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Abstract—This work characterizes the dynamics of sleep spin- 100 xV and a frequency content of from 0.5 to 40 Hz. Sig-
dles, observed in electroencephalogram (EEG) recorded from hu- nals of 10-3Q:V are considered low amplitude and potentials

mans during sleep, using both time and frequency domainmethods o go_100,,v are considered high amplitude. EEG, tradition-
which depend on higher order statistics and spectra. The time do- v, is divided into f bandss f 0 to 4 Hz ¢ f 4
main method combines the use of second- and third-order correla- & 1S @IVided Into four ban rom 0 Z,6 rom

tions to reveal information on the stationarity of periodic spindle t0 8 Hz, & ranging 8 to 13 Hz angs from 13 to 30 Hz. An
rhythms to detect transitions between multiple activities. The fre- alert person displays a low amplitude EEG of mixed frequen-

quency domain method, based on normalized spectrum and bis- cies in the 13—-18 Hz range, while a relaxed person produces

pectrum, describes frequency interactions associated with nonlin- 1546 amounts of sinusoidal waves, at a single frequency in the

earities occuring in the observed EEG. 8-13 Hz range, which are particularly prominant at the back of

Index Terms—Bispectrum, cumulants, EEG, higher order the head. As an individual goes to sleep, alpha activity is re-

spectra, higher order statistics, sleep spindles, sum-of-cumulants. placed by a lower amplitude, mixed frequency voltage (stage 1

QS), which within minutes has superimposed 1- to 2-s bursts of

|. INTRODUCTION 12- to 14—Hz activity called sleep spindles (stage 2, QS). Sev-

ral min later high-ampli low wav .5-3Hz r

HE electroencephalogra.m (EEG). s recorded_ from ”fﬁwad marllittehse?)tneset%fs?ag% :t%ugeSjS:fter :bgzt((l)osm?n th)eZlEF;?gw
scalp and reflects electrical activity of the brain. The%ﬁaves dominate the EEG and the deepest stage of sleep, stage 4

S|gnals_ are no_nstat|0nary and are p_035|bly_ gen_era_ted i§¥eached. After a return through these stages, REM sleep oc-
underlying nonlinear processes [1]. This nonlinearity is n%rs approximately 90 min after sleep onset

surprising since a wide range of physical and biologic SySterT]SSpindIe activity can be considered as oscillations and

in both basic and clinical neuroscience. have shown that there coexist two types of spontaneous spindle

Adult human sleep, for which several models have been pro- : ;
. T . . aves. In more recent work [6], it has been shown, by using
poged [2], is classified into waking (W), qqlet sleep (QS)' A atched filtering techniques, that one of these activities is
rapid eye movement (REM) stages. QS is further different-

. ! . entered around 12 Hz and the other around 14 Hz. Some
ated into four stages on the basis of brain, muscle, and eye RSman and animal studies [71, 8] suggest that spindle and
tivity. QS, REM, and occasional momentary wakings occur i |

< . . : elta rhythms reciprocally oscillate creating difficulties in the
a periodic sequence throughout the night, taking approximat y P y g

90 min in the adult. There i tion that this alterati gtection of transitions between stages. In a recent studyetSun
f wm "; eg I;QJE.M 1ereis solTetSl:.ggesfmnb a '53 e:_a_lgp [9] localized spindle activity in the brain via time-frequency
of W, QS, an . 'S @ manriestation of a basic resactivi nalysis and synthesis of EEG, and showed that the origin of
cycle characterized by periods of relative activity and action his activity is in the area of thalamus in humans, which is in

;er:tri\;a\etgg;wth periods of relative inactivity and fantasy over thggreement with previous data from the cat [5].

The EEG i i i . it flecti In this paper we apply higher order statistical measures both
'he " 'tls a ct%n |Euo_us |me-V'ﬁry|ng vod adg?, re ?ﬁ Ing olri]ﬁ the time and frequency domains to investigate the spindle ac-
going activity in the brain, normally recorded from he sca Hvityassociated with stage 2 sleep. The time domain techniques,
in man [3]. EEG activity typically has amplitudes from 10 tQNhiCh depend on the combination of second- and third-order

statistics to trace the oscillatory dynamics of the waveforms
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a nonlinear system with a limit cycle. Similarly, quasiperiodic If the signalz(n) is segmented intd/ segments of equal
oscillations [10] may also be linear oscillations where thelength, or multichannel data is of interest, such as EEG, then
system parameters may have more than one degree of freedbebispectrum and the power spectrum can be estimated by
or they may be generated by a nonlinear system. On the other M

. . . . 1 N
hand, complex oscillations which cannot be modeled by linear Bw Z Xi(w)Xi(w2) X (w1 +ws)  (7)

. g : ywo) = —
systems are due to nonlinearities having broader frequency 1w2) M

distributions and sensitivity to initial conditions and system pa- =

rameters [10]. Even seemingly very simple systems can exhiBit

complex behavior due to the nature of nonlinear components 1 M

within these systems. Plw)= 7 > Xi(w) X7 (w) 8)
We review the methods, EEG acquisition and details of our i=1

algorithm in the following Sections. whereX;(w) is the Fourier transform of thith segment or the

. o channel of the data. Equations (7) and (8) yield a normalized
A. Second- and Third-order Statistics bispectrum (also referred to as bicoherence, second-order co-
A well-established tool in the analysis of random or perirerency, bicoherency index, etc.) [14]
odic signals is the estimate of autocorrelation functiéfn)

> B(wi,w2)[?
a second-order statistic b (we, = | g 9
( ) (w1,wa) P(w)P(w2)P(w1 + w2) 9)
N
1 which can be an important and useful tool for the detection and
R(m) = 2N +1 _z_:N (n)z(n +m) @) characterization of nonlinearities [15], i.e., quadratically cou-
o plings.

wherex(n) is a real, mean-removed, discrete-time signal of a If z(n) is a periodic sequence with perigd then R(m) is
windowed (stationary) EEG segment. The power spectrum &0 periodic. Thusk(m) can be used to estimate the period-
z(n), which is the Fourier transform of the autocorrelation fundcity of the original signal. However, in speech analysis it is ob-

tion served that the average magnitude difference function (AMDF)
- produces better results in estimating the fundamental period es-
Plw) = Z R(m)e=i«m ) pecially when the observed speech signal is “quasiperiodic.”

Since EEG signal is also quasiperiodic i.e., the periods may
slightly vary in time, we use the AMDF function instead of
quantifies the power contents at the angular frequendyow- the autocorrelatiorR(m). AMDF is based on the following
ever, it suppresses the phase relationships of these componéksorder difference [16]:

This loss of information can be important if there exists phase

coupling due to nonlinearity in the signal of interest. dn (k) = x(n) — x(n — k) (10)

Phase information is conserved in non-Gaussian processes.i is zero fork — 0 Fp,F2p ... when the signak(n) is
when the order of the spectrum is greater than two [13}, heriodic with periodp. Now, by assuming that the sleep
[12]. The autotriplecorrelation function (third-order Stat'St'CS%pindle segment of windowed EEG is periodic, we can use a
c(ma,mz) of 2(n) is defined as [13], [14] function ofd(-) to estimate the fundamental period

m=—0oc

N 00

> zm)zntmiz(ntme), ) k)= > |z(n+m)wim) - z(n+m - kw(m — k)|

n=—N m=—o0

1

clmi,mz) = g5

11
and the 2-D Fourier transform of this equation, the bispectrum (1)

of the signalz(n), is expressed by wherew(-) is the window function and the range fofs within
the range of window support. This expression is referred to as
i i o(my mQ)C,jwlmle,mmz the short-time average magnitude difference function [16]. One
. . ’ " important feature of this function is that it is indeed similar to
T e 4) the short-time autocorrelation function (see [16, p. 149, and ref-
erences therein]). AMDF is not only computationally simpler
It can be shown [14] that the bispectrum in (4) can be writtdhan the a_utocorrelation as only_absolut_e_differences are com-
as puted but it produces more prominent minima aropngl, . . .
compared to the autocorrelation. Note that, the lower and upper
Blwr,ws) = X (w1)X (w2) X* (w1 + ws) (5) boundries of (11) should be arranged properly when the data is
of finite length.
where * denotes complex conjugate, akidw) is the Fourier  In the study of experimental data in this paper, we use the

B(wl,wg) =

my=- ==

transform ofz(n). The power spectrum is given by following modified version (MAMDF):
— * D, (k)y=1- —+= 12
P(w) = — X (w)X*(w). (6) (k) - 12)
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which can be considered to be a second-order statistical masing a 64-channel amplification and acquisition system. To

sure, wherer, = /%; v2(¢) is a normalization factor.Note avoid aliasing, an analog bandpass filter with cutoff frequen-
that, similar to the autocorrelation function, the peak-to-peales of 0.1 Hz and 70 Hz was utilized before digitization. Elec-
values ofD,, (k) provide the fundamental period. trodes were placed at the sites defined in the International 10-20
The inverse Fourier transform of the bispectriitfw;,w2), System [21] and at the midpoints between these standard sites
when calculated on one slicg = ws = w, i.e., (Fig. 1).
q(n) = 2i B(w, w)ejw" dw C. Estimation of mMAMDF and mAMDFSo0A
T J_x . . .
oo The following steps are applied to estimaf#, (k) and
= Z c(m,n —m), —0 < n < oo (13) @n(k).
m=—oo * mMAMDF: A 256-point Hamming window is applied to the

data. Fork = 0,1, ...,100, D, (k) is estimated by using
(11) and (12), respectively.
* MAMDFSoA: To estimate Q,(k) where & =

is called the sum-of-autotriplecorrelation (SoA) [17]-19]
which is also periodic with perio@ if z(n) is periodic with
periodp. Clearly, the SoA in (13) is a third-order statistic which

e o . . 0,1,...,100, first the autotriplecorrelations in (3)
can be modified, in a similar fashion as in (11), as : ;
and then sum-of-autocorrelations in (13) are employed.
o0 After applying a 256-point Hamming window to the
on(k) = Z lg(n +m)w(m) — g(n +m — k)w(m — k)| estimated SoA sequence, (14) and (15) are used.
(14) D. Estimation of Normalized Bispectrum
and In general longer data is needed for meaningful bispectrum
estimation [14]. We therefore prefer to group the EEG data
Qu(k)=1-— ‘Pn(k)_ (15) over selected time segments (stages) for the frequency domain
Te analysis. We take the simplest approach by constructing sets
We call the modified AMDF of SoA. MAMDESOoA. Here. theWhere the set members are frontal, central and parietal elec-
termo, = \/%; 2(4) is, again, the normalization factor. Notelrodes, i.e.,

that, sinceg(n) in (13) can be truncated at certdin M, M]

integer values, the upper and lower boundries of (15) should beet C =(Cz, C1, C2, C3, C4, C5, C6),

arranged properly. . set F = (Fz, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10),
We use the measures based on the second- and thlr_d-ordseert P —(Pz, P1, P2, P3, P4, P5, P6, P7, P8, P9).

statistics [(12) and (15), respectively] together to estimate

fche per|od|C|ty O.f the spindle activity. If. the Spmdl? aCt'.VItYWhile associating these neighboring electrodes, we visually
is purely periodic we expect these estimates to give similar
aluate the data. Moreover, we check for the results of com-

results? If the results are not similar, then the existence ot

other linear or nonlinear relations are suggested. Moreovg}(,)nly used secpnd-orde_r_statlsncgl c|a35|f|cat|qn metﬁhqu
ch as correlation coefficients, ratio of harmonic energies,

the mMAMDFSO0A in (15) can reveal background frequenc ) ) ) _
malized bandwidths and mean frequencies [22]. Since

sources or the transition in signal even though other meth X X !

may under-estimate them. approximately equivalent results are obtained, the channels are
assumed to be associated adequately.

B. EEG Acquisition The estimation of the (averaged) normalized bispectrum is

It is well known that the variation of the surface potentiaﬁhen accomplished for each group of channels sharing common

distribution on the scalp reflects functional activities emerginfgatures' These steps are itemized as follows.

from the underlying brain [20]. This surface potential varia- * APply a 256-point Hamming window to the EEG data to
tion can be measured by affixing an array of electrodes, which ~assure local stationarity.

are usually gold-plated, approximately 1 cm in diameter, to the * Reémove the mean and estimate the bispectrum using (5).
scalp, and recording the voltages between pairs of these elec* Repeat for all the members of the set and then average the
trodes, which are then filtered, amplified, and stored. The re-  bispectral values using (7).

sulting data is called the EEG. As previously described, sleep * Estimate the power spectrum of each segment using (6)
consists of states for which the brain waves are quite different. @nd average them in a similar fashion as in (8).

Spindles occur during stage two sleep, which occupies moreAIthough selection based on the visual evaluation is relatively subjective, the
than 50% of the total sleep time in a typical adult. The dataatistical classifications are widely used in various applications. For example,

studied here was spontaneous EEG (sampled at 256 Hz) fr@ﬁforrelation coefficientis commonly used to measure the similarity between a
alr of signals where electrode recordings which have close values can be good

three sleep-deprived male subjects aged 26, 28, and 39 ygﬁﬁaidates for being in the same set. Similarly, the ratio of harmonic energy
. o . calculations is used to investigate the degree of difference between a signal and
IAlternatively, the standard deviation of the window can also be used for ng{sinusoid, hence the signals with high repetitiveness can be grouped together.
malization. The mean frequency and the normalized bandwidth correspond to the weighted
2Similar or even identical results do not guarantee linearity. average and the spread of the power spectrum, respectively.
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Fig. 1. Location of 64 recording electrodes utilized in obtaining the data in this paper.

« Mask the bispectral values below 10% of the maximurare segments of 8 s containing spindle activity plotted as a func-
peak value. tion of sample points. Both visual evalution and the energy distri-

« Calculate the normalized bispectrum by using (9). Onlgution of bandpass (between 10-15 Hz) filtered data indicate that
the significant levels of normalized bispectru@? > thespindle activity starts approximately at sample point 1000 and
0.1) are considered for the evaluation of energy interaends at 1400 as shown in the bottom plots in Fig. 2(a)—(d). Note
tion among frequencies. that the energy distributions have greater values at the electrode

It is important to note that, the results are obtained over oR@Sition Pz conforming that the spindle activity can be observed
triangular regionss > 0, w1 > ws andwi +ws < 7, Simply clearlyinthe @rsal/po_stenqr region of the head. .
because the bispectrum (normalized bispectrum) can be fullyt€" @Pplying asliding window of 256 sample points (corre-

described over all frequencies by using the values in this regiwond:h;%}: 51"; timed) to;giﬂcil:astaAesltismaltions were obtalined for
via its symmetry properties [13]. them (12)and m 0A (15). Interesting results are

observed when the window is located between samples 1135 to
1390(~ 4.5-5.5 s); i.e., the time region where spindle activity

is in progress as can be seen in the top plots of Fig. 3(a)—(d). We
We present the time domain and frequency domain resudtse that the second-order estimates (the middle plots of Fig. 3)

Ill. RESULTS

separately. are similar for all channels. This suggests that any second-order
method (e.g., autocorrelation or power spectrum) will yield sim-
A. Time Domain Results ilar results in this segment for all channels. However, when we

We estimateD,, (k) andQ,, (k) for EEG recorded from Cz, Fz examine the third-order estimates (the bottom plots of Fig. 3), it

; : " be seen that the results for Oz are radically different from
Pz,and Oz duringstage 2 quietsleep. ThetopplotsinFig. 2(a)— y ) .
z zduningstage ~qui P PP InFig. 2(a) others, while the results for Cz and Fz are similar to each

other. The third-order results for Pz are different from all other
third-order results, but are similar to the second-order results for
4To identify a threshold for the bispectral estimate we apgetiminary test all other Channe_ls' )
which measures the “goodness” of the normalized bispectrum by using (100 set8When the window is moved forward to cover samples

of 512 points of) Gaussian data. The normalized bispectrum of Gaussian datg{998—1 453 the second- and third-order estimates have similar
found to be relatively close to zefd? = 0) where its maximum magnitude is

measured to be less then of 0.1. Thereféfe> 0.1 is selected as thevel of results as ShOWn in .Fig.- 4(a)—(d) consistent with the observed
significance steady-state oscillation in all channels.
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Fig. 2. Raw EEG samples of Cz, Fz, Pz and Oz (top plots). After applying a bandpass (8—15 Hz) filter to each channel their energy distributionsesver sampl
(bottom plots) in (a), (b), (c) and (d); respectively.

B. Frequency Domain Results from Fig. 5(b) only. Fig. 5(a) clearly indicates more frequency

The averaged normalized bispectra and power spgeafa Nteractions. o _
sets C , F, andP from sample points 1135-1390 are given Similar quadratic interactions are observed for fe¢ F
in Figs. 5(a) and (b)=7(a) and (b), respectively. In Fig. 5(a) tﬁ@ta-ln E|g. 6(a). Compared to the result of the previous set, the
contour plot of the averaged normalized bispectrum from tifiiStribution of frequency values seems to be similar. However,
channels of data in theet C is given, whereas in Fig. 5(b) the more numerous interactions are shifted towfarg f> = 14
of the same figure the averaged normalized power spectrum &% lin€ and the region atf,, f2) where f; = 12 ~ 14 and
the same set is presented. While the power spectrum exhibita= 4 ~ 6 Hz. The averaged and normalized power spec-
strong peak in the 12-15 Hz range, the normalized bispectriyM shown in Fig. 6(b) reveals additional low frequency ac-
reveals how tightly the frequency values interact quadracticalfyity when compared with the result of the previous set.
among themselves. For example, as seen in Fig. 5(a), the frel Ne results related teet P is givenin Fig. 7. Itis clear that
quency regions dtf., f») wheref, = 12 ~ 14 andfs = 1 ~ 2 for this time period, this region of brain is highly dominated by
Hz; fi = 6 ~ 9 an7d fo =4~ 6Hz fi =12 ~ 14 and the spindle activity as the bispectrum shown in Fig. 7(a) and
fo ’: 13 ~ 14 Hz; and finally f; = 1’.5 and f» = 4.5 Hz the power spectrum shown in Fig. 7(b). Moreover, the bispectra
show strong (almost unity) quadratical interactions. HoweverSt'99€est that it would be more realistic to think that the sleep
is quite difficult, if not impossible, to extract this informationSPindle activity has at least some types of second-order non-
linearity (due to the appearance of the strong interactions in the
SFor visualization purposes, the averaged power spectrum values are norrzll = 1315 andf2 = 12.5-1dHz reglon). Inaddition, another

ized with respect to the peak value for each figure. Also, for the normalizé'aat?reStmg_pomlt arises when we compare the power spectrum
bispectrum, only the half of the triangular region is shown. estimate given in Fig. 5(b) with the one presented in Fig. 7(b).
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Fig. 3. EEG segments of Cz, Fz, Pz and Oz from samples 1135-1390 (top plots), mMAMDF measurements (middle plots), mMAMDFSoA of data with lag 100
(bottom plots) in (a), (b), (c), and (d); respectively.

Although they seemed to be similar, the bispectra in Fig. 5(a) The results related witket P are includedin Fig. 10, where
and Fig. 7(a) are drastically different. they confirm that the spindle activity is dominating this region

We show the results f@ets C , F andP when the window of brain with showing small interactions with other lower fre-
is moved forward to cover samples 1198-1453 in Figs. 8(@lency components.
and (b)-10(a) and (b), respectively. In Fig. 8(a) the contour plot
of the averaged normalized bispectrum freat C is given, ¢ Test by Simulation
whereas in Fig. 8(b) normalized power spectrum is shown. The ] _
power spectrum continues to exhibit a strong peak in the 12—15T0 Support the results of the time and frequency domain
Hz range. The normalized bispectrum in Fig. 8(a), when corflethods, we have simulated the spindle data by selecting a
pared to Fig. 5(a), indicates relatively weaker quadratical intéfimple second-order nonlinear model, i.e.,
actions in the f1 + f2) =~ 13 Hz line. The existance of a lower
frequency activity is visible both in the power spectrum and bis-
pectrum plots.

Weaker quadratic interactions are observed forsée F \yherex is a constanty(n) is noise and:(n) is defined as
data in Fig. 9(a) when compared to Fig. 6(a). Now, interactions
are shifted toward the low frequency region. On the other hand,
the averaged and normalized power spectra shown in Figs. 9(b)
and 6(b) have similar results.

y(n) = z(n) + Kz*(n) + g(n) (16)

L
z(n) = Z a; sin(27 fin). a7)
i=1
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Fig. 4. EEG segments of Cz, Fz, Pz and Oz from samples 1198-1453 (top plots), mMAMDF measurements (middle plots), mMAMDFSoA of data with lag 100
(bottom plots) in (a), (b), (c), and (d); respectively.

In (17) L is the number of dominant frequencigs, in v, 8, « teractions inf, = 2, f1 + fo = 14 and f; =14 Hz lines. In
and/ bands, and;’s are the corresponding amplitude values;ontrast, the nonlinearity cannot be detected by the power spec-
respectively. For the purpose of demonstration, we assigrteam given in Fig. 11(b). It is interesting to observe that, for this
values to these parameters as data, the mAMDF and mAMDFSoA exhibit similar behavior as
shown in Fig. 11(c).
L=5 K=03

{1, f2, f3, f4, f5} =12,4,6,13,14}
{al, az, a3, a4, CL;)} = {0.3, 0.24, 0.22, 0.28, 1.0}

IV. DISCUSSION

Various Fourier transform-based frequency methods for data
and added zero-mean Gaussian noise to maintain a signalanalysis have been applied to the sleep EEG for more than two
noise ratio of 20 dB. We, then, estimated and plotted the normdkcades [3], [23], [24]. However, the use of higher order spectral
ized bispectrum, averaged power spectrum and mAMDF pltechniques (i.e., the normalized bispectrum) which may detect
MAMDFSO0A in Fig. 11(a)—(c). The normalized bispectrum imnd measure the interactions between frequency components of
Fig. 11(a) reveals the nonlinearity through strong frequency ithe EEG has only been investigated in a few cases.
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One of the first applications of the bispectral analysis wadentification of the alpha rhythms in EEG was reported [28].
the analysis of human EEG during sleep/wake states [25]. Finally, a recent study investigated the measurement of linear
this study, it was reported that, during the wake state, betad nonlinear phase relationships between EEG signals from
activity was dependent on alpha activity, that this dependendifferent electrode positions in cortical areas during execution
could be estimated by computing the bispectrum, and that thisfinger movements [29].
activity was not related to sleep stages. Another bispectral apin this study, we have investigated time and frequency domain
plication of EEG was in the detection and quantification ahethods for analyzing sleep spindles. The time domain methods
the phase coupling in the cortical and hippocampal EEG depend on the combination of second- and third-order statistical
rats [26]. It was also demonstrated that the hippocampal EEG®Is to detect the oscillatory dynamics of the spindle activity. In
during REM sleep showed a strong quadratic phase couplipgrticular, we used two types of estimates: the autocorrelation
in 8 rhythms [27]. Recently, a comparative study to the evaluand average magnitude differentiated sum-of-autotriplecorrela-
tion of the parametrical bispectral algorithms dealing with thigons. If both these second- and third-order methods exhibit sim-
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Fig. 8. For data set of Cz, C1, C2, C3, C4, C5, C6, C7 from samples 1198-1453. (a) Contour view of the normalized bispectrum. (b) Averaged and normalized
power spectrum.

ilar periodic behavior then we conclude that only “stationarytion of adequate EEG segments is critical, as it is necessary
spindle activity exists. However, if they are different then theo assume that the characteristics of the signal are approxi-
data has some influence from other (linear or nonlinear) activirately constant over these segments. For the frequency domain
ties which may occur due to complexities within this particulanethod, we have summarized the estimation method of the
frame [1], [30]. We want to emphasize here that these time-dmermalized bispectrum and discussed the issues of detecting
main parameters are not useful for the detection of nonlinearittb®se quadratic couplings which may occur due to existing
within given data, but for the detection of “stationarity” of thenonlinearities. We have applied the bispectral techniques to
spindle oscillations. adequately grouped EEG sleep stages and different epochs of
On the other hand, the existence of a nonlinearity can karious EEG sleep recordings. Our results suggest that, during
tested via the bispectral analysis of EEG which characterizeleep spindle activity, some types of nonlinearities exist. How-
the interaction of activity (within selected EEG segments) faver, since our tests were limited to identifying second-order
different frequencies. It is important to mention that the selenenlinearities, the existence of higher orde2) nonlinearities
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should be checked for all possible orders of the normalizedhen the values of normalized bispectrum vary between zero
andone( < »® < 1),then couplings of the frequencies occur.
In many applications, bispectral estimates in (4) can be adéie coherency value that is close to unityaf, w;) frequency

higher order spectra.

quately used for detection of periodicities [31], (9) acts as thmairs indicates a quadratic interaction; however, a value close
discriminant of linear from nonlinear processes. For exanbple,to zero indicates either low or absent interactions [14]. Nev-
is constant either for linear systetnd 5] or fully coupled fre- ertheless, in general, there may be couplings occuring at var-
quencies [32] ant? = 0 for either Gaussian signdler random ious frequency values where the transfer of energy is not due to
phase relations where no quadratic couplings occur. Clearly; + w;) only, so this interpretation is rather difficult or even
invalid [32]. Although such a case is complicated and difficult
tt% gnterpret, the normalized bispectrum suggests the degree of
fRUplings between two frequencies. For the statistics of the nor-
malized bispectral estimate given in (9), the interested reader

6However, constarit?(w+,w;) does not guarantee a linear system.

7In theory, since the bispectrum of zero-mean Gaussian process is zero,
normalized bispectrum is also null which is a measure for the EEG segme
whether they are Gaussian (symmetrically distributed) or not.
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may study [33] and the references therein, as well as [34] to

For artificial data. (a) Contour plot of the normalized bispectrum; (b) averaged and normalized power spectrum. (c) its mMAMDF (middle) and it

ACKNOWLEDGMENT

overcome the confusion which may arise during practical work. The authors would like to thank the anonymous reviewers for

The bispectrum also suppresses the zero-mean additive noiggJf
the noise is uncorrelated to the signal and symmetrically dis-
tributed [13], [14]. However, in practice, one should pay atten-
tion to noise contamination, which may corrupt the linearity and "
nonlinearity test results [35].

Both the time and frequency domain experiments show that:2]
1) spindle activity may not uniformly dominate all regions of )
brain; 2) during the spindle activity frontal recordings still ex-
hibit rich mixtures in frequency contents and couplings. On
the other hand, data from the posterior region of the head ex{4!
hibit a poor couplings but demonstrate dominancy to spindle
activity, which confirms some other recent (second-order statis{5]
tics based) studies [6]; 3) evidences suggest that sleep spindle
activity ought to be envisaged by having at least second-orde
nonlinearity.

r constructive comments.

REFERENCES

E. Bagr, Chaos in Brain FunctionE. Bagr, Ed. Berlin, Germany:
Springer-Verlag, 1990.

A. A. Borbely and P. Achermann, “Concepts and models of sleep regu-
lation: An overview,”J. Sleep Resvol. 1, pp. 63-79, 1992.

R. M. Harper, R. J. Sclabassi, and T. Estrin, “Time series analysis and
sleep research[EEE Trans. Automat. Contrvol. AC-19, no. 6, pp.
932-943, 1974.

E. Niedermeyer and F. E. Lopes da SiN&ectroencephalographye.
Niedermeyer and F. E. Lopes da Silva, Eds. Baltimore, MD: Williams
and Wilkins, 1993.

M. Steriade, E. G. Jones, and R. R. Llin@halamic Oscillations and
Signaling New York: Wiley, 1990.

] J. Marc, E. Poiseau, P. Jahnig, H. Schulz, and S. Kubicki, “Topograph-

ical analysis of sleep spindle activity\leuropsychobiologyol. 26, pp.
210-217, 1992.



1008

(7]

8]

El

(10]
(11]

[12]

(13]

[14]

[15]

(16]

[17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 47, NO. 8, AUGUST 2000

S. Uchida, T. Maloney, J. D. March, R. Azari, and I. Feinberg, “Sigma [33] G. Sebertand S. Elgar, “Statistics of bicoherence and biphaserbdmn
(12-15 Hz) and delta (0.3-3) EEG oscillate reciprocally within NREM IEEE Workshop on Higher Order Spectral Analy€i889, pp. 223-228.
sleep,”Brain Res. Bull.no. 27, pp. 93-96, 1991. [34] A. Swami, “The pitfalls in polyspectra,” iRroc. ICASSP-931993, pp.
M. Lancel, H. van Riezen, and A. Glatt, “The time course of sigma ac- 97-100.

tivity and slow-wave activity during NREMS in cortical and thalamic [35] J. K. Tugnait, “Testing for linearity of noisy stationary signallEEE
EEG of the cat during baseline and after 12 hours of wakefulnBsaifi Trans. Signal Processingol. 42, pp. 2742—-2748, Oct. 1994.

Res, no. 596, pp. 285-295, 1992.

M. Sun, S. Qian, X. Yan, S. B. Baumann, X. Xia, R. E. Dahl, N. D. Ryan,

and R. J. Sclabassi, “Localizing functional activity in the brain through

time-frequency analysis and synthesis of the EB®gt. IEEE vol. 64,
pp. 1302-1311, Sept. 1996.

P. L. Nunez Neocortical Dynamics and Human EEG Rhythmblew
York: Oxford Univ. Press, 1995.

D. R. Brillinger, “An introduction to polyspectrafAnn. Math. Stat.vol.
36, pp. 1351-1374, 1965.

L. C. Nikias and M. R. Raghuveer, “Bispectrum estimation: A digita
signal processing frameworkProc. |IEEE vol. 75, pp. 869-891, July
1987.

J. M. Mendel, “Tutorial on higher order statistics (spectra) in signal prg
cessing and system theory: Theoretical results and some applicatio
Proc. IEEE vol. 79, pp. 278-305, Mar. 1991.

C. L. Nikias and A. PetropulHigher Order Spectra Analysis: A Non-
linear Signal Processing Framewark Englewood Cliffs, NJ: Prentice-

Tayfun Akgul (M'94) received the B.S. and M.S.
degrees in electrical engineering in 1985 and 1988
from Istanbul Technical University, Istanbul, Turkey,
and the Ph.D. degree in electrical engineering in 1994
from the University of Pittsburgh, Pittsburgh, PA.
Between March 1986 and August 1988, he
was a Research Engineer in the Scientific and
Technical Research Council of Turkey (TUBITAK).
In September 1988, he joined the Department of
Electrical and Electronics Engineering, Cukurova
University, Adana, Turkey, as an Assistant. From
September 1989 to April 1994, he was with the Real-Time Signal Processing
and Computational Neuroscience laboratories at the University of Pittsburgh.
From June 1994 to July 1996, he was an Assistant Professor and then Associate
Hall, 1993. o . . . . ._Professor in the Department of Electrical and Electronics Engineering,
T. S. Rao, "Bispectral analysis of nonlinear stationary time series¢rova University. He was TUBITAK-BAYG postdoctoral fellow in the
in Handbook of Statistics,3. R. Brillinger and P. R. Krishnaiah, |‘anoratory for Computational Neuroscience, Departments of Neurological

Eds. Amsterdam, The Netherlands: North Holland, 1983. . Surgery and Electrical Engineering, University of Pittsburgh in 1996. From
L. R. Rabiner and R. W. Sf:hafdﬂ,'g”al Processing of Speech Sig- april 1997 to September 1999, he was a Visiting Assistant Professor in the
nals = Englewood Cliffs, NJ: Prentice-Hall, 1978. Electrical and Computer Engineering Department and the School of Biomedical

S. Alshebeili, A. E. Cetin, and A. N. Venetsanopoulos, “Identificatiorngineering, Science and Health Systems at Drexel University, Pittsburh, PA.
of nonminimum phase MA systems using cepstral operations on slicgrrently, he is a Research Associate Professor at Drexel University and Senior
of higher order spectra/EEE Trans. Circuits Systvol. 39, no. 9, pp. Researcher in the Information Technologies Research Institute at TUBITAK
634-637, 1992. ) ) ] _ Marmara Research Center, Turkey.

T. Akgl, A. El-Jaroudi, and M. Simaan, “Multi-scale deconvolution of - py. Akgul is a member of Sigma Xi and the Chamber of Electrical Engineers

sensor array signals via sum-of-cumulant€EE Trans. Signal Pro-  of Tyrkey. He is also an active member of the Professional Cartoonists’ Asso-
cessingvol. 45, pp. 1656-1659, June 1997. ciation of Turkey.

T. Akgul and A. El-Jaroudi, “Reconstruction of mixed-phase signals
from sum-of-auto-triplecorrelationsJEEE Trans. Signal Processing
vol. 46, pp. 250-254, Jan. 1998.

E. R. Kandel, J. H. Schwartz, and T. M. Jessklinciples of Neural
Science3rd ed. New York: Elsevier/North Holland, 1991.

W. W. Orrison, Jr., J. D. Lewine, J. A. Sanders, and M. F. Hartshorn
Functional Brain Imaging St. Louis, MO: Mosby-Year Book, 1995,
ch. 8, pp. 327-368.

R. J. Sclabassi, M. Sun, D. N. Krieger, P. Jasiukaitis, and M. S. Sch
“Time-frequency domain problems in the neurosciencesTiine-Fre-
quency Signal Analysis: Methods and ApplicatioBs Boashash, Ed,
U.K.: Wiley Halsted, 1992, pp. 498-519.

B. W. Jervis, M. Coelho, and G. W. Morgan, “Spectral analysis of EE( !
responses,Med. Biol. Eng. Computvol. 27, pp. 230-238, 1989. f N undergraduate education. He was a Graduate Student

R. J. Sclabassi and R. M. Harper, “Laboratory computers in neurophys- ) _ Researcher from 1985 to 1989 working on signal and
iology,” Proc. IEEE vol. 61, pp. 1602-1614, Nov. 1973. image processing projects. Currently, he is a Associate Professor and an As-

T. P. Barnett. L. C. Johnson. P. Naitoh. N. Hicks. and C. Nute, “BiSociate Director of the Center for Clinical Neurophysiology in the Department

pectrum analysis of electroencephalogram signals during waking a%Neurosurgery at the University of Pittsburgh. His current research interests
sleeping,"Sciencevol. 172, no. 3981, pp. 401-402, 1971. include advanced biomedical devices, biomedical signal and image processing,

T. Ning and J. D. Bronzino, “Bispectral analysis of the rat EEG durin rtificial neural networks, wavelet transforms, time-frequency analysis, and the
vérious vigila'ncé stages IEEE Trans. Biomed. Engvol. 36, pp. verse problem of neurophysiological signals. He has over 100 publications in

497-499, Apr. 1989. these areas.

—, “Nonlinear analysis of the hippocampal subfields of CAl and the

Dentate gyrus,IEEE Trans. Biomed. Engvol. 40, pp. 870-876, Sept.

1993.

D. L. Sherman and M. D. Zoltowski, “Decomposing the alpha rhythmsg Z7m Robert J. SclabassiM’62—S'68—M'73—-SM'92) re-
Comparative performance evaluation of parametric bispectral alg ceived the B.S.E. degree from Loyola University, Los
rithms for EEG,” inProc. 6th SSAP Workshph992, pp. 522-525. Angeles, CA, the M.S.E.E., Engr's, and Ph.D. de-
G. Edlinger, C. Andrew, and G. Pfurtscheller, “Second order and thir ;. grees in electrical engineering from the University
order statistics with application to EEG,” Proc. IEEE Medicine and of Southern California, Los Angeles, and the M.D.
Biology Conf, vol. 2, 1995, pp. 879-890. degree from the University of Pittsburgh, Pittsburgh,
J. Réschke and J. B. Aldenhoff, “A nonlinear approach to brain functiol PA.

Deterministic chaos and sleep EEGleep vol. 15, no. 2, pp. 95-101, He was employed in the Advanced Systems Lab-
1992. oratory at TRW, Los Angeles, CA, and was a post-
T. S. Rao and M. M. Gabr, “The estimate of the bispectral density fun 8 doctoral fellow at The Brain Research Institute at The
tion and the detection of periodicities in a signal, Multivariate Anal, ) University of California, Los Angeles. He is currently
no. 27, pp. 457-477, 1988. a Professor of Neurological Surgery, Psychiatry, Neuroscience, Electrical Engi-
O. Michel and P. Flandrin, “Higher order statistics for chaotic signateering, Mechanical Engineering, and Biomedical Engineering at The Univer-
analysis,” in Volumes on DSP Techniques and ApplicatioBs T. sity of Pittsburgh.

Leondes, Ed. New York: Academic, 1995. Dr. Sclabassi is a Registered Professional Engineer.

Mingui Sun (S'88-M'89) received the B.S. degree
from the Shenyang chemical engineering Institute,
Shenyang, China, in 1982, and M.S. and Ph.D.
degrees in electrical engineering from the University
of Pittsburgh, Pittsburgh, PA, in 1986 and 1989,
respectively.

He held various positions in mechanical, electrical,
and electronics engineering from 1971 to 1978 with
the Chifeng Radio Elements, Inc., China prior to his




AKGUL et al. CHARACTERIZATION OF SLEEP SPINDLES USING HIGHER ORDER STATISTICS AND SPECTRA

A. Enis Cetin (S'85-M'87-SM’95) studied elec-
trical engineering at the Middle East Technical
University, Ankara, Turkey. After receiving the B.Sc.
degree, he received the M.S.E and Ph.D. degrees
in systems engineering from the Moore School of
Electrical Engineering, University of Pennsylvania,
Philadelphia.

Between 1987-1989, he was Assistant Professor
of Electrical Engineering at the University of
Toronto, Toronto, ON, Canada. Since then he has
been with Bilkent University, Ankara, Turkey.
Currently he is a Full Professor. During summers of 1988, 1991, 1992 he was
with Bell Communications Research (Bellcore), Morristown, NJ. He spent
1994-1995 academic year at Koc University, Istanbul, Turkey, and 1996-1997
academic year at the University of Minnesota, Minneapolis as a Visiting
Associate Professor. Currently, he is the Director of the Picture Archiving and
Communication Systems (PACS) Laboratory and a member of the Center for
Turkish Language and Speech Processing (CTLSP).

Prof. Cetin received the young scientist award of TUBITAK (Turkish Scien-
tific and Technical Research Council) in 1993. He serves as an Associate Editor
of the IEEE TRANSACTIONS ONIMAGE PROCESSING and a member of the DSP
technical committee of the IEEE Circuits and Systems Society. He founded the
Turkish Chapter of the IEEE Signal Processing Society in 1991. He is a se-
nior member of EURASIP. He was the chair of the IEEE-EURASIP Nonlinear
Signal and Image Processing Workshop (NSIP’99) which was held in June 1999
in Antalya, Turkey.

1009



