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A B S T R A C T

One major impediment to developing countries’ economic growth is the lack of access to affordable,
sustainable, and reliable modern energy systems. Even today, hundreds of millions of people live in rural areas
and do not have access to essential electricity services. In this study, we present a planar facility location–
allocation problem for planning decentralized energy systems in rural development. We consider nano-grid and
micro-grid systems to electrify rural households. While micro-grids serve multiple households with a common
generation facility, nano-grids are small-scale systems serving individual consumers. The households served by
micro-grids are connected to the generation facilities with low-voltage cables, for which we employ a distance
limit constraint due to technical concerns, including power loss and allowable voltage levels. In this problem,
we minimize the total investment cost that consists of the facility opening and the low-voltage cable costs. In
order to capture the diversity of cost structures in renewable energy investments, we consider three versions
of the objective function where we incorporate different combinations of fixed and variable cost components
for facilities. For this problem, we provide mixed-integer quadratically constrained problem formulations and
propose model-based and clustering-based heuristic approaches. Model-based approaches are multi-stage, in
which we solve the discrete counterparts of the problem and employ alternative selection methods for the
candidate facility locations. Clustering-based approaches utilize faster clustering techniques to identify the
type and location of the facilities. We conduct computational experiments on real-life instances from villages
in Sub-Saharan Africa and perform a comparative analysis of the suggested heuristic approaches.
1. Introduction

In 2015 the United Nations member states adopted seventeen Sus-
tainable Development Goals (SDGs) as a universal call ‘‘to action to
end poverty, protect the planet and improve the lives and prospects of
everyone, everywhere’’ along with a 15-year plan as a part of the 2030
Agenda for Sustainable Development (UNDP, 2023b). Among these
goals, Sustainable Development Goal 7 (SDG7) includes specific targets
to provide access to ‘‘affordable, reliable, sustainable and modern
energy for all’’ (UNDP, 2023a) and has a direct impact on other SDGs
such as no poverty (SDG1), quality education (SDG4), economic growth
(SDG8) and climate action (SDG14).

The number of people without electricity access is reduced to a
low record, 770 million, in 2019. This number, however, is set to
increase again in 2020 due to the COVID 19-pandemic, reversing the
progress towards SDG7 (IEA, 2022). The majority of the unelectrified
populations reside in rural areas as these areas are sparsely populated
and usually challenging to reach (World Bank, 2018). Therefore, in
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order to achieve global access to electricity, the countries must pay
significant attention to rural areas, which often require new strategies
specific to local geography and demographics (Batidzirai et al., 2021).
The centralized grid may be an expensive and challenging option to
expand electricity infrastructure to remote and hilly areas (Fobi et al.,
2021; Bolukbasi and Kocaman, 2018; Kocaman, 2014; Adkins et al.,
2017). Decentralized options such as nano-grid and micro-grids, on the
other hand, can provide cost-effective solutions for rural electrification:
Nano-grid systems are isolated systems designed to serve only one
consumer, such as solar home systems and micro-grid systems serve
closely located groups of consumers with a common generation facility
such as solar systems, wind turbines, or diesel generators (Akbas et al.,
2022).

In this study, we introduce a new problem that determines the
locations and allocation of micro and nano-grid facilities on a greenfield
in order to contribute to the rural electrification efforts. The lack
of restricting infrastructure in greenfield areas allows the facilities
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to be located at almost any point in continuous space, motivating
site-generating facility location–allocation studies as opposed to site-
selecting ones (Love et al., 1988). In this planar location and allocation
problem, the consumers served by micro-grid facilities are connected to
a generation facility with a low-voltage network. Due to technical con-
straints such as power loss and the maximum permitted voltage drop,
these connections are distance limited. Our objective is to minimize the
sum of the facility opening costs of micro and nano-grid facilities and
the low-voltage connection costs in micro-grid systems.

In an earlier study, Gokbayrak and Kocaman (2017) considered a
similar problem, where there is only a single type of facility (i.e., micro-
grid) with a fixed opening cost regardless of the number of consumers
served by the facility. In this study, we generalize this problem by
assuming two different types of decentralized facility options: nano-grid
and micro-grid systems. While economies of scale apply to the micro-
grid facility costs, the additional cost of the local distribution network
can force energy planners to choose between nano-grid and micro-grid
systems (Chaurey and Kandpal, 2010), making the cost structure for
the generation facility critically important. The cost structure of the
decentralized systems can include different components depending on
the technologies used to electrify rural households. For example, the
cost of modular generators such as solar panels generally depends on
the size of the installed module; wind turbines, on the other hand, usu-
ally require fixed upfront costs for the given bulk generation capacities.
Similarly, the socio-demographics, geographical characteristics, and
other country-specific attributes are also the key drivers affecting the
cost structures and trends in different markets. Especially the unit costs
of solar home systems and solar micro-grid components are observed to
change in wide ranges depending on country-specific factors such as the
logistics, material, and labor expenses (IRENA, 2016). Therefore, given
the diversity in the cost components of different renewable technologies
and the significant cost variations in the installation costs, in this study,
we consider three different cost structures for the micro and nano-grid
systems, (i) fixed costs for both facility types, (ii) variable costs for
micro-grids depending on the number of consumers they serve, and (iii)
fixed and variable cost for micro-grids.

The contributions of this paper are threefold: First, we introduce
a problem that integrates multiple cost components into the decision-
making process of the energy planners to compare nano-grid and
micro-grid systems, including various renewable technologies. Second,
we present mixed-integer quadratically constrained programming for-
mulations for three cost structures to analyze the trade-off between
two decentralized energy options and provide a cost-efficient net-
work design for rural settlements. Third, we propose a mathematical
modeling-based heuristic with five variants and three clustering-based
algorithms for our planar facility location and allocation problem. In
the model-based approaches, we make use of the relationship between
the planar problems and their discrete counterparts. We first solve the
discrete counterpart of the problem by considering the spatial locations
of the augmented set of demand points with additional promising
points as the candidate locations as in Gokbayrak and Kocaman (2017)
and Brimberg et al. (2016). For the given discrete solution, we imple-
ment a modified version of Cooper’s iterative algorithm (Cooper, 1964)
to improve the facility locations on the continuous space and reallocate
the households depending on the proposed locations of serving facili-
ties. In addition to the augmentation method proposed in Gokbayrak
and Kocaman (2017) for problems with single-type facilities, we pro-
pose four new augmentation methods for our problem to improve the
solutions obtained from the discrete problem.

In addition to the model-based multi-stage heuristic approaches, we
also developed faster heuristic algorithms using top-down and bottom-
up clustering techniques. Employing the well-known partitioning algo-
rithms such as agglomerative clustering (Müllner, 2011), DBSCAN (Han
et al., 2011), and k-means algorithm (Likas et al., 2003), we provide
hybrid solution methods that benefit from simple and practical ap-
2

proaches. For the agglomerative clustering, we also propose a new
dissimilarity measure developed based on the problem structure. In
the numerical experiments, the clustering-based methods are observed
to provide competitive results within significantly shorter computa-
tional time and find solutions for large instances that the model-based
methods cannot solve within the given time limit.

The sections of this paper are outlined as follows: In Section 2,
we present a literature review of planar facility location–allocation
problems and clustering algorithms. In Section 3, we introduce a planar
facility location–allocation problem in the context of rural energy plan-
ning and provide mixed-integer quadratically constrained program-
ming models considering different cost structures. Section 4 provides
the details of the multi-stage model-based optimization frameworks and
clustering-based heuristic algorithms. Section 5 includes the numerical
results and the comparative analysis of the solution methods proposed
in Section 4. Finally, Section 6 concludes the paper.

2. Literature review

The problem we propose in this study is related to two well-known
problems in the literature: the multisource Weber problem (MWP) and
the clustering problem. The MWP is one of the most widely studied
problems. The aim is to locate a given number of facilities 𝑝, in contin-
uous space while minimizing the weighted sum of the point-to-facility
distances. For a given number and type of facilities and no distance
limitation between the facility and demand points, our problem reduces
to MWP, which is shown to be an NP-hard problem (Megiddo and
Supowit, 1984). On the other hand, the clustering problem aims to
group objects into different clusters based on their similarity. For a
given set of demand points arbitrarily distributed on the Euclidean
space, the similarity between two objects can be defined in terms of
the Euclidean distances between them. If the households allocated to
the same generation facility are considered a ‘cluster’, then the MWP
could also be defined as a variant of the clustering problem. Therefore,
clustering techniques can also be helpful for the solution of the MWP.

Brimberg et al. (2008) presented a detailed survey on the con-
tinuous location–allocation problems and examined the optimization
frameworks, including exact methods, heuristics, and metaheuristics.
Due to the non-polynomial nature of the problem and the summation
of non-convex terms in the objective function, the literature on the
MWP is prone to heuristic algorithms. Exact methods are generally
implemented to the small-sized instances as in Ostresh (1975), Drezner
(1984), Kuenne and Soland (1972), Rosing (1992) up to 100 customers.
However, Krau (1999) presented a column generation approach and a
branch-and-bound algorithm that finds optimal solutions for relatively
larger instances with 287 demand points and up to 100 facilities.

Contrary to exact solution methods, heuristic approaches and meta-
heuristics can provide reasonable solutions for large-scale problems
with higher computational efficiency. One of the well-known heuristics
for MWP was presented by Cooper in 1964 (Cooper, 1964). The idea be-
hind Cooper’s iterative algorithm is to locate 𝑝 facilities and reallocate
customers to the nearest facility iteratively until there is no room for
improvement. For the given customer-facility assignments, the problem
is divided into 𝑝 single facility location problems, which is much easier
to solve by using Weiszfeld’s famous iterative procedure (Weiszfeld,
1937). Weiszfeld’s algorithm is used to identify the optimal facility lo-
cation for each subproblem, and it generally converges to the geometric
median unless the proposed location coincides with a demand point.
However, a modified version of the Weiszfeld’s algorithm proposed
by Vardi and Zhang (2001) eliminates this necessity to guarantee con-
vergence. Computational experiments indicate that Cooper’s algorithm
terminates with a local optimum at the end of a small number of
iterations (Brimberg et al., 2008).

Unlike Cooper’s iterative algorithm, where the location and allo-
cation steps are performed iteratively, Murtagh and Niwattisyawong

(1982) presented a large-scale non-linear programming approach to
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simultaneously decide facility locations and allocations. Similarly, Bon-
gartz et al. (1994) developed an algorithm that simultaneously solves
for location and allocation variables using a projection method. The
authors derived projection formulas on the sub-spaces of the domain
and used them to obtain descent directions. The authors also presented
a multi-start version of their method by generating random initial
solutions and reported promising results compared to Murtagh and
Niwattisyawong (1982). Moreno et al. (1991) presented a constructive
type heuristic starting with an initial solution having 𝑁 clusters, where
𝑝 ≤ 𝑁 ≤ 2𝑝. After the clusters are identified, surplus facilities are
‘‘dropped’’ one by one until exactly 𝑝 facilities remain. An extensive dis-
cussion on different strategies based on ‘‘add’’ or ‘‘drop’’ decisions and
the comparative analysis of heuristics is presented in Brimberg et al.
(2000). Brimberg et al. (2000) also proposed a neighborhood structure,
which focuses on the relocation of facilities rather than customer reallo-
cations. This structure diversifies the solutions by expanding the scope
of the local search with single moves and systematically examining the
unexplored candidate locations. The facility locations are updated one
at a time, and all possible single moves construct the neighborhood
exchange. Cooper’s iterative algorithm is then implemented with the
selected portion of the one-exchange neighborhood. Another construc-
tive algorithm is developed by Gamal and Salhi (2001) based on the
furthest distance rule to avoid clustered facilities at specific regions.

Another stream of heuristic approaches for planar problems that
we also aim to contribute to with this paper is built on the relation
between the planar problems and their discrete counterparts. Hansen
et al. (1998) proposed a heuristic where the discrete 𝑝−median problem
is solved using the demand points as the candidate facility locations so
as to divide the problem into 𝑝 distinct single facility location prob-
ems. After the optimal solution to the discrete problem is obtained,
acility locations are improved individually in the continuous space
or each cluster. This one-step ‘‘continuous-space adjustment’’ idea is
hen improved in Brimberg et al. (2014). They suggested an approach
hat iteratively shifts between the discrete and continuous versions of
he problems. This approach is revisited in Brimberg et al. (2016) to
how the benefit of augmenting the candidate facility location set while
olving the discrete problem with good injection points.

The prior studies that we have discussed so far primarily focused
n the variations of multi-start Cooper’s alternate heuristic or neigh-
orhood structures. One of the first metaheuristic attempts is pre-
ented in Brimberg and Mladenovic (1996) using basic Tabu Search
ules. Houck et al. (1996) suggested a different approach by using

genetic algorithm to solve the multi-source Weber problem. Simi-
arly, Salhi and Gamal (2003) presented a genetic algorithm where
he selection and removal process is based on groups of chromosomes
ather than single entities. Hence, they introduced three categories
f chromosomes, good, mediocre, and poor, to diversify the search
rocess and avoid early convergence. However, the method fails for a
arge number of facilities. Drezner et al. (2015) proposed a variation
f the genetic algorithm presented in Salhi and Gamal (2003) by
sing an effective merging process to generate off-springs. The new
ybrid approach combining the distribution-based variable neighbor-
ood search with the genetic algorithm is shown to obtain improved
olutions compared to the basic variable neighborhood search and
enetic algorithm.

Network design problems for rural electrification are usually subject
o a distance constraint due to transmission loss concerns and maximum
ermitted voltage drop. Drezner et al. (1991) proposed a distance-
imited version of the Weber problem where the service provided by

distant facility is considered useless if the cut-off distance is ex-
eeded. Gokbayrak and Kocaman (2017) introduced a distance-limited
ontinuous location–allocation problem, where the number of facilities
s considered a decision variable. They proposed a multi-stage solution
pproach that involves developing promising candidate locations for
he discrete counterpart of the problem and solving Cooper’s iterative
3

lgorithm for fine-tuning on continuous space. Similarly, in Gokbayrak (
and Avci (2020), multi-stage methods that include the solution of
the discrete problem and fine-tuning steps are presented for a similar
problem with a multi-point low-voltage network. Kocaman et al. (2012)
proposed an agglomerative clustering technique for a two-level power
distribution network, where there is a distance limitation between
transformers and the serving transformers. Assuming each customer is
a singleton cluster initially, the algorithm searches for the two closest
groups and locates a single facility to the center of mass in an iterative
fashion. If the proposed site does not violate the distance limit, these
two clusters are merged into a single cluster, and the current facility
locations are replaced with the new one located at the centroid. This
merging process continues until none of the clusters can be merged due
to the distance limit. The algorithm provides the configuration having
the least overall cost as the final solution.

The other well-known clustering techniques are also frequently
used to solve multi-facility location problems. For instance, Esnaf and
Küçükdeniz (2009) proposed a hybrid method using the fuzzy c-means
clustering method. After the initial clusters are formed using the fuzzy
c-means clustering algorithm, the locations of the facilities in each
cluster are optimized individually as a single facility location problem.
Similarly, Küçükdeniz and Esnaf (2018) also presented an approach
where the initial clusters are formed by the fuzzy c-means cluster-
ing, and the existing configuration is optimized with the NM simplex
algorithm. Geetha et al. (2009) developed a k-means-based solution
approach to create 𝑘 disjoint clusters and identify the optimal customer-
facility allocations. Sahraeian and Kaveh (2010) presented another
hybrid method combining k-means clustering with the fixed neighbor-
hood search algorithm. Based on the initial locations that the k-means
method yields, the fixed neighborhood algorithm improves the facility
locations and the customer allocations. However, the final output of
the k-means algorithm is susceptible to the randomly selected centroids
selected as the initial solution. Therefore, the k-means algorithm is
repeated multiple times to choose the best solution among several
alternatives with different initial seedings.

Corigliano et al. (2021) also used the k-means and agglomerative
hierarchical clustering algorithms to locate secondary substations as
a part of the power distribution network design problem. Firstly, the
k-means clustering algorithm is used for a predetermined number
of substations. Then, the low-voltage connections are checked if the
distance threshold is exceeded. The clusters violating the distance
limitation are all subdivided iteratively until each one conforms to
the distance threshold. Secondly, an agglomerative clustering-based ap-
proach is presented to merge consumers one by one until the maximum
number of clusters is attained within the distance limitation. In the
comparative analysis, the agglomerative clustering approach is found
to be more effective than the other methods proposed in the study.
Another transformer substation siting problem discussed by González-
Sotres et al. (2013) utilized the k-means algorithm to divide rural
settlements into small regions. The proposed algorithm starts with 𝑘 = 1
nd increments the number of transformers by one at each iteration.
he algorithm records the total cost of the distribution network and
he transformers for each cluster and calculates the medium voltage
etwork cost between the transformers. The algorithm returns the
east-cost configuration as the final solution.

Apart from the k-means and agglomerative clustering approaches,
BSCAN (Density-based spatial clustering of applications with noise)

s another solution method for facility location problems. Sharma et al.
2014) proposed a two-stage solution methodology using the DBSCAN
lgorithm and affinity propagation. Similarly, Sharma and Jalal (2017)
lso presented a hybrid DBSCAN and linear programming-based ap-
roach to solving a facility location problem. After clustering the
onsumers using DBSCAN, the customer allocations to the facilities are
ptimized using a linear programming model.

The aforementioned literature on planar facility location–allocation
roblems could also be linked to the planar location-routing problems

PLRP), for which pioneer studies belong to Schwardt and Dethloff
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Table 1
Literature review.

Authors Facility type Number of
facilities

Distance
limit

Cost
structure

Solution
methodology

Kuenne and Soland
(1972)

Single Predetermined ✗ – Branch and Bound
Algorithm

Murtagh and
Niwattisyawong (1982)

Single Predetermined ✗ – NLP

Drezner et al. (1991) Single Predetermined ✓ – Enumerative Algorithm

Moreno et al. (1991) Single Predetermined ✗ – Drop and Add Heuristic

Rosing (1992) Single Predetermined ✗ – LP

Bongartz et al. (1994) Single Predetermined ✗ – Projection

Houck et al. (1996) Single Predetermined ✗ – Genetic Algorithm

Hansen et al. (1998) Single Predetermined ✗ – Discrete Problem
+ Projection

Krau (1999) Single Predetermined ✗ – Branch and Bound
Algorithm

Gamal and Salhi (2001) Single Predetermined ✗ – Multi-start Cooper’s Algorithm
Furthest Distance Method
Perturbation Heuristic
+ Cooper’s Algorithm

Salhi and Gamal (2003) Single Predetermined ✗ – Genetic Algorithm

Brimberg et al. (2004) Single Decision
Variable

✗ Fixed Discrete Problem
+ Cooper’s Algorithm

Brimberg and Salhi
(2005)

Multiple Decision
Variable

✗ Fixed Discrete Problem
+ Cooper’s Algorithm

Geetha et al. (2009) Single Predetermined ✗ – K-Means Clustering

Esnaf and Küçükdeniz
(2009)

Single Predetermined ✗ – Fuzzy C-means Clustering Algorithm
with Nelder–Mead Simplex Algorithm

Sahraeian and Kaveh
(2010)

Single Predetermined ✗ – K-Means Clustering,
Fixed Neighborhood Search

Sharma et al. (2014) Single Decision
Variable

✗ Fixed DBSCAN
Affinity Propagation

Drezner et al. (2015) Single – ✗ Fixed Genetic Algorithm,
Variable Neighborhood Search

Luis et al. (2015) Multiple Decision
Variable

✗ Fixed Region-rejection Algorithm,
GRASP

Hosseininezhad et al.
(2015)

Multiple Decision
Variable

✗ Fixed Cross Entropy Meta-heuristic

Gokbayrak and
Kocaman (2017)

Single Decision
Variable

✓ Fixed Discrete Problem
+ Projection

Sharma and Jalal
(2017)

Single Decision
Variable

✗ Fixed DBSCAN
MILP

Küçükdeniz and Esnaf
(2018)

Single – ✗ Fixed Fuzzy C-means Clustering
Algorithm

Gokbayrak and Avci
(2020)

Single Decision
Variable

✓ Fixed Discrete Problem
+ Projection +
Esau-Williams Heuristic

Irawan et al. (2020) Multiple Decision
Variable

✗ Fixed Variable Neighborhood Search,
Simulated Annealing

This Paper Multiple Decision
Variable

✓ Fixed, Variable,
Fixed & Variable

Discrete Problem + Projection
Clustering-based Heuristics
(2005), Schwardt and Fischer (2009), and Salhi and Nagy (2009).
Their work then led to the studies of Manzour-al Ajdad et al. (2012)
and Irawan et al. (2022). In their recent study, Irawan et al. (2022)
tackled an interesting variant of the PLRP and proposed a new opti-
mization model and solution algorithms for the location and mainte-
nance of offshore wind farms.

In Table 1, we summarize the studies on planar location–allocation
problems reviewed in this section. Table 1 shows that only a small num-
ber of studies considered the number of facilities as a decision variable
and included their costs into the problem setting. Brimberg et al. (2004)
introduced the multi-source Weber problem with constant opening cost
and Brimberg and Salhi (2005) considered zone-dependent fixed costs
4

for the same problem. Hosseininezhad et al. (2015) considered the
zone-based fixed cost for the capacitated multi-source Weber prob-
lem, and Luis et al. (2015) studied a similar problem with constant,
zone-based, and continuous fixed cost functions. A single-source capac-
itated multi-facility Weber problem with fixed setup costs is recently
investigated by Irawan et al. (2020).

Among the papers we have reviewed, Gokbayrak and Kocaman
(2017) is the most related problem. Unlike MWP, Gokbayrak and
Kocaman (2017) introduced a fixed opening cost and distance limit for
facilities and defined the number of facilities as a decision variable.
However, Gokbayrak and Kocaman (2017) only considers a single
type of facility with a fixed cost structure. In this paper, we consider
different types of facilities depending on their number of connected



Computers and Operations Research 154 (2023) 106202B. Akbas and A.S. Kocaman

t

b
a
n
W
l
g
p
g
b
o
p
(
m

c
c
a
a
d
l

i
n
s
B
c
m
B
g
b
W
f
c

D

𝑥

𝑣

𝑘

𝑡

𝛾

𝑑

𝑑

𝑑

(

P

𝐹

𝐹

𝐹

𝑑

𝐿

𝑁

𝑐

(

S





P

customers. Moreover, given the variations in the cost structure of dif-
ferent power generation technologies, it becomes necessary to consider
different combinations of fixed and variable cost components for the
design of energy systems. Because in addition to fixed upfront costs
for the generation technologies with bulk capacities, highly modular
generation technologies that could be adapted to small or large-scale
systems may require variable cost components. Therefore, this study
introduces a planar facility location–allocation problem with fixed
and/or variable cost structures to design decentralized energy systems
for rural electrification considering nano-grid and micro-grid options.
We introduce new approaches based on mathematical modeling and
clustering techniques to solve this problem.

3. Problem formulation

This study proposes a planar facility location–allocation problem
with fixed and/or variable cost structures for rural and underdeveloped
communities’ electrification. The decentralized electrification options
considered in this problem involve nano-grid and micro-grid systems.
Micro-grids denote a small set of households electrified together by a
single generation facility, whereas nano-grids are isolated standalone
systems generating electricity for individual consumers. The households
electrified by micro-grids are directly connected to the generation
points with low-voltage cables. Therefore, we also design a single-level
low-voltage network in a star topology to distribute the electricity to
final consumers. As in Gokbayrak and Kocaman (2017), low-voltage
connections cannot exceed a specific distance limit, 𝑑𝑖𝑠𝑡𝐿𝑖𝑚, due to
echnical constraints such as power loss and voltage drop limitations.

In a small rural settlement, the set of demand points is denoted
y  = {1,… , 𝑁}. The coordinates of each demand point 𝑖 ∈ 
re given as (𝑎𝑖, 𝑏𝑖), and 𝑁 denotes the number of demand points that
eed to be electrified using an either nano-grid or micro-grid option.
e assume that households are identical, and thus the consumption

evel is the same for all households. The index set of the candidate
eneration points is denoted by  = {1,… , 𝑁} and each generation
oint 𝑗 ∈  is located at (𝑐𝑗 , 𝑑𝑗 ). Because the maximum number of
enerators is obtained when each household has a nano-grid, the upper
ound on the number of generation points is equal to the number
f households || = 𝑁 in the continuous problem. The generation
oints can be located anywhere on the continuous space; therefore,
𝑐𝑗 , 𝑑𝑗 ), ∀𝑗 ∈  are considered continuous decision variables in the
athematical formulations.

The objective of the problem is to minimize the total investment
ost. In addition to the costs of the facilities, low-voltage network
ost is also considered to calculate the total investment required. We
ssume that the distances between generation points and households
re Euclidean. The low-voltage connection cost per unit distance is
enoted by 𝑐𝐿, and the total connection cost is proportional to the total
ength of low-voltage cables in micro-grids.

The nano-grid and micro-grid systems have different facility open-
ng costs. Depending on the type of generators in micro-grids and
ano-grids, we use different cost structures reflecting economies of
cale and making micro-grids an attractive alternative to nano-grids.
esides the fixed upfront cost of the systems with bulk generation
apacities, we also incorporate variable-cost components for the highly
odular technologies that could be easily scaled up to different sizes.
elow, we first provide a mixed-integer quadratically constrained pro-
ramming (MIQCP) model for the most general case, where we consider
oth fixed and variable cost components for micro-grid investments.
e denote this formulation as PFLAP-Fixed&Var. Then we discuss the

ormulations of the cases where we have only fixed or variable cost
omponents.

We use the following notations in the models:

ecision Variables:

𝑖𝑗 =

{

1, if household 𝑖 ∈  is served by generation facility 𝑗 ∈ 
5

0, otherwise
𝑗 =

{

1, if generation facility 𝑗 ∈  is open
0, otherwise

𝑗 =

{

1, if generation facility 𝑗 ∈  is a nano-grid
0, otherwise

𝑗 =

{

1, if generation facility 𝑗 ∈  is a micro-grid
0, otherwise

𝑖 ∶ Distance between household 𝑖 ∈ 

and the facility it is assigned to

𝑖𝑗 ∶ Distance between household 𝑖 ∈  and facility 𝑗 ∈ 
𝑥
𝑖𝑗 ∶ x-coordinate difference between household 𝑖 ∈ 

and facility 𝑗 ∈ 
𝑦
𝑖𝑗 ∶ y-coordinate difference between household 𝑖 ∈ 

and facility 𝑗 ∈ 

𝑐𝑗 , 𝑑𝑗 ) ∶ Coordinates of the facility 𝑗 ∈ 

arameters:

1 ∶ Micro-grid facility cost
2 ∶ Nano-grid facility cost
3 ∶ Micro-grid cost per household
𝑖𝑠𝑡𝐿𝑖𝑚 ∶ Distance limit
×𝑊 ∶ Dimensions of the rectangular greenfield region
∶ Number of households

𝐿 ∶ Low-voltage connection cost per unit distance
𝑎𝑖, 𝑏𝑖) ∶ Coordinates of the household 𝑖 ∈ 

ets:

∶ The set of households
∶ The set of facility locations

FLAP-Fixed&Var:

min
∑

𝑖∈
𝑐𝐿𝛾𝑖 +

∑

𝑗∈
𝐹1.𝑡𝑗 +

∑

𝑗∈
(𝐹2 − 𝐹3).𝑘𝑗 + 𝐹3.𝑁 (1)

s.t.
∑

𝑗∈
𝑥𝑖𝑗 = 1, 𝑖 ∈  (2)

𝑥𝑖𝑗 ≤ 𝑣𝑗 , 𝑖 ∈  , 𝑗 ∈  (3)
∑

𝑖∈
𝑥𝑖𝑗 ≤ 𝑘𝑗 +𝑁𝑡𝑗 , 𝑗 ∈  (4)

𝑘𝑗 + 𝑡𝑗 = 𝑣𝑗 , 𝑗 ∈  (5)

𝑑𝑥𝑖𝑗 = 𝑎𝑖 − 𝑐𝑗 , 𝑖 ∈  , 𝑗 ∈  (6)

𝑑𝑦𝑖𝑗 = 𝑏𝑖 − 𝑑𝑗 , 𝑖 ∈  , 𝑗 ∈  (7)

𝑑2𝑖𝑗 ≥ (𝑑𝑥𝑖𝑗 )
2 + (𝑑𝑦𝑖𝑗 )

2, 𝑖 ∈  , 𝑗 ∈  (8)

𝛾𝑖 ≥
√

𝐿2 +𝑊 2(𝑥𝑖𝑗 − 1) + 𝑑𝑖𝑗 , 𝑖 ∈  , 𝑗 ∈  (9)

𝛾𝑖 ≤ 𝑑𝑖𝑠𝑡𝐿𝑖𝑚, 𝑖 ∈  (10)

𝑣𝑗 ∈ {0, 1}, 𝑗 ∈  (11)

𝑘𝑗 ∈ {0, 1}, 𝑗 ∈  (12)

𝑡𝑗 ∈ {0, 1}, 𝑗 ∈  (13)

𝑥𝑖𝑗 ∈ {0, 1}, 𝑖 ∈  , 𝑗 ∈  (14)

𝑐𝑗 , 𝑑𝑗 ∈ R, 𝑗 ∈  (15)

𝑑𝑥𝑖𝑗 , 𝑑
𝑦
𝑖𝑗 ∈ R, 𝑖 ∈  , 𝑗 ∈  (16)
𝑑𝑖𝑗 ≥ 0, 𝑖 ∈  , 𝑗 ∈  (17)
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𝛾𝑖 ≥ 0, 𝑖 ∈  (18)

The objective function in (1) minimizes the total investment cost
that involves the cost of deploying generation facilities and the to-
tal low-voltage connection cost. Constraints (2) guarantee that each
household is served by exactly one generation facility. We ensure in (3)
that closed facilities cannot provide electricity service. Constraints (4)
determines if a facility serves more than one consumer. In other words,
the type of facility, namely nano-grid and micro-grid, is identified by
these constraints. The constraint set (5) indicates that an open facility is
either a nano-grid or a micro-grid. The x-coordinate and y-coordinate
differences are defined in constraints (6) and (7), respectively. Using
the differences in x,y coordinates and the quadratic constraints (8),
the Euclidean distances between the facilities and the households are
determined. The distance between the households and the serving
facilities is calculated in constraints (9). The constraint set (10) imposes
a distance limit on the low-voltage connections between the micro-grid
facilities and the households. Finally, the decision variables are defined
in (11)–(18).

Based on our problem definition, 𝐹3 takes a non-negative value
that is less than or equal to 𝐹2 so that a micro-grid system can be a
cost-efficient alternative. One can see that the distance limit constraint
can be rewritten as 𝑚𝑖𝑛(𝑑𝑖𝑠𝑡𝐿𝑖𝑚, (𝐹2 − 𝐹3)∕𝑐𝐿), since the longer con-
nections would not be cost-efficient considering the trade-off between
low-voltage connections and nano-grid facility costs.

Moreover, when 𝐹3 = 0, the same formulation can be used to solve
the problem where there are only fixed cost components. However,
note that when 𝐹1 = 0, the formulation above does not reduce to
that of variable cost problem where the micro-grid facility costs are
dependent only on the number of households it serves. When 𝐹1 = 0
and 𝐹3 ≤ 𝐹2, the above formulation assigns even singleton clusters as
micro-grids since building nano-grid is not cost-efficient. Therefore, for
the variable cost problem, we replace the constraint sets (4)–(5) with
(19)–(20) and propose the following formulation:

min
∑

𝑖∈
𝑐𝐿𝛾𝑖 +

∑

𝑗∈
(𝐹2 − 𝐹3).𝑘𝑗 + 𝐹3.𝑁

s.t. (2)–(3) & (6)–(18), 𝑎𝑛𝑑
∑

𝑖∈
𝑥𝑖𝑗 + 𝑘𝑗 ≥ 2𝑣𝑗 , 𝑗 ∈  (19)

𝑘𝑗 ≤ 𝑣𝑗 , 𝑗 ∈  (20)

In the variable cost formulation above, based on the constraint set
(19), it is still feasible to assign clusters as nano-grid even if the facility
serves more than one household. Note that we do not need additional
constraints to eliminate such feasible solutions because the microgrid
cost per household (𝐹3) is less than or equal to the nano-grid cost (𝐹2).
The objective function forces 𝑘𝑗 = 0 in this case, since classifying a
micro-grid as a nano-grid (𝑘𝑗 = 1 instead of 𝑘𝑗 = 0) would bring an
additional cost and make the solution suboptimal.

4. Solution methodology

Our problem reduces to the MWP, which is shown to be NP-
Hard (Megiddo and Supowit, 1984), for a predetermined number of
single-type facilities and relaxed distance limitation. Therefore, in this
study, we propose heuristic methods for the solution of our planar
location–allocation problem. We classify these methods as model-based
or clustering-based approaches.

4.1. Model-based heuristic approaches

Based on the discussions on optimal facility locations being very
close to demand points (Brimberg et al., 2014), initializing the set of
demand points as candidate facility locations may provide reasonable
estimates for the continuous problem. Hence, following a similar ap-
proach that Hansen et al. (1998) presented, here we introduce five
6

Fig. 1. Illustration of MB-I.

variants of a multi-stage approach in which we solve our facility
location problem in the discrete space and then improve the existing
configuration in the continuous space with projections. The model-
based approaches differ in the first stage, where we determine the
promising candidate facility locations for the discrete problem.

4.1.1. Stage-1: Identifying candidate facility locations

In the first stage of the multi-stage approach, we identify the can-
didate facility locations to be used in the discrete counterpart of the
problem. We propose five approaches to identify additional promising
candidate facility locations that will be used to augment the set of
demand points.

MB-I: Mid-points as the candidate facility locations

Each demand point can be connected to a facility only if the facility
is located within 𝑑𝑖𝑠𝑡𝐿𝑖𝑚 radius. Therefore, any two demand points
served by the same facility must be located within at most 2 × 𝑑𝑖𝑠𝑡𝐿𝑖𝑚
distance. When the distance between two demand points is 2×𝑑𝑖𝑠𝑡𝐿𝑖𝑚,
the facility should be located in the middle of these points. In the
first model-based (MB-I) heuristic approach, we identify the pairs of
demand points located less than 2 × 𝑑𝑖𝑠𝑡𝐿𝑖𝑚 distance from each other.
We augment the set of demand points with the mid-point of the line
segments connecting these pairs and use this augmented set as the set
of candidate facility locations in the discrete problem. These candidate
points are illustrated in Fig. 1.

MB-II: PCSP solutions as the candidate facility locations

In the second MB approach (MB-II), we determine the set of candi-
date facility locations by finding the solutions to the planar set covering
problem (PSCP) as in Gokbayrak and Kocaman (2017). For this, we first
find the set of circle intersection points drawing circles with a radius
of 𝑑𝑖𝑠𝑡𝐿𝑖𝑚 around each demand point as shown in Fig. 2. These circle
intersection points are suggested by Church and ReVelle (1974) to be
used to find an optimal solution to the PSCP by solving a discrete set
covering problem. We, then, solve the discrete set covering problem
(SCP) using the demand points and the circle intersection points as
the candidate facility locations and use the solution of this model to
augment the set of demand points to be used in the discrete version of
our original problem. For further details on finding the optimal solution
of PSCP, the readers may refer to Gokbayrak and Kocaman (2017).
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Fig. 2. Illustration of MB-II.

MB-III: Common intersection points as the candidate facility loca-
tions

During the computational experiments, it is observed that SCP
might provide multiple optimal solutions, especially when several in-
tersection points enclose the same demands nodes. However, MB-II
considers only one of these solutions. The SCP results that we use in our
discrete problems play a vital role in the optimal system configuration.
Because the objective function accounts for the total distance between
the demand points and the facilities, the optimal solution of our discrete
problem could be significantly affected by the choices we make in
this stage. In Fig. 3, we illustrate this argument with a small example.
The total LV connections are observed to change considerably even in
this small instance for the different intersection points, which are the
alternative optimal solutions of the SCP.

As an alternative augmentation methodology, we identify other
intersection points covering the same demand nodes that the optimal
solution of the PSCP has covered. We refer to these points as common
intersection points. As a result, instead of inserting only the optimal
locations obtained from PSCP into the set of demand points, we con-
sider these additional common intersection points as the candidate
facility locations. At the expense of extra computational time in Stage-2
compared to MB-II, these additional points might provide benefits on
the objective function..

MB-IV: Candidate facility locations from the convex hull of the
common intersection points

As an alternative augmentation approach, here we identify the
groups of common intersection points as in MB-III. Then we find the
convex hulls covering the points in each group and add the centroids
and the corner points of these convex hulls to the set of candidate
locations. Fig. 4 illustrates the identification of the additional candidate
sites.

MB-V: Candidate facility locations from the convex hull of the
demand points

In the final approach, we propose to solve the PSCP as in MB-II
and obtain the least number of facilities required to cover all demand
nodes (𝑛∗). Then, we select the same number of random points from
the convex hull covering all demand points and add them to the set of
candidate facilities (see Fig. 5). Please note that this method includes a
random process. It can be expected to obtain better results by repeating
the random selection process multiple times at the expense of the
significantly increased solution time.
7

4.1.2. Stage-2: Determining the facilities and initial household allocations
In this stage, we find the least-cost solution for the discrete space

using the candidate facility locations obtained in the previous stage.
The notations in the discrete counterpart are the same as in the con-
tinuous problem. However, unlike the continuous formulation,  will
denote the augmented set of demand points to be used as the candidate
facility locations in the discrete problem.

Below we provide the formulation for the discrete facility location–
allocation problem with the most general cost structure (i.e., fixed and
variable cost), which is denoted by DFLAP-Fixed&Var.

DFLAP-Fixed&Var:

min
∑

𝑖∈

∑

𝑗∈
𝑐𝐿𝑥𝑖𝑗𝑑𝑖𝑗 + +

∑

𝑗∈
𝐹1.𝑡𝑗 +

∑

𝑗∈
(𝐹2 − 𝐹3).𝑘𝑗 + 𝐹3.𝑁

s.t. (2)-(5)
∑

𝑗∈
𝑥𝑖𝑗𝑑𝑖𝑗 ≤ 𝑑𝑖𝑠𝑡𝐿𝑖𝑚, 𝑖 ∈  (21)

𝑣𝑗 ∈ {0, 1}, 𝑗 ∈  (22)

𝑘𝑗 ∈ {0, 1}, 𝑗 ∈  (23)

𝑡𝑗 ∈ {0, 1}, 𝑗 ∈  (24)

𝑥𝑖𝑗 ∈ {0, 1}, 𝑖 ∈  , 𝑗 ∈  (25)

The discrete formulation is almost equivalent to the continuous
counterparts except for the domain constraints and the objective func-
tions. Constraints(21) ensure that each household will be electrified
by a facility within the distance threshold. The remaining constraint
sets (22)–(25) define the decision variables. Note that we use (19)–(20)
instead of (4)–(5) in the variable cost problem.

In the following stage of the heuristic approach, we use the initial
configuration attained in the solution of DFLAP. Considering the initial
facility locations and household allocations, we implement a modified
version of Cooper’s iterative algorithm with a new allocation step to
improve the total investment cost and provide closer estimates of the
solution to the continuous problem.

4.1.3. Stage-3: Cooper’s iterative algorithm with a new allocation strategy
In the third stage, we perform a modified version of Cooper’s well-

known heuristic, which iteratively improves the existing configuration
while alternating between location and allocation steps. Each cluster is
treated as a Weber problem to optimize the facility locations for the
given household allocations obtained in the previous stage. Since we
assume that the households are identical in terms of their demand,
the solutions of the Weber problem converge to the geometric me-
dian point, which minimizes the total household-to-facility distances
for each cluster. Nevertheless, no straightforward formulation in the
literature calculates the geometric median. Weber (1929) proved that
an explicit formulation could not be derived to find the geometric
median. Therefore, convergence algorithms are extensively used in
order to generate closer estimates. Considering the convexity prop-
erty of the summation of convex functions (distance function), these
approximation algorithms generally do not fall into local optimality
traps with one exception (Brimberg, 2016). Weiszfeld’s algorithm pre-
sented in Weiszfeld (1937) converges to the geometric median unless
the proposed facility location overlaps a demand point in one of the
iterations. However, an extension of the algorithm proposed by Vardi
and Zhang (2001) eliminates this problem. Hence, in the location step
of Cooper’s heuristic, we implement the modified version of Weiszfeld’s
algorithm (Vardi and Zhang, 2001) in order to project the facility
locations to the geometric median points considering our distance limit.

As Vardi and Zhang’s convergence algorithm does not consider any
distance limitation, the suggested facility location does not necessarily
obey this limit. After the algorithm converges to a location, we project

the proposed location to a feasible point that conforms to the distance
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Fig. 3. The Effect of the SCP solution on the low-voltage (LV) cable costs.

Fig. 4. Illustration of MB-IV.
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Fig. 5. Illustration of MB-V.
limit constraint for each demand point in the cluster, using the pro-
jection methodology proposed in Gokbayrak and Kocaman (2017). We
call this new facility location the distance-limited geometric median.

Once the facilities’ locations are determined in the location step of
Cooper’s approach, households should be reallocated to the facilities
in a cost-efficient way. Unlike the original allocation step of Cooper’s
algorithm, allocating the households to the nearest facility may not be
a cost-efficient move in our case since the decentralized systems have
different facility costs. One of the following two cases might occur:
i) One member of a micro-grid connecting at least three households
can be reallocated to a former nano-grid. This refers to a case when a
micro-grid has at least three households, and if one of its members is
reassigned to a nano-grid, the facility type of the latter changes while
the former remains the same. In this case, as the former nano-grid
transforms into a micro-grid, the cost of this new micro-grid cluster
needs to be recalculated accordingly. ii) The transfer of a household
from a micro-grid connecting two households to another micro-grid.
This refers to the case in which the first micro-grid transforms into
a nano-grid while the other remains as a micro-grid. In this case,
one might expect a reduction in the facility costs since the nano-grid
facility’s cost is less than the micro-grid’s. This highlights the necessity
of recalculating the facility costs, as the generator types can change
after each reallocation. Therefore, we propose to allocate the house-
holds one by one to their nearest facility, considering the two cases
above and calculating the potential cost improvements. If the nearest
facility for a particular demand point in one iteration is different from
its already serving facility, we perform the reallocation only if it is
cost-efficient. At the end of consumer allocations, we also check each
cluster to see if the current micro-grid configurations yield a lower cost
than electrifying the households individually. If it is more cost-efficient
when each household is electrified by individual stand-alone systems
(nano-grid), we break this particular cluster into singleton clusters.
Note that location and allocation steps are repeated until the change
in the objective value is less than a threshold value.

4.2. Clustering-based heuristic approaches

The computational experiments have demonstrated that model-
based heuristic approaches may have difficulty solving the mathe-
matical models optimally within a predetermined time limit. Hence,
we also propose clustering-based heuristic algorithms to provide im-
mediate solutions without needing a commercial solver for energy
planners to make rapid assessments. Thus, we present three heuris-
tic approaches based on fast clustering techniques, including density-
based spatial clustering applications with noise (DBSCAN), k-means
9

algorithm, and agglomerative clustering. Since clustering problems
and MWP have similarities by definition, clustering analysis has been
frequently used as a solution methodology for planar facility location–
allocation problems (e.g., Corigliano et al. (2020),(Corigliano et al.,
2021; González-Sotres et al., 2013; Yu et al., 2018)).

4.2.1. Agglomerative clustering-based heuristic approach
Our first clustering-based approach involves hierarchical agglom-

erative clustering, a well-known technique for grouping objects into
clusters based on their proximity. It is a bottom-up approach, where
each entity is initially considered an individual cluster (i.e., each de-
mand point is a singleton cluster) and merged to create larger clusters
based on their dissimilarity.

In Fig. 6, we provide a flowchart of the proposed method. In
this approach, we use our distance limit as the stopping criterion for
agglomeration. Hence, agglomeration is performed iteratively based
on the proximity of the clusters until the most similar pairs cannot
be merged anymore due to the distance threshold. At each step of
the clustering, we identify the least dissimilar pair of clusters based
on a specific dissimilarity measure and locate a new single facility
to the distance-limited geometric median of the merged clusters. To
determine the facility location for each cluster, we employ Vardi and
Zhang’s modified Weiszfeld algorithm and the projection methodology
to shift the suggested facility location to the distance-limited geometric
median, which is mentioned in Section 4.1.3 previously. While the
number of clusters is reduced iteratively, we record the total cost.
We report the configuration with the least-cost design as the final
solution. However, depending on the trade-off between facility costs,
some micro-grid clusters may not reach an ideal number of households,
making nano-grids a cost-competitive alternative. Hence, we apply a
fine-tuning step to disintegrate the expensive micro-grid clusters into
singleton clusters or assign some individual stand-alone systems to the
closest micro-grid within the distance limit if it is cost-efficient.

The dissimilarity measure plays a vital role in the agglomeration
process. Various measures have been proposed in the literature to
define the dissimilarity between clusters. The comparative analysis of
these measures has indicated no clear evidence showing that a spe-
cific measure is superior to others. Hence, we investigate well-known
dissimilarity measures such as single, complete (Johnson, 1967), aver-
age (Sneath and Sokal, 1963), minimax (Bien and Tibshirani, 2011),
centroid, Hausdorff distance (Hausdorff, 1957), and Ward’s minimum
variance (Ward, 1963) to identify the best option for each problem
among different alternatives.

In addition to these existing measures, we propose an additional

measure called GeomDiff. Inspired by Ward’s measure (Ward, 1963),
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Fig. 6. Flowchart of agglomerative clustering-based heuristic approach.
which calculates the dissimilarity between clusters as the increase in
the total within-cluster sum of squares due to agglomeration, this new
measure considers the increase in the sum of point-to-facility distance
due to agglomeration. In other words, we consider the potential in-
crease in the total length of the low-voltage connections to measure the
dissimilarity between the two clusters. Let us denote the total sum of
demand point-to-facility distances of the cluster 𝐶𝑗 as 𝐺𝑒𝑜𝑚(𝐶𝑗 ). Then,
the objective of the GeomDiff is formulated as follows:

𝑑(𝑗, 𝑛) = 𝐺𝑒𝑜𝑚(𝐶𝑗 ∪ 𝐶𝑛) − 𝐺𝑒𝑜𝑚(𝐶𝑗 ) − 𝐺𝑒𝑜𝑚(𝐶𝑛) (26)

4.2.2. A hybrid heuristic approach based on DBSCAN and agglomerative
clustering

In this heuristic approach, we propose to implement density-based
spatial clustering applications with noise (DBSCAN) (Ester et al., 1996)
to form micro-grid and nano-grid clusters. DBSCAN is one of the most
extensively studied clustering approaches in the literature to group
closely situated points in a given region. The algorithm has been
frequently used due to several distinguishing characteristics making the
DBSCAN an attractive way for spatial clustering. Firstly, the algorithm
does not require a predetermined value for the number of clusters,
unlike the other well-known clustering approaches such as the k-
means algorithm. Secondly, the algorithm can detect the remote points
(outliers) to be individually clustered.

The algorithm incorporates two parameters, 𝑚𝑖𝑛𝑃 𝑡𝑠 and 𝜖, that
could affect the algorithm’s performance. In the algorithm, 𝑚𝑖𝑛𝑃 𝑡𝑠 de-
notes the minimum number of points required in the 𝜖−neighborhood
of a node to define it as a core point. On the other hand, the neigh-
borhood radius is denoted by the parameter 𝜖. Each cluster consists
of the connected core points and the non-core (border) points covered
by the core nodes in the cluster. The nodes having zero points in the
𝜖−neighborhood are considered outliers, as shown in Fig. 7. The steps
of the DBSCAN algorithm are also provided in Fig. 8.

In the algorithm, we used 𝜖 = 𝑑𝑖𝑠𝑡𝐿𝑖𝑚 to determine the nodes
in the 𝜖−neighborhood. The choice of 𝑀𝑖𝑛𝑃 𝑡𝑠, on the other hand, is
not as trivial as the choice of the 𝜖 parameter. For our problem, we
chose 𝑀𝑖𝑛𝑃 𝑡𝑠 = 2 intuitively, as the mini-grid requires at least two
10
Fig. 7. Classification of the points in DBSCAN algorithm (𝑚𝑖𝑛𝑃 𝑡𝑠 = 3).

consumers. We also performed a sensitivity analysis to determine the
ideal value for the 𝑀𝑖𝑛𝑃 𝑡𝑠 parameter. The sensitivity analysis on the
dense and dispersed data sets has shown that the algorithm’s ability
to form micro-grid clusters decreases as we enforce higher values on
𝑀𝑖𝑛𝑃 𝑡𝑠. Therefore, the algorithm yields an expensive investment cost
as the micro-grid option is used infrequently.

The flowchart of the hybrid DBSCAN-agglomerative clustering
method is provided in Fig. 9. This hybrid solution approach implements
the DBSCAN algorithm to identify the nano-grids and form the initial
micro-grid clusters. We also calculate the radius of the smallest circle
surrounding the demand locations for each cluster serving more than
one consumer. Although we specify the 𝜖 parameter as the coverage
threshold, the distance between the demand points and the cluster
center may not necessarily be within the distance limit. If the radius
of the circle does not violate the distance limit constraint (i.e, there
is a feasible solution satisfying 𝑑𝑖𝑠𝑡𝐿𝑖𝑚, we locate a facility to the
geometric median by using the modified version of Weiszfeld’s algo-
rithm and project the suggested location by using the projection method
provided in Section 4.1.3. Otherwise, we perform the agglomerative



Computers and Operations Research 154 (2023) 106202B. Akbas and A.S. Kocaman
Fig. 8. Flowchart of DBSCAN Clustering.
Fig. 9. Flowchart of the Hybrid DBSCAN-Agglomerative Clustering Method.
hierarchical clustering algorithm for the same cluster, assuming that
11
each node within the cluster is a singleton cluster, and create new sub-
clusters conforming to the distance threshold. After obtaining the final
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configuration, we apply the fine-tuning step for cost improvements as in
Section 4.2.1. In this step, we detach the households from the expensive
microgrids having an insufficient number of households (i.e., if total
investment cost is cheaper when nano-grids electrify all consumers in
the cluster) and allocate the singleton clusters to the closest micro-grid
within the coverage threshold if it improves the total infrastructure
cost.

4.2.3. A hybrid heuristic approach based on DBSCAN and K-means algo-
rithms

This heuristic method follows a similar approach to the hybrid
methodology proposed in the previous section. We implement the
DBSCAN algorithm using the same system parameters to create initial
nano-grid and micro-grid clusters. Then, we find the minimum circle
covering all the demand nodes in the cluster for each micro-grid. If
the radius of the minimum circle exceeds the distance threshold, the
cluster is iteratively divided into two sub-clusters using the k-means
clustering technique until each sub-group conforms to the distance limit
constraint. For each cluster satisfying the distance limit, we locate the
facility to the distance-limited geometric median and apply the same
fine-tuning steps at the end of the algorithm. The major steps of this
hybrid approach are summarized in Fig. 10.

K-means algorithm is one of the most well-known partitioning tech-
niques in the literature. The algorithm is considered a practical way of
partitioning as it provides the final solution with high computational ef-
ficiency and requires only a single parameter 𝑘 (the number of clusters).
The k-means clustering technique consists of the location and allocation
steps as in Cooper’s iterative heuristic. First, the algorithm picks 𝑘
random locations and forms 𝑘 clusters after assigning the points to the
nearest location. Then, it computes the centroid of each cluster and
reassigns the demand points to the closest center of mass. The algorithm
repeatedly recalculates the centroids and performs the reallocation step
until no further change is observed in two consecutive steps. However,
it has been stated that the final configuration is susceptible to the
starting clusters, and trying different initial assignments would improve
the performance of the algorithm (Cabrera-Celi et al., 2017). Therefore,
we repeat k-means clustering 100 times to ensure a higher clustering
accuracy.

5. Computational results

In this section, we analyze the performance of the solution method-
ologies by conducting experiments with data sets from sub-Saharan
Africa. Our data sets are obtained from Millennium Villages sites lo-
cated in Sub-Saharan Africa. Millennium Villages Project aimed to
achieve rural development towards the Millennium Development Goals
of the United Nations, addressing issues such as poverty, hunger, dis-
ease, and gender inequality (Sanchez et al., 2007; Zvoleff et al., 2009).
In this study, we use three sites with different settlement patterns to
test our solution methodologies using realistic cost parameters. These
sites (Tiby, Mali - Mbola, Tanzania - Potou, Senegal) consist of 1545,
1168, and 1781 households, respectively. These data sets are obtained
by Gokbayrak (2022) using the open buildings data set of Google,1
and can be accessed via the following link: https://osf.io/k9des. As the
mathematical modeling-based approaches could be computationally
inefficient for such large instances, we selected two 2 × 2 km2 sample
sites2 with different densities from the villages as shown in Figs. 11–
13 so that we can compare the model-based approaches with the
clustering-based methods.

We assume that households are identical and consume the same
amount of electricity for all instances. We consider realistic cost param-
eters and distance limits for low-voltage cable connections. The cost of

1 Can be downloaded from https://sites.research.google/open-buildings/.
2 The smaller sample sites can be found at https://osf.io/39a78/
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low-voltage cables between the generation points and the consumers
(𝑐𝐿) is set to $4∕m, consistent with the parameters used in Energy
Data Platform (2019). The maximum allowable length of these single-
phase cables can take values from the set 𝑑𝑖𝑠𝑡𝐿𝑖𝑚 = {50, 100, 200} as
in Papathanassiou et al. (2005), Stephen et al. (2013), Short (2003).
The nano-grid generation capacity is considered 100 W, as the capacity
of solar home systems generally ranges between 20 W and 100 W in
the rural areas of Sub-Saharan Africa (IRENA, 2016). Hence, the cost
of deploying nano-grid is selected from the set 𝐹2 = {750, 1000} based
on the stand-alone PV costs provided in Energy Data Platform (2019),
IRENA (2016, 2018). Since solar systems with higher scales can benefit
from the economies of scale, we assume that the cost of micro-grid
facilities is either $3000 or $4000 in our experiments for the fixed
cost problem as suggested in Energy Data Platform (2019), Korkovelos
et al. (2019), World Bank (2019), ESMAP (2019) (𝐹1 = {3000, 4000}).
The cost of stand-alone PV systems with capacities less than 1 kW
ranges from $4/W to $16/W across Sub-Saharan Africa. However, the
cost reduces to $2/W to $8/W for the solar systems with more than 1
kWp installed capacities. Therefore, the additional charge of connecting
households to micro-grids is selected from the set 𝐹3 = {500, 600} in
variable cost and fixed & variable cost problems. For fixed & variable
cost problems, we set the fixed facility costs to $1000 and $2000 in our
experiments so that the micro-grids connecting two demand points are
still economically viable (𝐹1 = {1000, 2000}).

The computational experiments are conducted on a dual 2.4 GHz
Intel XeonE5-2630 v3 CPU server with 64 GB RAM. The heuristic
methods are implemented in Matlab 2020a, and the optimization meth-
ods are solved using CPLEX 12.10. We enforce a CPU time limit of
three hours for all optimization models. The convergence threshold
𝜀 in Cooper’s iterative algorithm is 0.1 for the multi-stage heuristic
approaches.

5.1. Household coverage index (HCI)

In order to measure the dispersion of households and classify the
spatial distribution of the sample populations, we propose a new in-
dicator metric called Household Coverage Index (HCI). In accordance
with our problem definition, this metric represents the average number
of demand nodes within the 𝑑𝑖𝑠𝑡𝐿𝑖𝑚 distance from each demand point.
In Table 2, the regions with a smaller HCI are considered dispersed
settlements, whereas higher HCI refers to densely populated regions.
Therefore, all sample sites from Tiby (T-1 and T-2) and M-2 from Mbola
are considered densely populated areas, while M-1 from Mbola, P-1 and
P-2 from Potou have dispersed settlement structures. The performances
of the best performing model-based and clustering-based approaches
are compared in terms of running time and objective value for each
sample site in Table 3, Tables 4 and 5 for the fixed, variable, and
fixed&variable cost problems, respectively. When there is more than
one approach listed under the best-performing method columns, it
means that more than one method was able to find the best solution.
However, in that case, the solution time of the fastest method is listed
under the time column and the method is highlighted in bold. In
the last columns of these tables, we present the percentage difference
between the model-based and the clustering-based approaches. Notice
that when this percentage is negative, the clustering-based algorithms
report better solutions than the model-based ones. We also provide de-
tailed tables where we compare the model-based and clustering-based
methods among themselves in Appendix.

The computational results indicate that the solution time of the
model-based heuristic methods for densely populated areas is signifi-
cantly longer than that of the sites with dispersed settlements. While
our model-based methods could obtain solutions in seconds in sparsely
populated sites, in densely populated areas, they exceed the CPU time
limit of three hours, especially when the distance limit is enforced to
be greater than 50 m. As the number of candidate facility locations

increases, we observe longer computational time in accordance with the

https://osf.io/k9des
https://sites.research.google/open-buildings/
https://osf.io/39a78/
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Fig. 10. Flowchart of DBSCAN — K-Means Clustering-based Heuristic Approach.
Fig. 11. Tiby.
increasing computational complexity. MB-I is observed to be the most
computationally intensive method among the alternatives, especially
in dense areas. Contrary to the model-based approaches, clustering-
based heuristics yield the final output within a significantly shorter
computational time regardless of the spatial distribution of the demand
points.

5.2. Analysis of the results based on the problem types

5.2.1. Results for the problem with fixed facility costs
Under the fixed cost problem formulation, the MB-I approach is

observed to outperform the other model-based heuristics regardless of
the settlement pattern for the small distance limits. For larger distance
13
limits, on the other hand, MB-II-III-IV provide competitive results as
shown in Table 3. In dispersed areas, MB-I, MB-III, and MB-IV provide
a better solution than MB-II.

Regarding the performance of the clustering-based approaches, it is
observed that the majority of the least-cost solutions can be obtained by
using the agglomeration-based heuristic algorithms (Agg, DB-Agg) for
the fixed cost problem. However, DBSCAN-Kmeans (DB-KM) surpasses
the other alternatives when we impose smaller distance limits. For
the heuristics, including an agglomeration step, the new dissimilarity
measure, GeomDiff, works successfully when the distance limit is less
than 100 m. GeomDiff also performs better than the other 2 dissimi-
larity measures for larger distance limits if the sample has dispersed
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Fig. 12. Mbola.
Fig. 13. Potou.
Table 2
Household Coverage Index.

Distance
limit

HCI Distance
limit

HCI Distance
limit

HCI

M-1
50 3.4

T-1
50 3.8

P-1
50 2.5

100 6.2 100 11.6 100 5.3
200 11.5 200 37.2 200 13.1

M-2
50 4.4

T-2
50 4.5

P-2
50 2.4

100 11.6 100 14.2 100 5.3
200 34.9 200 51.4 200 13.7
settlement patterns. On the other hand, Ward is observed to provide
the best configuration in dense areas under 200 distance limit.

Although the model-based heuristic approaches dominate the
clustering-based algorithms in most instances based on cost, the results
demonstrate that the clustering algorithms can provide approximate
14
solutions within a few CPU seconds. While the model-based methods
can provide a feasible solution for dispersed areas within the time
limit, the solution time more likely exceeds the given limit for the
densely populated samples. In this case, clustering-based approaches
can provide approximate solutions to the model-based methods, and
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Table 3
Fixed cost problem results.

Dist Lim F1 F2 Comparison of multi-stages Comparison of clustering techniques Diff.

Cost Time Method Cost Time Method

M-1

50 3000 750 76 451 2.9 MB-I-II-III-IV 80 618 0.03 DB-Agg 5.2%
50 3000 1000 85 499 1.4 MB-I-II-III-IV 88 500 0.02 Agg 3.4%
50 4000 750 84 408 15.9 MB-I-IV 87 175 0.3 DB-KM 3.2%
50 4000 1000 98 701 2.4 MB-I-II-III-IV 105 368 0.02 DB-Agg 6.3%

100 3000 750 66 505 10.5 MB-I-IV 66 876 0.03 Agg 0.6%
100 3000 1000 70 505 2.6 MB-I-III-IV 72 577 0.19 DB-KM 2.9%
100 4000 750 75 625 100.3 MB-I 71 291 0.03 Agg −6.1%
100 4000 1000 81 505 9.1 MB-I-III-IV 82 876 0.03 Agg 1.7%

200 3000 750 66 071 890.1 MB-I 66 270 0.19 Agg 0.3%
200 3000 1000 69 423 427.3 MB-I 69 423 0.06 DB-Agg 0.0%
200 4000 750 73 815 29.2 MB-I-II-III-IV-V 69 423 0.19 Agg −6.3%
200 4000 1000 78 620 13.7 MB-I-II-III-IV 78 929 0.05 DB-Agg 0.4%

M-2

50 3000 750 199 108 1024.7 MB-I 220 429 7.77 DB-KM 9.7%
50 3000 1000 211 236 10885.0 MB-I 243 190 0.05 DB-Agg 13.1%
50 4000 750 228 840 195.5 MB-I 242 754 8.12 DB-KM 5.7%
50 4000 1000 254 608 4251.9 MB-I 285 009 0.05 DB-Agg 10.7%

100 3000 750 154 333 2866.6 MB-III-IV 163 176 0.27 DB-Agg 5.4%
100 3000 1000 155 958 543.8 MB-III-IV 164 917 0.12 DB-Agg 5.4%
100 4000 750 176 358 10816.3 MB-III-IV 165 384 0.16 Agg −6.6%
100 4000 1000 182 119 769.6 MB-II-III 197 246 0.22 Agg 7.7%

200 3000 750 149 396 9633.7 MB-IV 150 545 1.05 Agg 0.8%
200 3000 1000 150 125 5339.6 MB-IV 151 269 0.22 DB-Agg 0.8%
200 4000 750 167 999 10822.4 MB-II 151 269 0.42 Agg −11.1%
200 4000 1000 170 178 10819.1 MB-II 171 830 0.48 Agg 1.0%

T-1

50 3000 750 112 100 1049.2 MB-I 127 690 6.52 DB-KM 12.2%
50 3000 1000 120 769 10840.1 MB-I 137 250 0.08 Agg 12.0%
50 4000 750 127 423 33.3 MB-I 136 913 7.05 DB-KM 6.9%
50 4000 1000 143 699 8557.6 MB-I 167 153 7.23 DB-KM 14.0%

100 3000 750 80 513 705.8 MB-II 86 482 0.03 Agg 6.9%
100 3000 1000 80 591 301.3 MB-II 86 482 0.11 DB-Agg 6.8%
100 4000 750 91 513 1692.5 MB-II 86 482 0.14 Agg −5.8%
100 4000 1000 92 591 620.8 MB-II 101 982 0.03 Agg 9.2%

200 3000 750 77 846 10810.5 MB-II 79 632 0.17 Agg 2.2%
200 3000 1000 77 852 3903.4 MB-III 79 632 0.17 DB-Agg 2.2%
200 4000 750 86 562 10809.1 MB-III 79 632 0.16 Agg −8.7%
200 4000 1000 86 434 10810.6 MB-II 89 077 0.12 Agg 3.0%

T-2

50 3000 750 219 961 10899.9 MB-I 253 062 13.66 DB-KM 13.1%
50 3000 1000 236 865 10885.9 MB-I 273 000 0.11 Agg 13.2%
50 4000 750 252 482 645.5 MB-I 270 403 13.53 DB-KM 6.6%
50 4000 1000 281 032 10872.3 MB-I 330 242 13.67 DB-KM 14.9%

100 3000 750 165 063 10818.9 MB-II 175 241 6.03 DB-KM 5.8%
100 3000 1000 167 931 10821.4 MB-III 179 011 6.00 DB-KM 6.2%
100 4000 750 187 723 10825.9 MB-IV 185 738 0.20 Agg −1.1%
100 4000 1000 193 182 10818.2 MB-II 210 853 6.61 DB-KM 8.4%

200 3000 750 160 904 10 844.3 MB-III 163 254 0.69 Agg 1.4%
200 3000 1000 161 850 10837.1 MB-V 163 994 0.55 DB-Agg 1.3%
200 4000 750 177 289 10838.3 MB-V 164 293 0.55 Agg −7.9%
200 4000 1000 180 276 10846.1 MB-III 183 370 0.72 DB-Agg 1.7%

P-1

50 3000 750 135 409 21.0 MB-III-IV 137 536 0.45 DB-KM 1.5%
50 3000 1000 155 357 31.8 MB-I 144 750 0.03 Agg −7.3%
50 4000 750 143 106 10.6 MB-I-II-III-IV-V 143 805 0.44 DB-KM 0.5%
50 4000 1000 176 409 28.7 MB-I-III-IV 182 272 0.70 DB-KM 3.2%

100 3000 750 117 626 357.4 MB-I 119 474 0.02 Agg 1.5%
100 3000 1000 125 267 14.0 MB-II-III-IV 129 483 0.02 DB-Agg 3.3%
100 4000 750 131 999 806.0 MB-I 129 220 0.02 Agg −2.2%
100 4000 1000 146 259 362.8 MB-I 149 724 0.02 Agg 2.3%

200 3000 750 112 790 74.1 MB-II-III-IV-V 113 417 0.06 Agg 0.6%
200 3000 1000 115 135 46.4 MB-V 116 716 0.08 DB-Agg 1.4%
200 4000 750 127 407 242.3 MB-II-III-V 116 513 0.05 Agg −9.3%
200 4000 1000 133 284 196.3 MB-III-IV 134 915 1.33 DB-KM 1.2%

(continued on next page)
the difference between the results reduces as larger distance limits
are imposed. Similarly, the clustering-based techniques are shown to
perform better when the difference between micro-grid and nano-grid
15
costs is high. In fact, these methods could provide up to 11% better
results than model-based heuristics in some instances.
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Table 3 (continued).
Dist Lim F1 F2 Comparison of multi-stages Comparison of clustering techniques Diff.

Cost Time Method Cost Time Method

P-2

50 3000 750 115 167 17.6 MB-I-II-III-IV 118 231 1.14 DB-KM 2.6%
50 3000 1000 134 443 9.1 MB-I-II-III-IV 122 250 0.02 Agg −10.0%
50 4000 750 121 084 11.7 MB-I-II-III-IV-V 122 250 1.16 DB-KM 1.0%
50 4000 1000 150 461 11.4 MB-I-II-III-IV 155 743 1.17 DB-KM 3.4%

100 3000 750 101 383 278.3 MB-I 102 881 0.58 DB-KM 1.5%
100 3000 1000 108 502 24.7 MB-III 113 105 0.06 DB-Agg 4.1%
100 4000 750 110 673 252.1 MB-I 112 574 0.02 Agg 1.7%
100 4000 1000 125 474 37.5 MB-III-IV 130 884 0.05 Agg 4.1%

200 3000 750 96 751 63.6 MB-II-III-IV-V 99 194 0.03 Agg 2.5%
200 3000 1000 99 589 56.5 MB-III-IV 100 513 0.16 DB-Agg 0.9%
200 4000 750 106 916 114.4 MB-II-III-IV-V 100 513 0.05 Agg −6.4%
200 4000 1000 113 811 100.1 MB-II-III-IV-V 115 010 0.08 DB-Agg 1.0%
5.2.2. Results for the problem with variable facility costs
Under the variable cost problem structure, the solution times reduce

significantly for both clustering-based and model-based heuristics, as
shown in Table 4. The model-based heuristics are able to provide a
solution within the 3 h time limit, and the maximum solution time for
the clustering-based methods is 0.9 CPU seconds. In densely populated
areas (T-1, T-2 and M-2), MB-I outperforms the other heuristics with a
slightly high computational time in 11 out of 12 instances with a 50 m
distance limit. However, when the distance limit is larger, there is no
clear superiority between the model-based methods.

The clustering-based approaches can provide very close and, in
some cases, better solutions than the model-based approaches within a
second. The solutions deviate from the model-based ones by less than
5% except for one instance, and the deviation is between 0.7%–3.1% in
densely populated areas. The highest difference is observed in dispersed
samples. This result can be associated with the fact that the algorithms
prefer the nano-grid option more frequently in dispersed settlements as
the distance limit constraint restricts micro-grid connections. The re-
sults also show that the Agglomerative Clustering approach dominates
the other clustering methods in most instances, and Ward’s variance
method is also a prominent dissimilarity measure for this problem type.

5.2.3. Results for the problem with fixed & variable facility costs
Table 5 summarizes the performances of modeling and clustering-

based approaches for the fixed & variable cost problem. Similar to
the variable cost problem, MB-I is the best-performing approach for
densely populated areas under a 50 m distance limit. In the rest of the
instances, the results demonstrate that all methods are equally likely to
provide a cost-efficient solution since they yield similar configurations.
Since we have two different cost components for micro-grids in this
problem, the resulting configuration is more likely to include a higher
number of nano-grids, which is the key driver behind the similarity of
outcomes. The heuristics with the agglomeration steps are prominent
in the fixed & variable cost problem. In the agglomeration steps, the
GeomDiff measure can attain the best result in the majority of instances
regardless of the settlement pattern, and the second best-performing
measure is the Complete measure.

5.3. Generalization of the results

The results for all problem types demonstrate that the model-based
heuristics achieve most of the least-cost solutions. Although the cost
difference between the model-based and clustering-based methods gen-
erally ranges between 0% to 5%, this percentage is observed to increase
in densely populated regions. In the regions with the dispersed settle-
ment pattern, the cost difference reduces below 0% for some instances,
meaning that the clustering-based approach outperforms the model-
based heuristics. It should also be highlighted that GeomDiff, the new
dissimilarity we introduced in this study, gives promising solutions,
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especially for the smaller distance limits. The computational experi-
ments indicate that GeomDiff can attain the least cost configuration
in most instances in the fixed cost and fixed & variable cost prob-
lem settings. For the variable cost problems, we demonstrate that
the cost difference between the model-based and clustering-based ap-
proaches is generally less than 4%, even in the densely populated
sample sites. Another observation is that the agglomerative cluster-
ing method dominates the other two clustering-based approaches in
most instances. Ward’s variance method is the prominent measure for
densely populated settlements in the agglomeration steps.

We observe that the performances of the model-based and
clustering-based methods differ slightly in most instances. Two main
reasons could explain the reduction in the cost differences. Firstly, the
discrete model in the model-based approach may not obtain the optimal
solution within the specified CPU time limit for the dense sample sites.
Hence, as the optimal solution cannot be attained in three hours, the
cost difference between the clustering algorithms and the optimization
model-based heuristic decreases. Secondly, creating micro-grid clusters
that can cover an ideal number of households within the distance
limit in the fixed & variable cost formulation is more challenging.
Given that the investment cost of deploying a micro-grid facility is
composed of the fixed facility cost, low-voltage connections, and a
variable cost component, micro-grid clusters are required to cover a
higher number of households in order for the nano-grid option to be
discarded. However, only a minority of the potential micro-grid clusters
can reach a sufficient number of households under the given distance
thresholds. Accordingly, we observe that the nano-grid option becomes
more prevalent as micro-grids are relatively expensive compared to the
fixed-cost formulation.

The aim of Stage-1 and Stage-2 in the model-based approaches is to
provide good initial points for the modified Cooper’s iterative algorithm
in Stage-3. In Tables 6 and 7, we summarize the performances of the
augmentation methods on the results of Stage-2 (i.e., the solution of
the discrete models) and Stage-3 (the final solution). We observe that
a better solution of the discrete model in Stage-2 is not necessarily
a better initial solution for Stage-3. For all problem types, however,
it is possible to say that the centroid method (MB-I) is observed to
outperform other augmentation methods in terms of cost, including
the MB-II, especially in dense samples under smaller distance limits.
Table 7 shows that MB-I is the best-performing model-based method on
all problem types, and the method can provide the least-cost solution
for at least half of the instances. This method is also observed to be most
effective when the problem includes both the fixed cost and variable
cost components. Moreover, common intersection points (in MB-III)
and the centroid of the convex hull of the common intersection points
(in MB-IV) are shown to improve the results, especially for the fixed
cost problem. Table 8 summarizes the performances of the clustering-
based methods by problem type. Although the agglomerative clustering

approach is observed to perform better, especially under the variable
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Table 4
Variable cost problem results.

Dist Lim F2 F3 Comparison of multi-stages Comparison of clustering techniques Diff.

Cost Time Method Cost Time Method

M-1

50 750 500 67 669 6.6 MB-I-II 68 422 0.03 Agg 1.1%
50 750 600 79 369 4.5 MB-I-II 79 722 0.16 Agg 0.4%
50 1000 500 67 919 4.4 MB-I-II 68 836 0.05 Agg 1.3%
50 1000 600 79 619 4.9 MB-I-II 80 536 0.05 Agg 1.1%

100 750 500 67 669 5.2 MB-III 67 860 0.11 DB-KM 0.3%
100 750 600 79 369 8.6 MB-I-II-IV-V 72 577 0.19 DB-KM −9.4%
100 1000 500 67 919 4.4 MB-I-II-III 68 836 0.09 Agg 1.3%
100 1000 600 79 619 4.5 MB-I-II-III 80 536 0.05 Agg 1.1%

200 750 500 67 669 7.6 MB-IV 68 422 0.14 Agg 1.1%
200 750 600 79 369 9.7 MB-II-V 72 498 0.19 DB-KM −9.5%
200 1000 500 67 919 8.7 MB-I-III-IV 68 836 0.12 Agg 1.3%
200 1000 600 79 619 8.6 MB-I-III-IV 80 025 0.22 DB-KM 0.5%

M-2

50 750 500 186 204 74.1 MB-I 187 461 0.33 Agg 0.7%
50 750 600 219 104 72.1 MB-I 219 961 0.25 Agg 0.4%
50 1000 500 186 204 70.4 MB-I 188 461 0.44 Agg 1.2%
50 1000 600 219 112 27.1 MB-I-II-III-V 220 961 0.33 Agg 0.8%

100 750 500 186 204 36.9 MB-I-III-IV-V 187 461 0.58 Agg 0.7%
100 750 600 219 104 27.8 MB-I-II-III-IV 219 961 0.48 Agg 0.4%
100 1000 500 186 204 33.7 MB-I-III-IV-V 188 461 0.56 Agg 1.2%
100 1000 600 219 104 33.2 MB-I-III-IV-V 220 961 0.64 Agg 0.8%

200 750 500 186 204 44.8 MB-I-IV-V 187 461 0.73 Agg 0.7%
200 750 600 219 104 35.3 MB-I-II-III-V 219 961 0.56 Agg 0.4%
200 1000 500 186 204 36.0 MB-I-II-V 188 461 0.53 Agg 1.2%
200 1000 600 219 104 36.4 MB-I-II-V 220 961 0.66 Agg 0.8%

T-1

50 750 500 104 769 74.7 MB-I 106 619 0.12 Agg 1.7%
50 750 600 122 829 52.3 MB-I 123 717 0.14 Agg 0.7%
50 1000 500 104 789 26.6 MB-I 108 119 0.09 Agg 3.1%
50 1000 600 123 097 43.0 MB-I 125 819 0.14 Agg 2.2%

100 750 500 104 769 145.1 MB-I 106 619 0.27 Agg 1.7%
100 750 600 122 829 62.8 MB-I 123 717 0.27 Agg 0.7%
100 1000 500 104 789 39.3 MB-II-IV 108 119 0.25 Agg 3.1%
100 1000 600 123 089 44.3 MB-I-II-IV 125 819 0.06 Agg 2.2%

200 750 500 104 769 28.5 MB-V 106 619 0.16 Agg 1.7%
200 750 600 122 838 36.8 MB-I-II-III-IV-V 123 717 0.19 Agg 0.7%
200 1000 500 104 789 92.1 MB-I-II-V 108 119 0.19 Agg 3.1%
200 1000 600 123 089 67.8 MB-II 125 819 0.38 Agg 2.2%

T-2

50 750 500 208 102 168.1 MB-I 211 043 0.14 Agg 1.4%
50 750 600 243 740 51.8 MB-II-IV-V 245 343 0.27 Agg 0.7%
50 1000 500 209 167 174.8 MB-I 214 138 0.41 Agg 2.3%
50 1000 600 245 159 203.4 MB-I 249 438 0.39 Agg 1.7%

100 750 500 208 094 59.2 MB-V 213 011 0.72 Agg 2.3%
100 750 600 243 740 62.3 MB-I-III 246 543 0.83 Agg 1.1%
100 1000 500 208 683 10963.5 MB-I 216 603 0.89 Agg 3.7%
100 1000 600 244 990 83.1 MB-II-III 251 603 0.5 Agg 2.6%

200 750 500 208 094 101.5 MB-I-II-IV-V 211 302 0.72 Agg 1.5%
200 750 600 243 740 93.7 MB-I-II-V 245 457 0.86 Agg 0.7%
200 1000 500 208 652 138.6 MB-III-IV 215 052 0.86 Agg 3.0%
200 1000 600 244 991 152.5 MB-IV-V 249 952 1.06 Agg 2.0%

P-1

50 750 500 112 461 16.0 MB-I 114 466 0.5 Agg 1.8%
50 750 600 130 971 19.8 MB-I 131 802 0.05 Agg 0.6%
50 1000 500 113 420 16.1 MB-I 118 966 0.03 Agg 4.7%
50 1000 600 132 397 15.3 MB-I 136 466 0.06 Agg 3.0%

100 750 500 112 452 9.5 MB-II-IV 114 466 0.09 Agg 1.8%
100 750 600 130 962 11.2 MB-I-II-III-V 131 802 0.19 Agg 0.6%
100 1000 500 113 135 11.0 MB-IV 118 966 0.16 Agg 4.9%
100 1000 600 132 261 10.4 MB-I-IV 136 466 0.05 Agg 3.1%

200 750 500 112 452 7.1 MB-V 114 466 0.11 Agg 1.8%
200 750 600 130 962 8.3 MB-II-III 131 802 0.11 Agg 0.6%
200 1000 500 113 144 81.8 MB-I 118 966 0.11 Agg 4.9%
200 1000 600 132 269 9.4 MB-III-V 136 466 0.08 Agg 3.1%

(continued on next page)
cost problem setting, introducing a pre-clustering step with DBSCAN is
shown to perform effectively for the fixed & variable cost problems.

Note that MB-V has a random selection process while determining
candidate facility locations for the discrete models. The results we
reported are based on a single run because we aim to compare the
17
performances of the model-based heuristics by solving the discrete
mathematical models just once. We also repeated the random process
10 and 100 times for each instance to investigate the effect of the
number of repetitions on the solution quality. The objective values
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Table 4 (continued).
Dist Lim F2 F3 Comparison of multi-stages Comparison of clustering techniques Diff.

Cost Time Method Cost Time Method

P-2

50 750 500 96 328 13.4 MB-V 98 603 0.03 Agg 2.3%
50 750 600 111 636 52.3 MB-V 112 798 0.03 Agg 1.0%
50 1000 500 97 046 12.8 MB-V 101 901 0.03 Agg 4.8%
50 1000 600 113 146 11.9 MB-V 116 961 0.02 Agg 3.3%

100 750 500 96 302 77.4 MB-V 98 603 0.03 Agg 2.3%
100 750 600 109 016 217.1 MB-I 112 798 0.03 Agg 3.4%
100 1000 500 96 588 12.1 MB-IV 101 892 0.05 Agg 5.2%
100 1000 600 112 891 15.7 MB-IV 116 955 0.03 Agg 3.5%

200 750 500 96 302 15.3 MB-II-III-IV-V 98 470 0.06 DB-Agg 2.2%
200 750 600 99 601 10829.1 MB-I 112 798 0.06 Agg 11.7%
200 1000 500 96 600 17.9 MB-III-V 101 447 0.19 DB-Agg 4.8%
200 1000 600 112 900 15.0 MB-II-III 116 654 0.14 DB-Agg 3.2%
Table 5
Fixed & variable cost problem results.

Dist Lim F1 F2 F3 Comparison of multi-stages Comparison of clustering techniques Diff.

Cost Time Method Cost Time Method

M-1

50 1000 750 500 88 486 3.7 MB-I-II-III-IV-V 88 500 0.28 Agg 0.0%
50 1000 750 600 88 500 2.8 MB-I-II-III-IV-V 88 500 0.14 Agg 0.0%
50 1000 1000 500 97 680 2.7 MB-I-II-III-IV 99 325 0.06 DB-Agg 1.7%
50 1000 1000 600 108 499 3.2 MB-I-II-III-IV 110 521 0.28 Agg 1.8%
50 2000 750 500 88 500 3.5 MB-I-II-III-IV-V 88 500 0.09 Agg 0.0%
50 2000 750 600 88 500 3.8 MB-I-II-III-IV-V 88 500 0.05 Agg 0.0%
50 2000 1000 500 112 888 5.4 MB-I-II-III-IV 114 952 0.09 DB-Agg 1.8%
50 2000 1000 600 117 376 11.1 MB-I-IV 117 855 0.97 DB-KM 0.4%

100 1000 750 500 88 486 11.7 MB-I-II-III-IV-V 88 500 0.06 Agg 0.0%
100 1000 750 600 88 500 4.0 MB-I-II-III-IV-V 88 500 0.05 Agg 0.0%
100 1000 1000 500 95 867 6.1 MB-I-IV 95 867 0.09 Agg 0.0%
100 1000 1000 600 107 245 5.5 MB-I-II-III-IV-V 107 245 0.09 Agg 0.0%
100 2000 750 500 88 500 2.4 MB-I-II-III-IV-V 88 500 0.09 Agg 0.0%
100 2000 750 600 88 500 2.1 MB-I-II-III-IV-V 88 500 0.05 Agg 0.0%
100 2000 1000 500 109 179 41.2 MB-I 109 179 0.09 Agg 0.0%
100 2000 1000 600 116 175 7.1 MB-II-III-IV-V 116 258 0.12 DB-Agg 0.1%

200 1000 750 500 88 486 16.4 MB-I-II-III-IV-V 88 500 0.09 Agg 0.0%
200 1000 750 600 88 500 1.9 MB-I-II-III-IV-V 88 500 0.12 Agg 0.0%
200 1000 1000 500 95 867 113.4 MB-I 95 867 0.14 Agg 0.0%
200 1000 1000 600 107 245 12.6 MB-I-II-III-IV-V 107 245 0.12 Agg 0.0%
200 2000 750 500 88 500 4.9 MB-I-II-III-IV-V 88 500 0.14 Agg 0.0%
200 2000 750 600 88 500 2.3 MB-I-II-III-IV-V 88 500 0.09 Agg 0.0%
200 2000 1000 500 109 160 17.6 MB-I-II-III-IV-V 109 160 0.14 Agg 0.0%
200 2000 1000 600 116 175 32.2 MB-II-III-IV-V 116 925 0.14 DB-Agg 0.6%

M-2

50 1000 750 500 246 708 18.4 MB-I-II-III-IV-V 246 750 0.83 Agg 0.0%
50 1000 750 600 246 750 15.6 MB-I-II-III-IV-V 246 750 0.97 Agg 0.0%
50 1000 1000 500 263 366 165.9 MB-I 271 482 0.08 DB-Agg 3.0%
50 1000 1000 600 294 842 385.7 MB-I 302 990 36.00 DB-Agg 2.7%
50 2000 750 500 246 750 15.5 MB-I-II-III-IV-V 246 750 0.80 Agg 0.0%
50 2000 750 600 246 750 15.9 MB-I-II-III-IV-V 246 750 0.78 Agg 0.0%
50 2000 1000 500 307 802 286.4 MB-I 319 099 16.20 DB-KM 3.5%
50 2000 1000 600 326 198 95.9 MB-I 328 855 15.28 DB-KM 0.8%

100 1000 750 500 246 703 1563.5 MB-I 246 750 1.36 Agg 0.0%
100 1000 750 600 246 750 14.4 MB-I-II-III-IV-V 246 750 0.53 Agg 0.0%
100 1000 1000 500 257 079 7086.6 MB-I 258 415 0.39 Agg 0.5%
100 1000 1000 600 289 920 293.6 MB-III 291 220 0.66 Agg 0.4%
100 2000 750 500 246 750 17.6 MB-I-II-III-IV-V 246 750 0.64 Agg 0.0%
100 2000 750 600 246 750 14.1 MB-I-II-III-IV-V 246 750 0.59 Agg 0.0%
100 2000 1000 500 289 091 1817.4 MB-II 291 896 0.77 Agg 1.0%
100 2000 1000 600 316 195 1591.2 MB-IV 318 211 0.64 Agg 0.6%

200 1000 750 500 246 703 10 952.9 MB-I 246 750 0.73 Agg 0.0%
200 1000 750 600 246 750 33.1 MB-I-II-III-IV-V 246 750 0.77 Agg 0.0%
200 1000 1000 500 257 107 264.2 MB-II 258 401 0.55 Agg 0.5%
200 1000 1000 600 289 918 618.2 MB-IV 291 207 0.48 Agg 0.4%
200 2000 750 500 246 750 112.9 MB-I-II-III-IV-V 246 750 1.02 Agg 0.0%
200 2000 750 600 246 750 20.6 MB-I-II-III-IV-V 246 750 0.84 Agg 0.0%
200 2000 1000 500 288 424 5616.5 MB-II 290 557 0.59 Agg 0.7%
200 2000 1000 600 316 210 7587.1 MB-II-III 318 587 0.73 Agg 0.7%

(continued on next page)
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Table 5 (continued).

T-1

50 1000 750 500 137 208 12.3 MB-I-II-III-IV-V 137 250 0.19 Agg 0.0%
50 1000 750 600 137 250 7.0 MB-I-II-III-IV-V 137 250 0.38 Agg 0.0%
50 1000 1000 500 149 127 118.1 MB-I 155 490 0.14 DB-Agg 4.1%
50 1000 1000 600 165 416 387.8 MB-I 171 279 29.00 DB-Agg 3.4%
50 2000 750 500 137 250 7.4 MB-I-II-III-IV-V 137 250 0.27 Agg 0.0%
50 2000 750 600 137 250 8.8 MB-I-II-III-IV-V 137 250 0.16 Agg 0.0%
50 2000 1000 500 171 738 164.3 MB-I 180 625 12.25 DB-KM 4.9%
50 2000 1000 600 181 526 15.7 MB-I-II-III-IV-V 183 000 0.12 Agg 0.8%

100 1000 750 500 137 203 1542.0 MB-I 137 250 0.36 Agg 0.0%
100 1000 750 600 137 250 6.9 MB-I-II-III-IV-V 137 250 0.36 Agg 0.0%
100 1000 1000 500 143 545 77.8 MB-IV 145 047 0.06 Agg 1.0%
100 1000 1000 600 161 609 10 815.6 MB-I 163 347 0.06 Agg 1.1%
100 2000 750 500 137 250 10.8 MB-I-II-III-IV-V 137 250 0.09 Agg 0.0%
100 2000 750 600 137 250 6.5 MB-I-II-III-IV-V 137 250 0.12 Agg 0.0%
100 2000 1000 500 158 497 1076.5 MB-II 161 584 11.00 DB-Agg 1.9%
100 2000 1000 600 174 963 1032.7 MB-II-III-IV 177 024 0.12 2 Agg 1.2%

200 1000 750 500 137 203 5617.3 MB-I 137 250 0.22 Agg 0.0%
200 1000 750 600 137 250 20.8 MB-I-II-III-IV-V 137 250 0.27 Agg 0.0%
200 1000 1000 500 143 474 213.1 MB-IV 144 660 0.19 Agg 0.8%
200 1000 1000 600 161 614 199.7 MB-IV 162 960 0.16 Agg 0.8%
200 2000 750 500 137 250 68.6 MB-I-II-III-IV-V 137 250 0.22 Agg 0.0%
200 2000 750 600 137 250 8.9 MB-I-II-III-IV-V 137 250 0.20 Agg 0.0%
200 2000 1000 500 158 081 4033.5 MB-III 159 919 0.17 Agg 1.1%
200 2000 1000 600 174 962 2666.4 MB-II-III-IV 177 188 0.22 Agg 1.3%

T-2

50 1000 750 500 272 903 28.3 MB-I-II-III-IV-V 273 000 0.69 Agg 0.0%
50 1000 750 600 273 000 23.9 MB-I-II-III-IV-V 273 000 1.03 Agg 0.0%
50 1000 1000 500 295 412 4044.8 MB-I 309 165 0.27 DB-Agg 4.4%
50 1000 1000 600 328 309 7637.6 MB-I 340 849 80.00 DB-Agg 3.7%
50 2000 750 500 273 000 24.0 MB-I-II-III-IV-V 273 000 0.67 Agg 0.0%
50 2000 750 600 273 000 25.0 MB-I-II-III-IV-V 273 000 0.53 Agg 0.0%
50 2000 1000 500 340 601 6451.3 MB-I 356 786 23.88 DB-KM 4.5%
50 2000 1000 600 360 573 258.9 MB-I 363 855 23.42 DB-KM 0.9%

100 1000 750 500 272 903 115.0 MB-II-III-IV-V 273 000 0.78 Agg 0.0%
100 1000 750 600 273 000 24.6 MB-I-II-III-IV-V 273 000 0.83 Agg 0.0%
100 1000 1000 500 286 394 392.7 MB-IV 288 163 1.25 DB-Agg 0.6%
100 1000 1000 600 321 470 1196.8 MB-III 323 381 1.06 DB-Agg 0.6%
100 2000 750 500 273 000 63.3 MB-I-II-III-IV-V 273 000 1.00 Agg 0.0%
100 2000 750 600 273 000 24.7 MB-I-II-III-IV-V 273 000 0.95 Agg 0.0%
100 2000 1000 500 317 411 10 816.9 MB-II 321 548 10.11 DB-KM 1.3%
100 2000 1000 600 348 226 10 826.6 MB-III 350 986 1.06 DB-Agg 0.8%

200 1000 750 500 272 903 308.7 MB-II-III-IV-V 273 000 1.81 Agg 0.0%
200 1000 750 600 273 000 68.9 MB-I-II-III-IV-V 273 000 1.56 Agg 0.0%
200 1000 1000 500 286 144 2042.2 MB-II 288 411 0.92 Agg 0.8%
200 1000 1000 600 321 473 3461.6 MB-IV 324 031 0.75 Agg 0.8%
200 2000 750 500 273 000 157.8 MB-I-II-III-IV-V 273 000 0.95 Agg 0.0%
200 2000 750 600 273 000 40.1 MB-I-II-III-IV-V 273 000 0.97 Agg 0.0%
200 2000 1000 500 317 127 10 839.8 MB-IV 320 934 0.75 Agg 1.2%
200 2000 1000 600 348 527 10 847.0 MB-III 351 426 0.86 Agg 0.8%

P-1

50 1000 750 500 144 750 8.5 MB-I-II-III-IV-V 144 750 0.22 Agg 0.0%
50 1000 750 600 144 750 9.1 MB-I-II-III-IV-V 144 750 0.12 Agg 0.0%
50 1000 1000 500 167 333 15.1 MB-I 170 781 0.11 DB-Agg 2.0%
50 1000 1000 600 182 357 20.8 MB-I 184 751 1.38 DB-KM 1.3%
50 2000 750 500 144 750 8.8 MB-I-II-III-IV-V 144 750 0.09 Agg 0.0%
50 2000 750 600 144 750 10.1 MB-I-II-III-IV-V 144 750 0.09 Agg 0.0%
50 2000 1000 500 189 883 26.0 MB-I-II-III-IV 191 602 1.89 DB-KM 0.9%
50 2000 1000 600 192 855 22.5 MB-I-II-III-IV-V 192 855 1.48 DB-KM 0.0%

100 1000 750 500 144 750 37.8 MB-I-II-III-IV-V 144 750 0.16 Agg 0.0%
100 1000 750 600 144 750 23.2 MB-I-II-III-IV-V 144 750 0.14 Agg 0.0%
100 1000 1000 500 162 116 97.3 MB-I 162 856 0.12 Agg 0.5%
100 1000 1000 600 179 404 130.7 MB-I 179 811 0.12 DB-Agg 0.2%
100 2000 750 500 144 750 9.1 MB-I-II-III-IV-V 144 750 0.09 Agg 0.0%
100 2000 750 600 144 750 9.4 MB-I-II-III-IV-V 144 750 0.16 Agg 0.0%
100 2000 1000 500 183 866 417.8 MB-I 184 146 2.53 DB-KM 0.2%
100 2000 1000 600 191 923 202.1 MB-I 192 217 1.91 DB-KM 0.2%

200 1000 750 500 144 750 14.7 MB-I-II-III-IV-V 144 750 0.09 Agg 0.0%
200 1000 750 600 144 750 6.7 MB-I-II-III-IV-V 144 750 0.17 Agg 0.0%
200 1000 1000 500 161 971 997.4 MB-I 162 852 0.11 Agg 0.5%
200 1000 1000 600 179 404 1053.0 MB-I 180 029 0.12 Agg 0.3%
200 2000 750 500 144 750 9.7 MB-I-II-III-IV-V 144 750 0.08 Agg 0.0%
200 2000 750 600 144 750 10.2 MB-I-II-III-IV-V 144 750 0.06 Agg 0.0%
200 2000 1000 500 183 663 10 844.0 MB-I 184 727 0.11 Agg 0.6%
200 2000 1000 600 191 923 10 846.6 MB-I 193 000 0.12 Agg 0.6%

(continued on next page)
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Table 5 (continued).

P-2

50 1000 750 500 122 250 8.5 MB-I-II-III-IV-V 122 250 0.03 Agg 0.0%
50 1000 750 600 122 250 8.1 MB-I-II-III-IV-V 122 250 0.02 Agg 0.0%
50 1000 1000 500 143 123 31.3 MB-I 144 856 1.61 DB-KM 1.2%
50 1000 1000 600 154 843 69.0 MB-I-II-III-IV 156 309 0.02 DB-Agg 0.9%
50 2000 750 500 122 250 9.8 MB-I-II-III-IV-V 122 250 0.09 Agg 0.0%
50 2000 750 600 122 250 9.8 MB-I-II-III-IV-V 122 250 0.05 Agg 0.0%
50 2000 1000 500 160 638 97.1 MB-I-II-III-IV 161 998 3.02 DB-KM 0.8%
50 2000 1000 600 162 908 8.7 MB-I-II-III-IV-V 163 000 0.09 Agg 0.1%

100 1000 750 500 122 250 21.1 MB-I-II-III-IV-V 122 250 0.11 Agg 0.0%
100 1000 750 600 122 250 8.6 MB-I-II-III-IV-V 122 250 0.09 Agg 0.0%
100 1000 1000 500 138 855 74.7 MB-I 139 310 9.00 DB-Agg 0.3%
100 1000 1000 600 152 906 107.3 MB-I 153 407 52.00 DB-Agg 0.3%
100 2000 750 500 122 250 39.2 MB-I-II-III-IV-V 122 250 0.19 Agg 0.0%
100 2000 750 600 122 250 12.6 MB-I-II-III-IV-V 122 250 0.17 Agg 0.0%
100 2000 1000 500 156 041 253.8 MB-I 156 800 92.00 DB-Agg 0.5%
100 2000 1000 600 161 699 306.2 MB-I 162 107 2.66 DB-KM 0.3%

200 1000 750 500 122 250 15.5 MB-I-II-III-IV-V 122 250 0.19 Agg 0.0%
200 1000 750 600 122 250 5.1 MB-I-II-III-IV-V 122 250 0.14 Agg 0.0%
200 1000 1000 500 138 678 16.4 MB-I-II-III-IV 139 331 6.00 DB-Agg 0.5%
200 1000 1000 600 152 906 733.6 MB-I 153 184 44.00 DB-Agg 0.2%
200 2000 750 500 122 250 7.3 MB-I-II-III-IV-V 122 250 0.11 Agg 0.0%
200 2000 750 600 122 250 5.3 MB-I-II-III-IV-V 122 250 0.11 Agg 0.0%
200 2000 1000 500 155 865 59.2 MB-I-II-III-IV 159 139 129.00 DB-Agg 2.1%
200 2000 1000 600 161 699 4496.4 MB-I 163 000 0.06 Agg 0.8%
Table 6
The performances of the model-based methods in Stage-2.

MB-I MB-II MB-III MB-IV MB-V

Fixed & variable
cost problem

115/144 (80%) 83/144 (58%) 89/144 (62%) 94/144 (65%) 84/144 (58%)

Fixed cost
problem

33/72 (46%) 13/72 (18%) 19/72 (26%) 26/72 (36%) 12/72 (17%)

Variable cost
problem

56/72 (78%) 42/72 (58%) 47/72 (65%) 48/72 (67%) 50/72 (69%)
Table 7
The performances of the model-based methods in Stage-3.

MB-I MB-II MB-III MB-IV MB-V

Fixed & variable
cost problem

118/144 (82%) 92/144 (64%) 91/144 (63%) 93/144 (65%) 86/144 (60%)

Fixed cost
problem

36/72 (50%) 27/72 (38%) 33/72 (46%) 30/72 (42%) 11/72 (15%)

Variable cost
problem

46/72 (64%) 27/72 (38%) 21/72 (29%) 22/72 (31%) 28/72 (39%)
Table 8
The performances of the clustering-based methods by problem type.

Agglomerative DBSCAN - KMeans. DBSCAN - Agglom.

Fixed & variable
cost problem

106/144 (74%) 92/144 (64%) 121/144 (84%)

Fixed cost
problem

33/72 (46%) 21/72 (29%) 28/72 (39%)

Variable
cost problem

65/72 (90%) 4/72 (6%) 25/72 (35%)
are observed to improve by 0.065% and 0.079% on average with 10-
repeats and 100-repeats, respectively. However, increasing the number
of repetitions also increases the solution times as many times as the
number of repeats.

Moreover, we performed further experiments with those instances
for which the discrete model in a model-based approach cannot find the
optimal solution within our three-hour time CPU limit. We increased
our time limit to 24 h and investigated if more time improves the
solution quality of the methods. We repeated 44 runs with an increased
time limit and observed that 29 of them still terminated with an
optimality gap of 5.7%, on average. For all experiments, the average
20
improvement obtained in the solution quality is 0.24%. Therefore, it is
possible to conclude that although not very significant, there is some
room for improvement in the results of the model-based approaches at
the expense of significantly increased solution time.

5.4. Comparison of the results with benchmarks

To be able to analyze the contribution of the new methods, we
measure the performance of our heuristics on smaller samples that
can also be solved by continuous models presented in Section 3 using
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Table 9
Comparison of model-based heuristics with the continuous models (F1 = F2=1000, F3=0).
| | distLim Continuous model MB-I MB-II MB-III MB-IV MB-V

Cost Time Cost Time Cost Time Cost Time Cost Time Cost Time

10 50 3239.32 682.95 3239.32 0.48 3242.65 1.28 3239.32 1.11 3239.32 0.55 3242.65 2.22
10 50 3254.44 1115.66 3254.45 0.42 3288.09 0.55 3288.09 0.52 3254.45 0.48 4193.25 2.34
10 100 3348.81 515.23 3348.82 0.44 3375.01 0.7 3348.82 0.55 3375.01 0.48 3375.01 2.09
10 100 2484.92 69.98 2489.67 0.53 2616.34 0.69 2616.34 0.56 2616.34 0.8 3355.59 2.42
15 100 2850.51 925.6 2853.96 0.61 2873.55 0.66 2873.55 0.48 2873.55 0.75 2875.81 2.39
15 100 2726.3 3126.2 2728.55 0.75 2734.2 0.66 2734.2 0.67 2734.2 0.55 2734.2 2.83
20 200 6328.81 43%a 6239.39 0.44 6306.72 0.81 6239.39 0.56 6239.39 0.56 7562.51 2.86
20 200 7108.26 48%a 7117.2 0.53 7348.19 0.48 7117.2 0.52 7117.2 0.59 9201.04 2.08

aThe instance could not be solved within 24 h time limit and an optimality gap is obtained.
Table 10
Comparison of model-based and clustering-based approaches (F1=F2=1000, F3=0).
| | distLim Continuous model Best clustering-based method Best model-based method

Cost Time Cost Time Method Diss. Measure Diff Cost Time Method Diff.

10 50 3239.32 682.95 3242.65 0.05 Agg, DB-Agg GeomDiff 0.1% 3239.32 0.48 MB I-III-IV 0.0%
10 50 3254.44 1115.66 3310.45 0.03 Agg. GeomDiff 1.7% 3254.45 0.42 MB I-IV 0.0%
10 100 3348.81 515.23 3348.82 0.004 Agg. Ward 0.0% 3348.82 0.44 MB I-III 0.0%
10 100 2484.92 69.98 2616.34 0.02 Agg,., DB-Agg., DB-KM Ward 5.3% 2489.67 0.53 MB-I 0.19%
15 100 2850.51 925.6 2853.96 0.05 Agg,., DB-Agg., DB-KM GeomDiff 0.12% 2853.96 0.61 MB-I 0.12%
15 100 2726.3 3126.2 2728.55 0.002 DB-KM – 0.08% 2728.55 0.75 MB-I 0.08%
20 200 6238.81 43%a 6789.88 0.05 Agg, DB-Agg GeomDiff 8.8% 6239.39 0.44 MB I-III-IV 0.01%
20 200 7108.26 48%a 7117.2 0.004 Agg. All 0.13% 7117.2 0.53 MB I-III-IV 0.13%

aThe instance could not be solved within 24 h time limit and an optimality gap is obtained.
commercial solvers. Additionally, we set the micro-grid and nano-
grid costs equal to each other, and aim to better demonstrate the
contributions of the new methods using the same problem setting
in Gokbayrak and Kocaman (2017). When we set F1=F2 and F3=0,
our MB-II approach also reduces to the solution method presented
in Gokbayrak and Kocaman (2017). Therefore, MB-II is considered a
benchmark case in this special setting. The results for these smaller
samples are provided in Tables 9 and 10. Table 9 provides the results
of the model-based methods, whereas Table 10 summarizes the best-
performing model-based and clustering-based methods and compares
them in terms of the objective value, solution time, and their deviation
from the optimal solution if applicable.

In Table 9, one can observe that the newly proposed methods (MB-
I-III-IV) outperform the benchmark model (MB-II) when there is no
distinction between nano-grid and macro-grid costs. The additional
candidate points, common circle intersection points, and the centroids
of their convex hulls are shown to improve the results that could be
obtained by the benchmark model. Moreover, the mid-points of every
demand node pair that can be covered by the same facility (MB-I) are
shown to make the most significant improvement. For all samples, MB-
I is observed to provide the least cost configuration by less than 0.2%
deviation from the optimal solution. It is also shown to provide the
final result faster than the other model-based approaches in these small
instances.

On the other hand, the clustering-based approaches are observed
to provide similar configurations within remarkably shorter compu-
tational time. The new dissimilarity measure GeomDiff is found to
perform better than the other existing measures in the agglomeration
process, as shown in Table 10. Given that the continuous model can
have difficulty in reaching an optimal solution within 24 hr time limit,
even for small samples with 20 nodes, both clustering-based and model-
based methods can be useful to obtain approximate solutions. For large
samples with thousands of demand nodes, clustering-based algorithms
can be more convenient for obtaining cost estimates.

6. Conclusion

In this paper, we present a new planar facility location–allocation
problem in the context of rural electrification. In this problem, we
21
consider two different facility types: nano-grids and micro-grids. The
planar location–allocation problem we propose for designing rural
electrification systems cannot be solved optimally, even for the small
samples. Therefore, we present model-based and clustering-based ap-
proaches from which energy planners can benefit. Given that each
household could be electrified by individual stand-alone systems (nano-
grid) in the most trivial solution, the potential micro-grid clusters could
lead to remarkable cost reductions based on the trade-off between the
decentralized facilities.

The computational results indicate that the model-based approaches
are more capable of identifying micro-grid clusters. Contrary to the
model-based heuristics, the bottom-up or top-down clustering
approaches may overlook some possible micro-grid opportunities as
they construct the solutions iteratively. However, one should also note
that while these iterative processes can negatively impact the solutions’
quality, it helps the algorithm to provide a final solution within a
significantly shorter computational time.

Although the results indicate that the model-based approaches can
generally provide lower-cost solutions compared to the clustering-based
heuristics, we also highlight that these experiments are conducted
on relatively smaller samples with less than 400 nodes. Since the
samples include only a small portion of the villages, the model-based
approaches were able to attain the solution without any optimality gap
in most instances. However, once we work on the larger samples or
the entire village, we are more likely to observe significant optimality
gaps, which may negatively impact the performance of the model-based
approaches. Therefore, it can be concluded that while the model-based
approaches can work effectively on small-sized samples, the clustering-
based methods can find approximate solutions in a shorter time, even
for very large samples. Moreover, the clustering-based algorithms can
enable energy planners to evaluate the trade-off between two de-
centralized systems and make rapid assessments without the need
for a commercial solver. When the solvers suffer from computational
complexity, clustering-based methods can even find better solutions
than model-based approaches in some instances. Thus, energy planners
could select the most convenient method that aligns with the user’s
needs, including the choice of the computational environment and the

allocated computational time.
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Future research may extend our study to consider the grid option as
well. In the most simplified case, the electricity generated at central-
ized facilities can be first distributed via a medium voltage backbone
to the transformers, which drop down the voltage and allow low-
voltage cables to connect to final consumers. Therefore, a two-level
network design can also be introduced to enrich the electrification
options. Another extension would be to consider capacitated facilities
and cables.
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