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Abstract

Motivation: Protein phosphorylation is a key regulator of protein function in signal transduction pathways. Kinases
are the enzymes that catalyze the phosphorylation of other proteins in a target-specific manner. The dysregulation
of phosphorylation is associated with many diseases including cancer. Although the advances in phosphoproteo-
mics enable the identification of phosphosites at the proteome level, most of the phosphoproteome is still in the
dark: more than 95% of the reported human phosphosites have no known kinases. Determining which kinase is re-
sponsible for phosphorylating a site remains an experimental challenge. Existing computational methods require
several examples of known targets of a kinase to make accurate kinase-specific predictions, yet for a large body of
kinases, only a few or no target sites are reported.

Results: We present DeepKinZero, the first zero-shot learning approach to predict the kinase acting on a phosphosite
for kinases with no known phosphosite information. DeepKinZero transfers knowledge from kinases with many
known target phosphosites to those kinases with no known sites through a zero-shot learning model. The kinase-
specific positional amino acid preferences are learned using a bidirectional recurrent neural network. We show that
DeepKinZero achieves significant improvement in accuracy for kinases with no known phosphosites in comparison
to the baseline model and other methods available. By expanding our knowledge on understudied kinases,
DeepKinZero can help to chart the phosphoproteome atlas.

Availability and implementation: The source codes are available at https://github.com/Tastanlab/DeepKinZero.

Contact: otastan@sabanciuniv.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein kinases are a large family of enzymes that catalyze the phos-
phorylation of other proteins (Hunter, 1995). Phosphorylation
involves the transfer of a phosphoryl group to the side chain of an
amino acid residue in the substrate. The amino acid residue that
receives the phosphoryl group is called the phosphorylation site, or
briefly a phosphosite. The phosphosite is usually one of the three
amino acids: serine, threonine and tyrosine; also, other amino acids,
such as histidine, are reported to act as phosphosites (Fuhs and
Hunter, 2017). Phosphorylation events can lead to the activation or
deactivation of proteins, modify the targets’ interactions with other
proteins, direct them to subcellular localization or target them for

destruction (Pawson and Scott, 2005). Since they are the key regula-
tors of protein function in a broad range of cellular activities, aber-
rant kinase function is implicated in many diseases (Gaestel et al.,
2009), particularly in cancer (Blume-Jensen and Hunter, 2001;
Müller et al., 2015). Several pathogenic human mutations also lie on
known phosphorylation sites (Needham et al., 2019). Kinases, there-
fore, are also major drug targets (Ferguson and Gray, 2018; Klaeger
et al., 2017). To this end, understanding the associations between
kinases and phosphorylation sites holds the key to understand the
signaling mechanisms in the healthy and diseased cells.

Advances in mass spectrometry-based phosphoproteomics have
enabled the identification and quantification of phosphosites at the
proteome level (Huttlin et al., 2010; Lundby et al., 2012; Mann
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et al., 2002). Many computational models have also been developed
to predict phosphosites in a given input protein sequence (recently,
Dou et al., 2014; Horn et al., 2014; Ismail et al., 2016; Patrick
et al., 2015; Qin et al., 2016; Song et al., 2017; Wang et al., 2017a,
b) and earlier methods reviewed in Trost and Kusalik (2011). Once
a phosphosite is identified, either experimentally or computational-
ly, determining the kinase that is responsible for catalyzing the phos-
phorylation of this site becomes the key question. With 518
identified kinases in the human genome (Manning et al., 2002) and
the transient nature of kinase–substrate interactions, it is still an ex-
perimental challenge to determine the kinase that targets a given
site. As underlined by a recent review (Needham et al., 2019), most
of the phosphoproteome is uncharted: more than 95% of reported
human phosphosites have no known kinase or associated biological
function.

Several computational methods have been proposed to identify
phosphorylation sites on protein sequences (Blom et al., 1999; Gao
et al., 2010; Horn et al., 2014; Koenig and Grabe, 2004; Li et al.,
2008; Patrick et al., 2015; Qin et al., 2016; Saunders et al., 2008;
Song et al., 2017; Wang et al., 2017a, b; Wong et al., 2007; Xue
et al., 2010; Yaffe et al., 2001; Zou et al., 2013). Since these meth-
ods can also provide kinase-specific predictions, they can be used to
predict associated kinases of a known phosphosite. A majority of
these methods utilize consensus sequence motifs or position-specific
scoring matrices to estimate the position preferences of each kinase.
This approach requires a reasonable number of previously known
targets to be able to estimate the positional preferences of a kinase
accurately. Other tools employ supervised machine learning models
that use a collection of established kinase–phosphosite associations.
They model the relationship between the properties of kinases and
the properties of their target phosphosites in a supervised classifica-
tion setting. The application of such tools is limited to kinases for
which a substantial number of target phosphosites are available for
training. For example, MusiteDeep (Wang et al., 2017a) uses deep
learning to predict binding sites for kinases, and it exclusively
focuses on kinase families with at least 100 experimentally verified
phosphosites. Recently, the use of phosphorylation data to predict
kinases has been proposed, but these methods also require know-
ledge of target sites for a kinase to make predictions for that kinase
(Ayati et al., 2019). Some of the recently developed tools and the
number of kinases and/or kinase families they predict are shown in
Table 1 along with the number of sites required for a kinase to be
included.

A particular problem that has been overlooked in the literature is
the prediction of target phosphosites for kinases with few or no
known phosphosites. Despite the central role of kinases in cellular
signaling cascades and their importance as potential drug targets, a
large fraction of the kinome is understudied (Fedorov et al., 2010;
Ferguson and Gray, 2018; Needham et al., 2019). PhosphoSitePlus,
a database of experimentally validated phosphosites, provides phos-
phosite annotations for only 364 human kinases. For nearly 200 of
364 annotated kinases, there are at most 10 experimentally vali-
dated target sites (Fig. 1).

In this study, we introduce DeepKinZero, a zero-shot learning
approach to predict kinase–substrate associations for kinases with
no known target sites. Zero-shot learning is a machine learning

approach that has received significant attention, particularly in the
field of computer vision. It handles recognition tasks for classes for
which no training examples are available (Akata et al., 2016;
Lampert et al., 2014; Larochelle et al., 2008; Palatucci et al., 2009;
Romera-Paredes and Torr, 2015). The key to making predictions for
classes with no training data (referred to as unseen or zero-shot
classes) is to have side information which can be used to relate the
classes. Based on these relations, it becomes possible to transfer the
knowledge obtained from classes that have training samples
(referred to as seen class) (Akata et al., 2016) to the previously un-
seen classes.

As exemplified by Yu et al. (2018), it is difficult for an image
classification system to recognize an okapi when there are no images
of okapi in the training set. Yet, if the visual descriptions, such as
zebra stripes, four legs, brown torso and a deer-like face, can be
learned from the seen classes (zebra, deer, horse, etc.) and if the sys-
tem has side information indicating that okapis have these attrib-
utes, it becomes possible for the algorithm to recognize an okapi
even without any prior exposure to an okapi visual. This is accom-
plished by detecting these visual descriptors and relating these
descriptors to the side information on okapis. Similarly, even if we
do not know any phosphosites that are associated with an under-
studied kinase (unseen class) in training, the zero-shot learning
framework enables us to recognize a target site of this kinase by
transferring knowledge from well-studied kinases to the rare kin-
ases. This can be achieved by establishing a relationship between the
kinases using relevant auxiliary information, such as functional, se-
quence and structural characteristics of kinases. It is important to
note that, in the application of zero-shot learning to the prediction
of kinase–substrate associations, phosphosites are represented as
‘instances’ and kinases are represented as ‘classes’ (i.e. kinase predic-
tions are made for a given phosphosite). This is indeed the setup that
is relevant in many practical applications since the researchers who
experimentally identify a phosphorylation site are interested in iden-
tifying kinases targeting that phosphosite.
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Fig. 1. The distribution of the number of experimentally validated target phospho-

sites for kinases in the human kinome. The histogram is based on data obtained

from PhosphoSitePlus database experimentally validated phosphosite–kinase

interactions

Table 1. Kinase coverage of state-of-the-art sequence-based methods for predicting kinase–substrate associations

Method Number of kinases or kinase families Criteria for inclusion

MusiteDeep (Wang et al., 2017a) 5 families Families with >100 sites

PhosphoPredict (Song et al., 2017) 8 families Families with �50 sites

Li et al. (2010) 8 families Families with �50 sites

PhosphoPICK (Patrick et al., 2015) 59 human kinases Kinases with >10 sites

PKIS (Zou et al., 2013) 56 human kinases Kinases with >10 sites

KSRPred (Wang et al., 2017b) 103 human kinases Kinases with �15 sites

KinomeExplorer (Horn et al., 2014) 222 kinases covered but accuracy assessed for 14 kinases Kinases with �20 sites

Note: For each method, the middle column reports the number of kinases and kinase families for which the method can predict target phosphosites. The right

column reports the criteria employed by the method for being able to make predictions for a kinase or family.
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Given a predicted or experimentally identified phosphosite,
DeepKinZero predicts the most likely zero-shot kinase that can
phosphorylate this particular site by using the local protein sequence
centered at this site. DeepKinZero learns the phosphosite sequence
features via a bidirectional recurrent neural network (BRNN).
Therein the kinases are represented based on functional and se-
quence information. Through learning a compatibility function that
establishes relationships between the representations of the phos-
phosite sequences and the kinases, DeepKinZero transfers know-
ledge from kinases with many known phosphosites to those kinases
with no known sites. We also consider alternate representations of
the phosphosite sequence and the kinase embeddings and asses their
effectiveness. For kinases with no known target sites (i.e. kinases for
which it is not possible to make predictions using other supervised
methods), DeepKinZero provides predictions with 30-fold increase
in accuracy as compared to random guess.

DeepKinZero offers a scalable and flexible approach annotating
sites with kinases with no prior information on their target sites.
DeepKinzero is implemented in Python using Tensorflow library
(Abadi et al., 2015) and is provided as an open source tool at https://
github.com/Tastanlab/DeepKinZero.

2 Materials and methods

2.1 Problem formulation
The residues flanking the central phosphosite is critical for kinase
specificity (Ubersax and Ferrell, 2007). Thus, the local sequence sur-
rounding the phosphorylation site has been a common input in the
computational prediction of kinase–phosphosite associations. In this
study, we use sequences of 15 residues (i.e. 7 residues flanking on
each side of the phosphosite in addition to the phosphosite) as input
and we denote these as the phosphosite sequences. Lengths of 15 or
shorter have been shown to be useful in previous approaches
(Hornbeck et al., 2015; Trost and Kusalik, 2011; Wagih et al.,
2015). Let X represents the space of phosphosite sequences and Y
represents the set of all identified kinases in human. The problem of
kinase–phosphosite association prediction is defined as follows:
given a phosphosite sequence x 2 X , identify which kinase y 2 Y is
most likely to catalyze the phosphorylation of this site. The problem
is formalized as a multi-class classification problem with many
classes, where each input phosphosite sequence is associated with a
single kinase. This one-to-one mapping, in reality, does not always
hold; a phosphosite occasionally can indeed be phosphorylated by
more than one kinase. However, these cases occur rarely and in this
study, whenever the predicted kinase is among the kinases known to
phosphorylate a given phosphosite, we accept it as a true positive.

Some kinases are well studied for which many target sites have
been identified. On the other hand, many kinases lack formerly iden-
tified target sites. We refer to the kinases with known target sites in
the training data as common kinases, these kinases constitute the
training classes. We denote this set of kinases as Ytr � Y. We call the
kinases with few phosphosite annotation as rare kinases and denote
the set of rare kinases as Yte � Y. Yte constitutes the zero-shot test
classes. By definition, the sets of common and rare kinases are dis-
joint, i.e. Ytr \ Yte ¼1. Note that the generalized zero-shot learning
is a more open setting where all the classes (seen and unseen) are
available as candidates for the classifier in the testing phase (Chao
et al., 2016). This is a much harder problem which we do not tackle
here and leave it as future work.

The training data contain only pairs for common kinases,
Dtr ¼ fðxi; yiÞ; i ¼ f1; . . . ;Ntrgg, where yi 2 Ytr. Since there are no
positively labeled data for the rare kinases, ðy 2 YteÞ, during the
training phase, it is not possible to use traditional supervised meth-
ods to build a model for mapping sites to such rare kinases.
However, it is known that some kinases are related to each other
functionally, evolutionarily or structurally (Manning et al., 2002).
Thus, using zero-shot learning, the known relationships between
kinases can be exploited to learn a predictive model for rare kinases.
In the next section, we elaborate on this approach.

2.2 The zero-shot learning model
Following the work by Akata et al. (2016), we assume that a vector
space representation, called class embedding or kinase embedding,
can be constructed for each kinase. Therefore, an m-dimensional
‘kinase embedding’ vector /ðyÞ 2 R

m can be computed for each kin-
ase y 2 Y. We expect ‘similar’ classes to be close to each other with
respect to the Euclidean metric in this embedded space. Similarly,
for each phosphosite x 2 X , we compute the phosphosite embedding
vector, hðxÞ 2 R

d, that represents the phosphosite sequence in a
d-dimensional space. We discuss the computation of phosphosite
and kinase embeddings in Sections 2.2.1 and 2.2.2 in greater detail.

The DeepKinZero model. To accomplish transfer learning between
the common and rare kinases, we learn the association between the
phosphosite and the kinase embeddings. This idea is illustrated in
Figure 2. Following the work in structured output prediction
(Tsochantaridis et al., 2005) and prior work in zero-shot learning
(Akata et al., 2015, 2016; Frome et al., 2013; Kodirov et al., 2017;
Romera-Paredes and Torr, 2015; Sumbul et al., 2018; Xian et al.,
2017), we use a compatibility function F : X � Y ! R to model the
mapping between the input and output embeddings. In this model, F
takes a phosphosite–kinase pair (xi, yj) as input and returns a scalar
value which is proportional to the confidence of associating the site,
xi, with kinase yi. In this model, the probability that a given site is a
target of a given kinase is calculated logistically from the bilinear
compatibility function F:

pðyjxÞ ¼ expðFðx; yÞÞP
y02Yte

expðFðx; y0ÞÞ : (1)

As in Sumbul et al. (2018), we use the following bilinear com-
patibility function for input x and y:

Fðx; yÞ ¼
Xd

i¼1

Xm

j¼1

Wi;j½hðxÞ�i½/ðyÞ�j

þ
Xd

i¼1

Wi;m½hðxÞ�i þ
Xm

j¼1

Wd;j½/ðyÞ�j þ b

(2)

which can be written in matrix notation as:

Fðx; yÞ ¼ ½hðxÞ> 1�W½/ðyÞ> 1�>: (3)

Here, ½hðxÞ�i and ½/ðyÞ�j, respectively, denote the ith and the jth
entries of the phosphosite and kinase embedding vectors, respective-
ly. W denotes the ðd þ 1Þ � ðmþ 1Þ compatibility matrix, where
Wi;j for 1 � i � d and 1 � j � m specifies the contribution of the
correspondence between the ith dimension in the phosphosite
embedding space and the jth dimension in the kinase embedding
space to the compatibility of the phosphosite and kinase pair. Wdþ1;i

and Wj;mþ1 weights evaluate the information provided by the phos-
phosite and kinase embeddings individually. Wi;mþ1 for 1 � i � d
specifies the weight of the ith dimension in the phosphosite embed-
ding space, Wdþ1;j for 1 � j � m specifies the weight of the jth di-
mension in the kinase embedding space. Finally, Wdþ1;mþ1 ¼ b
denotes the bias term of the model.

We represent the 15-residue phosphosite sequences centering on
each phosphosite with multi-dimensional vectors in Euclidean space,
such that the embeddings of similar sequences are close to each
other in this space. To learn phosphosite embeddings, we use BRNN
(Schuster and Paliwal, 1997) model with an attention mechanism
over the training data. Recurrent neural networks (RNNs) constitute
a class of neural networks that exhibit state-of-the-art performances
for modeling sequential data (Rumelhart et al., 1986). At each time
step, which corresponds to the current position in the sequence,
RNN accepts an input sequence vector. The hidden state of the
RNN is then updated via non-linear activation functions to predict
the target class, which, in our case, is the associated kinase. BRNN
contains 512 LSTM cells (Hochreiter and Schmidhuber, 1997) on
each direction. This number of cells is chosen to ensure the best
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compromise between memory requirements and accuracy perform-
ance on validation and training data.

We also employ a dot attention mechanism (Luong et al., 2015)
over the output of the BRNN model to enable the model to focus on
the more important positions of the input sequence. For this, we
multiply the output vectors of BRNN with the attention vector A,
which is D� 1. D is the size of the BRNN output embeddings,
which is 1024 since we have 512 nodes on each side. Let H ¼
½h1;h2; . . . ;hT � denotes the whole output of the BRNN. To calculate
the attention value for each position, we multiply the attention vec-
tor with the output vector for the position i, denoted by hi. We apply
softmax to the output of this multiplication to normalize them with-
in the range 0–1. ai ¼ softmaxðhiAÞ. ai is the attention weight for
position i. Finally, the phosphosite embedding vector /ðxÞ is the
weighted average of the positions by the attention weights:

/ðxÞ ¼
PT

i¼1 aihi.

Training DeepKinZero. Given training data Dtr ¼ fðxi; yiÞ;
i ¼ 1; . . . ;Ntrg, where yi 2 Ytr denote the training kinases, learning
process for the zero-shot learning model involves learning of the
compatibility matrix W and the BRNN model parameters.
Assuming that the training data contain independently and identi-
cally distributed samples, we estimate W that minimizes the negative
log likelihood of observing the training data:

Ŵ ¼ argmin
W2Rðdþ1Þ�ðmþ1Þ

X

yi2Ytr

�log pðyijxiÞ: (4)

The class posterior probabilities above are provided in Equation
(1). Maximizing the likelihood is equivalent to minimizing the cross-
entropy loss. We train the model end-to-end by connecting the
BRNN model to ZSL model (Fig. 3). In this way, the BRNN model
learns phosphosite embeddings specifically useful for the ZSL model
and classification of kinases. To avoid overfitting, we employ drop-
out regularization with a 0.5 keep probability (Srivastava et al.,
2014). We apply batch normalization in LSTM cells (Ba et al.,
2016) to normalize the embeddings passed onto the ZSL model. We
initialize the W matrix randomly from a uniform distribution and

minimize the cross-entropy loss function using Adam optimizer
(Kingma and Ba, 2014) with learning rate 10�4. The attention
weights are also initialized randomly from a normal distribution
with a mean of 0 and standard deviation of 0.05. The learning rate
and the number of iterations are optimized on validation data (see
Section 3.1 for an explanation of the validation data). To reduce the
variance of the model, we ensemble 10 models each of which trained
with different initializations of the model parameters. The final class
probabilities are obtained by averaging output probabilities over the
ensemble.

Making predictions with DeepKinZero. The estimated Ŵ is used at
the test time; given a specific input phosphosite, the predicted kinase
class, y�, is assigned by maximizing F over the test classes:

y� ¼ argmax
y2Yte

Fðx; y; Ŵ Þ: (5)

This is equivalent to getting the class with the highest posterior
probability as the posterior probability given in Equation (1).

2.2.1 Phosphosite embeddings

In learning the phosphosite embeddings, we experiment inputting
the phosphosite sequence with three different vector representations
into the BRNN:

i. One-hot encoded vector: Each residue of a peptide sequence is

coded with a 21-dimensional vector with binary entries.

Twenty of these dimensions encode for each of the amino acids

and one extra entry is used to encode for non-extant residues.

This may happen if the phosphosite is too close to the N-termin-

al (or the C-terminal) of the protein such that the peptide se-

quence is shorter than 15 residues. Eventually, with one-hot

encoding, each phosphosite sequence is embedded into a 21 �
15 ¼ 315-dimensional binary vector.

ii. Physical and chemical characteristics of amino acids: We also

use a reduced alphabet that represents each sequence based on

the physicochemical properties of the amino acids (AA Prop) in

the sequence. We consider the charge, polarity, aromaticity, size

and electronic properties of each amino acid. The categorization

of each amino acid into groups based on these five properties

are obtained from Ganapathiraju et al. (2008) and is also listed

in Supplementary Table S1. Using this categorization, we code

each sequence based on property-based one-hot encoded vectors

and concatenate them. Charge, size and aromaticity properties

can each take three different values, polarity can take two and

electronic property can take five different values. Therefore, the

resulting one-hot encoded vector is 15 � 16 ¼ 240-dimensional

vector.

iii. ProtVec: Motivated by the demonstrated success of word

embedding techniques in natural language processing [e.g.

Word2Vec (Mikolov et al., 2013)], unsupervised embedding

models have been developed to represent protein sequences, as

well. Among these models, ProtVec (Asgari and Mofrad, 2015)

provides a continuous representation of protein sequences and

is trained on sequences from Uniprot-SwissProt using a Skip-

gram neural network (Bairoch et al., 2005). ProtVec converts

each 3 g in input sequence into a vector of length 100. There are

13 3g in a peptide of 15 residues, thus, our ProtVec representa-

tion of each sequence is 13 � 100 ¼ 1300-dimensional vector.

2.2.2 Kinase embeddings

The key to zero-shot learning is to know, for each unseen class, the
relationship with the formerly seen classes. To establish this rela-
tionship between common and rare kinases, we create four different

AVPEGHESRVREDGG

PLKMEPQSPGEVKKL

NHIGHTGYRNTVTVS

FIQRWNFTKTTKAKY

Phosphosite
Embedding

Kinase
Embedding

F(x, y; W)
θ(x) ϕ(y)

Common Kinases

Rare Kinases

Fig. 2. Overview of the application of zero-shot learning to the prediction of kinase–

phosphosite associations. The phosphosites and the kinases are embedded into multi-

dimensional vector spaces using the information on sites and kinases, respectively. The

training data comprise common kinases and their sites. The parameters W of the func-

tion Fðx; y; WÞ are estimated from the training data such that the compatibility be-

tween phosphosite embedding hðxÞ and kinase embeddings /ðyÞ is maximized. For a

new phosphosite at test time (shown as the black dot), the rare kinase that maximizes

F for the input site’s embedding is picked by using F and the learned parameters Ŵ .

(Color version of this figure is available at Bioinformatics online.)
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class embedding vectors, which are then concatenated to form a kin-
ase embedding vector, /ðyÞ in Equation (3). Supplementary Figure
S1 summarizes the size of the kinase embedding vectors when all the
sources are used. We experiment the utility of some of the vectors
through computational experiments and drop those that are not in-
formative in the final model. Below, we give a detailed account of
the sources and the way they are deployed to arrive at the desired
kinase embeddings:

i. Kinase hierarchy: We use the classification proposed by

Manning et al. (2002). The data are obtained from the website

Kinase.com (downloaded on June 2018). Supplementary Figure

S2 shows this hierarchy. In this classification, there are 10

groups and 116 families. We convert this to a binary vector by

representing families, groups and individual kinases as one-hot

encoded vectors. In the end, we attain a binary vector with a

size of 583.

ii. EC classification of kinases: An alternative source of kinase cat-

egorization is the Enzyme Commission (EC) classifications pro-

vided by the ENZYME database (Bairoch, 2000) (downloaded

on June 2018). According to this classification scheme, kinases

are grouped into six main categories based on their functions.

The two largest categories of kinases are the tyrosine-specific

protein kinases and serine/threonine kinases. The main catego-

ries are further divided into subcategories (as shown in

Supplementary Fig. S3).

iii. Kin2Vec: As kinases can be related through their kinase domain

sequences, we use a ProtVec representation of kinase domain

sequences just as we do for the input phosphosite sequence. To

differentiate the two, we refer to them as Kin2Vec. ProtVec cre-

ates vectors of length 100 for each 3 g in the sequence and since

for each kinase, the kinase domains can be of different lengths,

we average the ProtVec vectors generated for each 3 g into one

vector with 100 components.

iv. KEGG pathways: To capture the relatedness of kinases in the

biological functional space, we create kinase vectors based on

the pathways in which the kinases participate. The human path-

ways are obtained from KEGG database (Kanehisa et al., 2016,

2017; Kanehisa and Goto, 2000) (downloaded on April 2018).

Cumulatively, there are 190 KEGG pathways in which at least

one of the kinases participate. Each kinase vector is formed as a

190-element binary vector based on its participation in each of

the cellular pathways.

3 Results

3.1 Evaluation protocol
We train and evaluate our models on the experimentally validated
kinase–phosphosite associations obtained from the PhosphoSitePlus

database (Hornbeck et al., 2015) (downloaded on March 2018). We
exclude iso-form and fusion kinases. The dataset includes 13 426 ex-

perimentally identified phosphorylation sites and their associated
343 kinases. Following the evaluation protocol suggested by Xian
et al. (2017), we keep the zero-shot kinases well apart from the rest

of the classes in learning the models and parameter tuning. We split
the data into training, validation and test data based on the number

of sites that are associated with each kinase. Kinases with more than
five sites are considered as training classes. There are 214 such kin-
ases. DeepKinZero is trained on this set, which contains kinase–sub-

strate associations of 12 901 phosphorylation sites with these 214
kinases. The validation set includes the kinase–phosphosite associa-

tions of 17 kinases for which there are exactly five phosphorylation
sites. This validation set includes 80 phosphorylation sites associated
with these 17 kinases. The remaining 112 kinases with less than five

positively labeled examples constitute the test or zero-shot classes.
The test data include these 112 kinases and kinase–phosphosite

associations involving 237 phosphorylation sites.
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...
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...

... ...

... ...
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3.2 Performance criteria
To assess the overall performance, we use hit@k accuracy. This met-
ric evaluates performance in terms of the number of times in which
the correct class is among the top k predicted classes, where k is a
parameter. If the true class is within the top k predicted classes, it is
considered a true positive prediction. We report results for values of
k ¼ 1, 3 and 5. In cases for which a phosphosite is associated with
more than one kinase, we consider the prediction to be a true posi-
tive if the model predicts one of these kinases for the corresponding
phosphosite in the top k prediction. In our test dataset, 215 phos-
phosites are associated with a single kinase, 16 phosphosites are
associated with two kinases and 2 phosphosites are associated with
three kinases. Thus, multi-class instances are rare.

3.3 Zero-shot learning results
The representations of the site sequences and the kinases are critical
components of the model and they can greatly influence prediction
performance. For this reason, we assess the performance of
DeepKinZero by comparing the prediction performance of
DeepKinZero with different phosphosite and kinase embeddings.

3.3.1 The effect of different phosphosite representations on

accuracy of predictions

To thoroughly asses the effectiveness of different phosphosite repre-
sentations, DeepKinZero is trained with three different input repre-
sentations: one-hot, AA Prop and ProtVec with and without using
BRNN. When a BRNN is employed, the BRNN is trained with the
specified site sequence embeddings and the final layer of the BRNN
is used as the final sequence embedding and directly input to the
zero-shot classifier. Figure 4 summarizes the results using different
phosphosite sequence embeddings. As shown in Figure 4, with re-
spect to hit@1 and hit@3 metrics, the model trained with a BRNN
coupled with ProtVec vectors performs the best, where the true kin-
ase is predicted as the top kinase for more than 20% of the sites,
and it is among the top three for more than 30% of the sites. With
respect to hit@5 metric, the input representations have less effect on
the prediction performance, where amino acid properties with
BRNN delivers the highest hit@5 accuracy with the true kinase
being among the top five for more than 40% of the sites.
Additionally, we observe that the use of BRNN model improves the
performance. The model without BRNN embeddings that uses one-
hot sequence embedding as input only returns the true kinase as the
top prediction in 10.55% of the test cases. On the other hand, the

model with BRNN and ProtVec site embeddings predict the right
class with 21.52% accuracy. Note that these numbers are highly im-
pressive since it would not be possible to train predictive models for
these kinases due to the inadequacy of training samples, and random
guess will achieve only 0.89% accuracy since there are 112 test
classes.

To probe the usefulness of the representations learned by
BRNN, we use non-linear dimension reduction. We visualize the
BRNN embeddings in a lower non-linear dimension reduction to
visualize the BRNN embeddings in a lower dimensional space using
t-distributed stochastic neighbor embedding (t-SNE) (Maaten and
Hinton, 2008). Supplementary Figure S4 shows that the BRNN can
separate the examples in the case of kinase groups better than the
ProtVec representations, hinting that it successfully captures add-
itional critical information about kinases.

3.3.2 Effect of kinase embedding on accuracy of predictions

The performances of models trained with different kinase embed-
dings are shown in Table 2. In these experiments, for phosphosite
embedding, we use a BRNN trained on ProtVec and compare differ-
ent combinations of class embedding features with each other. To
establish a baseline, the first row shows the accuracies attained using
a random guess. The second row lists the performance of the model
when we input the one-hot vector of kinases as class embeddings;
this model is effectively a model that does not transfer knowledge
between different kinases. As shown in the table, the performance of
this model is worse than a random guess, demonstrating that learn-
ing is non-trivial if the class embeddings are not included. The next
four rows in the table show the results of the models trained with
kinase embedding vectors of individual data sources. Thus, they por-
tray the strength of each source in isolation from the others. Among
the four possible kinase embeddings, the kinase hierarchy is the lead-
ing contributor to the accuracy of the model, achieving 17.72% ac-
curacy when used as the sole auxiliary information source. As this
hierarchy reflects the functional and evolutionary information
(based on sequence similarities) on the kinases, it is expected that
they carry valuable information about kinase similarities. When
used in isolation of other sources, Kin2Vec is found to be the least
useful source.

The next set of results display the combinations of two sources.
In all classes, combining family hierarchy with another information
improves the model’s performance the most. The model achieves
18.99% hit@1 accuracy by combining family hierarchy with
Kin2Vec. Furthermore, combining family hierarchy with EC classifi-
cation or Kin2Vec vectors increases hit@5 accuracy from 37.55% to
38.82% and 40.08%, respectively. Also among all combinations, its
removal from the model affects the accuracy most adversely (e.g. se-
cond to the last row in the table).

Overall, the best performance is achieved by using family hier-
archy, EC classification and Kin2Vec vectors, which achieves
21.52% on hit@1 accuracy, 33.76% on hit@3 and 39.24% on
hit@5 accuracy. Adding pathway vectors into this combination
degrades the hit@1, hit@3 and hit@5 accuracies significantly, al-
though the use of pathways alone is the second best (fourth row)
when used individually as an embedding and it improves the hit@10
accuracy. It is possible that the information provided by pathway
membership may not be sufficiently specific to contribute additional
information on the relationships between kinases. When hit@5 or
hit@10 is used, all the models except those that ignore the family
hierarchy performs relatively well. The best performance is achieved
when all the available information is included in the model (48.1%).

3.3.3 Comparison with supervised methods augmented with

transfer learning

As noted before, a direct comparison between DeepKinZero and the
methods which aim to predict the common kinases (Table 1) is not
possible. These methods will never predict the rare kinases since
their candidate kinase set only comprises the common kinases. To
be able to compare DeepKinZero with these methods, we develop a
baseline transfer learning strategy in which we augment the
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Fig. 4. The effect of phosphosite representations on the accuracy of predictions. The

hit@1, hit@3 and hit@5 performance of DeepKinZero (percentage of phosphosites

for which the top kinase is respectively among the top 1, 3 and 5 predictions) with

six different phosphosite embedding methods (one-hot, amino acid properties,

ProtVec, each with or without a BRNN) are shown. For reference, the hit@1, hit@3

and hit@5 of a random guess (the only existing alternative for the kinases tested)
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traditional supervised prediction with a transfer learning step. In
this baseline strategy, we first run the supervised learning method to
obtain the common kinase predictions; next, we find the most simi-
lar rare kinase that shares the same family with that of the predicted
kinase. We transfer the predictions within the kinase family infor-
mation since this emerged as the most informative source in creating
the kinase embeddings (Table 2). We finally designate this rare kin-
ase as the method’s prediction. This comparison is only possible for
methods that predict kinases as opposed to the kinase families, and
we are able to apply this method to PhosphoPICK and
KinomeExplorer.

To find the most similar rare kinase in the kinase family, we use
two similarity assessment methods. In the first one, we pick the rare
kinase that bears the highest sequence similarity to the predicted
common kinase. Sequence similarity is assessed over the kinase
domains global alignment (BLOSUM62, gap opening penalty of 10
and gap extension penalty of 0.5). In the second strategy, we find
the closest kinase embedding vector using the cosine similarity of the
kinase embedding vectors including ProtVec and EC classification
vectors of the kinases (see Section 2.2.2). As can be seen, both of
these results remain considerably below what DeepKinZero can
achieve (see Table 3), supporting our conclusion that zero-shot
learning is an effective approach to this problem.

3.3.4 Comparison with other phosphosite prediction methods for

understudied kinases

In the literature, there are no models that we can directly compare
our method against. However, there are two methods (Ellis and
Kobe, 2011; Wagih et al., 2016) that aim at a different but a related

problem. These two methods are designed to predict the phospho-
sites for kinases with no known sites, which is the reverse scenario
of our problem; we predict the kinase of a given phosphosite.
Predikin (Ellis and Kobe, 2011) operates with a set of rules govern-
ing the amino acids around the phosphosites. These rules, however,
are derived from 3D structures of kinases bound to their substrates.
Therefore, the method is limited by the availability of the protein
structures and cannot be applied to kinase families without 3D
structures. Because the Predikin server was not available, we were
not able to carry out a comparison with this method.

The second method is by Wagih et al. (2016), which is based on
the idea that, as compared to a random set of proteins, interaction
partners of a kinase are more likely to be phosphorylated by that
kinase. Thus, the method finds enriched motifs in the interaction
partner sequences to predict sequences that a kinase can bind. The
method is not applicable; however, when the kinase has a low num-
ber of interaction partners and/or the number of phosphosites on the
interactors is low. Our method predicts the kinase of a given phos-
phosite, whereas Wagih et al. predicts the phosphosite of a kinase.
Thus, the two methods are not directly comparable, but still, we
conduct the following comparison. For the 112 zero-shot kinases,
we predict the motifs by Wagih et al. model. If we consider the top
motif returned, the method correctly matches 11 of the phosphosites
of the 112 kinases, leading to 9.8% hit@1 accuracy. If we consider
the top five motifs returned for each kinase, the correct phosphosite
sequence matches 26 phosphosites of the 112 kinase motifs leading
to 23% hit@5 accuracy. These numbers are significantly lower than
what DeepKinZero can achieve (21.52% and 40.08%). We should
note that this comparison also favors Waigh et al. because

Table 2. The effect of kinase embedding on the accuracy of predictions

Family hierarchy Pathways EC classification Kin2Vec hit@1 hit@3 hit@5 hit@10

Random guess 0.89 2.70 4.50 9.30

One-hot vector of kinases as class embedding 0.84 1.69 2.95 7.59

� 17.72 31.65 37.55 46.84

� 8.02 13.5 16.03 21.52

� 5.06 13.5 17.72 30.8

� 1.27 5.91 8.02 16.03

� � 14.77 27.85 35.02 46.84

� � 19.41 29.96 38.82 47.68

� � 18.99 33.33 40.08 47.26

� � 8.86 11.39 19.41 28.69

� � 8.02 13.5 16.46 21.94

� � 6.75 14.77 19.83 32.49

� � � 15.19 25.74 35.86 46.84

� � � 15.61 30.38 36.29 45.99

� � � 21.52 33.76 39.24 47.68

� � � 10.55 18.14 24.05 32.91

� � � � 16.88 29.11 34.18 48.10

Note: The hit@1, hit@3, hit@5 and hit@10 performance of DeepKinZero using all possible combinations of four different kinase embeddings are shown. Each

row shows a model with a specific combination of kinase embeddings, where the check marks indicate that the corresponding kinase embedding is included in the

model and for every metric, the highest value achieved for the row is indicated in bold. For reference, the performance of random guess and an embedding that

only uses the identity of individual kinases (thus does not transfer information between kinases) is also shown.

Table 3. Performances of augmenting existing methods with transfer learning

Model Transfer method hit@1 hit@3 hit@5

DeepKinZero Zero-shot learning 21.52 33.76 39.24

PhosphoPICK (Patrick et al., 2015) Sequence similarity 5.49 10.13 11.39

Cosine similarity of embedding vectors 4.64 9.70 11.39

KinomeExplorer (Horn et al., 2014) Sequence similarity 12.66 14.77 15.61

Cosine similarity of embedding vectors 13.51 15.61 16.46

Note: Percent hit@k accuracies are given. For reference, the results achieved by DeepKinZero with the best embeddings are provided. For every metric, the

highest performing model is indicated in bold.
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DeepKinZero is evaluated based on how many phosphosites it gets
right from all the available phosphosites. This is twice the number
of kinases over which Waigh et al. was evaluated with.

3.3.5 Validation on an external data

We also evaluated DeepKinZero on an external test data we had
retrieved from PhosphoELM database (Diella et al., 2007) (down-
loaded on September 2018). We first removed all the kinases and
their associated phosphosites that were in our training and valid-
ation set from PhosphoSitePlus dataset. The remaining kinase–sub-
strate associations in the PhosphoELM dataset represent an instance
that is well suited to DeepKinZero’s objective, in that almost all of
the kinases in this dataset have very few known associations. To be
more precise, there are 52 phosphosites associated with 40 kinases
and 29 of these kinases have only one site associated with it. One of
them have 7 sites associated with it, while the other 10 kinases have
4, 3 or 2 associated sites. DeepKinZero trained on PhosphoSitePlus
and evaluated on this PhosphoELM dataset achieves hit@1 accuracy
of 33.96%, hit@3 accuracy of 52.83%, 62.26% hit@5 accuracy and
77.36% hit@10 accuracy. Although the dataset is small, it provides
confidence that the model generalizes to other datasets.

3.4 Inspecting model weights
We further analyze the learned weights in the model to gain further
insight into the model. First, we inspect BRNN attention weights.
Figure 5a shows the average attention assigned to each position in
the input sequence by the BRNN model. The center residue emerges
as the most important residue. Thus the model correctly learns to as-
sign more weight to the center, where the phosphosite is located.
The immediate neighbors and the residues within two positions are
the next most important residues. This aligns well with our
expectations.

Next, we investigate the importance of amino acid type at the
phosphosite. Recall that the W matrix specifies the relative contribu-
tion of the correspondence between each dimension in the kinase
embedding space with each dimension in the site embedding space.
To investigate the weights assigned to each amino acid type at the
phosphosite embedding, we calculate the average weights assigned
to different amino acid types for each group of kinases at the phos-
phosite. As clearly seen in Figure 5b, S, Y and T correctly receive the
largest weights. Moreover, the weights assigned to different type of
amino acids in each group align well with existing knowledge of kin-
ase groups. For example, the TK family, which exclusively works on
tyrosine residue (Y), puts a very large positive weight on tyrosine
while other families do not. Similarly, CMGC work predominantly
on serine (S) and threonine (T) and these are the two residues that
get a large positive weight. PKL group is a diverse group that could
be the reason why neither of the residue types emerges as predomin-
antly predictive.

4 Conclusion and future work

Many kinases are understudied with no known target proteins or
sites; therefore, only a small subset of kinases dominates the anno-
tated phosphosite databases. DeepKinZero, unlike conventional
supervised methods can offer predictions for kinases which do not
have any known phosphosites. The zero-shot learning framework
transfers knowledge from common kinases to rare kinases, and this
way, it renders the predictions for classes that were never observed
in the training phase possible. Exploring the lesser-studied kinases
and their associated substrates and sites will likely reveal major
insights into the healthy and diseased cell. Through guiding experi-
mental studies, we hope DeepKinZero will help in illuminating the
dark phosphoproteome.

The work presented here can also be extended in
different dimensions, which we plan to study in our future work.
First of all, the ability to transfer learning between classes is
based on the ability to define the characteristics of the kinases as
vectors, which is derived from auxiliary information on kinases,
such as taxonomies of kinases or deep representation of their kin-
ase domain sequences (as detailed in Section 2.2.2 section). For a
kinase to catalyze a phosphorylation event on a substrate, peptide
specificity on the substrate is considered as the main determining
factor. However, the peptide specificity is not the only element.
The cellular localization and the structural domains outside the
catalytic domain have also been reported to be important factors.
Thus, in deriving the kinase embeddings, other information can be
used.

We use the local peptide sequence to represent the phosphosite.
Similarly, this representation can be augmented with additional
structural and functional information available on the substrate.
Structural features have been incorporated in kinase–substrate pre-
diction by previous studies (Song et al., 2017), but it has been
observed that these features did not significantly improve prediction
performance, likely because of the limitations of training data. As
more training data becomes available, transfer learning algorithms
like DeepKinZero will likely enable more effective utilization of
such features.

A third line of work is to extend this work to general zero-shot
learning. The zero-shot learning assumes that the testing instances
are only classified into the candidate unseen classes. In this study,
we also assume that the candidate classes at the time of testing all
belong to the rare kinases. The generalized zero-shot learning is a
more open setting where all the classes (seen and unseen) are avail-
able as candidates for the classifier at the testing phase (Chao
et al., 2016). This is a much harder problem due to the greater
number of classes handled during testing. Additionally, the classi-
fier tends to assign instances into one of the previously exposed
classes. This problem needs more specific methods. In future work,
we plan to extend this framework to handle this generalized
setting.
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