Signal Processing 191 (2022) 108361

Contents lists available at ScienceDirect

SIGNAL

PROCESSING

Signal Processing

journal homepage: www.elsevier.com/locate/sigpro

Subset based error recovery A

Omer Ekmekcioglu, Deniz Akkaya, Mustafa C. Pinar*

Bilkent University Ankara 06800, Turkey

Check for
updates

ARTICLE INFO

Article history:

Received 26 July 2021

Revised 9 October 2021
Accepted 10 October 2021
Available online 12 October 2021

Keywords:

Robust Networks

Extreme Learning Machine
Sparse Recovery
Regularization

Hard Thresholding

ABSTRACT

We propose a data denoising method using Extreme Learning Machine (ELM) structure which allows us
to use Johnson-LindenstrauR Lemma (JL) for preserving Restricted Isometry Property (RIP) in order to give
theoretical guarantees for recovery. Furthermore, we show that the method is equivalent to a robust two-
layer ELM that implicitly benefits from the proposed denoising algorithm. Current robust ELM methods in
the literature involve well-studied L1, L2 regularization techniques as well as the usage of the robust loss
functions such as Huber Loss. We extend the recent analysis on the Robust Regression literature to be
effectively used in more general, non-linear settings and to be compatible with any ML algorithm such as
Neural Networks (NN). These methods are useful under the scenario where the observations suffer from
the effect of heavy noise. We extend the usage of ELM as a general data denoising method independent of
the ML algorithm. Tests for denoising and regularized ELM methods are conducted on both synthetic and
real data. Our method performs better than its competitors for most of the scenarios, and successfully
eliminates most of the noise.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Foundations of the ELM are rooted in function approximation
theory. ELM uses a randomly generated network layer to obtain
successful approximations on continuous functions [1]. This ran-
dom layer is shown to be effective and efficient in terms of both
accuracy and the computation complexity [2]. Randomly gener-
ated weights are not only used in ELM’s but also in dimensional-
ity reduction and compressed sensing due to their performance on
accuracy/computation complexity trade-off. Johnson-Lindenstraufl
Lemma allows ELMs to reduce the dimension of the problem for
efficiency in computations while preserving the structure of the
data [3,4]. The second layer introduces non-linear interactions of
the features to improve the prediction capabilities of the system.
At this point, using ELMs as a sparse error recovery and data de-
noising tool becomes highly efficient. Therefore, a robust ELM ap-
plication along with an extendable data denoising method applica-
ble to different machine learning frameworks (especially NN's) is
proposed in this paper. In Section 2, we describe the contribution
of our approach to the literature, and in Section 3 we briefly ex-
plain the requisite background information on the problem struc-
ture, ELM and the theorems used in the analysis. In Sections 4 and
5 we describe our algorithm and give theoretical results, respec-
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tively. In Section 6 we compare our algorithm with multiple ELM
methods and show the effectiveness of data denoising with the
comparison of multiple learning algorithms on both synthetic and
real data.

2. Our contribution

Under the non-linear CS framework, recovery guarantees of the
proposed denoising algorithm are analyzed. We shall use these re-
sults to provide the denoising algorithm for non-linear ML prob-
lems by extending the robust regression analysis [5,6] into a gen-
eral denoising method applicable for neural networks, ELM and
other ML algorithms. The motivation for applying such a denois-
ing technique originates from the fact that sparse recovery meth-
ods are highly disturbed under heavy corruption. Denoising meth-
ods effective to address this issue are also expected to be effective
in non-linear optimization problems. Furthermore, in light of the
recent convex NN interpretations and following the studies on ac-
tivation regions, we propose to use randomized activation regions
to effectively evaluate the quality of the data points.

First, we describe how multiple layers of ELMs can be used to
formulate sparse recovery problems for non-linear machine learn-
ing problems to denoise data from highly corruptive noise. Second,
we provide a hard threshold based subset selection algorithm for
an ELM application that outperforms robust loss functions and reg-
ularization methods [7], and derive convergence guarantees. One of
the main contributions to the analysis performed on the conver-
gence guarantees involves the JL Lemma and its relation with the
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RIP property which allows the former proofs to be still valid. To the
best of our knowledge, only robust functions and their combina-
tions with regularization methods were previously studied in the
robust ELM literature. Therefore, a method providing robustness
with a theoretical background is deemed a welcome and timely
contribution to the literature.

3. Background
3.1. Sparse recovery

The Literature on sparse recovery mainly focuses on the follow-
ing problem

. 2
min ||y — Xwl|;
st |lwllp <k,

where X € R"™*P represents the data matrix, y € R" contain the ob-
servations, and w € RP are the unknown coefficients to be esti-
mated. The notation ||w||y denotes the ¢y3-norm of w which counts
the number of non-zero elements of w. The number of non-zero
elements (the cardinality of the support of w) is restricted to be at
most k.

Due to the ¢y constraint, the problem is NP-Hard [8,9]. In the
literature, various solution techniques have been proposed, ranging
from convex relaxations of the problem to heuristic algorithms to
handle the cardinality constraint. Some of the previously proposed
and prominent solution methods are Fista [10] and Iterative Hard
Thresholding (IHT) [11].

In the present study, the IHT algorithm is used as one of the
main building blocks of our algorithm. However, to clean the data
from corrupting errors, the problem will be cast as selecting sparse
observations from the data instead of finding a sparse regression
solution.

3.2. Non-linear robust model description

The model of this paper is a non-linear one where the observa-
tions are heavily corrupted by a noise similar to those analysed in
[5]:

yr=dXw") (1)

y=y*+b+e, (2)

where X is a matrix of features, w* is a vector of weights, ®(-) is
a non-linear map, b denotes the corruptive noise in the observa-
tion due to the measurements, and € denotes the regular Gaussian
white noise. In the following sections, the model will be analyzed
for the case y = j + b without the Gaussian white noise to be able
to devise a simple yet efficient hard thresholding method. This re-
laxation allows the IHT approach to be viable during subset selec-
tion. In robust network literature, noise vector b is generally taken
as a sparse vector such that ||b||y < 0.4n where n is the number of
observations [7]. Due to this sparsity pattern in b which is induced
from the ¢p-norm, one can reformulate the problem in the form
of a compressed sensing problem [5]. Bhatia et al. [5] proves the
convergence guarantees and compares performances for the sub-
set based regression techniques TORRENT and ADACRR [12] using
this sparse recovery reformulation to the robust regression meth-
ods. We shall follow a similar approach to analyze the recovery
problem and its applications.

3.3. ELM Model description

Let X = [, Xy, ..., Xs]T be a feature matrix of dimension n x p,
such that x; € RP. Let y € R™ be the target vector for all n observa-
tions. Weight matrix W; e RP*! represents the randomly generated
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layer and w, € R! is optimized in the second layer. The dimension
of the first layer is denoted by | whereas ¢ denotes any transfer
function such as ReLu, Leaky ReLU, tanh or sigmoid:

Z=¢XwW) 3)

V=2Zw,. (4)

In order to calculate the second layer weights, w,, one can use
various gradient descent algorithms in addition to the widely used
¢, norm minimization formula. The widely used closed form solu-
tion of the second layer weight is shown in [1] as

Z"2) 72"y n=>1,
>Tzr@zzryy n<l

The above closed form expressions are derived from least
squares minimization. Depending on the existence of the general-
ized inverse, one of the identities is used.

The transformation in the random layer is analogous to dimen-
sionality reduction using random projections when [ < p and the
related JL Lemma. This property will be useful to show that the
data structure is preserved throughout the network regardless of
the non-linear transforms.

In addition, there are algorithms involving Iterative Hard
Thresholding in ELMs [13]. However, these algorithms are applied
to the decision weights on the second layer to obtain sparse
weights. The present paper is completely different in terms of the
use of the iterative hard thresholding and sparsity sought in the
variables. However, our theoretical study supports the foundation
of the proposed algorithm in [13] implicitly where they lack theo-
retical results.

(5)

3.4. Robust methods and related loss functions

As an overview, one can summarize the most commonly
used regularization methods in NN’s as ¢, ¢, regularization and
dropout. Regularization methods are studied in detail in many dif-
ferent areas including machine learning, compressed sensing and
optimization.

Robust loss functions are selected from the functions which are
less sensitive to the outliers to induce robustness in the system.
Huber loss is one of the most commonly used robust loss func-
tions in the literature. Intensive analysis on the function and its
implementations for many ML studies are available, e.g., [14].

In the literature there exist methods to transform robust func-
tions and regularization methods into a compact format to be used
in robust networks [7]. These are efficient in terms of computa-
tion and implementation as the form of each loss can be writ-
ten in terms of iteratively re-weighted least squares function. Fur-
thermore, involved methods on parameter selection are known for
online-sequential learning [15] with more specific implementation
details that are not within the scope of this paper.

3.5. Convex neural networks

In very recent literature [16] the convexity of the two-layer
Neural Networks is analyzed. Pilanci and Ergen [16] shows the
equivalence of the classical two-layer relu neural network (3) to
the following convex program

1L :

(min, 5 Y DXWi—w) —y| +B Y (lvilly + [will,)
e i=1 5 i=1

st. 2D;—-DXv; >0 Vie{l,. P}

(2D; —DXw; =0, Vie{l,. P}
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where the diagonal matrices D;’s correspond to a hyperplane ar-
rangement and P is the number of all hyperplane arrangements.
Since the analysis of the hyperplane arrangements and the equiv-
alence of the two problems are out of the scope of this paper,
we refer the readers to [16] for details. Furthermore, the original
weights for the neural network can be obtained based on a result
detailed in [16]. The most crucial point of this convex formulation
is the hyperplane arrangements denoted by D; in the formulation.
This feature is introduced to aggregate the data with its small sub-
sets so that the problem becomes a sparse recovery problem with
the group sparsity regularization term.

There are robust Neural Network studies extending this ap-
proach in [17]. With this approach the robustness around a given
perturbation ball can be implemented using convex optimization.
However, from a practical viewpoint these implementations are
not on a par with the classical neural networks, and the scaling
performance to large data sizes is worse compared to that of neu-
ral networks.

The afore-mentioned convex approach is generally not practical
but very insightful for theoretical analysis. We also find that our
approach parallels those theoretical insights presented in [16] and
[17].

4. Algorithm

The main reason for using ELM architecture in the data selec-
tion is to calculate the most important entries as fast as possible
while capturing the possible non-linearities in the data. The preser-
vation of the data after the random projections is a consequence of
the JL Lemma:

Lemma 1 (JL). Given 0 <8 <1, a set X of n points in R% and a
number k > ca% Inn for an appropriate positive constant c, there exists

a random projection f:RY — R¥ which has the following property
with probability at least 1 - 3n,

£ = rp] - Vr|ui- vy | = ovk|vi -]
for all distinct pairs of points v; and v; in X.

Using this projection property, in a two-layer ELM, we can pre-
serve the data structure in the first random layer, transform the
data with a transfer function and create non-linearities in the
second “calculated” layer which will be helpful to capture non-
linearities. In the numerical tests in Section 6, the addition of mul-
tiple random layers is studied to analyze the effectiveness of the
method in capturing highly dependent data structures.

Remark 1. The idea of random projections is similar to creating
random activation patterns using randomized hyperplane arrange-
ments in the convex neural network formulations. Using random-
ized activation patterns allow us to benefit from only a specific
combination of fixed activation region from the data. Using this
fixed activation region selected, we evaluate the performance of
the data points. Finally, we select a useful subset of the data with
respect to that evaluation.

The hard thresholding step is introduced to the robust regres-
sion literature in [6] and extensively studied in [5,12]. A similar
idea can be extended to the proposed ELM architecture to obtain
the best subset of the data which is not corrupted for non-linear
setting:

min, ||y — ZW; + b||3
st. Z=¢(XW;)
Ibll <k

The first constraint above varies in the problem formulation de-
pending on the number of layers that will be used in the denoising
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algorithm. The number of layers is viewed as a hyper-parameter
depending on the structure of the non-linearities within the data.
The general denoising problem is formulated as follows

min ||y — ZWa + b|)3

st Z=¢(..¢(@XWHW,).. . Wy 1),
bl < k.

First, the algorithm considers a #-layered neural network where
the 6 —1 hidden layers are fixed and randomly generated. The
function ¢ is selected as Leaky ReLU for theoretical analysis. How-
ever, ReLU, Sigmoid, tanh or any other injective transfer function
could be used. The second layer output is obtained using least
squares loss. The weight calculation is performed under the as-
sumption n > [, otherwise the generalized inverse should be used
as explained in the background section. Furthermore, the proposed
method will be used as a pre-processing method in most applica-
tions, therefore the layer dimension is kept smaller than the data
dimension with the given bounds of JL-Lemma to make the system
work as fast as possible while preserving RIP property [3].

Algorithm 1: Subset Based Error Recovery (SuBER).
Input: X
Result: wj,
e : residual error
initialization:
W1 =N(0,1);
t= 0;
k: hyperparameter for subset size;
compute first layer: Z = ¢ (XW;);
Wy = (ZTZ)ilzTYtruin;
while t < max iter do
calculate predictions: y; = Zw;,;
select minimum k elements:
S¢ :=mink (||y — ¥ | )calculate w,,: w,, = (28 Z5) 2L ys,:
end

Algorithm 1 relies on the idea that one could disregard the in-
dices where the error is large using IHT. This can be interpreted as
an IHT method applied on X7 instead of X after the w, weights are
calculated using the closed-form solution of the least-squares re-
gression. Iteratively calculating the final layer weights and the best
subset of data points allows us to converge to a denoised subset of
the data. A more detailed explanation is provided in Section 5.

In the algorithm, the hyperparameter for the subset size is re-
quired as a hyperparameter A that would be used analogously in
¢q or ¢y regularization methods or the parameter y that would be
used in the Huber Loss. In addition, the number of random layers
is adjusted as a hyperparameter.

The special case of the algorithm when 6 =2 and ¢ =
Leaky ReLU reduces the problem into a regression problem with
a regular ELM architecture where the data subsets are selected dy-
namically. This special case is analyzed below as the ELM appli-
cation and its performance on the existing ELM methods in the
literature will be presented.

5. Theoretical analysis

In order to provide the convergence guarantees, we use an ap-
proach similar to the convergence proof of the Robust Regression
algorithm [5]. First, we recall the following definitions in order to
use the RIP results. We use By (k) to denote the “ball” consisting of
k-sparse vectors.

Definition 1 (RSC and RSS Properties, [18]). A matrix X € R™P is
said to satisfy the « restricted strong convexity (RSC) property and the
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B restricted smoothness (RSS) property of order k if for all w € By(k),
we have

1
2 2 2
alwllz = S IXwliz < Bellwllz.

The definition above is a more stringent version of the defini-
tion used in similar settings. Definition 3 below implies the same
properties for any subset K € X.

It is important to note that the first layer of random weights
in this study is a matrix instead of a vector as it usually is in the
Compressed Sensing framework. However, one can assume to have
the collection of vectors w to form W; in the NN and ELM cases.

Definition 2 (NSC and NSS Properties). A non-linear transformation
of a matrix X € R™*P is said to satisfy the o non-linear strong convex-
ity (NSC) property and the B non-linear smoothness (NSS) property of
order k if for all w € By(k), we have

1
2 2 2
allwllz = ZlleXW)lz =< Belwll3-

It was shown in [19] that if the function ¢ is injective, the nec-
essary and sufficient conditions for NSC and NSS properties are sat-
isfied. Similar to the subset version of the RSC and RSS, NSC and
NSS imply the same properties for the subsets K < X.

In this study, injective transfer functions such as Leaky ReLu,
Sigmoid, tanh are used to satisfy this property. However, it is ob-
served that the non-injective function ReLU performs well in prac-
tice.

Definition 3 (SSC, SSS, [5]). A matrix X € R™P is o strong convex
and B strong smooth of order k for S c {1, ..., n} with |S| < k iff

) < Amin (X3 Xs) < [|Xs]15
=< )\max(XSTXS) = [Bka

where A, and Amax are the minimum and the maximum eigen-
values for the given matrix and Xs is a matrix consisting rows of X
corresponding to indices chosen from S.

Definition 4. For any weR! and ¢y >0 the random variable
||XW1W||% is strongly concentrated about its expected value if

P([[XWiw])3 — W3] = €][w]|3) < 2~
for0<e <1.

Lemma 2. [20] RelU and Leaky ReLU functions can be character-
ized as

¢ (Xw) =D, UZVTw

where SVD of X is expressed as X = UXVT and Dy, is a diagonal ma-
trix with ReLU/Leaky ReLU coefficients on the diagonals.

For the Leaky ReLU activation function, the matrix D, is invert-
ible. This is not possible for ReLU when there are 0 entries on the
diagonal.

Theorem 1 (L. ReLU Preserves SSC,SSS). Let ¢ be the Leaky RelU
function and assume ||XW1w||§ is strongly concentrated about its ex-
pected value. Then for all w € By(k) and any 0 < & < 1 we have

1-6
T”W”z <[Zwll, = (1 +8)[|wl,

with probability at least 1 — 2(12/8)ke~co(8/2)n,
Proof. Since ||XW1W||% is strongly concentrated we have

(1-8)?|wl3 < IXWaw|3 < (1 +8)?|w|3
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for all § € (0, 1) and w € By (k) with the given probability [3]. Then,
for the Leaky ReLU function ¢, we have

02 D) [XW1w[5 = | DuXWiw|3
> 02, (D) |XWiw |3,

min
where 02, and o2 are the maximum and minimum singular

values for a given matrix. Combining these two results, we obtain
(1= 8)%02,(Dw) [W]l3 < [1Zw]]3
< (1+8)2 074 (Dw) [ W3-

For any w, Dy, is a diagonal matrix having entries 0.1 and1’s. Thus
one can find global upper and lower bounds as desired. O

Remark 2. For any piecewise linear transfer function with omax =
omin = 1 at all pieces, SSC and SSS bounds are equivalent after the
transformation

a <02, (XW)) < [|p(XWy)|P2

min
= Ur%lax(xwl) = :3

We note that the above bound is equivalent to the bound in
Definition 3.

Hard Thresholding Step: The reduced formulation without the
Gaussian noise, i.e, y = j + b, is used to transform the problem into
a hard thresholding problem properly. The hard thresholding step
consists of the following optimization problem

(HTS)min || (1-2(Z"2)"'2")(y +b) >
s.t. |bllo =k,

where Z = ¢(XW;) or in the more convoluted form of multiple ¢
functions. After the forward propagation, the equivalence of the
residuals and the b value can be seen by the definition thaty —j =
b. As a result the formulation above is simply reduced to selecting
the observation indices with the largest b values.

Convergence Guarantees: For the proof we will combine the
following relations: (Exactly the same as in [5] using the non-
linear case Definition 2 instead of their Definition 1). We show that
essentially the same convergence guarantees hold.

Theorem 2. Let Z ¢ R"¥! satisfy the SSC property at order k with
parameter o, and the SSS property at order | —k with parameter
Bik

1 ! i
Bi_ such that <17 Let W, e R' be an arbitrary vector and

y =ZW, + b* where ||b*|| <1 -k is a sparse vector of possibly un-
bounded corruptions. Then Subset Based Regularization yields an e-
accurate solution |W, —Wa, || < €.

It is important to note that the convergence guarantee is ex-
actly the same as the one required for the robust regression prob-
lem in [5]. In view of the proof provided in [5], we can use our
Theorem 1 to obtain the convergence proof. Therefore, we have
omitted the details.

Convergence Guarantees For Multiple Layers: The idea for
wider networks follows a similar pattern using the previous result.

Remark 3. If we work with 6 layers defining

Z=¢(P(..0XW)W,)... W),

then we may apply Theorem 2 after assuming SSC and SSS prop-
erties for Z. Also, one can see that if we apply the steps in the
proof of Theorem 1 we may obtain an SSS-SSC guarantee for such
Z under mild conditions.

With each additional non-random layer, the minimum and the
maximum singular values have an impact on the convergence
guarantees on top of the structure of the original covariance ma-
trix.
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Remark 4. In [20], the analysis shows that the magnitude of the
eigenvalues diminishes with each successive layer. This suggests
that the proposed algorithm converges for 6-Layers with very high
probability if the 2-Layer ELM convergence condition holds, which
is similar to the condition of the convergence of a robust regres-
sion algorithm [5].

6. Results

In this section we first present the performance of our algo-
rithm when it is used as a denoising tool. Second, we deploy our
algorithm as a stand-alone ELM algorithm, and compare it with
other robust ELM'’s architectures in the literature. In both sec-
tions, the synthetic data X € R"*P where n > p is generated sim-
ilarly to the tests conducted in [5] and [7]. For corruptions, we
set ||b||o = 0.2n and randomly apply corruption to randomly se-
lected indices with the randomly selected magnitudes of +5||y/| .
More specifically, initial tests were made on randomly generated
observations x; € R1000 where i< {1,...,2000}. The error size is
selected as 400 and the entries are corrupted such that obser-
vation instances are selected at random and corrupted with ad-
ditive corruption b ~ Unif(—5||y|l. 5/¥|l«)- The original outputs,
y, are produced such that y = Xw + b+ € for linear case and y =
XTXw +Xw + b + €, where w ~ A'(0, 1) denotes the randomly gen-
erated weights. To be able to demonstrate the flexibility of the
algorithm there is no additional sparsity pattern requirement en-
forced on the weight vector w in contrast to other studies. In the
output function, Huber loss has been adopted for all of the models.

6.1. Data denoising

After the original data is generated, two-layer, three-layer and
four-layer denoising methods are used to select the noiseless sub-
set candidates to be used in the network. These models are trained
and tested using Python Keras Library. Feed-forward networks with
two hidden layers are used with neuron sizes equal to 64 in each
layer for the results. Tables 1 and 2 show the performance of
the denoising algorithm where the data had low non-linearity and
high non-linearity, respectively.

The performance of the neural networks in Tables 1 and 2 in-
dicates that our denoising algorithm introduces significant amount
of robustness.

The performance of the multi-layer denoising does not appear
to be affected by the number of layers in terms of the MSE. Syn-
thetic data may not always be very suitable for deep learning,

Table 1
NN Result Part 1.

Denoising Results for Low Non-Linearity

Data Loss MSE
Original 45.947 1141.648
2-Layer Denoise 13.202 72372
3-Layer Denoise 13.765 72.372
4-Layer Denoise 13.558 78.429
Original+Dropout  30.166  543.952

Table 2
NN Results Part 2.

Denoising Results for High Non-linearity

Data Loss MSE
Original 112,575  5211.718
2-Layer Denoise 93.261 3455.253
3-Layer Denoise 92.295 3455.25
4-Layer Denoise 92.193 3349.651
Original+Dropout 100.328 4090.479
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Table 3
Boston Price Dataset Results.

Denoising Results for Boston Pricing Dataset

Data Loss MSE

Original 5.779 66.788
2-Layer Denoise 4195 12.838
3-Layer Denoise 4.199 12.838
4-Layer Denoise 4.131 12.562
Original+Dropout  10.667  64.376

Table 4
Diabetes Dataset Results.

Denoising Results for Diabetes Dataset

Data Loss MSE
Original 38.335 126.748
2-Layer Denoise 37.239 103.539
3-Layer Denoise 37.236 103.539
4-Layer Denoise 36.509 93.557
Original+Huber+Dropout  36.609 112.05
Table 5
ELM Results.
ELM Results for Linear Case
Methods MSE Rel. Err.  Corr. Rate
ELM 1.5788  2.5679 3.2650
SuBER 0.2550 1.0323 0.6491
ELM+¢2 1.5870  2.5746 3.2745
RP+Bisquare  0.2846  1.0912 0.5666
IRLS+Huber 03192  1.1547 0.9080

therefore the following tests were conducted on real data. Boston
Housing Prices and Diabetes datasets are used for this purpose. The
original dataset is corrupted using heavy noises as explained pre-
viously using the sparse noise vector ||b||, < 0.4n ~ 160. In parallel
with the previous tests, we take, b ~ Unif(=5|y|| . 511¥lls)-

In the tests, the models compared are benefiting from robust
loss functions and regularization methods. The denoising method
alone was able to surpass the competing methods. It was also
observed that 2-Layer Denoise gives a better performance than
the competitor robust methods. The differences in the layers cre-
ate different initializations of the NN activation patterns. The re-
sults show that using the 2-Layer approach is also highly effec-
tive. Moreover, the same robust loss functions and regularization
methods are applicable to denoised data theoretically, and better
results could have been obtained if dropout was included in our al-
gorithm tests. The main goal here is not to find the best possible fit
for the real data, but to demonstrate the power of data-denoising
even compared to relatively complex models. The results in Tables
3 and 4 and the MSE results in Tables 7 and 8 point out to simi-
lar outcomes obtained both from denoising and the proposed ELM
algorithm.

6.2. ELM Method

In this section, the goal is to show that the ELM inheriting the
denoising method similar to the robust linear regression [5] ap-
proaches remains prevalent compared to similar methods in the
literature. For the tests, layer sizes are selected equal to 500 in or-
der to benefit from the fast denoising due to the JL Lemma. MSE
and Relative error results are displayed in Table 5 where Rela-
tive error is defined as % and MSE values are normalized
with the observation number n. As an alternative measure, the cor-
ruption effect of the corrupted observations on the weights and
the original weights are presented as the corruption rate below
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Table 6
ELM Results.

ELM Results for Non-Linear Case

Table 7
ELM Results.

Signal Processing 191 (2022) 108361

ELM Results for Boston Price Dataset

Methods MSE Rel. Err.  Corr. Rate Methods MSE Rel. Err.  Corr. Rate
ELM 7.0031 53384  5.6655 ELM 34.1896 0.4582  2.4161
SuBER 1.0626  2.0804  0.9662 SuBER 14.8351 03076  0.5088
ELM+¢2 7.0534 53575  5.6405 ELM+¢2 56.8503 05936  4.0187
RP+Bisquare  0.7061 1.6966 0.8745 RP+Bisquare 1.4507e+03 3.0544 0.2306
IRLS+Huber ~ 1.2196  2.2286  1.4429 IRLS+Huber  15.2007 03111 0.6351
Table 8

i.e. corruptionrate = % where w, denotes the least squares ELM Results.

solution obtained through the y values before the corruption oc- ELM Results for Diabetes Dataset

curs. In the tests, 100 simulations were made for each method, Methods MSE Rel. Err.  Corr. Rate

and the average of these results is reported. The corruptions are ELM 6150192 07787  1.1799

set such that ||b||o = 0.2n for the Tables 5 and 6 and ||b||; = 0.4n SuBER 277.9764 05237  0.3165

for Tables 7 and 8 as [7] and [5] perform tests up to this level of ELM+¢2 603.1095 0.7700  1.0743

corruption. RP+Bisquare  412.9272  0.6479  0.6624

IRLS+Huber ~ 294.3530  0.5389  0.5048

The method RP+Bisquare is simply the random projections fol-
lowed by robust regression library in MATLAB as the models are
equivalent. From this analysis, it is apparent that our method is
at least on-par with the competing methods, and even better un-
der some of the categories. The linear model performance of the
proposed model is slightly worse than the regular regression prob-

Relative Error

lem [5]. However, it is quite difficult to observe such linear data in
real datasets. Even the Boston Price dataset is not completely linear
even though it is one of the simplest datasets. Also, the increasing
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Fig. 1. Comparison of Results on Linear Case for Increasing Corruption Size.



0. Ekmekcioglu, D. Akkaya and M.C. Pinar

Relative Error

5 T T T T T T T
Algo
45 oLs H
oLS-2
4 IRLS-Huber
AN \
/ [ |
3.5 [ \/
S
w3 1
[
=
© 25 .
Q
o
2 ]
15
|
1k ]
05 . . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100
Error Size
()
5 Corruption Rate
T T T
Algo
8r oLs
oLS-2
70 IRLS-Huber
6l ]
2
i
cS5r T
kel '
°
24r 1
6 Al
(&
3h ]
2r 1l
s ,

0 10 20 30 40 50 60 70 80 90 100
Error Size

()

Signal Processing 191 (2022) 108361

MSE

30 T T T T T T T T T

Algo

oLS
25 OLs-I2 fl

IRLS-Huber

|

20

0 10 20 30 40 50 60 70 80 90 100
Error Size

(b)

Errors Found
1000 T T T T T

Found
900 Original

800
700
600

500

Errors Found

400

300

200

100 . . . . .
0 10 20 30 40 50 60 70 80 90 100

Error Size

(d)

Fig. 2. Comparison of Results on Non-Linear Case for Increasing Corruption Size.

rate of corruption makes the convergence problematic for the ro-
bust regression libraries due to the corrupted entries. The proposed
algorithm and the IRLS algorithm in [7] give on-par performances
on the real dataset. As our method is originally proposed for de-
noising the data for different algorithms, a performance matching
that of one of the most established robust ELM algorithms can be
considered an encouraging result.

Fig. 1(a)-(c) are plotted with respect to the increasing corrup-
tion size for the linear model, and the rest of the plots in Fig. 2
concern the non-linear model. The corrupted index number was
increased by 8 in each iteration. An average of 10 different runs
per method is taken to smooth the effect of the random layer. In
each figure, the dominance of our algorithm is visible. The regu-
lar OLS and ¢, regularized OLS methods fail to adapt to the cor-
ruptions as expected. Commonly used Huber loss respectively per-
forms better than the OLS. However, our algorithm performs bet-
ter compared to the results of Huber loss as well. The Huber Loss
used in these tests is borrowed from Chen et al. [7] IRLS-¢,-Huber
algorithm as it is one of the most competitive algorithms in the
literature. In practice, Huber is the most common loss among the
ML tools and libraries. Therefore it is the most meaningful loss se-
lection for comparison.

The computational complexity varies with respect to the con-
vergence of the inner step. In our algorithm, the inner step enjoys
the property of “quick” steps as discussed in [5]. Since in each up-

date weights are calculated with respect to the least squares so-
lution without the need of a gradient method, the convergence of
the weights occurs in very few iterations. In other robustness stud-
ies [7], proposed algorithms involving iteratively re-weighted least
squares methods have a similar inner step. As a result, the time
complexity of the proposed algorithm is comparable to the avail-
able methods in the literature. The advantages of our method can
be summarised as follows:

. Effective under heavy corruptions in terms of magnitude

. Scales well with the corruption percentage

. Hard-Threshold is simple to implement

. Theoretically compatible with all injective activation functions

. Time complexity increases with respect to the inner loop. Up-
date method converges in 5-10 iterations

. Fast in large scale data due to random projections (JL Lemma)
with respect to the regular regression variant [5,6].

G A WN -

=]

7. Conclusion

We have proposed an ELM architecture that can be used for
data denoising and robust ELM regression problems. In the light
of recent developments of convex neural networks, we have ad-
vocated that creating randomized activation patterns using ELM’s
would be a practical approach to evaluate the performance of the
data points. To evaluate the data points, we cast the denoising
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problem as a sparse recovery problem over the data points. This
allows us to give theoretical guarantees for our algorithm, a feature
which is rarely encountered in the literature. Furthermore, the de-
noised data obtained from our method can be fed into any NN ar-
chitecture in order to benefit from the robustness properties of cer-
tain NN’s. Therefore, the results we have obtained using our pre-
processing step can be further improved when paired with proper
NN architectures. In the second part of the study, we have shown
that the proposed method can also be used as a standalone robust
ELM architecture. Our numerical results indicated that both the de-
noising and standalone ELM methods achieve better performance
compared to their competitors.
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