
572

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 20

INTRODUCTION

In traditional, non-model-driven software de-
velopment the link between the code and higher
level design models is not formal but intentional.
Required changes are usually addressed manually

using the given modeling language. Because of
the manual adaptation the maintenance effort is
not optimal and as such sooner or later the design
models become inconsistent with the code since
changes are, in practice, defined at the code
level. One of the key motivations for introducing

Ersin Er
Hacettepe University, Turkey

Bedir Tekinerdogan
Bilkent University, Turkey

MoDSEL:
Model-Driven Software

Evolution Language

ABSTRACT

Model-Driven Software Development (MDSD) aims to support the development and evolution of soft-
ware intensive systems using the basic concepts of model, metamodel, and model transformation. In
parallel with the ongoing academic research, MDSD is more and more applied in industrial practices.
Like conventional non-MDSD practices, MDSD systems are also subject to changing requirements
and have to cope with evolution. In this chapter, the authors provide a scenario-based approach for
documenting and analyzing the impact of changes that apply to model-driven development systems. To
model the composition and evolution of an MDSD system, they developed the so-called Model-Driven
Software Evolution Language (MoDSEL) which is based on a megamodel for MDSD. MoDSEL includes
explicit language abstractions to specify both the model elements of an MDSD system and the evolution
scenarios that might apply to model elements. Based on MoDSEL specifications, an impact analysis is
performed to assess the impact of evolution scenarios and the sensitivity of model elements. A case study
is provided to show different kind of evolution scenarios and the required adaptations to model elements.

DOI: 10.4018/978-1-4666-2092-6.ch020

573

MoDSEL

model-driven software development (MDSD) is
the need to reduce the maintenance effort and as
such support evolution. MDSD aims at achiev-
ing this goal through defining model elements as
first class abstractions, and providing automated
support using model transformations. For a given
change requirement the code is not changed manu-
ally but automatically generated or regenerated,
thereby substantially reducing maintenance effort.
Further, because of the formal links between the
models and the code the evolution of artefacts in
the model-driven development process is syn-
chronized. The link between the code and models
is formal. In fact, there are only models, and as
such, ‘the documentation is the code’. Research
on MDSD is continuing to improve the expres-
siveness of the three key abstractions of model,
metamodel and transformation (Kleppe, 2008).
As such even better and more automated support
to cope with changing requirements and as such
to provide reuse, portability, interoperability, and
maintenance. Because of the promising benefits
for development and evolution, MDSD is more
and more applied in industrial projects (Häst-
backa, 2011; Fieber, 2009; Maurmaier, 2008).
Albeit, MDSD provides from one perspective
better support for evolution, it also introduces new
dimensions and challenges for software evolution
(Visser, 2007; Briand, 2003). Like conventional
code, models, metamodels and transformations
might be subject to changing requirements and
as such require to evolve in due time. Moreover,
changes to the metamodels and transformations
might render the terminal models invalid.

The software evolution problem in MDSD
needs to address different challenges. One of the
initial and key issues in considering evolution in
MDSD is the impact of changes to the existing
systems. To understand evolution in MDSD we
have provided a megamodel, that consists of both
a model for MDSD, the model for adapting model
elements, and the model for scenarios that reflect
the evolution process. Based on the megamodel we
propose a scenario-based approach for analyzing

the impact of changes that apply to model-driven
development systems. For modeling the required
changes we define the notion of so-called evolution
scenario, which is defined as a description of the
need for changes due to concerns of stakeholders.
The concept evolution scenario has been inspired
from the method called Scenario-based Analysis
of Software Architecture that focuses on a more
general use of scenarios (Kazman, 1996). Each
evolution scenario will usually have an impact
on the MDSD system and require changes to the
models, metamodels or transformations.

To provide automated support for both docu-
menting and analysis of evolution scenarios on
MDSD projects we have developed the so-called
domain-specific Model-Driven Software Evolu-
tion Language (MoDSEL). MoDSEL includes
explicit language abstractions to specify model
elements and evolution scenarios that apply to
model elements. Based on MoDSEL specifica-
tions an impact analysis is provided to measure
the impact of evolution scenarios and the sensi-
tivity of model elements to the given evolution
scenarios. We have supported the analysis process
with a set of metrics (Fenton, 1997) that measure
the impact of the defined scenarios as well as the
sensitivity of each model element with respect to
these scenarios. Once the system and the scenarios
are modeled the metric values are automatically
generated. The result of the measurement based
on these metrics can support the decision in the
design and refactoring of the system.

A case study for web-based conference man-
agement is used to show different kind of evolu-
tion scenarios and the required adaptations to
model elements. The scope of our study includes
the evolution in forward engineering that aims
to derive concrete implementation from higher
level abstractions. We do not consider evolution
in reverse engineering projects.

The remainder of the chapter is organized as
follows: In the second section we describe the ex-
ample case of web-based conference management
system. The third section defines the megamodel

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/modsel-model-driven-software-evolution/71833

Related Content

Handling of Software Quality Defects in Agile Software Development
Jörg Rech (2009). Software Applications: Concepts, Methodologies, Tools, and Applications (pp. 242-265).

www.irma-international.org/chapter/handling-software-quality-defects-agile/29392/

The Multi-Agents Architecture for Emotion Recognition: Case of Information Retrieval System
Mohamed Néji, Ali Wali and Adel M. Alimi (2014). International Journal of Software Innovation (pp. 73-85).

www.irma-international.org/article/the-multi-agents-architecture-for-emotion-recognition/111451/

Computer Assisted Methods for Retinal Image Classification
S. R. Nirmala and Purabi Sharma (2015). Intelligent Applications for Heterogeneous System Modeling and

Design (pp. 232-255).

www.irma-international.org/chapter/computer-assisted-methods-for-retinal-image-
classification/135888/

Estimation of Factor Scores of Impressions of Question and Answer Statements
Yuya Yokoyama, Teruhisa Hochin and Hiroki Nomiya (2013). International Journal of Software Innovation

(pp. 53-66).

www.irma-international.org/article/estimation-of-factor-scores-of-impressions-of-question-and-
answer-statements/89775/

Preference Coalition Formation Scheme for Buyer Coalition Services with Bundles of Items
Laor Boongasame and Dickson K. W. Chiu (2012). International Journal of Systems and Service-Oriented

Engineering (pp. 67-84).

www.irma-international.org/article/preference-coalition-formation-scheme-for-buyer-coalition-
services-with-bundles-of-items/78918/

http://www.igi-global.com/chapter/modsel-model-driven-software-evolution/71833
http://www.irma-international.org/chapter/handling-software-quality-defects-agile/29392/
http://www.irma-international.org/article/the-multi-agents-architecture-for-emotion-recognition/111451/
http://www.irma-international.org/chapter/computer-assisted-methods-for-retinal-image-classification/135888/
http://www.irma-international.org/chapter/computer-assisted-methods-for-retinal-image-classification/135888/
http://www.irma-international.org/article/estimation-of-factor-scores-of-impressions-of-question-and-answer-statements/89775/
http://www.irma-international.org/article/estimation-of-factor-scores-of-impressions-of-question-and-answer-statements/89775/
http://www.irma-international.org/article/preference-coalition-formation-scheme-for-buyer-coalition-services-with-bundles-of-items/78918/
http://www.irma-international.org/article/preference-coalition-formation-scheme-for-buyer-coalition-services-with-bundles-of-items/78918/

