of the iterate of the original instance are established to ensure that
Algorithm 2.1 will succeed in computing a well-centered strictly feasible iterate for

158 E. John, E.A. Yıldırım

d +�d using specific adjustments. Furthermore, solving the perturbed instance start-
ing from an advanced iterate obtained in this manner leads to improved iteration com-
plexity in comparison with cold start [34]. We describe how we define an acceptable
iterate for the purposes of our implementation in the following subsection.

2.2.1 Acceptable starting points

The most effective interior-point solvers use infeasible path-following IPMs and they
usually do not impose any central path neighborhood restrictions. As outlined in
Sect. 2.1, such methods allow for infeasible iterates and work towards feasibility and
optimality simultaneously. In contrast with the theoretical framework of [34], we do
not make any assumptions on the instances d and d + �d . Therefore, it may be the
case that neither of the instances d and d +�d may have strictly feasible solutions. In
the case that the perturbed instance d + �d does not possess a strictly feasible point
or is primal and/or dual infeasible, insisting on having a strictly feasible starting point
for d + �d will necessarily force Algorithm 2.1 to evaluate each of the stored iter-
ates of the original instance d in an attempt to compute a feasible solution of d +�d .
Clearly, the search stage will fail to produce a warm-start for d + �d , in which case,
d + �d will be resolved using cold start and the search stage of Algorithm 2.1 will
be a waste of computational effort. Therefore, in practice, one needs to define an “ac-
ceptable starting point” in a more realistic and less restrictive fashion. For instance,
it may be reasonable to deem a computed starting point “acceptable” even if it has a
small infeasibility residual with respect to the perturbed instance d + �d .

Infeasible path-following IPMs generally achieve feasibility relatively quickly and
then work towards optimality. It follows that advanced iterates of a primal-dual fea-
sible original instance d usually have small infeasibility residuals (e.g., 10−6 or
smaller). For small perturbations �d , it may therefore be quite reasonable to accept
the same infeasibility residual at a starting point of d + �d . This amounts to com-
puting an adjustment based only on �d while ignoring the infeasibility of an iterate
with respect to the original problem d . More precisely, given an interior-point iterate
(x, y, s) of the original instance d , the computed adjustment satisfies

Ā�x = �b − �Ax, (5a)

ĀT �y + �s = �c − �AT y, (5b)

where Ā = A+�A. It follows from (5) that the primal and dual infeasibility residuals
of the original iterate are identical to those of the candidate warm-start since rp := b−
Ax = b+�b−Ā(x+�x) and rd := c−AT y−s = c+�c−ĀT (y+�y)−(s+�s),
respectively. In our implementation, the infeasibility residuals of the original iterate
therefore are passed directly into the candidate warm-start. In conclusion, at a stored
iterate (x, y, s) of d , the computed adjustment (�x,�y,�s) satisfies (5) and the
resulting iterate (x + �x,y + �y, s + �s) is deemed acceptable if x + �x > 0 and
s + �s > 0.

Another reason for ignoring the infeasibilities of the original iterate is the expec-
tation that the warm-start strategies may have the potential to be useful in detecting
infeasibility of the perturbed instance d + �d in fewer iterations in comparison with
cold start. Detecting infeasibility in IPMs is an important problem both in theory and
in practice. The reader is referred to [29] for theoretical results on this issue.

Implementation of warm-start strategies in interior-point methods 159

2.2.2 Adjustments

We now describe various adjustments that can be incorporated into Algorithm 2.1.
Our choices are motivated by the theoretical foundation developed in [34]. In par-
ticular, Yıldırım and Wright propose a least-squares adjustment and a Newton step
adjustment, both of which shall be explained in detail below.

Family of least-squares adjustments Let (x, y, s) be an iterate generated by an IPM
during the course of the solution of the instance d . For the perturbed instance d +�d ,
the family of least-squares adjustments is given by the optimal solutions of

(P A) min
�x

‖��x‖ s.t. Ā�x = �b − �Ax,

(D A) min
�y,�s

‖��s‖ s.t. ĀT �y + �s = �c − �AT y,

where � and � are positive diagonal matrices in R
n×n and Ā := A + �A. Note

that the constraints of the optimization problems (P A) and (D A) ensure that
(�x,�y,�s) satisfies (5a) and (5b), respectively, i.e., primal and dual infeasibil-
ity residuals of the original iterate (x, y, s) are transferred to the computed iterate
(x + �x,y + �y, s + �s). If, in addition, x + �x > 0 and s + �s > 0, then the
resulting iterate is deemed an acceptable starting solution for d + �d .

Since (P A) and (D A) are least-squares problems, they have closed form solutions
given by

�x� = �−2ĀT (Ā�−2ĀT)−1[�b − �Ax], (6a)

�y� = (Ā�2ĀT)−1Ā�2(�c − �AT y), (6b)

�s� = �c − �AT y − ĀT �y�. (6c)

There are several choices for the diagonal scaling matrices � and �. Yıldırım and
Wright [34] propose and study the plain least-squares adjustment (PLSA) given by
� = � = I , the identity matrix.

In addition, the diagonal scaling matrices can be chosen as a function of the cur-
rent iterate (x, y, s). For instance, reasonable choices of � include X−1,X−1/2S1/2,

X−2,X−1S, . . . and � can similarly be set to S−1,X1/2S−1/2, S−2,XS−1, In
this paper, we will mainly focus on two pairs of choices. The weighted least-
squares adjustment (WLSA) is given by � = X−1 and � = S−1. The choices of
� = X−1/2S1/2 and � = X1/2S−1/2 give rise to the jointly weighted least-squares
adjustment (JWLSA).

Newton step adjustment Given an iterate (x, y, s) generated during the solution
of d , the Newton step adjustment arises from taking a Newton step towards a point
(x̃, ỹ, s̃) that satisfies X̃S̃e = XSe. Therefore, this adjustment is given by the solution
(�x,�y,�s) of the following Newton system:

Ā�x = �b − �Ax,

ĀT �y + �s = �c − �AT y,

X�s + S�x = 0,

160 E. John, E.A. Yıldırım

where Ā := A + �A. Similarly to the family of least-squares adjustments, the first
two equations ensure that (�x,�y,�s) satisfies (5a) and (5b), respectively. The third
equation is obtained by linearizing the nonlinear equation (X + �X)(S + �S)e =
XSe. If, in addition, x +�x > 0 and s +�s > 0, then the resulting iterate is deemed
an acceptable starting solution for d + �d .

This choice was originally proposed by Yıldırım and Todd [32], who developed
an interior-point approach to sensitivity analysis in linear and semidefinite program-
ming. We refer the reader to [31–33] for the relationship of the Newton step ad-
justment to the optimal partition approach to sensitivity analysis in nondegenerate
LP problems, degenerate LP problems, and semidefinite programming problems, re-
spectively.

The solution of the Newton step adjustment is given by

�y = (ĀDĀT)−1(ĀD[�c − �AT y] + �b − �Ax), (7a)

�s = �c − �AT y − ĀT �y, (7b)

�x = −D�s, (7c)

where D := XS−1.

2.3 Properties of the specific adjustments

In this subsection, we aim to motivate the specific choices of adjustments outlined
in Sect. 2.2.2. We first describe several properties that need to be satisfied by an
effective adjustment in the context of Algorithm 2.1. We then evaluate our specific
choices with respect to these properties.

An effective adjustment in the context of Algorithm 2.1 should ideally have the
following capabilities:

1. Given d and �d , an effective adjustment should have the property that the number
of times the main loop in Algorithm 2.1 is executed should decrease for smaller
perturbations �d . This implies that a fairly advanced iterate of the instance d can
be used to compute an acceptable iterate for d + �d for a small perturbation �d .

2. If an advanced iterate of d yields an acceptable iterate for d +�d , then the result-
ing iterate should also be a relatively advanced point, which can, for instance, be
quantified using the duality measure and infeasibility residuals. Roughly speak-
ing, obtaining an advanced iterate would eliminate the computational effort that
would be required to generate earlier iterates leading to a similar advanced point
if d +�d were to be solved with cold start. Usually, the more advanced the warm-
start is, the faster the perturbed instance d + �d can be solved.

3. In addition to obtaining an advanced iterate for d +�d , it is also important that the
resulting iterate be well-centered. IPMs may make very slow progress at an iterate
(x, y, s) whose x and/or s components are close to the boundary of the nonnega-
tive orthant since the barrier function rapidly blows up towards the boundary.

4. The computational cost of the adjustment should not be excessive. If a warm-start
strategy succeeds in computing an advanced iterate for d + �d , the reduction in
the computational effort for reoptimization would be given by the number of IPM

Implementation of warm-start strategies in interior-point methods 161

iterations saved due to the warm-start strategy as opposed to cold start. In order for
a warm-start strategy to be effective overall, the cost of computing a warm-start
should not outweigh the computational gain resulting from the number of IPM
iterations saved.

The question of finding an adjustment that would satisfy each of the four properties
above is a nontrivial one. Consequently, developing effective warm-start strategies in
IPMs is still an active area of research.

We stress that the properties outlined above are specific to the generic framework
of Algorithm 2.1. In particular, this algorithm strives to find a near-feasible solution
for the perturbed problem by computing a single adjustment to a near-feasible solu-
tion of the original problem. In other words, it aims to absorb the infeasibility arising
from the perturbation �d using only one adjustment. There exist several other warm-
start strategies in which several adjustments (e.g., multiple centrality correctors) are
allowed to obtain a near-feasible solution of the perturbed instance (see, e.g. [16]).
Since our objective in this paper is to assess the practical performance of warm-start
strategies developed in [34], we restrict our discussion to this particular framework.

2.3.1 Family of least-squares adjustments

The family of least-squares adjustments is driven by minimizing a certain norm of the
�x and �s components of the adjustment (�x,�y,�s) while satisfying (5). Note
that certain components of x and s go to zero as (x, y, s) tends to an optimal solution
of the original instance d . Therefore, an advanced iterate (x, y, s) of d necessarily
has the property that the x and s components are close to the boundary of the positive
orthant in R

n. In view of the first property above, it then makes sense to try to control
the �x and �s components of the adjustment (�x,�y,�s) as the resulting iterate
should satisfy x + �x > 0 and s + �s > 0 in order for it to be acceptable. This is
precisely the motivation behind the family of least-squares adjustments.

We now consider several members of this family and evaluate them in terms of
the properties outlined above. The plain least-squares adjustment (PLSA) is given by
� = � = I , the identity matrix. This adjustment simply uses the Euclidean norm to
measure the sizes of the �x and �s components of the adjustment (�x,�y,�s). For
these choices of the scaling matrices � and �, we have Ā�−2ĀT = Ā�2ĀT = ĀĀT ,
where Ā := A + �A. It follows from (6) that it suffices to form and factorize ĀĀT

only once to compute the corresponding adjustment (�x,�y,�s). Furthermore, if
the current adjustment fails to yield an acceptable solution of d + �d , then the same
factorization of ĀĀT can be stored and reused to compute the adjustment correspond-
ing to an earlier iterate of d . Therefore, the computational cost of the PLSA is given
by the computation and factorization of a single m × m positive definite matrix and
each adjustment in turn can be computed by a few matrix-vector multiplications. This
is a major advantage of the PLSA in view of the fourth property outlined above.

On the other hand, the PLSA assigns an equal weight to each component of �x

and �s. Since an advanced iterate (x, y, s) of the instance d necessarily has the
property that some components of x and s are very close to zero, the PLSA is un-
likely to yield an acceptable solution of d + �d for such iterates especially for larger
perturbations �d . In particular, the PLSA does not necessarily yield an adjustment

162 E. John, E.A. Yıldırım

(�x,�y,�s) with the property that the (�x,�s) components of the adjustment are
comparable in size to those of (x, s). Therefore, using this adjustment, it may be
necessary to retreat to a considerably earlier iterate to be able to compute an iter-
ate satisfying x + �x > 0 and s + �s > 0 using a single adjustment, which may
adversely affect the potential benefit of using a warm-start strategy. Therefore, the
PLSA may not necessarily satisfy the first property above.

The weighted least-squares adjustment (WLSA) given by � = X−1 and � = S−1

and the jointly weighted least-squares adjustment (JWLSA) given by � = X−1/2S1/2

and � = X1/2S−1/2 are primarily considered in an attempt to circumvent this draw-
back of the PLSA. While the WLSA separately uses only the primal information in
the computation of �x and only the dual information in �s, the JWLSA combines
the primal and dual information in computing the adjustment. For each of these two
members, note that the diagonal scaling matrices � and � are chosen as a function of
the current iterate (x, y, s). Instead of using the usual Euclidean norm, both of these
members rely on an ellipsoidal norm to measure the sizes of the �x and �s com-
ponents of the adjustment (�x,�y,�s). Indeed, an advanced iterate (x, y, s) of d

has the property that certain components of x (s) are bounded away from zero while
the corresponding components of s (x) tend to zero. The diagonal scaling matrices
are chosen in order to ensure that both of these adjustments penalize large compo-
nents of �x and �s corresponding to the small components of x and s, respectively.
Therefore, these adjustments are more likely to satisfy the first property above in
comparison with the PLSA.

In contrast with the PLSA, the computation of the adjustment based on the cur-
rent iterate (x, y, s) has the major disadvantage of having to compute and factorize
Ā�−2ĀT and Ā�2ĀT anew for each iterate. For the WLSA, one needs to compute
and factorize two m × m matrices. On the other hand, since Ā�−2ĀT = Ā�2ĀT =
ĀXS−1ĀT for the JWLSA, it suffices to compute and factorize only one m × m

positive definite matrix. Therefore, the computational cost of the WLSA is roughly
twice the cost of the JWLSA for each adjustment. This suggests that both of these
adjustments may fail to satisfy the fourth property above especially for larger pertur-
bations in comparison with the PLSA as they may require the computation of these
factorizations for several iterates of the original instance d . This observation indicates
one of the difficulties of designing an adjustment satisfying all of the four desirable
properties above.

Under the assumption that the original iterate (x, y, s) is feasible and well-
centered, it is possible to obtain upper bounds on the duality measure and on the
proximity to the central path of the iterate arising from an adjustment in this family
based on the duality measure and on the proximity to the central path of the original
iterate especially for smaller perturbations [34]. However, since neither of these as-
sumptions is enforced in practice, one usually has no control over how well-centered
or how advanced the resulting iterate will be. Therefore, this family of adjustments
in general may not necessarily satisfy the second and third properties above.

2.3.2 Newton step adjustment

We now consider the Newton step adjustment given by (7). As stated in Sect. 2.2.2,
starting with an iterate (x, y, s) of the original instance d , the Newton step adjustment

Implementation of warm-start strategies in interior-point methods 163

arises from taking a Newton step towards a point (x̃, ỹ, s̃) that satisfies X̃S̃e = XSe.
Developed originally in the context of sensitivity analysis by Yıldırım and Todd [32],
this adjustment is driven by the following observation. An advanced feasible iterate
(x, y, s) of d has the property that the componentwise products of x and s are close to
zero. By aiming towards a point (x̃, ỹ, s̃) satisfying the same componentwise products
of x̃ and s̃, one intends to compute a near-optimal point for d + �d starting from a
near-optimal point of d since μ := xT s/n = x̃T s̃/n. In fact, simple necessary and
sufficient conditions on �d have been established in order for the resulting point
to satisfy x + �x > 0 and s + �s > 0 [32, 34]. Furthermore, if the Newton step
adjustment yields an acceptable point for d + �d , it has the appealing property that
the duality measure of the resulting iterate is bounded above by that of the original
one [32, 34]. Therefore, in contrast with the family of least-squares adjustments, the
Newton step adjustment necessarily satisfies the second property above. This is one
of the main motivations to consider such an adjustment in the context of warm-start
strategies.

It follows from (6) and (7) that the Newton step adjustment is somewhat related
to the jointly weighted least-squares adjustment (JWLSA). Both of the adjustments
require the computation and factorization of the same m × m matrix ĀXS−1ĀT .
While the JWLSA computes the primal adjustment �x using only �A and �b and
the dual adjustment (�y,�s) using only �A and �c, each component of the Newton
step adjustment is a function of the entire perturbation �d . In fact, for each of the
two strategies, the dual adjustments (�y,�s) coincide if �A = 0 and �b = 0 and
the primal adjustments �x are identical if �A = 0 and �c = 0 for a given iterate
(x, y, s) of d . The computational cost of the Newton step adjustment is therefore
similar to that of the JWLSA. Therefore, similar remarks apply in terms of the fourth
property.

We also remark that a similar Newton system is employed in [16]. In contrast with
the Newton step adjustment, their approach ignores the dual (primal) feasibility in
the computation of the primal (dual) adjustment. It then follows from the observation
in the preceding paragraph that the adjustment of [16] precisely coincides with the
JWLSA for perturbations with �A = 0.

In contrast with the JWLSA, the Newton step adjustment may not necessarily sat-
isfy the first property since the primal and dual adjustments are no longer decoupled.
In fact, it follows from the results of [32, 33] that the first property is satisfied if and
only if the optimal partition of the perturbed instance d + �d coincides with that
of d . Clearly, for general perturbations, this assumption may not hold.

Similarly to the family of least-squares adjustments, one can obtain upper bounds
on the proximity to the central path of the resulting iterate in terms of the proximity
to the central path of the original iterate if it is feasible and well-centered [34]. Since
these assumptions may not necessarily be satisfied in practice, the Newton step ad-
justment does not have any guarantees on the proximity of the resulting iterate to the
central path of the perturbed instance. Therefore, this adjustment may not necessarily
satisfy the third property.

In conclusion, our choices of specific adjustments seem to satisfy certain subsets
of the four desirable properties an effective adjustment is expected to have. By com-
paring the performances of these specific adjustments, our computational results in

164 E. John, E.A. Yıldırım

this paper will help to shed more light into the significance of the role played by each
of the aforementioned four properties.

3 Implementation

3.1 An overview of PCx

We used PCx to implement Algorithm 2.1 using the adjustments described in
Sect. 2.2.2. PCx is an infeasible primal-dual path-following interior-point solver
developed by Czyzyk, Mehrotra, Wagner, and Wright [5]. It implements Mehro-
tra’s predictor-corrector algorithm [21] and the higher-order correction strategy of
Gondzio [14]. Most of the code is written in C and the solution of the normal equa-
tions arising at each IPM iteration is obtained by a call to the Cholesky factorization
package of Ng and Peyton [26], which is written in Fortran77. The source code of
PCx and the linear algebra routines of Ng and Peyton are freely available for research
use at the PCx web site.2

PCx accepts as input any LP problem that can be specified in the MPS format.
Given an instance d in this format, PCx reduces it to a standard, simpler formulation
and sends it to the presolver, which employs the techniques proposed by Andersen
and Andersen [1]. PCx next applies the row and column scaling technique of Curtis
and Reid [4] to minimize the variation of the nonzero elements in the coefficient
matrix. These steps ensure that an equivalent but simpler form of the LP problem is
passed to the solver.

After preprocessing and scaling operations, the reduced LP problem, which is
stored in ReducedLPtype, contains equality constraints and nonnegative variables
in addition to variables with finite positive upper bounds. Since the warm-start strate-
gies are specified for LP problems in standard form given by (P) and (D), we have
absorbed the bound constraints into the coefficient matrix by introducing slack vari-
ables. Note that this operation may considerably enlarge the coefficient matrix. How-
ever, the new coefficient matrix has the special structure that each of the new rows has
only two nonzero entries and that each new column has only one nonzero entry. The
linear algebra routines employed in PCx are capable of exploiting this special struc-
ture to aid in the factorization of the matrices arising in the normal equations. This
modification allows us to universally apply the warm-start strategies to any LP prob-
lem. The resulting formulation is stored in ReducedLPtype_NB, which is then
sent to the solver.

Apart from simple other modifications required by our experiments, we used the
default parameters of PCx in our computational experiments. We chose the software
package PCx to implement our warm-start strategies because it offers a simple inter-
face to the solver, a modular structure that is easy to modify for our purposes, and
compatibility with various platforms.

2http://www-fp.mcs.anl.gov/otc/Tools/PCx/.

http://www-fp.mcs.anl.gov/otc/Tools/PCx/

Implementation of warm-start strategies in interior-point methods 165

3.2 Preserving the dimension

Note that the warm-start strategies described in this paper apply to the case in which
the perturbed LP problem has precisely the same dimension as the original one. All
LP solvers use preprocessing to simplify a given LP problem before it is sent to the
solver. Among other advantages, the preprocessing stage helps to detect infeasibility,
eliminates redundancy in the problem, and is used to feed the solver an LP problem
in a certain, prespecified form which streamlines the code by eliminating the need to
write different solvers for problems in different forms.

In general, preprocessing leads to addition of new constraints and/or variables and
deletion of some of the original constraints and/or variables. Therefore, the simplified
LP problem usually has a different dimension from that of the original one. If the
user inputs an LP problem and a slightly perturbed version of it into an LP solver,
it is likely that the simplified versions that are sent to the solver may not only look
quite different from one another but may even have different dimensions. Such a
situation may arise, for instance, if the original instance has redundant constraints. It
may happen that the corresponding constraints in the perturbed problem are no longer
redundant. In such a case, our warm-start strategies are not applicable.

One way to get around this problem is to turn off preprocessing. Our experiments
indicated that this operation adversely affects the performance of the code by causing
numerical instabilities. Therefore, given an LP problem, we treated the fully reduced
version of it stored in ReducedLPtype_NB as the original instance. The perturbed
instance was obtained by perturbing the data of this reduced form. We have therefore
ensured that both the original and the perturbed instances have precisely the same
dimensions.

We stress that the LP instance obtained by perturbing the fully reduced version
stored in ReducedLPtype_NB may look entirely different from the reduced ver-
sion of a perturbation of the original LP problem. Therefore, our modification does
not necessarily yield a general-purpose code that can effectively implement a warm-
start strategy for an arbitrary perturbation of an LP problem except for the case that
the original dimension is preserved. In fact, such a general-purpose code should also
contain warm-start strategies for the case in which the dimension of the perturbed
LP problem may differ from that of the original one. Rather than writing a general
purpose warm-start code, our main objective in this paper is to experimentally assess
the practical performance of warm-start strategies in the framework of Algorithm 2.1.
Therefore, we are content with perturbing the reduced version of the LP problem for
the purposes of our computational experiments in order to ensure that the original
and perturbed LP problems both have the same dimensions.

3.3 Generating perturbed instances

We have considered four types of perturbations in our experiments: (i) b only,
(ii) c only, (iii) b and c only, and (iv) A,b, and c.

Given an LP instance, we treated its reduced version stored in ReducedLP-
type_NB as the original instance d as explained in Sect. 3.2. For each component κ

of the original instance d to be perturbed, we generated a random number γ distrib-
uted uniformly in [−1,1] and the corresponding component of �d was set to γ |κ|.

166 E. John, E.A. Yıldırım

This scheme enabled us to allow perturbations that are comparable in size to the orig-
inal problem data. In our experiments, only nonzero components of d are perturbed,
which ensures that both the original LP problem and the perturbed one have identical
sparsity patterns. In order to evaluate the performance of warm-start strategies with
respect to the size of the perturbations, we considered a family of perturbed instances
given by d + α�d . In our experiments, we used α ∈ {.01, .1,1,10}. We have not
taken any care to ensure feasibility of the perturbed instances.

3.4 Methods of comparison

We have used two performance measures to assess the effectiveness of our warm-
start strategies. The first measure is the number of interior-point iterations. For each
perturbed instance, we compare the number of iterations required by cold start versus
that required in the reoptimization stage of Algorithm 2.1 after successfully comput-
ing a warm-start. This performance measure provides information about the savings
in interior-point iterations in reoptimization due to the use of a warm-start strategy.
Note that we only consider the interior-point iterations in the reoptimization stage of
Algorithm 2.1 while ignoring the number of times the main loop is executed in the
search stage. This part is taken into account in computing the CPU time as explained
in the following paragraph.

The second performance measure is the CPU time. Note that our warm-start strate-
gies consist of two stages, namely the search stage and the reoptimization stage
(cf. Algorithm 2.1). The new timer functions integrated into PCx provide us with
separate timing information for each of these two components.

We have exercised care to ensure a fair and meaningful timing comparison be-
tween warm-start and cold start. When PCx solves an LP instance using cold start, it
uses Mehrotra’s heuristic [21] to compute a starting point. In computing this point,
the code performs various operations and factorizations on the coefficient matrix A

such as column reordering. This information is stored and then passed to the rest of
the code along with the starting point. In our experiments, we measured the solution
time of cold start starting precisely at this stage. Incidentally, our warm-start strate-
gies also require similar operations on the coefficient matrix during the search of a
warm-start. Therefore, this information is also passed to the rest of the code along
with the warm-start in our implementation. Similarly, the solution time of the warm-
start was measured starting at this stage. As a result, neither method was required to
compute any more factorizations than the other.

3.5 Further details

In our implementation of Algorithm 2.1, we set T = {0,1, . . . , l}, i.e., we stored all
iterates generated during the course of the solution of the original instance d . While
this choice may significantly increase the search time for a warm-start for the per-
turbed instance, we aimed to identify the most advanced iterate of d that would yield
a successful warm-start. Moreover, this strategy enabled us to gain insight into the
relationship between the size of the perturbation and the order of the index of the par-
ticular iterate that leads to a successful warm-start. We believe that this relationship
is important in order to assess the quality of the theoretical bounds provided in [34].

Implementation of warm-start strategies in interior-point methods 167

We used the linear algebra routines of Ng and Peyton [26] in PCx to perform the
computations (6) and (7). All experiments were carried out on a 1.33 GHz Pentium M
processor with 512 MB RAM running Windows XP.

4 Computational results

In this section, we report and discuss our computational results. Each of the 93 LP in-
stances in the NETLIB suite was initially solved using PCx. After preprocessing, the
instance was converted into standard form after eliminating the upper bounds. The
sizes of the reduced instances vary from (27/51) for afiro to (10505/21024) for
fit2d, where (·/·) denotes the number of rows and columns, respectively. The so-
lution time ranges from the fraction of a second for afiro (27/51) to about 1100 sec-
onds for dfl001 (6084/12243). These “reduced” instances were treated as the “un-
perturbed” or “original” LP instances. For each such instance d , four different types
of perturbations given by �d1 = (0,�b,0), �d2 = (0,0,�c), �d3 = (0,�b,�c),
and �d4 = (�A,�b,�c) were generated. Next, each such perturbation was scaled
by α = .01, .1,1,10. Therefore, for each original instance, 16 different perturbed in-
stances were generated. On each perturbed instance, we implemented each of the four
warm-start strategies. We also solved each perturbed instance using cold start (i.e., the
default initial iterate given by Mehrotra’s heuristic in PCx). This experimental setting
allowed us to compare the number of iterations and the computation time using our
warm-start strategies versus cold start.

Since we have not exercised any care to ensure the feasibility of perturbed LP in-
stances, the phrase “solving the perturbed instance” is used to refer to either comput-
ing an optimal solution or detecting unboundedness or infeasibility. By not ensuring
feasibility of the perturbed instance, we aimed to gain insight into whether warm-start
strategies can also be used to effectively detect infeasibility of the perturbed instance
in comparison with cold start.

4.1 Iteration comparison

We first compare the number of iterations needed to resolve the perturbed LP instance
using our warm-start strategies versus cold start. The results are presented in Table 1,
which is divided into two parts. The upper part reports the results of perturbations
of b only and of c only and the lower part contains the results of perturbations of b

and c only and of A,b, and c. Each part consists of four sets of rows correspond-
ing to four different warm-start strategies. Table 1 is also divided into four sets of
columns. The first column lists the particular warm-start strategy employed. We use
PLSA for the plain least-squares adjustment, WLSA for the weighted least-squares
adjustment, JWLSA for the jointly weighted least-squares adjustment, and NSA for
the Newton step adjustment. The second column presents the outcome of the compar-
ison of number of iterations. To this end, we define ρi to be the ratio of the number of
interior-point iterations in the reoptimization stage of Algorithm 2.1 using a warm-
start strategy to the number of iterations using cold start. Each row corresponds to an
interval into which the value of this ratio ρi falls. We used three critical values of .5, 1,

168 E. John, E.A. Yıldırım

Table 1 Iteration comparison of four warm-start strategies on four different types of perturbations

WS strategy Iter. comp. Perturbations of b Perturbations of c

α = .01 α = .1 α = 1 α = 10 α = .01 α = .1 α = 1 α = 10

PLSA ρi ≤ .5 17.20 5.38 2.15 1.08 27.96 18.28 11.83 11.83

.5 < ρi ≤ 1 82.80 92.47 83.87 94.62 72.04 78.49 81.72 87.10

1 < ρi ≤ 1.5 0 2.15 12.90 4.30 0 3.23 6.45 1.08

1.5 < ρi 0 0 1.08 0 0 0 0 0

WLSA ρi ≤ .5 80.65 45.16 6.45 2.15 83.87 50.54 25.81 13.98

.5 < ρi ≤ 1 17.20 54.84 87.10 95.70 16.13 47.31 73.12 84.95

1 < ρi ≤ 1.5 0 0 4.30 2.15 0 2.15 1.08 1.08

1.5 < ρi 2.15 0 2.15 0 0 0 0 0

JWLSA ρi ≤ .5 81.72 43.01 7.53 2.15 81.72 53.76 26.88 13.98

.5 < ρi ≤ 1 16.13 54.84 86.02 95.70 18.28 46.24 69.89 84.95

1 < ρi ≤ 1.5 0 1.08 5.38 2.15 0 0 3.23 1.08

1.5 < ρi 2.15 1.08 1.08 0 0 0 0 0

NSA ρi ≤ .5 77.42 36.56 5.38 2.15 75.27 46.24 22.58 11.83

.5 < ρi ≤ 1 16.13 59.14 88.17 96.77 24.73 52.69 75.27 88.17

1 < ρi ≤ 1.5 1.08 0 4.30 1.08 0 1.08 2.15 0

1.5 < ρi 5.38 4.30 2.15 0 0 0 0 0

WS strategy Iter. comp. Perturbations of b and c Perturbations of A,b, and c

α = .01 α = .1 α = 1 α = 10 α = .01 α = .1 α = 1 α = 10

PLSA ρi ≤ .5 15.05 4.30 1.08 0 0 0 0 0

.5 < ρi ≤ 1 82.80 92.47 91.40 98.92 97.85 98.92 100 100

1 < ρi ≤ 1.5 1.08 2.15 7.53 1.08 2.15 1.08 0 0

1.5 < ρi 1.08 1.08 0 0 0 0 0 0

WLSA ρi ≤ .5 69.89 35.48 2.15 0 39.78 7.53 0 0

.5 < ρi ≤ 1 29.03 64.52 96.77 98.92 60.22 90.32 100 100

1 < ρi ≤ 1.5 0 0 1.08 1.08 0 2.15 0 0

1.5 < ρi 1.08 0 0 0 0 0 0 0

JWLSA ρi ≤ .5 66.67 29.03 3.23 0 38.71 6.45 0 0

.5 < ρi ≤ 1 33.33 70.97 93.55 100 60.22 92.47 98.92 100

1 < ρi ≤ 1.5 0 0 3.23 0 1.08 1.08 1.08 0

1.5 < ρi 0 0 0 0 0 0 0 0

NSA ρi ≤ .5 62.37 21.51 0 0 34.41 5.38 0 0

.5 < ρi ≤ 1 33.33 74.19 91.40 100 64.52 92.47 100 100

1 < ρi ≤ 1.5 0 1.08 7.53 0 1.08 2.15 0 0

1.5 < ρi 4.30 3.23 1.08 0 0 0 0 0

Implementation of warm-start strategies in interior-point methods 169

and 1.5. For each warm-start strategy and each perturbation type, we computed the
percentage of 93 LP instances for which ρi ≤ .5 (warm-start is “much better” than
cold start), .5 < ρi ≤ 1 (warm-start is “better” than cold start), 1 < ρi ≤ 1.5 (warm-
start is “worse” than cold start), and 1.5 < ρi (warm-start is “much worse” than cold
start). We reported these percentages in the corresponding rows. The third and fourth
sets of columns present the results for different values of the scaling factor α used
to compute the perturbed instance for each of the four types of perturbations. For
example, for perturbations of b with α = .01, the plain least-squares adjustment was
“much better” than cold start on 17.20% of the instances and “better” on the remain-
ing 82.80% of the instances.

A careful examination of Table 1 reveals that each of the four warm-start strategies
usually performed at least as well as cold start for all four types of perturbations and
for all four values of the scaling factor α. More specifically, the percentages reported
in the last two rows of each warm-start strategy are either small or equal to zero.

For a fixed warm-start strategy and a fixed perturbation type, Table 1 illustrates that
the performance of the warm-start strategy usually degrades for larger values of the
scaling factor α. This is indicated by the fact that the percentages in each set of rows
tend to shift from the first row (“much better”) to the third and fourth rows (“worse”
and “much worse”) as α increases from .01 to 10. This is an expected behavior as
larger perturbations lead to an increased distance between the original instance and
the perturbed one. In such situations, the advantages of warm-start strategies are less
pronounced.

For a fixed warm-start strategy and a fixed value of the scaling factor α, Table 1
indicates that the performance of a warm-start strategy usually degrades as more
data components are perturbed. For instance, while the jointly weighted least-squares
adjustment is much better than cold start on 81.72% of the instances for perturbations
of b and of c with α = .01, this percentage reduces to 66.67% for perturbations of b

and c and to 38.71% for perturbations of A,b, and c.
In Table 2, we report the cumulative iteration comparison of the warm-start strate-

gies. For each warm-start strategy, we report the ratio of the total number of interior-
point iterations in the reoptimization stage of all the perturbed instances using that
particular strategy to the total number of iterations using cold start. Therefore, Ta-
ble 2 summarizes overall savings in terms of the number of iterations as a result of
using warm-start strategies. For instance, the JWLSA requires only 32% of the num-
ber of iterations generated by cold start for perturbations of b with α = .01, which
translates into a 68% reduction in the number of iterations. The results presented in
Table 2 also support our previous observations. Generally, for each warm-start strat-
egy, the savings diminish as more data components are perturbed and as the scaling
factor α increases. Comparing the different warm-start strategies for a fixed pertur-
bation type and a fixed value of the scaling factor α, we see that the WLSA and the
JWLSA usually yield the largest savings. The NSA has a slightly worse performance
than these two strategies. The PLSA usually results in the smallest savings among
the warm-start strategies. These results are in support of our previous observations
in Sect. 2.3. In computing the adjustment, the PLSA does not distinguish between
small and large components of an iterate of the original instance while all the other
three strategies somehow take this disparity into account. Therefore, the PLSA usu-
ally computes a successful warm-start at a rather early iterate of the original instance

170 E. John, E.A. Yıldırım

Table 2 Cumulative iteration comparison of four warm-start strategies on four different types of pertur-
bations

WS strategy Perturbations of b Perturbations of c

α = .01 α = .1 α = 1 α = 10 α = .01 α = .1 α = 1 α = 10

PLSA .67 .84 .93 .95 .59 .73 .84 .84

WLSA .33 .50 .84 .93 .28 .46 .66 .81

JWLSA .32 .52 .83 .93 .29 .45 .65 .82

NSA .38 .60 .89 .93 .33 .51 .71 .84

WS strategy Perturbations of b and c Perturbations of A,b, and c

α = .01 α = .1 α = 1 α = 10 α = .01 α = .1 α = 1 α = 10

PLSA .74 .89 .97 1.00 .98 1.00 1.00 1.00

WLSA .41 .60 .90 .98 .64 .86 1.00 1.00

JWLSA .41 .60 .91 .98 .67 .87 1.00 1.00

NSA .48 .71 .97 1.00 .69 .88 1.00 1.00

and therefore requires a larger number of iterations in the reoptimization stage in
comparison with the other three adjustments on a given perturbed instance.

4.2 Performance of the search stage

Note that the generic warm-start algorithm has two stages (cf. Algorithm 2.1). In the
search stage, the algorithm searches for an acceptable starting iterate for the perturbed
instance by computing adjustments to iterates of the original instance. In this subsec-
tion, we analyze the performances of each of the four adjustments in the search stage
in an attempt to gain insight into the relationship between the number of the itera-
tions in the reoptimization stage and the order of the iterate of the original instance
that yields a successful warm-start in the search stage.

Ideally, a warm-start strategy should use a relatively advanced iterate of the un-
perturbed problem to compute a successful warm-start especially for smaller pertur-
bations and then reoptimize the perturbed instance in a relatively small number of
iterations in comparison with cold start. In the theoretical framework of [34], suffi-
cient conditions are established on the duality measure of an iterate of the original
instance to ensure that a specific adjustment yields a successful warm-start for a per-
turbed instance. These bounds indicate that a sufficiently advanced iterate can be
used to generate a warm-start especially for smaller perturbations. Moreover, resolv-
ing the perturbed problem starting from such a warm-start leads to reduced iteration
complexity. These results are established under the assumptions that the original iter-
ates are feasible and somewhat well-centered. In our experimental setting, we enforce
neither of these two assumptions. Therefore, we would like to investigate whether a
similar relationship continues to hold without these assumptions.

Implementation of warm-start strategies in interior-point methods 171

PCx indexes the iterates generated during the solution of an LP instance starting
from zero, which corresponds to the initial point generated using Mehrotra’s heuristic
(i.e., cold start). Therefore, if the instance is solved in l iterations, the iterates are
numbered 0, . . . , l. If the search stage of Algorithm 2.1 succeeds in computing a
warm-start for a perturbed instance, we then let t denote the index of the iterate
of the original instance yielding this warm-start, where 0 ≤ t ≤ l. In this case, we
define the ratio ρa = t/ l ∈ [0,1] in order to measure how advanced the iterate t is.
We say that the search stage identifies an “advanced” iterate of the original instance
to generate a successful warm-start if .75 ≤ ρa ≤ 1, a “fairly advanced” iterate if
.5 ≤ ρa < .75, an “intermediate” iterate if .25 ≤ ρa < .5, and an “early” iterate if
0 ≤ ρa < .25. Otherwise, the search stage fails to identify a successful warm-start
and Algorithm 2.1 reverts to cold start to solve the perturbed instance.

Using this classification scheme, we report the performances of the search stage
of each of the four warm-start strategies in Table 3. We use precisely the same re-
porting scheme as in Table 1. For instance, the search stage of the PLSA identifies
an advanced iterate on 2.15% of the instances, a fairly advanced iterate on 13.98%
of the instances, an intermediate iterate on 54.84% of the instances, an early iterate
on 29.03% of the instances, and reverts to cold start on none of the instances for
perturbations of b with α = .01.

A careful examination of Table 3 reveals similar observations to those arising from
the analysis of Table 1 and Table 2. For a fixed warm-start strategy and a fixed pertur-
bation type, the performance of the warm-start strategy in the search stage degrades
for larger values of the perturbation parameter α as indicated by the percentages
shifting towards last two rows. Similarly, for a fixed warm-start strategy and a fixed
perturbation parameter α, the performance of the search stage deteriorates as more
data components are perturbed. We remark that these observations are in line with
the theoretical findings in [34] despite the fact that the assumptions of feasibility and
proximity to the central path are not necessarily satisfied in our setting.

Table 3 clearly indicates that the advantage of using warm-start strategies tends
to disappear for larger perturbations and for perturbations of more data components.
For instance, all strategies revert to cold start on the vast majority of instances for
perturbations of A,b, and c with α = 10.

In terms of the capability of identifying an advanced iterate of the original instance
to generate a successful warm-start, we conclude that the WLSA and JWLSA usually
exhibit the best performance. The NSA has a slightly worse performance. The PLSA
exhibits the least success among the other strategies. Note that these observations are
very similar to those arising from Table 2.

We now stress the strong correlation between the results of Table 3 and those of
Table 1. For each strategy, if we consider the sum of the percentages in the rows
corresponding to the “advanced” and “fairly advanced” rows in Table 3 for a given
perturbation type and a perturbation parameter α, we see that this sum is fairly close
to the corresponding percentage in the first row of Table 1. For instance, Table 3
indicates that the PLSA identifies an advanced iterate on about 2% of the instances
and a fairly advanced iterate on about 14% of the instances for perturbations of b

and α = .01, whose sum is about 16%. This implies that the PLSA identifies an
iterate from the second half of the iteration sequence on about 16% of the instances.

172 E. John, E.A. Yıldırım

Table 3 Comparison of the performances of the four warm-start strategies in the search stage on four
different types of perturbations

WS strategy Iter. used Perturbations of b Perturbations of c

α = .01 α = .1 α = 1 α = 10 α = .01 α = .1 α = 1 α = 10

PLSA Advanced 2.15 2.15 1.08 1.08 13.98 12.90 11.83 11.83

Fairly adv. 13.98 2.15 2.15 0 11.83 4.30 0 0

Intermediate 54.84 7.53 0 1.08 41.94 10.75 3.23 0

Early 29.03 88.17 88.17 4.30 32.26 69.89 38.71 0

Cold start 0 0 8.60 93.55 0 2.15 46.24 88.17

WLSA Advanced 47.31 25.81 5.38 2.15 46.24 29.03 23.66 13.98

Fairly adv. 30.11 18.28 1.08 0 36.56 21.51 1.08 1.08

Intermediate 18.28 30.11 8.60 0 15.05 30.11 15.05 1.08

Early 4.30 25.81 74.19 6.45 2.15 19.35 25.81 2.15

Cold start 0 0 10.75 91.40 0 0 34.41 81.72

JWLSA Advanced 48.39 25.81 5.38 2.15 45.16 29.03 24.73 13.98

Fairly adv. 29.03 16.13 1.08 0 36.56 21.51 1.08 1.08

Intermediate 18.28 31.18 9.68 0 16.13 31.18 18.28 1.08

Early 4.30 26.88 73.12 5.38 2.15 18.28 21.51 0

Cold start 0 0 10.75 92.47 0 0 34.41 83.87

NSA Advanced 46.24 18.28 4.30 2.15 41.94 24.73 20.43 11.83

Fairly adv. 29.03 19.35 0 0 33.33 19.35 2.15 0

Intermediate 19.35 35.48 10.75 0 20.43 31.18 11.83 0

Early 5.38 26.88 70.97 3.23 4.30 23.66 24.73 0

Cold start 0 0 13.98 94.62 0 1.08 40.86 88.17

WS strategy Iter. used Perturbations of b and c Perturbations of A,b, and c

α = .01 α = .1 α = 1 α = 10 α = .01 α = .1 α = 1 α = 10

PLSA Advanced 0 0 0 0 0 0 0 0

Fairly adv. 11.83 2.15 1.08 0 1.08 0 0 0

Intermediate 41.94 4.30 0 0 1.08 0 0 0

Early 46.24 91.40 46.24 1.08 24.73 11.83 1.08 1.08

Cold start 0 2.15 52.69 98.92 73.12 88.17 98.92 98.92

WLSA Advanced 30.11 17.20 2.15 0 13.98 1.08 0 0

Fairly adv. 38.71 13.98 1.08 0 25.81 3.23 0 0

Intermediate 24.73 35.48 3.23 1.08 30.11 22.58 0 0

Early 6.45 33.33 50.54 2.15 18.28 38.71 1.08 1.08

Cold start 0 0 43.01 96.77 11.83 34.41 98.92 98.92

JWLSA Advanced 31.18 17.20 2.15 0 12.90 1.08 0 0

Fairly adv. 35.48 12.90 1.08 0 24.73 4.30 0 0

Intermediate 26.88 36.56 3.23 1.08 32.26 20.43 0 0

Early 6.45 33.33 48.39 1.08 18.28 40.86 2.15 1.08

Cold start 0 0 45.16 97.85 11.83 33.33 97.85 98.92

Implementation of warm-start strategies in interior-point methods 173

Table 3 (Continued)

WS strategy Iter. used Perturbations of b and c Perturbations of A,b, and c

α = .01 α = .1 α = 1 α = 10 α = .01 α = .1 α = 1 α = 10

NSA Advanced 29.03 8.60 0 0 8.60 0 0 0

Fairly adv. 31.18 12.90 0 0 24.73 3.23 0 0

Intermediate 30.11 38.71 4.30 0 31.18 16.13 0 0

Early 9.68 38.71 45.16 1.08 22.58 44.09 1.08 1.08

Cold start 0 1.08 50.54 98.92 12.90 36.56 98.92 98.92

On the other hand, the PLSA is “much better” than cold start on about 17% of the
instances (cf. Table 1), i.e., the PLSA solves the perturbed instance in less than half
of the number of iterations required by cold start. This observation reveals the close
connection between the ability to identify an advanced warm-start and the reduction
in the number of iterations to reoptimize the perturbed instance in comparison with
cold start.

Finally, we point out the connection between Table 2 and Table 3. Clearly, if the
search stage fails to compute a successful warm-start, then the number of iterations in
the reoptimization stage is equal to the number of iterations using cold start. The cells
in Table 2 with a value of 1.00 usually correspond to the cases in which the strategy
reverted to cold start on the majority of the instances. Note that this case usually
happens for larger values of the scaling factor α and for perturbations of more data
components.

4.3 Time comparison

We next compare warm-start strategies and cold start in terms of the computation
time. Recall that the generic warm-start algorithm has two stages (cf. Algorithm 2.1).
In the search stage, the algorithm searches for an appropriate starting iterate for the
perturbed instance by computing adjustments to iterates of the original instance.
Therefore, each warm-start strategy requires some time to identify an appropriate
starting iterate for the perturbed instance. We refer to this as the “search time.” Once
such an iterate has been identified, the perturbed instance is solved starting from it.
The time spent in the reoptimization stage is referred to as the “reoptimization time.”
Therefore, the overall computation time of a warm-start strategy is obtained by sum-
ming up these two components.

In Table 4, we report the timing comparison using the same reporting scheme as
in Table 1. We use ρt to denote the ratio of the total computation time (i.e., the sum
of the search time and the reoptimization time) required by a warm-start strategy to
the solution time of the perturbed instance using cold start. Note that the solution
time of cold start only includes the actual solution stage and excludes pre- and post-
processing. We employ the same threshold values of .5,1, and 1.5 for ρt . The results
are tabulated in percentages. For example, the PLSA is “much better” than cold start
on about 12% of the instances for perturbations of b using α = .01.

The observations arising from a careful analysis of Table 4 are in general similar
to those resulting from Table 1. For a fixed warm-start strategy, the performance

174 E. John, E.A. Yıldırım

Table 4 Timing comparison of four warm-start strategies on four different types of perturbations

WS strategy Time comp. Perturbations of b Perturbations of c

α = .01 α = .1 α = 1 α = 10 α = .01 α = .1 α = 1 α = 10

PLSA ρt ≤ .5 11.83 3.23 2.15 3.23 23.66 15.05 11.83 10.75

.5 < ρt ≤ 1 77.42 78.49 59.14 26.88 75.27 69.89 45.16 18.28

1 < ρt ≤ 1.5 9.68 15.05 30.11 64.52 1.08 12.90 40.86 64.52

1.5 < ρt 1.08 3.23 8.60 5.38 0 2.15 2.15 6.45

WLSA ρt ≤ .5 35.48 19.35 4.30 2.15 33.33 24.73 19.35 10.75

.5 < ρt ≤ 1 24.73 12.90 5.38 5.38 35.48 16.13 4.30 4.30

1 < ρt ≤ 1.5 23.66 45.16 4.30 3.23 25.81 30.11 11.83 3.23

1.5 < ρt 16.13 22.58 86.02 89.25 5.38 29.03 64.52 81.72

JWLSA ρt ≤ .5 39.78 19.35 5.38 2.15 41.94 27.96 21.51 11.83

.5 < ρt ≤ 1 38.71 25.81 5.38 6.45 44.09 33.33 10.75 3.23

1 < ρt ≤ 1.5 15.05 35.48 22.58 3.23 11.83 33.33 29.03 7.53

1.5 < ρt 6.45 19.35 66.67 88.17 2.15 5.38 38.71 77.42

NSA ρt ≤ .5 39.78 13.98 3.23 3.23 37.63 24.73 17.20 10.75

.5 < ρt ≤ 1 39.78 34.41 10.75 5.38 41.94 33.33 11.83 4.30

1 < ρt ≤ 1.5 13.98 35.48 19.35 5.38 17.20 34.41 29.03 7.53

1.5 < ρt 6.45 16.13 66.67 86.02 3.23 7.53 41.94 77.42

WS strategy Time comp. Perturbations of b and c Perturbations of A,b, and c

α = .01 α = .1 α = 1 α = 10 α = .01 α = .1 α = 1 α = 10

PLSA ρt ≤ .5 10.75 1.08 0 1.08 0 1.08 1.08 2.15

.5 < ρt ≤ 1 77.42 73.12 38.71 26.88 19.35 16.13 11.83 17.20

1 < ρt ≤ 1.5 9.68 20.43 55.91 68.82 74.19 77.42 72.04 48.39

1.5 < ρt 2.15 5.38 5.38 3.23 6.45 5.38 15.05 32.26

WLSA ρt ≤ .5 19.35 10.75 0 0 6.45 2.15 0 1.08

.5 < ρt ≤ 1 33.33 12.90 8.60 3.23 24.73 6.45 4.30 4.30

1 < ρt ≤ 1.5 26.88 24.73 3.23 3.23 25.81 16.13 3.23 2.15

1.5 < ρt 20.43 51.61 88.17 93.55 43.01 75.27 92.47 92.47

JWLSA ρt ≤ .5 27.96 10.75 0 0 11.83 1.08 0 1.08

.5 < ρt ≤ 1 43.01 24.73 10.75 5.38 32.26 12.90 6.45 5.38

1 < ρt ≤ 1.5 22.58 39.78 11.83 5.38 35.48 41.94 20.43 13.98

1.5 < ρt 6.45 24.73 77.42 89.25 20.43 44.09 73.12 79.57

NSA ρt ≤ .5 23.66 10.75 0 0 9.68 3.23 1.08 1.08

.5 < ρt ≤ 1 49.46 17.20 8.60 6.45 36.56 13.98 4.30 6.45

1 < ρt ≤ 1.5 20.43 47.31 13.98 2.15 34.41 40.86 25.81 13.98

1.5 < ρt 6.45 24.73 77.42 91.40 19.35 41.94 68.82 78.49

Implementation of warm-start strategies in interior-point methods 175

degrades for larger values of the scaling factor α and also for perturbations of more
data components. Table 4 also indicates that the PLSA usually results in the largest
savings in terms of time followed by the JWLSA and the NSA, whose performances
are somewhat similar. The WLSA almost always has the largest percentage in the
“much worse” row in comparison with the other three strategies.

A comparison of Table 4 and Table 1 reveals that the savings in the computation
time in general are not as significant as the savings in the iteration count. For in-
stance, while the WLSA is better or much better than cold start on about 99% of the
instances in terms of iteration count for perturbations of b and c using α = .01, the
corresponding percentage reduces to about 42% in terms of the computation time. In
order to understand this discrepancy, we report the cumulative timing comparison in
Table 5, which presents the timing comparison in a similar manner to that of Table 2.
For each strategy, we compute the ratio of the total computation time it requires to the
total computation time using cold start. In order to accurately assess the contribution
of the search time and the reoptimization time for each warm-start strategy, we also
present the overall ratio in terms of the sum of the two ratios. “Search” refers to the
ratio of the overall search time of the warm-start strategy to the total computation
time using cold start. “Reopt” denotes the ratio of the overall reoptimization time of
the warm-start strategy to the total computation time using cold start. Finally, “Total”
indicates the sum of these two ratios, i.e., it corresponds to the ratio of the total com-
putation time required by the warm-start strategy to that of cold start. For instance,
the overall search time and the overall reoptimization of the PLSA are about 17% and
50% of the overall computation time of cold start, respectively, for perturbations of
b with α = .01, which implies that the total time taken by the PLSA is about 67% of
the total time required by cold start, i.e., the PLSA reduces the overall computation
time by about 33%.

Table 5 sheds some light into why the savings in computation time are not as
significant as those in iteration count. For instance, Table 5 reveals that each of the
WLSA, JWLSA, and NSA requires significant search times. In order to have a better
understanding of this phenomenon, it is useful to consider these results in conjunc-
tion with those of Table 3, which presents the percentages of perturbed instances
solved by cold start. In particular, for each warm-start strategy, the performance of
the search stage degrades with larger perturbations and with perturbations of more
data components. If a particular strategy reverts to cold start, this implies that each
of the iterates of the original instance has been checked without successfully produc-
ing an acceptable warm-start. In terms of the computation time of the search stage,
this brings significant overhead especially for the WLSA, JWLSA, and NSA, each of
which spends considerable time for each iterate of the original instance. In contrast,
the PLSA continues to maintain significantly smaller search times on such perturbed
instances in comparison with the other three strategies since the computation of the
adjustment is much cheaper.

Table 5 indicates that the overall search time in some cases considerably exceeds
the total computation time of cold start. For instance, the overall search time of the
WLSA is about 8.5 times larger than the total computation time of cold start for
perturbations of b using α = 10. A careful examination of our experimental results
indicates that this unexpected behavior is largely due to a few large LP instances in

176 E. John, E.A. Yıldırım

Table 5 Cumulative timing comparison of four warm-start strategies on four different types of perturba-
tions

WS strategy Time comp. Perturbations of b Perturbations of c

α = .01 α = .1 α = 1 α = 10 α = .01 α = .1 α = 1 α = 10

PLSA Search .17 .18 .21 .31 .07 .05 .06 .06

Reopt .50 .77 .82 .87 .75 .88 .92 1.04

Total .67 .95 1.03 1.18 .82 .93 .98 1.10

WLSA Search 4.03 4.92 5.76 8.56 .70 .75 1.43 1.52

Reopt .35 .55 .86 .85 .38 .67 .68 1.05

Total 4.38 5.47 6.62 9.41 1.08 1.42 2.11 2.57

JWLSA Search 2.07 2.54 2.93 4.42 .36 .40 .69 .79

Reopt .36 .59 .78 .84 .46 .59 .84 1.05

Total 2.43 3.13 3.71 5.26 .82 .99 1.53 1.84

NSA Search 2.05 1.11 2.95 4.35 .37 .40 .72 .79

Reopt 1.68 .83 2.23 .89 .35 .46 .84 1.00

Total 3.73 1.94 5.18 5.24 .72 .86 1.56 1.79

WS strategy Time comp. Perturbations of b and c Perturbations of A,b, and c

α = .01 α = .1 α = 1 α = 10 α = .01 α = .1 α = 1 α = 10

PLSA Search .18 .19 .19 .27 .16 .14 .14 .24

Reopt .53 .79 .85 .89 .95 .96 .85 .83

Total .71 .98 1.04 1.16 1.11 1.10 .99 1.07

WLSA Search 4.35 4.54 5.15 7.43 3.03 2.54 3.01 5.50

Reopt .43 .56 .84 .82 .71 .72 .95 .89

Total 4.78 5.10 5.99 8.25 3.74 3.26 3.96 6.39

JWLSA Search 2.24 2.21 2.62 3.80 1.54 1.63 1.79 2.33

Reopt .39 .59 .83 .89 .72 .84 .84 .82

Total 2.63 2.80 3.45 4.69 2.26 2.47 2.63 3.15

NSA Search 2.00 2.24 2.62 3.77 1.23 1.31 1.49 2.79

Reopt 1.44 1.83 2.05 .88 .61 .74 .88 .93

Total 3.44 4.07 4.67 4.65 1.84 2.05 2.37 3.72

the NETLIB suite. It is well-known that most of the LP instances in this suite are
“nasty” in the sense that small perturbations may considerably change the character-
istics of the original instance. Therefore, on such perturbed instances, Algorithm 2.1
will almost always necessarily go through all the iterates of the original instance to
identify a “near-feasible” starting point for the perturbed instance and will finally re-

Implementation of warm-start strategies in interior-point methods 177

vert to cold start. The problem becomes even more significant if the original instance
is solved after a large number of interior-point iterations. This is the case especially
on larger instances such as dfl001 (6084/12243), greenbeb (227/4453), pi-
lot (2443/5618), and pilot87 (3586/7997), where (·/·) denotes the number of
rows and columns, respectively. For instance, PCx detects that the original instance
dfl001 is infeasible after 43 iterations, which takes about 1100 seconds. Our ex-
periments indicate that the instance obtained by perturbing the right-hand side of
dfl001 with α = 10 is infeasible and cold start, which forms a basis for time com-
parison of the warm-start strategies, detects infeasibility of this perturbed instance in
only one iteration, which takes about 52 seconds. On this perturbed instance, each
of the four warm-start strategies checks each of these 43 iterates before reverting to
cold start. The WLSA spends as much as 2265 seconds on this instance in search of a
warm start. The search time of each of the JWLSA and NSA on the same instance is
about 1100 seconds whereas that of the PLSA is only about 50 seconds. As illustrated
by this example, the search time of WLSA may be as much as twice the solution time
of the original instance just to identify a starting iterate, at which point it will revert
to cold start (cf. Algorithm 2.1). The factor two comes from the fact that the WLSA
needs to compute two different factorizations for each iterate of the original instance.
The search times of the JWLSA and NSA on such instances are roughly the same
as the computation time of the original instance since they each require only one
factorization per iterate of the original instance (cf. Sect. 2.3.1). On the other hand,
the PLSA has a significant advantage in comparison with the other three warm-start
strategies since it requires only one factorization for each original instance. A com-
parison of the overall “Search” ratios corresponding to different warm-start strategies
presented in Table 5 justifies our observation.

We believe that these computational results exemplify potential drawbacks of the
generic framework of Algorithm 2.1. The PLSA enjoys the advantage of fairly small
search time in comparison with the other three strategies. The JWLSA and the NSA
both have similar performances and offer much less savings in terms of the overall
computation time. The WLSA exhibits the worst performance as the overall search
time is roughly doubled in comparison with the JWLSA and the NSA.

Table 5 also reveals that the “Reopt” ratios for each of the four warm-start strate-
gies are usually reasonably small, which indicates that our warm-start strategies in
general succeed in reducing the reoptimization time over cold start. However, for
the warm-start strategies requiring excessive search time, this reduction in the re-
optimization time may be far outweighed and the advantage of using a warm-start
strategy may quickly disappear.

4.4 Detecting infeasibility

In this subsection, we investigate whether warm-start strategies are effective in terms
of detecting infeasibility of a perturbed instance in comparison with cold start.

Given an LP instance, PCx terminates with one of four possibilities: optimal,
infeasible, unknown, and suboptimal. The unknown status indicates an
uncorrelated convergence towards feasibility and optimality. If the iteration limit is
reached, a status of suboptimal is returned. In Table 6, we report the outcomes

178 E. John, E.A. Yıldırım

Table 6 Summary of the outcomes of perturbed instances

Status Perturbations of b Perturbations of c

α = .01 α = .1 α = 1 α = 10 α = .01 α = .1 α = 1 α = 10

Optimal 87.10 78.49 41.94 9.68 90.32 92.47 90.32 60.22

Infeasible 8.60 16.13 58.06 90.32 2.15 2.15 3.23 35.48

Unknown 4.30 5.38 0 0 7.53 5.38 6.45 4.30

Status Perturbations of b and c Perturbations of A,b, and c

α = .01 α = .1 α = 1 α = 10 α = .01 α = .1 α = 1 α = 10

Optimal 82.80 73.12 41.94 4.30 73.12 68.82 38.71 0

Infeasible 9.68 17.20 56.99 95.70 16.13 23.66 52.69 97.85

Unknown 7.53 9.68 1.08 0 10.75 7.53 8.60 2.15

Table 7 Cumulative iteration comparison of four warm-start strategies on infeasible perturbed instances

WS strategy Perturbations of b Perturbations of c

α = .01 α = .1 α = 1 α = 10 α = .01 α = .1 α = 1 α = 10

PLSA .56 .85 .97 1.01 .72 .98 .97 1.00

WLSA .31 .68 .88 1.00 .38 .52 .73 1.00

JWLSA .32 .69 .86 1.00 .38 .42 .64 1.00

NSA .64 .91 .99 .99 .45 .76 .66 1.00

WS strategy Perturbations of b and c Perturbations of A,b, and c

α = .01 α = .1 α = 1 α = 10 α = .01 α = .1 α = 1 α = 10

PLSA .72 .88 .97 1.00 1.00 1.00 1.00 1.00

WLSA .50 .75 .91 1.00 .79 .94 1.00 1.00

JWLSA .53 .72 .92 1.00 .86 .93 1.00 1.00

NSA .73 .99 1.01 1.00 .86 .94 1.00 1.00

of the perturbed instances in percentages for each of the four types of perturbations.
Note that the percentage of infeasible instances usually increases with larger pertur-
bations and with perturbations of more data components.

We use the iteration count in an attempt to assess whether warm-start strategies
are effective in detecting infeasibility of a perturbed instance in comparison with
cold start. As in Table 2, we report the ratio of the total number of iterations in the re-
optimization stage for each warm-start strategy to the total number of iterations gen-
erated with cold start in Table 7. In contrast with Table 2, we only restrict ourselves to
the perturbed instances terminating with a status of “infeasible” or “unknown.” For

Implementation of warm-start strategies in interior-point methods 179

instance, this ratio is .56 for the PLSA for perturbations of b with α = .01, which
translates into a savings of 44% over cold start on such perturbed instances.

Table 7 reveals that warm-start strategies can lead to faster detection of infeasi-
bility over cold start especially for smaller perturbations. For each warm-start strat-
egy, the ratio increases with larger perturbations and with perturbations of more data
components. The WLSA and JWLSA usually seem to offer the largest reductions in
iteration count. The PLSA and NSA usually result in smaller savings.

4.5 Discussion

In this subsection, we discuss our computational results with an emphasis on the
significance of the role played by each of the four desirable properties outlined in
Sect. 2.3.

The first desirable property in Sect. 2.3 is related to the capability of a warm-start
strategy to quickly identify a warm-start for a perturbed instance from among the
iterates of the original instance. Table 3 provides statistics about this property for
each of the four strategies. In particular, the WLSA and JWLSA are more capable
of quickly identifying a warm-start. The NSA has a slightly worse performance. The
PLSA seems to retreat to considerably earlier iterates in comparison with its counter-
parts.

The second desirable property pertains to the performance of a warm-start strategy
in the reoptimization stage. Table 2 indicates that the WLSA and JWLSA exhibit the
best performance in terms of the reduction of the number of iterations over cold
start, followed closely by the NSA. The PLSA seems to offer the least advantage in
this respect. Note that these observations are in close connection with those in the
preceding paragraph. Therefore, the interplay between these two properties is clearly
demonstrated by our computational results, i.e., sooner identification of a warm-start
usually leads to faster reoptimization of the perturbed instance.

The third desirable property is related to the proximity of the computed warm-
start to the central path of the perturbed instance. Note that none of our warm-start
strategies enforces this property. Nevertheless, our computational results indicate that
each strategy is still capable of reducing the computational work in the reoptimiza-
tion stage. Therefore, we conclude that this property is relatively less important in
comparison with the other desirable properties. We remark that the proximity to the
central path is not enforced in any of the interior-point LP solvers. On the contrary,
the solvers usually make very aggressive choices in computing step lengths towards
the boundary. This is in consistence with our observations.

The last desirable property is concerned with the computational cost of the search
stage of a warm-start strategy. The relevant statistics are provided in Table 5, which
indicates that the PLSA has a significant advantage due to fairly small computation
time per each iterate of the original instance. The JWLSA and NSA spend consider-
ably larger times during the search stage since the cost of computing each adjustment
roughly equals that of a single interior-point iteration. The search stage of the WLSA
takes the largest amount of time since the computational cost of each adjustment is
roughly twice that of an interior-point iteration.

It follows from our computational results that the first two desirable properties
largely dictate the performance of a warm-start strategy in the reoptimization stage.

180 E. John, E.A. Yıldırım

On the other hand, the last desirable property determines the efficiency of the search
stage. In general, each of our warm-start strategies is usually capable of reducing the
number of interior-point iterations and therefore the computation time during the re-
optimization stage. These reductions are more pronounced for smaller perturbations
and for perturbations of fewer number of data components. In terms of the itera-
tion count, the WLSA and JWLSA have the best performances. The NSA leads to a
slightly worse performance than these two strategies. The PLSA results in the small-
est savings. On the other hand, the PLSA is a clear winner in terms of the overall time.
The JWLSA and NSA both exhibit significantly worse performance than the PLSA.
The WLSA offers the least advantage in terms of the overall computation time. Fi-
nally, it follows from the results of Table 7 that warm-start strategies can be effective
in reducing the computational cost of the reoptimization stage even if the perturbed
instance is infeasible. This is more significant especially for smaller perturbations.

We remark that the observations in the preceding paragraph are specific to the ex-
perimental setup used in this study. In particular, our implementation stores all the
interior-point iterates generated during the course of the solution of the unperturbed
instance. As indicated by our experimental results, this choice may cause severe prob-
lems especially for larger perturbations and for the adjustments requiring a significant
amount of search time. We state several ways to alleviate this problem in Sect. 5. As
before, we justify the choice of saving all the iterates by the desire to identify the
most advanced iterate of the original instance that yields a successful warm-start for
the perturbed instance. In addition, it allows us to determine the significance of the
role played by the first desirable property.

Based on our computational results, we conclude that the PLSA has a reasonably
good performance in the general scheme of Algorithm 2.1 if all the iterates of the
original LP instance are stored and tested in search of a starting point for the perturbed
instance. The JWLSA is a strong candidate to be the second followed closely by the
NSA. The WLSA seems to lose its distinctive advantage in iteration count by the
excessive overall search time.

5 Concluding remarks

We have implemented different warm-start strategies in interior-point methods for
linear programming. We have included three members from the family of least-
squares adjustments and the Newton step adjustment in our experiments.

Our extensive computational results on the LP instances in the NETLIB suite in-
dicate that each of the warm-start strategies is generally effective in reducing the
computational effort during the reoptimization stage. The performance of a warm-
start strategy usually degrades with larger perturbations and with perturbations of
more data components. This behavior is expected as the effectiveness of a warm-start
strategy is largely dictated by the proximity between the original LP instance and the
perturbed one. Among the warm-start strategies tested, we observe that the PLSA
seems to have a distinctive overall advantage in terms of reducing the overall com-
putation time in comparison with cold start despite the fact that it usually generates
a successful warm-start at a considerably earlier iterate in comparison with the other
three strategies.

Implementation of warm-start strategies in interior-point methods 181

Experimental results indicate that none of our warm-start strategies in general pos-
sesses all of the desirable properties outlined in Sect. 2.3 simultaneously. Especially,
in light of the first, second, and fourth properties, we intend to investigate further
warm-start strategies that can offer more distinctive advantages.

Our study also reveals several potential drawbacks of the generic warm-start al-
gorithm given by Algorithm 2.1, which can be utilized in order to enhance the effec-
tiveness of a warm-start strategy. In our experiments, we stored and tested each of the
iterates of the original LP instance in searching for a starting iterate for the perturbed
instance. The computational results indicate that this scheme can lead to excessive
search times for some strategies especially with the increased distance between the
original instance and the perturbed one. There are several potential remedies for this
problem. For instance, instead of storing all iterates of the original instance, one can
store only a subset. The selection of such a subset can be based on duality measure,
which may be used to ensure that no two original iterates will have close duality
measures. Furthermore, one can use binary search on the subset of stored iterates in
order to decrease the search time. This approach assumes monotonicity in computing
a successful warm-start, i.e., if an iterate of the original instance yields a successful
warm-start, then so will the earlier iterates. This is justified by the theoretical results
of [34] as long as the iterates are feasible and somewhat well-centered. Another rem-
edy to reduce the search time is to impose an upper limit on the number of iterates
that will be tested. If all such trials fail to produce an acceptable starting point, then
one can revert to cold start. Such a scheme may be effective in preventing excessive
search time.

As illustrated by our computational results, warm-start strategies offer little or
no advantage for large perturbations. This suggests that one of the most important
ingredients in the effectiveness of a warm-start strategy is the ability to correctly
measure the relative distance between an original LP instance and a perturbed one. If
this distance is above a certain threshold, then warm-start can be deemed to offer no
advantage, in which case the perturbed instance can simply be solved using cold start.
In such a scheme, the search stage can be completely bypassed. We intend to work
on such distance measures that can be incorporated into our warm-start strategies in
the near future.

Another interesting direction is to extend warm-start strategies to incorporate
changes in the dimension of an LP problem. Such an extension would make warm-
start strategies universally applicable. The branch-and-bound algorithm for integer
programming is an ideal setting since both kinds of perturbations naturally arise in a
branch-and-bound tree. We expect that a new implementation of this algorithm with
warm-starts could potentially lead to significant savings in overall computation time.

We conclude this paper with a few remarks about the test problems used in this
study. We used the well-known NETLIB test suite in our experiments. The fact that
this collection consists of challenging LP instances was one of the deciding factors
in our choice. We reasoned that the effectiveness of our warm-start strategies pre-
sumably will not be worse on LP problems that arise naturally in practice. Therefore,
any positive result on the NETLIB suite would potentially translate into more sig-
nificant savings in general. In fact, our experimental results on randomly generated
transportation problems are generally in favor of this observation [18]. We have not
included these results in this paper in order to maintain a reasonable length.

182 E. John, E.A. Yıldırım

However, it is not entirely clear how one can define meaningful perturbations
for the LP instances in the NETLIB suite. Therefore, we echo the request from re-
searchers and practitioners in [2] for a meaningful data set for reoptimization.

Acknowledgements We are deeply grateful to Michael Wagner and Stephen J. Wright for their assis-
tance with the PCx code in various stages of this study. We also thank the anonymous referees and the
Associate Editor for their numerous helpful and perceptive suggestions, which considerably improved our
presentation.

References

1. Andersen, E.D., Andersen, K.D.: Presolving in linear programming. Math. Program. 71(2), 221–245
(1995)

2. Benson, H.Y., Shanno, D.F.: An exact primal-dual penalty method approach to warmstarting interior-
point methods for linear programming. Comput. Optim. Appl. (2007, in press). doi:10.1007/
s10589-007-9048-6

3. Benson, H.Y., Shanno, D.F.: Interior-point methods for nonconvex nonlinear programming: Regular-
ization and warmstarts. Comput. Optim. Appl. (2007, in press). doi:10.1007/s10589-007-9089-x

4. Curtis, A.R., Reid, J.K.: On the automatic scaling of matrices for Gaussian elimination. J. Inst. Math.
Appl. 10, 118–124 (1972)

5. Czyzyk, J., Mehrotra, S., Wagner, M., Wright, S.J.: PCx: An interior-point code for linear program-
ming. Optim. Methods Softw. 11–2(1–4), 397–430 (1999)

6. Elhedhli, S., Goffin, J.L.: The integration of an interior-point cutting plane method within a branch-
and-price algorithm. Math. Program. 100(2), 267–294 (2004)

7. Fliege, J.: An efficient interior-point method for convex multicriteria optimization problems. Math.
Oper. Res. 31, 825–845 (2006)

8. Fliege, J., Heseler, A.: Constructing approximations to the efficient set of convex quadratic multiob-
jective problems. Technical report, Dortmund University, Dortmund, Germany (2002)

9. Forsgren, A.: On warmstarts for interior methods. In: Ceragioli, F., Dontchev, A., Furuta, H., Marti, K.,
Pandolfi, L. (eds.) System Modeling and Optimization. IFIP International Federation for Information
Processing, vol. 199, pp. 51–66. Springer, Boston (2006)

10. Freund, R.M.: A potential function reduction algorithm for solving a linear program directly from an
infeasible “warm start”. Math. Program. 52, 441–466 (1991)

11. Freund, R.M.: Theoretical efficiency of a shifted-barrier-function algorithm for linear programming.
Linear Algebra Appl. 152(1), 19–41 (1991)

12. Goffin, J.-L., Haurie, A., Vial, J.-P.: Decomposition and nondifferentiable optimization with the pro-
jective algorithm. Manag. Sci. 38, 284–302 (1992)

13. Goffin, J.L., Vial, J.P.: Convex nondifferentiable optimization: A survey focused on the analytic center
cutting plane method. Optim. Methods Softw. 17(5), 805–867 (2002)

14. Gondzio, J.: Multiple centrality corrections in a primal-dual method for linear programming. Comput.
Optim. Appl. 6, 137–156 (1996)

15. Gondzio, J.: Warm start of the primal-dual method applied in the cutting-plane scheme. Math. Pro-
gram. 83, 125–143 (1998)

16. Gondzio, J., Grothey, A.: Re-optimization with the primal-dual interior point method. SIAM J. Optim.
13(3), 842–864 (2003)

17. Gondzio, J., Vial, J.-Ph.: Warm start and epsilon-subgradients in the cutting plane scheme for block-
angular linear programs. Comput. Optim. Appl. 14(1), 17–36 (1999)

18. John, E.: Implementation of warm-start strategies in interior-point methods for linear programming.
PhD thesis, Department of Applied Mathematics and Statistics, Stony Brook University (2005)

19. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395
(1984)

20. Lustig, I.J., Marsten, R.E., Shanno, D.F.: Interior point methods for linear programming: Computa-
tional state of the art. ORSA J. Comput. 6, 1–14 (1994)

21. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2, 575–
601 (1992)

http://dx.doi.org/10.1007/s10589-007-9048-6
http://dx.doi.org/10.1007/s10589-007-9048-6
http://dx.doi.org/10.1007/s10589-007-9089-x

Implementation of warm-start strategies in interior-point methods 183

22. Mitchell, J.E.: Computational experience with an interior-point cutting plane algorithm. SIAM J. Op-
tim. 10(4), 1212–1227 (2000)

23. Mitchell, J.E., Borchers, B.: Solving real-world linear ordering problems using a primal-dual interior
point cutting plane method. Ann. Oper. Res. 62, 253–276 (1996)

24. Mitchell, J.E., Todd, M.J.: Solving combinatorial optimization problems using Karmarkar’s algorithm.
Math. Program. 56, 245–284 (1992)

25. Nesterov, Y.E., Nemirovskii, A.S.: Interior Point Polynomial Methods in Convex Programming.
SIAM, Philadelphia (1994)

26. Ng, E., Peyton, B.W.: Block sparse Cholesky algorithms on advanced uniprocessor computers. SIAM
J. Sci. Comput. 14, 1034–1056 (1993)

27. Polyak, R.: Modified barrier functions (theory and methods). Math. Program. 54, 177–222 (1992)
28. Renegar, J.: A Mathematical View of Interior-Point Methods in Convex Optimization. MPS/SIAM

Series on Optimization, vol. 3. SIAM, Philadelphia (2001)
29. Todd, M.J.: Detecting infeasibility in infeasible-interior-point methods for optimization. In:

Cucker, F., De Vore, R., Olver, P. (eds.) Foundations of Computational Mathematics, pp. 157–192.
Cambridge University Press, Cambridge (2004)

30. Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997)
31. Yıldırım, E.A.: An interior-point perspective on sensitivity analysis in semidefinite programming.

Math. Oper. Res. 28(4), 649–676 (2003)
32. Yıldırım, E.A., Todd, M.J.: Sensitivity analysis in linear programming and semidefinite programming

using interior-point methods. Math. Program. 90(2), 229–261 (2001)
33. Yıldırım, E.A., Todd, M.J.: An interior-point approach to sensitivity analysis in degenerate linear

programs. SIAM J. Optim. 12(3), 692–714 (2002)
34. Yıldırım, E.A., Wright, S.J.: Warm-start strategies in interior-point methods for linear programming.

SIAM J. Optim. 12(3), 782–810 (2002)

	Implementation of warm-start strategies in interior-point methods for linear programming in fixed dimension
	Abstract
	Introduction
	Notation

	An overview of warm-start strategies
	An overview of infeasible path-following methods
	A generic warm-start algorithm
	Acceptable starting points
	Adjustments
	Family of least-squares adjustments
	Newton step adjustment

	Properties of the specific adjustments
	Family of least-squares adjustments
	Newton step adjustment

	Implementation
	An overview of PCx
	Preserving the dimension
	Generating perturbed instances
	Methods of comparison
	Further details

	Computational results
	Iteration comparison
	Performance of the search stage
	Time comparison
	Detecting infeasibility
	Discussion

	Concluding remarks
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

