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a b s t r a c t 

We propose a data denoising method using Extreme Learning Machine (ELM) structure which allows us 

to use Johnson-Lindenstrauß Lemma (JL) for preserving Restricted Isometry Property (RIP) in order to give 

theoretical guarantees for recovery. Furthermore, we show that the method is equivalent to a robust two- 

layer ELM that implicitly benefits from the proposed denoising algorithm. Current robust ELM methods in 

the literature involve well-studied L1, L2 regularization techniques as well as the usage of the robust loss 

functions such as Huber Loss. We extend the recent analysis on the Robust Regression literature to be 

effectively used in more general, non-linear settings and to be compatible with any ML algorithm such as 

Neural Networks (NN). These methods are useful under the scenario where the observations suffer from 

the effect of heavy noise. We extend the usage of ELM as a general data denoising method independent of 

the ML algorithm. Tests for denoising and regularized ELM methods are conducted on both synthetic and 

real data. Our method performs better than its competitors for most of the scenarios, and successfully 

eliminates most of the noise. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Foundations of the ELM are rooted in function approximation 

heory. ELM uses a randomly generated network layer to obtain 

uccessful approximations on continuous functions [1] . This ran- 

om layer is shown to be effective and efficient in terms of both 

ccuracy and the computation complexity [2] . Randomly gener- 

ted weights are not only used in ELM’s but also in dimensional- 

ty reduction and compressed sensing due to their performance on 

ccuracy/computation complexity trade-off. Johnson-Lindenstrauß

emma allows ELMs to reduce the dimension of the problem for 

fficiency in computations while preserving the structure of the 

ata [3,4] . The second layer introduces non-linear interactions of 

he features to improve the prediction capabilities of the system. 

t this point, using ELMs as a sparse error recovery and data de- 

oising tool becomes highly efficient. Therefore, a robust ELM ap- 

lication along with an extendable data denoising method applica- 

le to different machine learning frameworks (especially NN’s) is 

roposed in this paper. In Section 2 , we describe the contribution 

f our approach to the literature, and in Section 3 we briefly ex- 

lain the requisite background information on the problem struc- 

ure, ELM and the theorems used in the analysis. In Sections 4 and 

 we describe our algorithm and give theoretical results, respec- 
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ively. In Section 6 we compare our algorithm with multiple ELM 

ethods and show the effectiveness of data denoising with the 

omparison of multiple learning algorithms on both synthetic and 

eal data. 

. Our contribution 

Under the non-linear CS framework, recovery guarantees of the 

roposed denoising algorithm are analyzed. We shall use these re- 

ults to provide the denoising algorithm for non-linear ML prob- 

ems by extending the robust regression analysis [5,6] into a gen- 

ral denoising method applicable for neural networks, ELM and 

ther ML algorithms. The motivation for applying such a denois- 

ng technique originates from the fact that sparse recovery meth- 

ds are highly disturbed under heavy corruption. Denoising meth- 

ds effective to address this issue are also expected to be effective 

n non-linear optimization problems. Furthermore, in light of the 

ecent convex NN interpretations and following the studies on ac- 

ivation regions, we propose to use randomized activation regions 

o effectively evaluate the quality of the data points. 

First, we describe how multiple layers of ELMs can be used to 

ormulate sparse recovery problems for non-linear machine learn- 

ng problems to denoise data from highly corruptive noise. Second, 

e provide a hard threshold based subset selection algorithm for 

n ELM application that outperforms robust loss functions and reg- 

larization methods [7] , and derive convergence guarantees. One of 

he main contributions to the analysis performed on the conver- 

ence guarantees involves the JL Lemma and its relation with the 

https://doi.org/10.1016/j.sigpro.2021.108361
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IP property which allows the former proofs to be still valid. To the 

est of our knowledge, only robust functions and their combina- 

ions with regularization methods were previously studied in the 

obust ELM literature. Therefore, a method providing robustness 

ith a theoretical background is deemed a welcome and timely 

ontribution to the literature. 

. Background 

.1. Sparse recovery 

The Literature on sparse recovery mainly focuses on the follow- 

ng problem 

min ‖ 

y − X w ‖ 

2 
2 

s.t. ‖ 

w ‖ 0 ≤ k, 

here X ∈ R 

n ×p represents the data matrix, y ∈ R 

n contain the ob-

ervations, and w ∈ R 

p are the unknown coefficients to be esti- 

ated. The notation ‖ w ‖ 0 denotes the � 0 -norm of w which counts

he number of non-zero elements of w . The number of non-zero 

lements (the cardinality of the support of w ) is restricted to be at 

ost k . 

Due to the � 0 constraint, the problem is NP-Hard [8,9] . In the 

iterature, various solution techniques have been proposed, ranging 

rom convex relaxations of the problem to heuristic algorithms to 

andle the cardinality constraint. Some of the previously proposed 

nd prominent solution methods are Fista [10] and Iterative Hard 

hresholding (IHT) [11] . 

In the present study, the IHT algorithm is used as one of the 

ain building blocks of our algorithm. However, to clean the data 

rom corrupting errors, the problem will be cast as selecting sparse 

bservations from the data instead of finding a sparse regression 

olution. 

.2. Non-linear robust model description 

The model of this paper is a non-linear one where the observa- 

ions are heavily corrupted by a noise similar to those analysed in 

5] : 

 

∗ = �(X w 

∗) (1) 

 = y ∗ + b + ε, (2) 

here X is a matrix of features, w 

∗ is a vector of weights, �(·) is
 non-linear map, b denotes the corruptive noise in the observa- 

ion due to the measurements, and ε denotes the regular Gaussian 

hite noise. In the following sections, the model will be analyzed 

or the case y = ˆ y + b without the Gaussian white noise to be able

o devise a simple yet efficient hard thresholding method. This re- 

axation allows the IHT approach to be viable during subset selec- 

ion. In robust network literature, noise vector b is generally taken 

s a sparse vector such that ‖ b ‖ 0 ≤ 0 . 4 n where n is the number of

bservations [7] . Due to this sparsity pattern in b which is induced 

rom the � 0 -norm, one can reformulate the problem in the form 

f a compressed sensing problem [5] . Bhatia et al. [5] proves the 

onvergence guarantees and compares performances for the sub- 

et based regression techniques TORRENT and ADACRR [12] using 

his sparse recovery reformulation to the robust regression meth- 

ds. We shall follow a similar approach to analyze the recovery 

roblem and its applications. 

.3. ELM Model description 

Let X = [ x 1 , x 2 , . . . , x n ] 
T be a feature matrix of dimension n × p,

uch that x i ∈ R 

p . Let y ∈ R 

n be the target vector for all n observa-

ions. Weight matrix W ∈ R 

p×l represents the randomly generated 
1 

2 
ayer and w 2 ∈ R 

l is optimized in the second layer. The dimension 

f the first layer is denoted by l whereas φ denotes any transfer 

unction such as ReLu, Leaky ReLU, tanh or sigmoid: 

 = φ(X W 1 ) (3) 

ˆ 
 = Zw 2 . (4) 

In order to calculate the second layer weights, w 2 , one can use 

arious gradient descent algorithms in addition to the widely used 

 2 norm minimization formula. The widely used closed form solu- 

ion of the second layer weight is shown in [1] as 

 2 = 

{
(Z T Z ) −1 Z T y n ≥ l, 

Z T (Z Z T ) −1 y n ≤ l. 
(5) 

The above closed form expressions are derived from least 

quares minimization. Depending on the existence of the general- 

zed inverse, one of the identities is used. 

The transformation in the random layer is analogous to dimen- 

ionality reduction using random projections when l < p and the 

elated JL Lemma. This property will be useful to show that the 

ata structure is preserved throughout the network regardless of 

he non-linear transforms. 

In addition, there are algorithms involving Iterative Hard 

hresholding in ELMs [13] . However, these algorithms are applied 

o the decision weights on the second layer to obtain sparse 

eights. The present paper is completely different in terms of the 

se of the iterative hard thresholding and sparsity sought in the 

ariables. However, our theoretical study supports the foundation 

f the proposed algorithm in [13] implicitly where they lack theo- 

etical results. 

.4. Robust methods and related loss functions 

As an overview, one can summarize the most commonly 

sed regularization methods in NN’s as � 1 , � 2 regularization and 

ropout. Regularization methods are studied in detail in many dif- 

erent areas including machine learning, compressed sensing and 

ptimization. 

Robust loss functions are selected from the functions which are 

ess sensitive to the outliers to induce robustness in the system. 

uber loss is one of the most commonly used robust loss func- 

ions in the literature. Intensive analysis on the function and its 

mplementations for many ML studies are available, e.g., [14] . 

In the literature there exist methods to transform robust func- 

ions and regularization methods into a compact format to be used 

n robust networks [7] . These are efficient in terms of computa- 

ion and implementation as the form of each loss can be writ- 

en in terms of iteratively re-weighted least squares function. Fur- 

hermore, involved methods on parameter selection are known for 

nline-sequential learning [15] with more specific implementation 

etails that are not within the scope of this paper. 

.5. Convex neural networks 

In very recent literature [16] the convexity of the two-layer 

eural Networks is analyzed. Pilancı and Ergen [16] shows the 

quivalence of the classical two-layer relu neural network (3) to 

he following convex program 

min 

 v i ,w i } P 1 
1 

2 

∥∥∥∥∥
P ∑ 

i =1 

D i X (v i − w i ) − y 

∥∥∥∥∥
2 

+ β
P ∑ 

i =1 

( ‖ 

v i ‖ 2 + ‖ 

w i ‖ 2 ) 

s.t. (2 D i − I) X v i ≥ 0 ∀ i ∈ { 1 , ., P } 
(2 D i − I) X w i ≥ 0 , ∀ i ∈ { 1 , ., P } 
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here the diagonal matrices D i ’s correspond to a hyperplane ar- 

angement and P is the number of all hyperplane arrangements. 

ince the analysis of the hyperplane arrangements and the equiv- 

lence of the two problems are out of the scope of this paper, 

e refer the readers to [16] for details. Furthermore, the original 

eights for the neural network can be obtained based on a result 

etailed in [16] . The most crucial point of this convex formulation 

s the hyperplane arrangements denoted by D i in the formulation. 

his feature is introduced to aggregate the data with its small sub- 

ets so that the problem becomes a sparse recovery problem with 

he group sparsity regularization term. 

There are robust Neural Network studies extending this ap- 

roach in [17] . With this approach the robustness around a given 

erturbation ball can be implemented using convex optimization. 

owever, from a practical viewpoint these implementations are 

ot on a par with the classical neural networks, and the scaling 

erformance to large data sizes is worse compared to that of neu- 

al networks. 

The afore-mentioned convex approach is generally not practical 

ut very insightful for theoretical analysis. We also find that our 

pproach parallels those theoretical insights presented in [16] and 

17] . 

. Algorithm 

The main reason for using ELM architecture in the data selec- 

ion is to calculate the most important entries as fast as possible 

hile capturing the possible non-linearities in the data. The preser- 

ation of the data after the random projections is a consequence of 

he JL Lemma: 

emma 1 (JL) . Given 0 < δ < 1 , a set X of n points in R 

d , and a

umber k ≥ 3 
cδ2 ln n for an appropriate positive constant c, there exists 

 random projection f : R 

d → R 

k which has the following property 

ith probability at least 1 − 3 
2 n , ∥∥ f (v i ) − f (v j ) 

∥∥ −
√ 

k 
∥∥v i − v j 

∥∥∣∣∣ ≤ δ
√ 

k 
∥∥v i − v j 

∥∥
or all distinct pairs of points v i and v j in X. 

Using this projection property, in a two-layer ELM, we can pre- 

erve the data structure in the first random layer, transform the 

ata with a transfer function and create non-linearities in the 

econd “calculated” layer which will be helpful to capture non- 

inearities. In the numerical tests in Section 6 , the addition of mul- 

iple random layers is studied to analyze the effectiveness of the 

ethod in capturing highly dependent data structures. 

emark 1. The idea of random projections is similar to creating 

andom activation patterns using randomized hyperplane arrange- 

ents in the convex neural network formulations. Using random- 

zed activation patterns allow us to benefit from only a specific 

ombination of fixed activation region from the data. Using this 

xed activation region selected, we evaluate the performance of 

he data points. Finally, we select a useful subset of the data with 

espect to that evaluation. 

The hard thresholding step is introduced to the robust regres- 

ion literature in [6] and extensively studied in [5,12] . A similar 

dea can be extended to the proposed ELM architecture to obtain 

he best subset of the data which is not corrupted for non-linear 

etting: 

min b ‖ 

y − ZW 2 + b ‖ 

2 
2 

s.t. Z = φ(X W 1 ) 
‖ 

b ‖ 0 ≤ k 

he first constraint above varies in the problem formulation de- 

ending on the number of layers that will be used in the denoising 
3 
lgorithm. The number of layers is viewed as a hyper-parameter 

epending on the structure of the non-linearities within the data. 

he general denoising problem is formulated as follows 

in ‖ 

y − ZW n + b ‖ 

2 
2 

.t. Z = φ( . . . φ(φ(X W 1 ) W 2 ) . . . W n −1 ) , 
‖ 

b ‖ 0 ≤ k. 

First, the algorithm considers a θ-layered neural network where 

he θ − 1 hidden layers are fixed and randomly generated. The 

unction φ is selected as Leaky ReLU for theoretical analysis. How- 

ver, ReLU, Sigmoid, tanh or any other injective transfer function 

ould be used. The second layer output is obtained using least 

quares loss. The weight calculation is performed under the as- 

umption n ≥ l, otherwise the generalized inverse should be used 

s explained in the background section. Furthermore, the proposed 

ethod will be used as a pre-processing method in most applica- 

ions, therefore the layer dimension is kept smaller than the data 

imension with the given bounds of JL-Lemma to make the system 

ork as fast as possible while preserving RIP property [3] . 

Algorithm 1: Subset Based Error Recovery (SuBER). 

Input : X 

Result : ˆ w 2 t 

e : residual error 

initialization: 

W 1 = N (0 , I) ; 

t = 0 ; 

k: hyperparameter for subset size; 

compute first layer: Z = φ(XW 1 ) ; 

w 2 = (Z T Z ) −1 Z T y train ; 

while t ≤ max iter do 

calculate predictions: ˆ y t = Zw 2 t ; 

select minimum k elements: 

S t := mink ( 
∥∥y − ˆ y t 

∥∥) calculate w 2 t : w 2 t = (Z T 
S t 

Z S t ) 
−1 Z T 

S t 
y S t ; 

end 

Algorithm 1 relies on the idea that one could disregard the in- 

ices where the error is large using IHT. This can be interpreted as 

n IHT method applied on X T instead of X after the w 2 weights are 

alculated using the closed-form solution of the least-squares re- 

ression. Iteratively calculating the final layer weights and the best 

ubset of data points allows us to converge to a denoised subset of 

he data. A more detailed explanation is provided in Section 5 . 

In the algorithm, the hyperparameter for the subset size is re- 

uired as a hyperparameter λ that would be used analogously in 

 1 or � 2 regularization methods or the parameter γ that would be 

sed in the Huber Loss. In addition, the number of random layers 

s adjusted as a hyperparameter. 

The special case of the algorithm when θ = 2 and φ = 

eaky ReLU reduces the problem into a regression problem with 

 regular ELM architecture where the data subsets are selected dy- 

amically. This special case is analyzed below as the ELM appli- 

ation and its performance on the existing ELM methods in the 

iterature will be presented. 

. Theoretical analysis 

In order to provide the convergence guarantees, we use an ap- 

roach similar to the convergence proof of the Robust Regression 

lgorithm [5] . First, we recall the following definitions in order to 

se the RIP results. We use B 0 (k ) to denote the “ball” consisting of 

 -sparse vectors. 

efinition 1 (RSC and RSS Properties, [18] ) . A matrix X ∈ R n ×p is

aid to satisfy the α restricted strong convexity (RSC) property and the 
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restricted smoothness (RSS) property of order k if for all w ∈ B 0 (k ) ,

e have 

k ‖ 

w ‖ 

2 
2 ≤

1 

n 

‖ 

X w ‖ 

2 
2 ≤ βk ‖ 

w ‖ 

2 
2 . 

The definition above is a more stringent version of the defini- 

ion used in similar settings. Definition 3 below implies the same 

roperties for any subset K ⊆ X . 

It is important to note that the first layer of random weights 

n this study is a matrix instead of a vector as it usually is in the

ompressed Sensing framework. However, one can assume to have 

he collection of vectors w to form W 1 in the NN and ELM cases. 

efinition 2 (NSC and NSS Properties) . A non-linear transformation 

f a matrix X ∈ R n ×p is said to satisfy the α non-linear strong convex-

ty (NSC) property and the β non-linear smoothness (NSS) property of 

rder k if for all w ∈ B 0 (k ) , we have 

k ‖ 

w ‖ 

2 
2 ≤

1 

n 

‖ 

φ(X w ) ‖ 

2 
2 ≤ βk ‖ 

w ‖ 

2 
2 . 

It was shown in [19] that if the function φ is injective, the nec- 

ssary and sufficient conditions for NSC and NSS properties are sat- 

sfied. Similar to the subset version of the RSC and RSS, NSC and 

SS imply the same properties for the subsets K ⊆ X . 

In this study, injective transfer functions such as Leaky ReLu, 

igmoid, tanh are used to satisfy this property. However, it is ob- 

erved that the non-injective function ReLU performs well in prac- 

ice. 

efinition 3 (SSC, SSS, [5] ) . A matrix X ∈ R 

n ×p is α strong convex

nd β strong smooth of order k for S ⊆ { 1 , . . . , n } with | S | ≤ k iff

k ≤ λmin (X 

T 
S X S ) ≤ ‖ 

X S ‖ 

2 
2 

≤ λmax (X 

T 
S X S ) ≤ βk , 

here λmin and λmax are the minimum and the maximum eigen- 

alues for the given matrix and X S is a matrix consisting rows of X

orresponding to indices chosen from S. 

efinition 4. For any w ∈ R 

l and c 0 > 0 the random variable

 

XW 1 w ‖ 2 2 is strongly concentrated about its expected value if 

 ( 
∣∣‖ 

X W 1 w ‖ 

2 
2 − ‖ 

w ‖ 

2 
2 

∣∣ ≥ ε‖ 

w ‖ 

2 
2 ) ≤ 2 e −nc 0 

or 0 < ε < 1 . 

emma 2. [20] ReLU and Leaky ReLU functions can be character- 

zed as 

(X w ) = D w 

U�V 

T w 

here SVD of X is expressed as X = U�V T and D w 

is a diagonal ma-

rix with ReLU/Leaky ReLU coefficients on the diagonals. 

For the Leaky ReLU activation function, the matrix D w 

is invert- 

ble. This is not possible for ReLU when there are 0 entries on the 

iagonal. 

heorem 1 (L. ReLU Preserves SSC,SSS) . Let φ be the Leaky ReLU 

unction and assume ‖ XW 1 w ‖ 2 2 is strongly concentrated about its ex- 

ected value. Then for all w ∈ B 0 (k ) and any 0 < δ < 1 we have 

1 − δ

10 

‖ 

w ‖ 2 ≤ ‖ 

Zw ‖ 2 ≤ (1 + δ) ‖ 

w ‖ 2 

ith probability at least 1 − 2(12 /δ) k e −c 0 (δ/ 2) n . 

roof. Since ‖ XW 1 w ‖ 2 2 is strongly concentrated we have 

1 − δ) 2 ‖ 

w ‖ 

2 
2 ≤ ‖ 

X W 1 w ‖ 

2 
2 ≤ (1 + δ) 2 ‖ 

w ‖ 

2 
2 
4 
or all δ ∈ (0 , 1) and w ∈ B 0 (k ) with the given probability [3] . Then,

or the Leaky ReLU function φ, we have 

2 
max (D w 

) ‖ 

X W 1 w ‖ 

2 
2 ≥ ‖ 

D w 

X W 1 w ‖ 

2 
2 

≥ σ 2 
min (D w 

) ‖ 

X W 1 w ‖ 

2 
2 , 

here σ 2 
max and σ 2 

min 
are the maximum and minimum singular 

alues for a given matrix. Combining these two results, we obtain 

1 − δ) 2 σ 2 
min (D w 

) ‖ 

w ‖ 

2 
2 ≤ ‖ 

Zw ‖ 

2 
2 

≤ (1 + δ) 2 σ 2 
max (D w 

) ‖ 

w ‖ 

2 
2 . 

or any w , D w 

is a diagonal matrix having entries 0.1 and1’s. Thus 

ne can find global upper and lower bounds as desired. �

emark 2. For any piecewise linear transfer function with σmax = 

min = 1 at all pieces, SSC and SSS bounds are equivalent after the 

ransformation 

≤ σ 2 
min (X W 1 ) ≤ ‖ 

φ(X W 1 ) ‖ 

2 
2 

≤ σ 2 
max (X W 1 ) ≤ β. 

We note that the above bound is equivalent to the bound in 

efinition 3 . 

Hard Thresholding Step: The reduced formulation without the 

aussian noise, i.e, y = ˆ y + b, is used to transform the problem into

 hard thresholding problem properly. The hard thresholding step 

onsists of the following optimization problem 

(HTS) min 

b 

∥∥(I − Z(Z T Z) −1 Z T )(y + b) 
∥∥2 

2 

s.t. ‖ 

b ‖ 0 ≤ k, 

here Z = φ(XW 1 ) or in the more convoluted form of multiple φ
unctions. After the forward propagation, the equivalence of the 

esiduals and the b value can be seen by the definition that y − ˆ y = 

. As a result the formulation above is simply reduced to selecting 

he observation indices with the largest b values. 

Convergence Guarantees: For the proof we will combine the 

ollowing relations: (Exactly the same as in [5] using the non- 

inear case Definition 2 instead of their Definition 1 ). We show that 

ssentially the same convergence guarantees hold. 

heorem 2. Let Z ∈ R 

n ×l satisfy the SSC property at order k with 

arameter αk and the SSS property at order l − k with parameter 

l−k such that 
βl−k 
αk 

< 

1 

1+ √ 

2 
. Let W 2 ∈ R 

l be an arbitrary vector and 

 = ZW 2 + b ∗ where ‖ b ∗‖ ≤ l − k is a sparse vector of possibly un-

ounded corruptions. Then Subset Based Regularization yields an ε- 

ccurate solution 
∥∥W 2 − W 2 t 

∥∥ ≤ ε. 

It is important to note that the convergence guarantee is ex- 

ctly the same as the one required for the robust regression prob- 

em in [5] . In view of the proof provided in [5] , we can use our

heorem 1 to obtain the convergence proof. Therefore, we have 

mitted the details. 

Convergence Guarantees For Multiple Layers: The idea for 

ider networks follows a similar pattern using the previous result. 

emark 3. If we work with θ layers defining 

 = φ(φ( . . . φ(X W 1 ) W 2 ) . . . W θ ) , 

hen we may apply Theorem 2 after assuming SSC and SSS prop- 

rties for Z. Also, one can see that if we apply the steps in the

roof of Theorem 1 we may obtain an SSS-SSC guarantee for such 

under mild conditions. 

With each additional non-random layer, the minimum and the 

aximum singular values have an impact on the convergence 

uarantees on top of the structure of the original covariance ma- 

rix. 
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Table 3 

Boston Price Dataset Results. 

Denoising Results for Boston Pricing Dataset 

Data Loss MSE 

Original 5.779 66.788 

2-Layer Denoise 4.195 12.838 

3-Layer Denoise 4.199 12.838 

4-Layer Denoise 4.131 12.562 

Original + Dropout 10.667 64.376 

Table 4 

Diabetes Dataset Results. 

Denoising Results for Diabetes Dataset 

Data Loss MSE 

Original 38.335 126.748 

2-Layer Denoise 37.239 103.539 

3-Layer Denoise 37.236 103.539 

4-Layer Denoise 36.509 93.557 

Original + Huber+Dropout 36.609 112.05 

Table 5 

ELM Results. 

ELM Results for Linear Case 

Methods MSE Rel. Err. Corr. Rate 

ELM 1.5788 2.5679 3.2650 

SuBER 0.2550 1.0323 0.6491 

ELM+ � 2 1.5870 2.5746 3.2745 

RP + Bisquare 0.2846 1.0912 0.5666 

IRLS + Huber 0.3192 1.1547 0.9080 

t

H

o

v  

w

l

a

o

t

a

s

t

emark 4. In [20] , the analysis shows that the magnitude of the 

igenvalues diminishes with each successive layer. This suggests 

hat the proposed algorithm converges for θ-Layers with very high 

robability if the 2-Layer ELM convergence condition holds, which 

s similar to the condition of the convergence of a robust regres- 

ion algorithm [5] . 

. Results 

In this section we first present the performance of our algo- 

ithm when it is used as a denoising tool. Second, we deploy our 

lgorithm as a stand-alone ELM algorithm, and compare it with 

ther robust ELM’s architectures in the literature. In both sec- 

ions, the synthetic data X ∈ R 

n ×p where n > p is generated sim- 

larly to the tests conducted in [5] and [7] . For corruptions, we 

et ‖ b ‖ 0 = 0 . 2 n and randomly apply corruption to randomly se- 

ected indices with the randomly selected magnitudes of ±5 ‖ y ‖ ∞ 

. 

ore specifically, initial tests were made on randomly generated 

bservations x i ∈ R 

10 0 0 where i ∈ { 1 , . . . , 20 0 0 } . The error size is

elected as 400 and the entries are corrupted such that obser- 

ation instances are selected at random and corrupted with ad- 

itive corruption b ∼ Uni f (−5 ‖ y ‖ ∞ 

, 5 ‖ y ‖ ∞ 

) . The original outputs, 

 , are produced such that y = Xw + b + ε for linear case and y =
 

T Xw + Xw + b + ε, where w ∼ N (0 , 1) denotes the randomly gen-

rated weights. To be able to demonstrate the flexibility of the 

lgorithm there is no additional sparsity pattern requirement en- 

orced on the weight vector w in contrast to other studies. In the 

utput function, Huber loss has been adopted for all of the models. 

.1. Data denoising 

After the original data is generated, two-layer, three-layer and 

our-layer denoising methods are used to select the noiseless sub- 

et candidates to be used in the network. These models are trained 

nd tested using Python Keras Library. Feed-forward networks with 

wo hidden layers are used with neuron sizes equal to 64 in each 

ayer for the results. Tables 1 and 2 show the performance of 

he denoising algorithm where the data had low non-linearity and 

igh non-linearity, respectively. 

The performance of the neural networks in Tables 1 and 2 in- 

icates that our denoising algorithm introduces significant amount 

f robustness. 

The performance of the multi-layer denoising does not appear 

o be affected by the number of layers in terms of the MSE. Syn- 

hetic data may not always be very suitable for deep learning, 
Table 1 

NN Result Part 1. 

Denoising Results for Low Non-Linearity 

Data Loss MSE 

Original 45.947 1141.648 

2-Layer Denoise 13.202 72.372 

3-Layer Denoise 13.765 72.372 

4-Layer Denoise 13.558 78.429 

Original + Dropout 30.166 543.952 

Table 2 

NN Results Part 2. 

Denoising Results for High Non-linearity 

Data Loss MSE 

Original 112.575 5211.718 

2-Layer Denoise 93.261 3455.253 

3-Layer Denoise 92.295 3455.25 

4-Layer Denoise 92.193 3349.651 

Original + Dropout 100.328 4090.479 

m

r

g

f

e

3

l

a

6

d

p

l

d

a

t

w

r

t

5 
herefore the following tests were conducted on real data. Boston 

ousing Prices and Diabetes datasets are used for this purpose. The 

riginal dataset is corrupted using heavy noises as explained pre- 

iously using the sparse noise vector ‖ b ‖ 0 < 0 . 4 n ≈ 160 . In parallel

ith the previous tests, we take, b ∼ Uni f (−5 ‖ y ‖ ∞ 

, 5 ‖ y ‖ ∞ 

) . 

In the tests, the models compared are benefiting from robust 

oss functions and regularization methods. The denoising method 

lone was able to surpass the competing methods. It was also 

bserved that 2-Layer Denoise gives a better performance than 

he competitor robust methods. The differences in the layers cre- 

te different initializations of the NN activation patterns. The re- 

ults show that using the 2-Layer approach is also highly effec- 

ive. Moreover, the same robust loss functions and regularization 

ethods are applicable to denoised data theoretically, and better 

esults could have been obtained if dropout was included in our al- 

orithm tests. The main goal here is not to find the best possible fit 

or the real data, but to demonstrate the power of data-denoising 

ven compared to relatively complex models. The results in Tables 

 and 4 and the MSE results in Tables 7 and 8 point out to simi- 

ar outcomes obtained both from denoising and the proposed ELM 

lgorithm. 

.2. ELM Method 

In this section, the goal is to show that the ELM inheriting the 

enoising method similar to the robust linear regression [5] ap- 

roaches remains prevalent compared to similar methods in the 

iterature. For the tests, layer sizes are selected equal to 500 in or- 

er to benefit from the fast denoising due to the JL Lemma. MSE 

nd Relative error results are displayed in Table 5 where Rela- 

ive error is defined as 
‖ y test − ˆ y ‖ 2 ‖ y train ‖ and MSE values are normalized 

ith the observation number n . As an alternative measure, the cor- 

uption effect of the corrupted observations on the weights and 

he original weights are presented as the corruption rate below 



Ö. Ekmekcio ̆glu, D. Akkaya and M.Ç. Pınar Signal Processing 191 (2022) 108361 

Table 6 

ELM Results. 

ELM Results for Non-Linear Case 

Methods MSE Rel. Err. Corr. Rate 

ELM 7.0031 5.3384 5.6655 

SuBER 1.0626 2.0804 0.9662 

ELM+ � 2 7.0534 5.3575 5.6405 

RP + Bisquare 0.7061 1.6966 0.8745 

IRLS + Huber 1.2196 2.2286 1.4429 
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Table 7 

ELM Results. 

ELM Results for Boston Price Dataset 

Methods MSE Rel. Err. Corr. Rate 

ELM 34.1896 0.4582 2.4161 

SuBER 14.8351 0.3076 0.5088 

ELM+ � 2 56.8503 0.5936 4.0187 

RP + Bisquare 1.4507e + 03 3.0544 0.2306 

IRLS + Huber 15.2007 0.3111 0.6351 

Table 8 

ELM Results. 

ELM Results for Diabetes Dataset 

Methods MSE Rel. Err. Corr. Rate 

ELM 615.0192 0.7787 1.1799 

SuBER 277.9764 0.5237 0.3165 

ELM+ � 2 603.1095 0.7700 1.0743 

RP + Bisquare 412.9272 0.6479 0.6624 

IRLS + Huber 294.3530 0.5389 0.5048 

l

r

e

.e. cor r uptionrate = 

‖ w o −w ‖ 2 ‖ w o ‖ 2 , where w o denotes the least squares 

olution obtained through the y values before the corruption oc- 

urs. In the tests, 100 simulations were made for each method, 

nd the average of these results is reported. The corruptions are 

et such that ‖ b ‖ 0 = 0 . 2 n for the Tables 5 and 6 and ‖ b ‖ 0 = 0 . 4 n

or Tables 7 and 8 as [7] and [5] perform tests up to this level of

orruption. 

The method RP+Bisquare is simply the random projections fol- 

owed by robust regression library in MATLAB as the models are 

quivalent. From this analysis, it is apparent that our method is 

t least on-par with the competing methods, and even better un- 

er some of the categories. The linear model performance of the 

roposed model is slightly worse than the regular regression prob- 
Fig. 1. Comparison of Results on Linear C

6 
em [5] . However, it is quite difficult to observe such linear data in 

eal datasets. Even the Boston Price dataset is not completely linear 

ven though it is one of the simplest datasets. Also, the increasing 
ase for Increasing Corruption Size. 
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Fig. 2. Comparison of Results on Non-Linear Case for Increasing Corruption Size. 
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ate of corruption makes the convergence problematic for the ro- 

ust regression libraries due to the corrupted entries. The proposed 

lgorithm and the IRLS algorithm in [7] give on-par performances 

n the real dataset. As our method is originally proposed for de- 

oising the data for different algorithms, a performance matching 

hat of one of the most established robust ELM algorithms can be 

onsidered an encouraging result. 

Fig. 1 (a)–(c) are plotted with respect to the increasing corrup- 

ion size for the linear model, and the rest of the plots in Fig. 2

oncern the non-linear model. The corrupted index number was 

ncreased by 8 in each iteration. An average of 10 different runs 

er method is taken to smooth the effect of the random layer. In 

ach figure, the dominance of our algorithm is visible. The regu- 

ar OLS and � 2 regularized OLS methods fail to adapt to the cor- 

uptions as expected. Commonly used Huber loss respectively per- 

orms better than the OLS. However, our algorithm performs bet- 

er compared to the results of Huber loss as well. The Huber Loss 

sed in these tests is borrowed from Chen et al. [7] IRLS- � 2 -Huber

lgorithm as it is one of the most competitive algorithms in the 

iterature. In practice, Huber is the most common loss among the 

L tools and libraries. Therefore it is the most meaningful loss se- 

ection for comparison. 

The computational complexity varies with respect to the con- 

ergence of the inner step. In our algorithm, the inner step enjoys 

he property of “quick” steps as discussed in [5] . Since in each up- 
d

7 
ate weights are calculated with respect to the least squares so- 

ution without the need of a gradient method, the convergence of 

he weights occurs in very few iterations. In other robustness stud- 

es [7] , proposed algorithms involving iteratively re-weighted least 

quares methods have a similar inner step. As a result, the time 

omplexity of the proposed algorithm is comparable to the avail- 

ble methods in the literature. The advantages of our method can 

e summarised as follows: 

1. Effective under heavy corruptions in terms of magnitude 

2. Scales well with the corruption percentage 

3. Hard-Threshold is simple to implement 

4. Theoretically compatible with all injective activation functions 

5. Time complexity increases with respect to the inner loop. Up- 

date method converges in 5–10 iterations 

6. Fast in large scale data due to random projections (JL Lemma) 

with respect to the regular regression variant [5,6] . 

. Conclusion 

We have proposed an ELM architecture that can be used for 

ata denoising and robust ELM regression problems. In the light 

f recent developments of convex neural networks, we have ad- 

ocated that creating randomized activation patterns using ELM’s 

ould be a practical approach to evaluate the performance of the 

ata points. To evaluate the data points, we cast the denoising 



Ö. Ekmekcio ̆glu, D. Akkaya and M.Ç. Pınar Signal Processing 191 (2022) 108361 

p

a

w

n

c

t

p

N

t

E

n

c

D

c

i

C

V

g

v

R

 

 

[

[

 

 

[

roblem as a sparse recovery problem over the data points. This 

llows us to give theoretical guarantees for our algorithm, a feature 

hich is rarely encountered in the literature. Furthermore, the de- 

oised data obtained from our method can be fed into any NN ar- 

hitecture in order to benefit from the robustness properties of cer- 

ain NN’s. Therefore, the results we have obtained using our pre- 

rocessing step can be further improved when paired with proper 

N architectures. In the second part of the study, we have shown 

hat the proposed method can also be used as a standalone robust 

LM architecture. Our numerical results indicated that both the de- 

oising and standalone ELM methods achieve better performance 

ompared to their competitors. 
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