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ABSTRACT

STRUCTURAL ANALYSIS OF POLE ASSIGNMENT AND
STABILIZATION IN DYNAMIC SYSTEMS

Ayla Sefik
Ph.D. in Electrical and Electronics Engineering
Supervisor: Prof. Dr. M. Erol Sezer

April, 1989

Motivated by the need for qualitative investigation of general system
properties such as controllability, observability, existence of fixed modes,
etc. as the complement of the quantitative approach in analysis, especially
of large-scale systems, the problems of pole assignability and stabilizability
are considered from the structural point of view. The study is based on
the definition of a generic property as a property that holds for almost all
values of the nonzero system parameters. Structured matrices and digraphs
are used for system description. Both problems are first formulated in an
algebraic setting and then translated to a structural framework by means of
several graph-theoretic results which give sufficient conditions for solvability,
in terms of the existence of particular cycle families in the digraph. Following
a similar approach, a graphical investigation of structural observability is
presented. Lastly, genericity of several results are reconsidered in the light of
these graphical characterizations.

Keywords: Qualitative approach, algebraic approach, pole assignment,
stabilization, observability, structural property, genericity, structured matrix,
digraph.
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OZET

DEVINIK SISTEMLERDE KUTUP YERLESTIRME VE
KARARLILASTIRMA PROBLEMLERININ YAPISAL
COZUMLEMESI

Ayla Sefik
Elektrik Elektronik Miithendisligi Bolimi Doktora
Tez Yoneticisi: Prof. Dr. M. Erol Sezer
Nisan, 1989

Denetlenirlik, gozlenirlik, degismez 6zdegerlerin varligy, vb. gibi genel sis-
tem Ozelliklerinin nitel veya yapisal anlamda incelenmesinin, ozellikle biyik
caph sistemler icin, nicel yaklagimin tiimleri olarak gerektigi bilinmektedir.
Tezde, bu gergekten yola gikilarak, yapisal agidan kutup yerlestirme ve
kararlilagtirma problemleri ele alinmigtir. Bu ¢aligma, ‘jenerik’ (generic)
ozelligin, sistemde sifir olmayan parametrelerin hemen tim degerleri icin
bulunan ozellik olarak tammin temel almaktadir. Sistem modellemesi
icin yapr matrisleri ve yonli ¢izgeler kullamilmigtir. Her iki problem de
once cebirsel olarak tanimlanmig, daha sonra ¢6ziim igin yeterli kosullan
veren cizgesel sonuglar aracihfiyla yapisal bir ger¢eveye oturtulmustur.
Benzer bir yaklaim kullamlarak, yapisal gozlenirligin ¢izgesel incelemesi
gergeklegtirilmigtir. Son olarak yapisal yaklagimdan gikan gézlemler 1s1§inda,

bilinen bazi sonuglar ‘jenerisite’ (genericity) agisindan, yeniden ele alinmigtir.

Anahtar sozciikler: Nitel yaklasim, cebirsel yaklasim, kutup yerlegtirme,
kararhlagtirma, gozlenirlik, yapisal 6zellik, jenerisite, yapi matrisi, yonli

cizge.
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Chapter 1

INTRODUCTION

In systems theory, a traditional approach in analysis is to transform the
equations describing the system in order to obtain a standard representation,
such as Kalman’s or Luenberger’s canonical forms or the standard block
diagram configuration. Once this is accomplished, long-established and
well-tested methods are employed to treat the problem on hand. This
is a quantitative analysis in which every step depends completely on the

corresponding numerical data.

Frequently, however, there arise complications, especially when dealing
with dynamic systems such as electric power systems, aerospace systems,
economic systems, process control systems in chemical and petroleum
industries, ecological systems, etc.. One possible cause of complication is
dimensionality: The system may comprise a large number of variables making
it impossible or uneconomical to analyze it as a whole. Uncertainity in
system parameters may also be a reason: In such a case, it is impossible
to obtain an exact mathematical model of the system. Information
structure constraint is another possibility: Restriction on what goes where
in information distribution, especially in interconnected systems, makes the
traditional control and estimation methods difficult to apply to dynamic
systems even with smaller dimensions. (A system possessing any one of these

characteristics is termed as a complex dynamic system [1]).
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On the other hand, it is well-known that a way out through many
problems and complications arising in various branches of mathematics and
engineering sciences can be established after sufficient insight into their
structures has been gained. An insight into the system structure in its original
form would yield information on effects of individual system components,
subsystems, subloops, trade-off information between various subsystems and
interconnecting structure; which may often be of great value to the analyst

and to the designer.

This need for dealing with system structures is met by the qualitative
analysis of systems. The qualitative analysis is concerned with the general
properties of systems such as controllability, observability, stability, existence
of fixed modes, etc.. Analogous to the term potential energy used in classical
mechanics to describe the latent capacity of a system for doing mechanical
work, these properties may be viewed as potential properties in the sense
that they represent latent qualities that are determined by the structure of
the system [2]. In the rest of the thesis, we shall refer to such properties as

qualitative properties or structural properties.

The general tool that combines the qualitative properties of a system with
the system structure is the structural modeling [3] based on the axiomatic
theory of directed graphs [4]. Structural information is, in general, binary in
nature and hence directed graphs (digraphs) serve as excellent mathematical
models in this respect. In a structural description by a digraph,system
variables are associated with vertices, and oriented edges correspond to the
interaction between the variables. Signs or weights may be assigned to the
vertices or the edges when it is necessary to represent some of the quantitative

properties of the system.

The computational simplifications offered via graph-theory have resulted
in the applications of structural modeling in many areas of engineering
and societal problems [5-11). There have been a considerable number of
results that exploited the theory of digraphs for the stability, optimality, and

reliability analysis of large-scale systems [12-28].
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A system is said to have a structural property in the generic sense if that
property holds for almost all values of the nonzero system parameters. For
example, in a structurally controllable system a possible loss of controllability
can occur only in pathological cases when there is an exact matching of
system parameters. In that case, a slight change in the value of some of
the parameters can restore the property. Conversely, if the uncontrollability
is due to a special structure of the system, then no matter how much the
parameters are perturbed, the property can not be regained. From the
physical point of view, only the latter case is important because it is not
possible to know whether such a matching occurs in a given system. This
concept of structural property is consistent with physical reality also because
of the fact that system parameter values are never known precisely with the
exception of zeros that are fixed by coordinatization or by the nonexistence
of physical connections between certain parts of a system. (Note that digital
computers work with ‘true’ zeros and ‘fuzzy’ numbers justifying the need for

investigating the system properties independently of the numerical data.)

It was Lin [29] who first introduced the concept. He developed a purely
graph-theoretical characterization of structural controllability for single-
input systems. Shields and Pearson [30] extended his results to multi-
input systems but on a purely algebraic basis. The algebraic approach
due to Shields and Pearson was simplified considerably by Glover and
Silverman who used Boolean matrix algebra [31]. Davison [32] generalized
the approach to observability where he switched back to Lin’s graph-
theoretic point of view and interpreted the Boolean operations of [31] in
terms of the reachability properties of a digraph. Later, Lin [33] defined
minimal structural controllability and gave a characterization for structurally

controllable multi input systems in terms of structured matrices and digraphs.

After the introduction of the concept of fixed modes by Wang and Davison
[34] in their systematic approach to the decentralized stabilization problem,
Sezer and Siljak [35] recognized that the existence of fixed modes was a
structural property in the context of the ideas and results due to Lin [29],

Shields and Pearson [30] and Glover and Silverman [31]. Similar to the
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occurrence of structural uncontrollability and unobservability, the existence
of fixed modes is either a consequence of an exact matching of system
parameters, which is quite unlikely to occur, or is due to a special structure
of the system. Motivated by this fact, Pichai, Sezer and Siljak [36], defined
structurally fixed modes and obtained a graph-theoretic characterization
for the existence structurally fixed modes. All almost at the same time,
Reinschke [37], and Papadimitriou and Tsitsiklis [38] gave alternative graph-

theoretic criteria for the existence of fixed modes.

Reinschke did considerable work related to the structural properties of
dynamic systems and obtained purely graph-theoretic formulations. In an
early paper [39], he formulated structural completeness of systems. Later,
he developed another criterion for structural completeness in terms of the
existence of certain cycles in an appropriately chosen digraph [40]. In [37], he
provided a result which relates the coefficients of the characteristic polynomial
of a system to the cycle families in the digraph associated with the system,
and based on this result, derived his graph-theoretic criterion for the existence
of structurally fixed modes. He utilized this approach of characterization of
structural properties by means of cycle families in investigating the problemn
of pole assignability. In one of his recent papers [41], he dealt with the
explicit nonlinear dependencies between the coefficients of the closed-loop
characteristic polynomial and the output feedback gains and gave a graph-

theoretical interpretation of the relation.

The main motivation of the thesis, which is concerned with a qualitative
analysis of arbitrary pole assignability and stabilizability as potential system
properties, comes from the benefits and the simplicity of the structural

insights, especially in the context of the ideas and result due to Reinschke.

In Chapter 2, we introduce the structural framework for our qualitative
approach. Here, we review tools of structural modeling and structural
description of systems. We also discuss some well-known structural

properties, namely, structural controllability and the existence of fixed modes.
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Chapters 3 and 4 consider the structural pole assignability and stabiliz-
ability problems, respectively, on a purely graph-theoretical basis. In both
chapters, we first present an algebraic formulation of the problem, based on
the characterizations and results due to Reinschke [37,41]. We then establish
sufficient algebraic conditions for generic pole assignability and stabilizability,
respectively. In the next step, the algebraic characterization of the problem
is carried to a structural setting, and several results are stated and proved.
For Chapter 3, the main result which is stated in the form of two theorems

is translated to an algorithm.

In Chapter 5, we present a graphical investigation of structural
observability, the inspiration for which came from the close study of the
system digraph, during the analyses given in Chapters 3 and 4. The structural
observability matrix is interpreted in terms of paths from the state vertices
to output vertices in the system digraph, and a result, which characterizes
structural observability in connection with the existence of such particular
paths is derived. Generic observability index is defined and lower and upper

bounds are provided for it in terms of the system digraph.

Chapter 6 is an account of an algebraic study on the genericity of
some results on pole assignability and stabilizability. Here, we use an
algebraic approach, in combination with the insight provided by the results
of the preceding chapters, and reconsider some well-known results on pole

assignability and stabilizability of certain classes of systems.

Finally, Chapter 7 includes a summary of the results, with emphasis on

the contribution made by the thesis, and on points requiring further research.



Chapter 2

STRUCTURAL REPRESENTATION
OF DYNAMIC SYSTEMS

In this chapter, we introduce the structural framework for the analysis of
various qualitative properties of systems. We start with an introduction to the
mathematical tools of structural modeling, namely, structured matrices and
directed graphs (digraphs). Structured matrices and the related concept of
genericity are taken mainly from Shields and Pearson [30], whose formulations
are connected to Koénig’s theorem [42]. A summary of the standard material
on digraphs, which can be found in books such as those of Harary, Norman
and Cartwright [4] and Deo [6], is followed by a review concerning a special

digraph structure, called cactus, first introduced by Lin [29,33].

After an account on the description of dynamic systems via system
structure matrices and digraphs, as done by Siljak [27], a discussion on the two
important qualitative properties of systems, namely, structural controllability
(observability) [29,33] and existence of structurally fixed modes [36], is
presented. Characterizations of these two properties are crucial, as structural

pole assignability and stabilizability are defined in the same context in this

thesis.

A concise collection of the preliminary material presented in this chapter,

together with a list of related references, is presented by Jamshidi [43].
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2.1 STRUCTURED MATRICES
AND GENERICITY

Two matrices M,,M, € RPX? are said to be structurally equivalent if
there is a one-to-one correspondence between the locations of their nonzero
entries. The equivalence class of structurally equivalent matrices in RPX? can
be represented by a p X ¢ structured matrix M, whose entries are either fixed
zeros or algebraically independent parameters in R. If the number of nonzero
elements of M is u, then we can define a parameter space R* associated with
M such that for every d € R*, M(d) defines a fixed matrix in the equivalence
class that M represents. A fixed matrix M is said to be admissible with
respect to M, denoted as M € M, if M = M(d) for some d € R*. If, for an
admissible M = M(d), some elements of d are zeros, then M is said to be

structurally reduced to M.

Let II be a property that may be asserted about the structured matrix
M. Then II is a mapping II : R* — {0,1}, where

1 , if II holds for M(d)

0 , otherwise

II(d) = {
Consider a polynomial ®(d) in d = (dj,...,d, ) with real cocfficients. The set
'={d e R*| &(d) =0},

is called a variety in R*. T is said to be proper if I' # R* and non-trivial if
' # (. The property II is said to be generic if there exists a proper variety I'
such that kerIl C T

The implications of genericity are based upon the fact that if a variety
I’ C R* is proper and nontrivial, then it is a closed set. Thus, a property
which is generic relative to II holds at any point d' € I'*, the complement of
I', and in a sufficiently small neighborhood of d'. Also, if d € " with " proper
and nontrivial, then almost all points in a sufficiently small neighborhood of
d are in ', Therefore, all the points at which a generic property fails to

hold lie on a hypersurface in R¥, and can be suitably perturbed so that the
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property holds. In other words, a generic property is expected to hold almost

everywhere in R¥.

For a structured matrix M, we define the generic rank, denoted by p(M),
as the maximal rank M(d) can attain in R#. It can be shown that the set
{d € R*| rank M(d) < p(M)} is a proper variety in R*. Therefore, almost
all fixed matrices M(d) have rank p(M). Note that in a structured matrix,
due to the algebraic independence of the nonzero entries, generic rank equals
term rank. Indeed, it has been shown in [30} that for some r < min(p, g),
generic rank of M is r if and only if M has r independent nonzero entries

(i.e., no two parameters lie on the same row or column).

2.2 DIGRAPHS

A digraph can be represented by an ordered pair D = (V,£), where V
and £ are the finite sets of vertices and oriented edges, respectively. An
edge oriented from v; € V to v; € V is denoted by the ordered pair (v;,v;).
Then v; is called the tail and v; the head of the edge.

If (vj,v;) € &, then v; is said to be adjacent to v;, and v; adjacent
from v;. This adjacency relationship between the vertices of a digraph is
described by a square binary matrix, R = (rj;) called the adjacency matrix,
where r; = 1 if and only if (vj,v;) € €. R characterizes the structure of D
completely. This relationship can be used to define an equivalence relation

called connectedness on D as follows:

(z) Adjacent vertices are connected.

(i1) Any two vertices connected separately to a third one are connected.

Maximal subgraphs that contain connected vertices are called connected
components of D. If all vertices in D are connected, then the digraph is

said to be connected.
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A scquence of edges {(v1,v2), (v2,v3), - - -, (Vk—1, Uk )} where all vertices are
distinct is called a path from v; to vy, denoted by (v, vi). In this case, vy
is said to be reachable from v;. This relationship can be represented by a
matrix R = (Fy;) where Ty = 1if and only if vjireaches v;. Thus the adjacency
matrix R can be interpreted as the one step reachability matrix. R? = RxR,
where all the multiplications and additions are Boolean, represents the two
step reachability . With R* = R*1 x R, the reachability matrix of the
digraph D can be written as R = I+ R + R? 4+ ---. Note that, since D
has a finite number of vertices, say n, any vertex reaches another one in
at most n-1 steps, so that to compute R it suffices to take only the first n
terms of the infinite series above. Reachability defines another equivalence
relation, namely strong connectedness, on D. Two vertices are said to be
strongly connected if they are mutually reachable from each other. A
maximal subgraph containing strongly connected vertices is called a strong

component of D.

A sequence of edges {(v1,v2), (v2,v3)," -, (Vk=1,vk)} Where vy = v; with
the remaining vertices distinct is called a cycle. The path that remains after
the removal of an edge of a cycle is called the complementary path of that
edge with respect to the cycle. Any two cycles are said to be disjoint if they
have no common vertices. A collection of disjoint cycles is called a cycle

family.

We now define some special structure digraphs which are characterized
by Lin [29]:

A digraph D, = (V,,&,), with a vertex set V, = {vo,v1,---,v;} and the
edge set & = {(vo,v1),(v1,v2),- -+, (vi-1,v1)}, is called a stem. Vertices vo

and v, are the origin and the tip of the stem, respectively.

A digraph Dy = (W, &), with V, = {vo,v1,---,vy} and & =
{(ve,v1), "+, (vi-1,v¢), (ve, 1)}, is called a bud. Vertex vy is the origin and
edge (vo,v1) is called the distinguished edge of the bud. Clearly, if the

edge (vy,v,) is deleted from Dj, then it becomes a stem.
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A digraph D, = D, U Dy; U Dy - - - U Dy, where D, is a stem with origin
v, and tip v;; and Dy; are buds with origins v; # v, such that v; is the only
vertex common to Dy U Dy UDp U---UDp ;- and Dy, 2 =1, k, is called
a cactus. Origin v, and tip v; of D, are also the origin and the tip of D,
respectively. If D, above is replaced by a bud, then the digraph becomes
a precactus,denoted by D,. Again, by deleting an appropriate edge of a
precactus, it can be reduced to a cactus. Illustrations of these structures are

given in Figure 2.1.

V.
Vi
V, %
V Vi
V, v g
(a) (b) (c) (d)

Figure 2.1. Illustrations of (a) a stem, (b) a bud, (c) a cactus,
and (d) a precactus.

In a cactus D, = (V., £;), every vertex is reachable from the origin through
a unique path. Let v1,v;,---,v, be the vertices that are adjacent from the
origin vo. Then the sets V; = {v € V| v is reachable from v;} are disjoint
and V, = {vo} UV, UV, U ---UV,. Each of the subgraphs of D, defined by
one of the vertex sets {vp} UV, is called a bunch of the cactus. The bunch

that contains the tip of the cactus is called the terminal bunch, and the
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others (if any) nonterminal bunches. Thus a terminal bunch is a cactus

itself and a nonterminal bunch is a precactus.

2.3 SYSTEM STRUCTURE MATRIX
AND SYSTEM DIGRAPH

Consider a linear, time-invariant dynamic system with the state equations

& = Az + Bu
S: (2.1)
y = Cz
where z € R™, u € R™ and y € R” denote the states, inputs and the outputs
of S, respectively, and A, B and C are real, constant matrices of appropriate

dimensions.

Associated with this system, we define a square structured matrix S as

A BO
S=|0 0 O (2.2)
C 0O

where A, B and C are structured matrices that correspond to A, B and C,
respectively. S is called the system structure matrix. Viewing the matrix S
as a binary matrix with zero and nonzero elements, we define the digraph
D = (V,€) which assumes S as its adjacency matrix to be the digraph of
the system S. For convenience, the vertex set of D can be partitioned as
Y =UUAXU), where Y, X and Y are the sets of input, state and output
variables, respectively. Digraph D completely characterizes the structure of
system S of (2.1)

We say that two dynamic systems, represented by the triples (A;, B;, C;),

i = 1,2, are structurally equivalent if

(a) their digraphs are the same up to an enumeration of their vertices, or

equivalently,
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(b) there exists a permutation of states, inputs and outputs after which
A1, B; and C) becomes structurally equivalent to A;, B; and C,,

respectively; that is, there exist permutation matrices P;, P, and P,

such that
A, B; O PngPI PfBgPu O
O O 0 |= (0) (@) (@)
Cl O O Py02pz O (0]

The digraph D associated with these systems defines an equivalence class of
structurally equivalent systems. Then a property is a structural property of

a system if it is a property of the associated digraph.

For a treatment of the structural properties of the pair (A,B) of § of (2.1),
one can use the subgraph Dy, = (X UU,&,;) obtained by removing, from
the associated digraph D of S, the output vertices and the edges connected
to them. D, is called the output truncated system digraph and corresponds

to the system structure matrix,

A B
Suz = (2.3)
10 O
Subgraph D,, for the pair (A4, C) can be defined, similarly.
Let F = (f;;) be an m x r structured matrix with ¥ < m.r nonzero
elements. Suppose a feedback of form
F: u=Fy, (2.4)

where F' is a matrix admissible with respect to F, is applied to system S of

(2.1). The resulting closed loop-system represented by
S(F): #=(A+BFC)z (2.5)

has the system structure matrix

S(F) = (2.6)

Q O »
cow
©C =3 0O
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The associated system digraph then becomes D(F) = (V,€ U &x), where
Er = {(y;,w:)| fi # 0} is the set of feedback edges.

For convenience, the edges in £ are called the d-edges and those in Er
the f-edges. Accordingly, a cycle is called an f-cycle if it contains at least
one f-edge and a d-cycle otherwise. Similarly, a cycle family is called an
f-cycle family if it contains at least one f-edge, a simple f-cycle family if it
contains one and only one f-edge, and a d-cycle family otherwise. Note that if
a feedback variable f;; is given a fixed nonzero value, then the corresponding
f-edge (y;j,ui) becomes a d-edge as f;; is no more different from a nonzero

parameter of A, B or C.

2.4 STRUCTURAL CONTROLLABILITY
(OBSERVABILITY)

In a linear, time-invariant system represented by the triple (A,B,C), a
possible loss of controllability (observability) may occur in the following two

different ways:

(¢) It may be due to an exact matching of the system parameters, e.g., as

in the system represented by the triple,

’ (1)] Bzm, c=[11]

which is obviously both uncontrollable and unobservable. We know, however,

A=

that except for the fixed zeros that come by coordinatization or by absence
of physical connections between some parts of the system, system pafameter
values are never precise. Hence, an investigation of the system properties,
with some parameter values slightly perturbed, is justifiable. Indeed, if the

above triple is reconsidered with the A matrix slightly perturbed as

A= 0 1+e}’

1 0

it turns out to be both controllable and observable.
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(72) Loss of controllability (observability) which is due to the special
structure of the system represents the other case. Here, no matter how
much the parameters are perturbed, controllability (observability) cannot
be restored. For example, in the above triple with the A matrix as

A=00,
00

this is the situation.

It is obvious that () represents pathological cases while (i:) is of primary
importance, especially when dealing with an actual physical system. The
distinction between these two cases is provided in the concept of structural

controllability (structural observability):

Definition 2.1 A system S of (2.1) is structurally controllable (S.C.) if there

ezists a controllable system structurally equivalent to S.

Structural observability can be defined similarly.

Both algebraic and graph-theoretical characterizations of structural
controllability have been given by Lin [29,33] and Shields and Pearson [30].

The following two theorems summarize these results.

Lemma 2.1 A system S of (2.1) is §.C. if and only of

(a) p[A B]=n, and

(b) the system digraph is input reachable, i.e., each state vertex is reachable

from an input vertez.

Lemma 2.2 The following are equivalent:

(a) The system S of (2.1) is S.C.
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(b) The output truncated system digraph D,, is spanned by a family of
disjoint cacti, Do = (Vei, ) with Vi = {ug,} UX; and &, C €., such
that UX,' =X.

Structural observability can be characterized by dual statements.

It is obvious from these characterizations that structural controllability

(observability) is a generic property of the system.

2.5 STRUCTURALLY FIXED MODES

Consider the system S of (2.1) and a feedback F of (2.4) specified by the
structured matrix F, applied to S. The set of fixed modes of § with respect
to F is defined by

Ar = () A(4 +BFC),
FeF

where A(-) denotes the set of eigenvalues of (-), and the intersection is over

all F' admissible with respect to F.

As in the case of loss of controllability (observability), a fixed mode
either originates from an exact matching of system parameters or is due
to the special structure the system. This fact allowed Sezer and Siljak
[36 ] to employ the ideas and results developed in the context of structural
controllability, in characterizing the existence of structurally fixed modes as
a generic property of the system. According to this, a system is said to have
structurally fixed modes with respect to a feedback structure constraint F if
every system structurally equivalent to S has fixed modes with respect to F.
The following lemma, which is due to Sezer and Siljak gives necessary and
sufficient conditions for the existence of structurally fixed modes in terms of

system digraph.

Lemma 2.3 A system S of (2.1) has no structurally fized modes with respect
to a feedback F of (2.4) if and only if both of the following conditions hold:
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(7) Each state vertex in X i3 contained in a strong component of D(F)

which includes an edge from Er.

(37) There exists a cycle family in D(F) which covers all the state vertices.



Chapter 3

THE POLE ASSIGNMENT
PROBLEM:
A STRUCTURAL APPROACH

In this chapter, we present a qualitative analysis of the pole assignment
problem based on the structure of the pair (S, F). We start with a discussion
on an algebraic formulation of the problem, as has been done by Reinschke in
[44). Based on this and structural interpretation of characteristic polynomial
(also due to Reinschke [37]), we derive purely graph-theoretical conditions for
structural pole assignability. We then provide a search algorithm to detect
these conditions. Finally, we consider some examples of structurally pole

assignable systems to demonstrate nontriviality of our conditions.

3.1 ALGEBRAIC FORMULATION OF
THE POLE ASSIGNMENT PROBLEM

Consider the system S of (2.1) with a feedback F given by (2.4) applied to
it. Then, the closed loop system S(F) of (2.5) has a characteristic polynomial

p(s) = det(s] —A—~BFC)=s"+pis" '+ -+ paas+p.  (3.1)

17
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The pole assignability problem is that of arbitrary assignability of the closed
loop characteristic polynomial coefficients p; by a proper choice of the nonzero

elements of F'.

Let the nonzero elements of F' and the coefficients of the characteristic
polynomial p(s) in (3.1) be represented as points
f=(f1,f2o-+, f) in R” and p = (p1,p2,- -, pn) In R", respectively. From
(3.1), p and f are related by a smooth mapping g : R” — AN defined as

p=g9(f) (3.2)

where N is a smooth manifold in R™. Therefore, the concern of the pole
assignment problem is the existence of a solution f € R of (3.2) for every
given p € R™. To provide conditions for the solvability of (3.2), we recall few

concepts from differential geometry[45]:

Suppose that v > n, and let § : R®™ — R"™ denote the restriction of ¢ to
R". Let the derivative of § at a point z € R" be denoted by g.(z), that is
dg = g, dx.

The mapping § defines a homeomorphism between R"™ and g(R"™) if and
only if g is one-to-one, and § and g~! are continuous on R" and g(R"),

respectively. Following is a well-known theorem on homeomorphic mappings.

Lemma 3.1 (Hadamard Theorem) Assume that § : R®™ — R™ is
continuously differentiable on R™ and that || g || 18 bounded on R*. Then

g 18 a homeomorphism of R™ onto R™.

We now return to the pole assignment problem and consider (3.2). It is
clear that a necessary condition for solvability of (3.2) for all p € R" is that
v > n. We assume that in our investigations this is always the case and
partition the feedback variables fi, f2,-- -, f, into two disjoint subsets f, and
f containing n and v — n elements, respectively. If we fix the variables in f,

at particular real values, then p depends only on f,, i.e., (3.2) is reduced to

p= g(fv) (33)
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where g : R® — R™ is obviously a restriction of ¢ to R". This leads us to the

following result [44], which gives a sufficient condition for pole assignability:

Lemma 3.2 Assume n < v < mr. If there ezists a partitioning of the
feedback variables fi, f2,---, f, into two disjoint sets f, and f. containing
n and v — n elements such that after appropriately fizing those in f,, the

derivative gy, 18 unimodular, then the system S is arbitrarily pole assignable

by the feedback F.

This result depends on the fact that when gj, is unimodular, then det gy,
is a constant, so that g is a homeomorphism by Lemma 3.1. Hence, for every

p € R", there exists a unique f, € R" satisfying g(f.) = 9(fu, fc) = p.

Example 3.1 To demonstrate the result of Lemma (3.2), consider the

following system.

(01 0] 10
z = {0 0O0jz+{0 1]|u

010 01 (3.4)
10 0]
YT oo 1]”

controlled by the feedback

fll f12
= . 3.5
[ fa fa } Y (35)

Let us conveniently take fi; = fi, fiz = fa, fa1 = fs and fa = f4. Then, the

characteristic polynomial of the closed loop system is given by

p(s) =8 —(fi+ fa)s* —(fs+ fa+ fofs — frfa)s + fufa — fafs.
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With f = (f17f27f3, f4)a we have

~fh—fa
p=9(f)=|—fa—fa— fofs+ fifs
fifs— fafs

Let us partition f as f = f, U f. where f, = (f1, f2, f4) and f. = f;. Fixing
fs = 1, we get the mapping

~fi—fa
p=g(fi))=|-1=fai—fat+ fifd |- (3.6)
fHfs—fa
The derivative is given by
-1 0 -1
gr.(f)=| fi -1 -1+ A
fi -1 fi

for which det g5, = 1. So, by Lemma 3.2 this system is arbitrarily pole
assignable with the feedback of (3.5). Indeed, (3.6) can be written as

b -1 -1 0 fi 0
pz|=| 0 -1 -1 fa + | ~1
p3 0 0 -1]]f-Alfs 0

which is clearly solvable for f,, for every p € R3.

3.2 THE STRUCTURAL
POLE ASSIGNMENT PROBLEM

3.2.1 Problem Formulation

Imitating the definitions of structural controllability and existence of
structurally fixed modes given in Sections 2.4 and 2.5, we define a structurally

pole assignable system as follows:
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Definition 3.1 A system S of (2.1) i3 said to be structurally pole assignable
by a feedback F of (2.4) if there ezists a sysiem structurally equivalent to S
which is pole assignable by F.

Let us assume, as in an analysis of structural controllability that the
nonzero parameters of the system structure matrix S in (2.2) are algebraically
independent, and thus correspond to a data point d € R*. Then, the mapping
g between p and f of (3.2) depends also on the system parameters, and this

dependence can be indicated by expressing (3.2) as
p=g(d, f). (3.7)

It is clear from Definition 3.1 that structural pole assignability is equivalent

to the existence of a particular data point d* € R* for which the equation

p=g(d, f)=9g"(f) (3.8)
has a solution for every given p € R".

It is important to note that solvability of (3.8) does not readily imply
solvability of (3.7) for almost all d € R™. This is due to the fact that (3.7)
is, in general, a non-linear equation, solvability of which cannot easily be
reduced to a condition involving only the parameter vector d. Therefore,
unlike structural controllability, structural pole assignability is not a generic
property, or at least can not easily be proved to be a generic property. In our
analysis, however, we do aim at obtaining structural conditions in terms of the

system digraph, which guarantee genericity of structural pole assignability.

In order to complete the establishment of the framework needed for our
structural approach, we refer to Reinschke’s [37] graph-theoretic formulation

of the characteristic polynomial which is summarized below:

Consider the closed loop system digraph D(F) = (V,€ U £F) associated
with the system structure matrix S(F) of (2.6). By assigning a weight to
every edge, D(F) becomes a weighted digraph. The weight of a d-edge is

the corresponding nonzero parameter value of A, B or C, and the weight
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of an f-edge is the corresponding variable feedback gain. In the thesis, the
associated weight also refers to the edge. Accordingly, a path or a cycle is
represented by a sequence of the weights of the edges it contains as {-}, and a
cycle family by a collection of the cycles involved as { {-} }. The weight of a
path, a cycle or a cycle family is the product of weights of all edges involved.
Denoting the number of cycles in a cycle family CF by o(CF), and defining
the width v(CF) of CF to be the total number of state vertices covered by
CF, Reinschke proved the following:

Lemma 3.3 The coefficients py = gx(f), k = 1,2,---,n, of the closed loop

characteristic polynomial are given as

g(f)= > (-1 Pw(cF) (3.9)
+(CF)=k
where w(CF) denotes the weight of CF, and the summation is carried over
all cycle families of width k.

An immediate application of this lemma is that a feedback variable
appears in a coefficient p; of the closed loop characteristic polynomial only
if it takes part in a cycle family of width k, as illustrated by the following

example.

Example 3.2 Consider again the system of Example 3.1 for which the

system structure matrix is

0 dp 0 | dy O
0 0 0 | 0 ds
0 dy 0 | 0 ds
S(F)=|0 0 0 0 0| fi f2
0 0 0|0 O | f5 fq
ds 0 0 | 0 0O
|0 0 dr | 0 O ]
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The digraph D(F) = (V,£ U Er) with V = {z,, 22,73, u1,u2,¥1,¥2},
associated with S(F) is shown in Figure 3.1. The f-cycle families CF}, of
width k, 1 < k <3, in D(F) are listed in Table 3.1.

_h

U o G lg >~

19 Y

// \\

/

i d 'l f3

] 1
f| |

\ [

\ ds /

\\ d7 d5 //

Y, & L

\\\ //
\\\\\\ V’/
flo

Figure 3.1. D(F) of Example 3.2.

k kas
1 {dﬁad2, fl}
{d7)d57 f4}
2 {dﬁv dl7d3$ f3}
{d7>d4ad3’ f4}
{d7’d5’ f3a d6) d2)f2}
{ {dﬁ’d%fl}’{dﬁd&f‘!} }
3 { {de)d2afl}’{d7ad4a d37 f4} }
{d7)d4)d3) f37d6ad2f2}

Table 3.1. F-cycle families in D(F) of Figure 3.1.

Then, applying Lemma 3.3, we obtain

—dedy fi — d7ds f4
9(f) = | —dedidsfs — drduds fy — drds fadedz fo + (dedaf1)(drds f4) | - (3-10)
(dedz f1)(d7dads fa) — d7dsds f3dsd: fo
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Observe that (3.10) reduces to (3.6) when values of the elements of the
parameter vector d = (dy,dy,d2,ds,ds,ds,d7) and f; are all fixed at unity.

Lemmas 3.2 and 3.3 provide the basis for deriving sufficient conditions for

structural, but at the same time, generic pole assignability.

3.2.2 Conditions For Structural Pole Assignability

In the following, we first prove a result which is a special case of

Lemma 3.2:

Corollary 3.1 Let f, and f. be as defined in Lemma 3.2, with the feedback
variables in f, renumbered as fi, f2,- -, fn. For a partitioning N' = TU(N —
T) with T # 0, of the indez set N = {1,2,---,n}, define auziliary variables
fi as

f { T , kel (3.11)

fu= Oufe+x , kEN-T

where 0y = 6r(d) is a nonzero polynomial in d, and Y = i(d, f1) is a
polynomzal in fi, | € I, with coefficients being polynomials in d. Suppose that
the restriction g of g in (3.3) to R™ is given by

a(d, f.) = Gi(d; f) = ax + Zeklfh k=1,2,---,n (3.12)
=1

where ay = ai(d) and ey = ex(d). Then, S is structurally pole assignable by
F if the coefficient matriz E = E(d) = (ex) has full generic rank.

Proof: The derivative of § is computed as

gfv = E(d)E(d? fI),
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where = = (1) has elements

4

keI l=k
0 , keI,l+4k
Eu=4 & , keN -TI,l=k
0 , kIeN-T,0+k
| Oe/Ofi , keN —-T,leT

It follows that = can be permuted into

[ Ir 0
OV /0fr Oun_z1 ’

where On -7 = diag. {6,k € N — 1}, and 0¥ /0fr = (O¢1/0f), k € N —
7,1 € I. Thus Z(d, f) is generically unimodular, and the proof follows from

Lemma 3.2.

It is easily seen from the proof that a structurally pole assignable system

by Corollary 3.1 is also generically pole assignable.

We note that under conditions of Corollary 3.1, the mapping § can be
decomposed as § = § o h, where § : R® — R" is the affine mapping defined
in (3.12), and A : R® — R" is defined in (3.11), both mappings being
homeomorphisms. The significance of Corollary 3.1 lies in the fact that its
assumptions and the full generic rank condition on the matrix E can be
characterized, with the help of Lemma 3.3, in terms of the weighted closed
loop digraph D(F). This leads us to two main results which we state and

prove below.

Theorem 3.1 Suppose that in D(F) there exists a choice of n distinct f-
edges, renumbered conveniently as fi, f2,-- -, fn, which after converting the
remaining f-edges into d-edges by fizing their weights at arbitrary values,

satisfy the following conditions:

(1) No two f-edges occur in the same cycle;
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(i1) All f-cycles have a vertez in common;

(zi1) Fork =1,2,---,n, there exist particular simple f-cycle families of width
k, denoted by CFy, such that

(a) fr € CF}, and
(b) any other simple f-cycle family of width k which contains an

f-edge fi, | < k, also contains a d-edge which appears in no
CF;, 3 <k

Then S is generically pole assignable with F.

Proof: Conditions (i) and (i¢) guarantee that every f-cycle family is a
simple f-cycle family, so that each product term w(CF) in (3.9) contains at
most one variable weight. In other words, each gx in (3.9) is an affine function
of fi,f2,-++, fa as in (3.12), so that g has the structure in Corollary 3.1 with
fe = fr, k € N, that is with T = N. Therefore, it suffices to show that
the coefficient matrix E = (ex) in Corollary 3.1 is generically nonsingular.
For this, we first note that condition (i7¢ — a) implies that each ex, £ € N,
contains at least one nonzero product corresponding to CF}, which we denote

by eix- We now define d, = d, E,(d,) = E(d), and partition E, as

Buald) | entdh)s

ent(dn)'s | enu(dn) + enn(dn)

where, for convenience, we denote what is left from e, after separafing €nn
again by e,, (if there remains any). For a fixed | < n, either f; appears in no
cycle family of width n, in which case e,; = 0 or if it does, then by condition
(7ii — b), the corresponding product term contains the weight of a d-edge,
which occurs in no e}, k < n. Let d,,_; denote the parameter vector after

all parameters corresponding to such d-edges are set to zero. Then Ey(d,-1)
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1s of the form

En—l(dn—l) ejn(dn—l)’s

0 ‘ 6;n(dﬂr—l)

En(dn—-l) =

b

where e, (dn-1) consists of a single nonzero product term, and each diagonal
element exi(dn-1) of En_1(dn-1) still contains the product term e}, (d.—1) =
exe(dn), K = 1,2,---,n — 1. Obviously, E,(d,) is generically nonsingular if
E.(dn-1) is. On the other hand, E,(d.-1) is generically nonsingular if and
only if En_1(dn-1) is. Now, replacing d, and E,(d,) by d._; and E,_;(d,_;)
and repeating the argument above, we come to the conclusion that E,(d,) is
generically nonsingular if Ey(d;) = e};(d) is nonzero, which is guaranteed by

condition (zi¢ — a). This completes the proof. O
We demonstrate the result of Theorem 3.1 in the following example.

Example 3.3 Consider a system whose closed-loop digraph, D(F), corre-
sponding to

fu fiz fis
F: u= y

0 f22 f23

1s as given in Figure 3.2.

Let us fix fa2 = 1, fas = 0, and renumber the remaining nonzero feedback

edges as fi = fu1, fa = fi2, and f3 = f13.Then, the resulting f-cycle families
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CFys of width k, 1 < k < 3, in D(F) are as listed in Table 3.2.

Figure 3.2. D(F) of Example 3.3.

k CFrs

1| {dz,di, f1}

{d7, ds, fa}

2 | {d4,d3,dy, fo}

{d4,ds, ds, f2}

3 | {ds,ds,dy, f3,d7,ds}

{ {ds,d1, f1},{ds, ds, ds} }

Table 3.2. F-cycle families in D(F) of Figure 3.2.
Consider the following choice of CF}, k =1,2,3:
CFi=CFn = {dydy, fi}
CFy=CFyn = {ds,ds,d1, f2}

Cf; =Cf31 = {d77d8’d4>d3)d1,f3}

28
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Clearly conditions (z), (1) and (iit — a) of Theorem 3.1 are satisfied. Let
us test condition (i2z — b): For k = 2, CFy; is the only f-cycle family of
width 2, other than CF} and it contains f;. But it also contains ds and dg,
both of which are d-edges that do not occur in CF} or CF;, thus satisfying
condition (i1 — b). For k = 3, there is CF3; as the only f-cycle family of
width 3, other than CF3;, which contains f;, but also d¢ which appears in
no CF3, j < 3, again satisfying condition (iiz — b). Therefore, the system
is generically pole assignable. Indeed, the coefficients of the closed-loop

characteristic polynomial can be expressed as,

- ) . - o -
y4! S_h(fu) d2d; 0 d-ds f1
p2{=|gf)|= 0 dy(dzd; + deds) 0 f2
p3 g3(fv) dydydsdeds 0 dydsd,dds f3 ]

which is generically solvable for all p = (p1,p2,ps) as det g;, = dy(dad; +
d6d5)[d2d1d4d7d3(d3d1 — dﬁd5)]

A more general result, which makes full use of Corollary 3.1 is given by

the following:

Theorem 3.2 The result of Theorem 3.1 remains valid if condition (i7) is

replaced by

(iz) To any two f-edges f, and f, that appear in disjoint cycles there

corresponds a unique pair of edges f, and d. such that

(a) d, appears in every cycle of f. but in no cycle of f, or f,,

and

(b) to any two disjoint cycles C, and C; of f, and f, there
corresponds a cycle C, of f, which covers ezactly the same

state vertices as C, and C, cover, and vice versa.
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Proof: The proof is based on the following facts:
Fact 3.1 D(F) does not contain more than two pairwise disjoint f-cycles.

Proof of Fact 3.1: Suppose that D(F) contains three pairwise disjoint
f-cycles formed by the f-edges f,, f, and f,. Let us denote, for convenience,
the pair of edges f. and d, associated with each pair (fi, f;), 7,7 = p,¢,s,
i # j, by fi; and di;. Then, condition (iz) implies that D(F) contains
a subgraph which is isomorphic to one of the basic structures shown in
Figure 3.3. (There are eight possible combinations of different orientations of
the edges fij, 1,7 = p,¢,, ¢ # 7, but six of these are essentially the same as
one of the other two except for a relabeling of p,q and s.) However, each of
these subgrahs contradicts condition (z), the one in Figure 3.3(a) containing a
cycle which includes three f-edges fyq, fsp and f;s, and the one in Figure 3.3(b)
containing a cycle which includes two f-edges fp; and fi,. Therefore, D(F)
cannot contain three disjoint f-cycles. It cannot contain four or more pairwise
disjoint f-cycles either, because this necessarily includes the existence of three

pairwise disjoint f-cycles. This completes the proof of Fact 3.1.

fsp

———.—

Figure 3.3. The two basic structures mentioned in the proof of Fact 3.1.

Fact 3.2 The correspondence between (f,,d,)’s and the pair (f,, f;)’s in the

statement of condition (i7)’ is one-to-one.
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Proof of Fact 3.2: If (f;,d,) corresponds to two distinct pairs (f,, f;)
and (f, fy) then either all cycles formed by f, and f,s or all cycles formed
by f, and f, should cover the same state vertices. Suppose, without loss of
generality, that the former is true and that p < p'. Since f,» appears in CF,,
which is of width p’, then so does f, in some CF,, of width p’. However, every
d-edge in CF, appears either in CF}, or in CF}, which violates condition
(z7i — b). The situation is illustrated in Figure 3.4, where p = 1, p' = 2,
CFy = {dy,dy, f}, CF = {ds,ds, ds, fp} and CF = {ds, dy, dy, f}.

Figure 3.4. Illustration of the situation mentioned in the proof of Fact 3.2.

Fact 3.3 Suppose the pair (f,,d,) corresponds to the (unique) pair (f,, f,).
If f, appears in a product term in some gi(f) of (3.9), then so does the
product f,f,, and vice versa. Moreover, all the product terms that contain
fr in any gx(f) are of the form ey, (e, fr + €50 fof;), Where ex,, €., and e,, are

polynomials in d with e, and e,, being the same in all such expressions.

Proof of Fact 3.3: Let C,,, C,2,..., denote all simple f-cycles formed by
fr; and for each i, let CFgi1, CF4a,..., denote all d-cycle families which have no
vertex in common with C,;. Then, any simple f-cycle family containing f; is of
the form CF, = C,;UCy; for some ¢ and j, so that w(CF,) = w(C,;)- w(Caij) =
erifreqij. By condition (i), to every C,; there correspond disjoint simple f-

cycles C,; and Cy; formed by f, and f,, which are also disjoint from all Cy;;.
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Therefore, they form an f-cycle family CF,, = C,;UCy;UCq;j of the same width
as that of CF,, and having the weight w(CF ) = €p:i fp - €4i fg - €ai;. This shows
the existence of the product f,f, wherever f, appears. The converse is also
true, and the proof of the first part is complete. Now, let e, be the product
of the weights of the d-edges which are common to all C,;, and which does
not occur in some C,; U C,; (obviously, d, appears in e, ), so that e,; = €’; - e,.
Also define e, and e, to be the products of the weights of the d-edges which
are common to all C,; and C;;, respectively, and which do not appear in some
Cri, and therefore write e,; = €, €, and e; = e}, Since for fixed 7, C,; UC,;
and C;; cover exactly the same same state vertices, then e, and e, may only
contain weights of d-edges that are adjacent either from the input or to the
output associated with f, and f;, respectively. Furthermore, e/, = €pi * €pir
Then, w(CF,) + w(CF,q) = €; - €qij - (e fr + €5 - €4 fp fy) independent of the
widths of the cycle families CF, and CF,,, and the proof follows.

Now, returning to the proof of Theorem 3.2, Fact 3.1 together with
condition (z) imply that each product term w(CF) in (3.9) contains at most

two variable weights. Also, defining
T = {k|fi forms a cycle which is disjoint from some other f-cycle},

and f, as in (3.11) with 6, = e, and ¥, = epg fo fqy Fact 3.3 guarantees the
structure in (3.9). Rest of the proof is the same as that of Theorem 3.1. O

The following simple example illustrates this result:

Example 3.4 Consider the digraph D(F), of Figure 3.5 corresponding to a

closed-loop system under feedback of the form:

Fo ou= fll le v,

fa fa

Suppose we fix fi2 = a, for some arbitrary a € R, and renumber the

remaining feedback edges as f; = f, fo = fi1 and f3 = f5;. This results in
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Figure 3.5. D(F) of Example 3.4.

the f-cycle families of Table 3.3, from where we choose,
CFy=CFi = {ds,dr, fi}

C]:;=Cf21 = {d67d27d1’f2}

Cf';:Cfgl = {dg,d7,f3,d6.d2,d1,a}

k CFks

1| {ds,dy, f2},

{ds,dr, f1}

2 | {ds,ds,dy, f2}
{dg,d7,f3,d4,d1,a}

{{ds, dy, f2},{ds, dr, f1} }

3 | {ds,ds, f3,ds,d2,d1, a}
{{ds.d2, v, fo},{ds, dr, 1} }

Table 3.3. F-cycle families in D(F) of Figure 3.5.
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Condition (z) and (i¢i — a) of Theorem 3.1 are obviously satisfied. On
the other hand, we observe that for the f-edges f; and f,, which appear in
disjoint cycles, there is the pair of edges f; and a, as in condition (iz)" of

Theorem 3.2. Hence, the system is generically pole assignable.

The usefulness of Theorem 3.1 and Theorem 3.2 depends largely on the
choice of n feedback gains to be included in f,, as well as on the choice of
zero or nonzero fixed values to be assigned to the remaining feedback gains
in f.. An algorithm, which determines whether such a choice of n feedback
edges that satisfy the conditions of Theorem 3.2 exists, is given in the the

next section.

3.2.3 The Choice Algorithm

In this section we present an algorithm to check the existence of a set of
n f-edges fi, fa, .-+, fu in D(F) which satisfies conditions of Theorem 3.2, and

to identify one such set if there exists any. The algorithm accepts as input

I1: n, the number of state vertices in D(F),

I

SV

: f={(h,f2.r [), aset of all f-edges, v > n.

I3: foreach 1 <k < n,alist of all f-cycle families {CF,} of width k, each
CFs being specified as a product of the parametric weights of all the
edges appearing in CFy,,

and produces as output

O1: a positive or negative response regarding the existence of a required set

of f-edges, and if the response is positive,

02: the chosen subset f, = (f7, f5, -+, f2) of f (here we use a starred

notation for the variable f-edges to distinguish between the orderings

of f and £,),
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03: {CF}}, the list of particular simple f-cycle families defined by fr, 1 <
k<n,

O4: the fixed values (0 or 1) assigned to the f-edgesin f, = f — f,.

The algorithm tries to construct an arborescence (a directed tree)
T = (V. UVy, &) having a longest path of length 2n by examining all
cycle families CFi,, k = 1,2,---,n, s = 1,2,.--,n§; and all f-edges fF,
t =1,2,---,nf, appearing in each CFy,. It halts with a positive response
as soon as such a longest path is constructed, and with a negative response
if no such path can be formed. The vertices of 7 are arranged in n + 1
levels, each of which, except level 0, is further divided into two sublevels.
The vertices at the first sublevels constitute V., and are called the c-vertices,
while the vertices at the second sublevels constitute V¢, and are called the
f-vertices. Each c-vertex at level k is the child of some f-vertex at level k-1,
and corresponds to an f-cycle family CFy; of width k, while each f-vertex at
level k is the child of some c-vertex CFy, at the same level, and corresponds
to an f-edge that occur in CFj,, 1 < k < n. Level 0 contains a single f-vertex,

denoted by f3, which is the root of 7. The algorithm proceeds as follows:

Suppose that a path Pi_; of length 2(k — 1) is constructed from fo* to
some f-vertex f}_; at level (k—1), with some f-edges of D(F) assigned to the
branches and f-vertices on Pi_; as described below. Choose an f-cycle family
CFis of width k which contains no f-edges that are assigned to the f-vertices
of Pi_1- If no such CFy, exists, terminate the path Pi_;, and search for
an unexplored f-vertex at level (k — 1) to replace f;_,. If there exist one or
more such cycle families, construct a c-vertex for each of them and extend
a branch from f{_; to these c-vertices. Pick any one of these c-vertices, say
CFrs, s = 1,2,---,n%, and label it as CF}. Corresponding to each f-edge that
occurs in CF} = CFks construct an f-vertex, ff*, t =1,2,... ,n$ , extend a
branch from CF}, to each f*, and assign all other f-edges in CF} to the
branch (CF3, ff*) of T. Pick one of the f-vertices, say f}*, and check if
the assignment f; = fF* violates the conditions of Theorem 3.2. If not, set

f¥ = fF*, and repeat the whole procedure with k —1, fr_, and Pi_; replaced
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by k, f and Pi. If the assignment ff = fF* violates the conditions of
Theorem 3.2, terminate the path from f3 to ff*, and pick another unexplored
f-vertex to replace ff*. If none of f* can be chosen as f}, go back to the
upper sublevel to replace CF} with another unexplored c-vertex C.Fy,. If all
the paths through all CFy, are terminated, search for an unexplored f-vertex
at level (k —1) to replace f;_,. In checking whether the assignment f; = fF*
violates the conditions of Theorem 3.2, the f-edges of D(F) that are assigned
to any branch of P;* are assumed to be fixed at some nonzero value (at 1,
for convenience), and all f-edges other than these and fi,1<j <kcanbe

fixed or variable, as appropriate.

With this introduction, we now state the choice algorithm to identify

fo=(f1,f3,-+, fr), where we adopt the following notation:

k: index to scan the levels of 7,0 < k < n,
n§: number of distinct f-cycle families of width k in D(F),
sx: index to scan the c-vertices of T at level &, 0 < s < ng,
CF3: the c-vertex chosen at level k
nj: number of distinct f-edges of D(F) that appear in CF7,
tr: index to scan the f-vertices of T at level k, 0 < tx < nj,

fr: the f-vertex chosen at level k&

The corresponding flowchart is given in Figure 3.6.

The Algorithm

1. Set k « 1, and construct vertex f§ of T

2. Add the c-vertices CF, and the branches (fi_;,CFs) to 7,1 < s < nf,

and set s; « 0.

3. Set s «— sk + 1. If 5 < nf go to 5.
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10.

11.

. Set k — k —1. If k=0, stop. No choice of f, is possible. Otherwise,

go to 7.

If CF s, contains an f-edge corresponding to an f-vertex f; of 7, ¢ <
j < k-1, terminate the path from f§ to CFy,,, and go to 3. Otherwise,
let CF} = CFksy-

Add the f-vertices fi; and the branches (CF}, fi) to T, 1 < ¢t < nj,

and set t;x + 0.
Set t; «— tp + 1. If tx > n}, go to 3.

If fu, is assigned to any branch (CF7, ff) of 7,1 < j < k—1, terminate
the path from f§ to f,, and go to 7. Otherwise, assign all the f-edges
in CF}, except fiy,, to the branch (CFy, fit,)-

Delete all f-edges of D(F) except fit,, those that correspond to the f-
vertices ff, 1 < j <k —1, and those that are assigned to the branches
(CF5,f1), 1 <j < k—1. Convert all f-edges that are assigned to the
branches (CF3, f7) to d-edges by choosing their weights to be unity. If
o f5,--+, fi_y and fiy, do not satisfy the conditions of Theorem 3.2
for the remaining subgraph and with n replaced by k, terminate the
path from f§ to fi;, and go to 7. Otherwise, let ff = fi,.

If k <n,set k«—k+1, and go to 2.

Let f, = (ff,f5,--+, fy). Convert all the remaining f-edges of D(F)
into d-edges by fixing their weights to 1 if they are assigned to some
branch (CFy, fi) of T, 1 < k < n, and to 0 otherwise. Stop.

The following example demonstrates an application of the choice

algorithm. This example also shows the significance of Theorem 3.1 and

Theorem 3.2 and hence the usefulness of our choice algorithm. In a classical

approach, in order to place all the poles of a system with a digraph D(F) of

the example, as given in Figure 3.7, at desired locations, one would attempt

to use a dynamic output compensator , whereas we show below that constant

output feedback is sufficient for the job.
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Figure 3.6. Flowchart of the choice algorithm

38
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Example 3.5 Consider the digraph D(F) of Figure 3.7, in which unity
weight is assigned to any d-edge adjacent from an input or to an output
vertex. In this example, this causes no loss of generality as every input
or output vertex has a unique edge adjacent from or to itself. We want
to identify an f, = (ff, f3, f3, fI), if there exists any. We have, n = 4,
f = (f, f2y fa, fa, fs, fo) and the list of all f-cycle families {CF} of width
k,1 <k <n,is given in Table 3.4.

Let us now apply the choice algorithm. The steps which the algorithm
goes through are given below in detail. Figure 3.8 shows the arborescence T

constructed during this application.

—

ck=1,T=({f5},0)
2. The c-vertex CFq;, and the branch (fo*,CF11) added to 7. s, = 0.
3. 51 =1 (=n°).
5 CF} =CFn,ni=1
6. The f-vertex fi; = fe, and the branch (CF7, fs) added to 7. ¢, = 0.
7. h =1 (=ny).
8. Pass
9. Satisfied. f; = fu = fo
10. k=2
2. CFan, CFap and (f;,CFn), (f;,CF22) added to T. s, = 0.
3. s =1(<ns)

5. CFy=CFa,ny=1
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Figure 3.7. D(F) of Example 3.5.

k CFrs

1| {fs}

2 | {ds, fa}
{d1, f5}

3| {{ds, fs},{fe} }
{ds, ds, fa}
{ds, f1, fa}
{ds,ds, f1}

4 | {d1,da,ds, fo}
{di, fa, ds, f2}
{ {ds, fs},{d1, fs} }

Table 3.4. F-cycle families in D(F) of Figure 3.7.
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*

0

c}-n < C}-I

fa2a = fa

fai=h
X X

C}-tll1 C]:41 W

6
fa=fa i fu=Ff f;

Figure 3.8. The arboresence generated by the choice algorithm
in Example 3.10.



CHAPTER 3. THE POLE ASSIGNMENT PROBLEM: A STRUCTURAL APPROACH

6.

10.

42

fa1 = f3 and (CF73, f3) added to 7. t, = 0.

Pass
Satisfied. f3 = fo1 = f3

k=3

- CFa1, CFs, CFas, CFay and (f5,CFa), (f3,CF32) ,(f5,CFss),

(f2*,CF3q) added to T. s3 =0

. S3=1(<Tl§)

Terminate the path (CF3; contains fs = f3).

83 =2 (< n§)

. Cf?; =C.7‘-32, n;‘,’ =1

fa, (CF3, fa) added to T. ¢3=0
t3 =1 (= n3)
Pass

Satisfied. f3 = fa1 = fy.

k=4

. CF41,CFy42,CF g3, (f5,CFq), (f3,CFa2), (f3,CF43) added to T s4=0

sy =1 (< nf).
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5. CFy;=CFqa,n; =1

6. f2, (CF;, f2) added to 7. t4 =0
7. t4 =1 (= n}).

8. Pass

9. Violated. (fs and fs appear in disjoint cycles, with no corresponding
(d,, f;) pair ). Terminate the path.

7. ty=2(>nj3)

3. s4=2(<nY)

5. Terminate the path. (CF4, contains fy = f3).
3. s4=4(>n3)

4. k=3

1. t3 =2 (> nj)

3. s3 =3 (< n3)

5. CF3 =CFa3,n3 =2

6. far = f1, fa2 = fs, (CF3, f1), (CF3, f4) added to 7. t3 = 0.
7. t3=1(< n3)

8. Assign f4 to branch (CF3, fa).

9. Not satisfied (f3 and fs should be grouped by f; (d-edge) and fi, but

fs does not appear in every cycle of fi.). Terminate the path.
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7.

10.

v

Assign f1 to (Cf;,f;«;z)

Violated. Terminate the path.

ts = 3 (> n3)
s3 =4 (=ng)
. Cf;:C}'u,n;:l.

fa1 = fi and (CF3, f31) added to 7. £3 =0

ts =1 (=nj3)
Pass
Satisfied. f} = fa

k=4
CF41,CF42,CF43 and (f3,CFys), s =1,2,3 added to 7. s, =0

sq=1(< ng).

. CEICI";],'R;:].

Add f41 = f2 and (Cf;,f.u) to 7. t;, =0
ty=1(=nj)
Pass

Satisfied. f; = fa = f2

44
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10. Pass

11. fu = (fG’f37f1vf2)7 f4 = f5 =0, Cf; = {f6}7 C}—; = {d57f3}a
C]-—; = {d47d57f1}7 Cf: = {dl,d47d51f2}'

Hence the response is positive and the chosen f,, the corresponding particular
simple f-cycle families, and the fixed values assigned to the remaining edges

are as displayed in step 11 above.

3.3 CLASSES OF STRUCTURALLY
POLE ASSIGNABLE SYSTEMS

In this section we show that certain classes of systems which are known
to be generically pole assignable by state or dynamic output feedback
satisfy conditions of Theorem 3.2 and hence demonstrate that Theorem 3.2

characterizes a non-trivial class of pole assignable structures.

3.3.1 Structurally Controllable Systems
With State Feedback

Consider a system described by
§: &= Az + Bu, (3.14)
and a full state feedback law
F: u=Frz, (3.15)

where £ € R™ and u € R™. Since F is a special case of static output feedback
with states considered as outputs, the resulting closed-loop system S(F) can

be represented by the reduced system structure matrix

S(F) = A B (3.16)

F O
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Let the corresponding open- and closed-loop system digraphs be D, = (X' U
U,Eu:) and Dyo(F) = (X UU, E,: UEF). We state our main result concerning
S(F) as:

Theorem 3.3 The following are equivalent.

(a) S is structurally controllable.
(b) S(F) is generically pole-assignable.

(c) There exists a choice of n feedback edges such that when the remaining
feedback edges are assigned suitably fized weights, D,,(F) satisfies the

conditions of Theorem 3.1.

The proof of Theorem 3.3 is based on the following two lemmas.

Lemma 3.4 Let D, = (X U {u},£) be a cactus. Then there ezists an

enumeration of the state vertices such that

(a) if z; is on a non-terminal bunch and z; is on the terminal bunch, then

t <7,

(b) of (zi,x;) € € and z; 1is not the tail of the distinguished edge of some
bud, then j =i+ k+ 1, where k is the total number of state vertices on

the precactus with origin z;.

Proof: Using a modified depth-first search algorithm [46], scan first the
non-terminal bunches (if there are any) in any order, and last the terminal
bunch of D,, and assign the integers 1,2,---,n to the state vertices during
the scanning process according to the following simple recursive scheme: Let

the current vertex being visited be z;. If there is a cactus or precactus with



CHAPTER 3. THE POLE ASSIGNMENT PROBLEM: A STRUCTURAL APPROACH 47

origin at z;, then replace D, by this cactus or precactus (with z; taking the
role of u) and repeat. Otherwise, let the unique vertex adjacent from z; be

»n

z*. If z* is not yet assigned an integer, let ¢ « ¢ + 1, z; = z*, and repeat.
Otherwise, z* should be adjacent from the root of the cactus or precactus

currently being scanned. Continue with another bunch.

It is obvious that this scanning of D, results in an enumeration of the
state vertices which satisfies the requirements. To illustrate the scheme,

enumeration of the vertices of a simple cactus is shown in Figure 3.9. O

Figure 3.9. Enumeration of the state vertices in a cactus.

Lemma 3.5 Let S = (A, B) be structurally controllable. Then there ezists
a fized feedback matrizx Fy and a column b; of B such that

(a) the nonzero elements of A+ BF, and b; are algebraically independent,

and

(b) the system Sy = (A + BFy,b;) is structurally controllable.
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Proof: If (A,b;) is structurally controllable for some i, let F; = 0.
Otherwise, let D,, be spanned by a union of cacti Dg,D., -+, Dy with
roots u;,, Uiy, Ui, and tips Tn,, Tny4ngy " ) Tny4eminy, Where 1 < k < m,

1<i < - <ig<m,andny +ny+ -+ ng =n. Let F; = (f,,) with

1, fp=d4,q=n1 4+ ---+n_1,forsome2 <<k
fra =

0, otherwise,

and let ¢ = ¢;. Then, since elements of (A, B) are algebraically independent
and nonzero elements of F are fixed as unity, the elements of (A + BF;, b;)
are also algebraically independent. Moreover, S; is spanned by a cactus

obtained by coinciding roots of D,y with Zp, 4egn, [ =1, k= 1. O

Note that Lemma 3.5 is a structural counterpart of the well known
algebraic result [47] that if (A, B) is controllable then for almost all Fj,
(A + BF},b;) are controllable.

The following example demonstrates the result of Lemma 3.5.

Example 3.6 Consider a system & = (4, B) given by

(au 0 0 0 0O (bn 0 O
0 0 0 0 00O br 0 O
0 asza 0 0 0 0 0 0 0
A= , B=
0 0 0 Q44 00 0 b42 0
asi 0 0 0 0 0 0 b52 O
0 0 0 0 00O 0 b6z bes

The corresponding digraph, D, can be obtained as in Figure 3.10(a)

(A, B) is structurally controllable since D is spanned by the collection of

cacti Dy, Dca, D3 which are defined by the vertex sets Vy = {1, 21, 22, 23, },
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(a) (b)
Figure 3.10. D(F) of Example 3.6.

Ve = {u2, 24,75, }, Vez = {us, 7, }, respectively. On the other hand, observe

that each (A4, b;) is structurally uncontrollable, : = 1,2, 3.

Let us choose Fi = (fp,) as

r

000O0OO0@O

FF=l001000

000010



CHAPTER 3. THE POLE ASSIGNMENT PROBLEM: A STRUCTURAL APPROACH 50

and consider the system S; = (4 + BFy,b;) where

- - r -
an 0 0 0 0 0 bll
0 0 o0 0 0 O b1
0 a2z 0 0 O O 0
A= , b=
0 O b42 ag4 0 0 0
as; 0 bz 0 0 O 0
L 0 0 b 0O bz O 0

Elements of (A4 + BF),b;) are obviously algebraically independent. The
digraph associated with &; is as shown in Figure 3.10(b), from where

structural controllability of S; can easily be concluded.

We now prove Theorem 3.3.

Proof of Theorem 3.3: Due to Lemma 3.5, it suffices to give the proof

for single-input case.
(a) & (b): Obvious
(¢) = (b) : Theorem 3.1

(a) = (c) : Let the system digraph D;, be spanned by a cactus D., whose
state vertices are enumerated as in Lemma 3.4. Let the feedback edges be
enumerated in the same way so that f; = (z;,u), ¢ = 1,2,---,n. Since all {-
cycles in D, (F) pass through vertex u, conditions (¢) and (i) of Theorem 3.1
are readily satisfied. The enumeration of the state vertices guarantee that for
i =1,2,---,n, any state vertex z; with j < ¢ either lies on the complementary
path of f; in D.(F), and hence belongs to the f-cycle defined by f;, or belongs
to a d-cycle in D.(F) which has no vertex in common with the complementary
path of f;. Let CF; denote the union of ‘these cycles in D(F). Obviously, CFr
is a simple f-cycle family of width ¢ which contains f;. (For example, referring

to Figure 3.10, CFg consists of the f-cycle {(u,z1), (z1,23), (z3,zs), (6,u)}
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and the d-cycles {(z2,72)} and {(z4,zs),(zs,24)}). This proves condition
(711 — a) of Theorem 3.1. Now, let CF; be any simple f-cycle family of width
¢ which includes an f-edge f; for some j < :. If CF; contains a d-edge which
does not belong to the edge set of D,, then this edge does not appear in
any CF7, and condition (4i¢ — b) of Theorem 3.1 is readily satisfied for CF;.
Suppose all the d-edges of CF; belong to D.. Since CF; covers exactly i
vertices, it covers a vertex xx with k > 7. Then, the edge originating from z;
in CF; is a d-edge (the only f-edge in CF; is f; which originates from z; and
j < k which does not appear in any CF7, I < k. Again, (77 — b) is satisfied.
This completes the proof. O

3.3.2 A Class of Structurally
Controllable and Observable Systems
With Dynamic Output Feedback

Consider a single input/single output system

S: z = Az +bu

(3.17)
y = 'z
to be controlled by a dynam'ic output feedback of the form
S: & = As+by
(3.18)

u = Ti+fy

where £ € R* is the state of the controller §. It is well known [48] that the
closed-loop system consisting § and S is the same as the one obtained by

applying a constant output feedback of the form

Fa: = (3.19)



CHAPTER 3. THE POLE ASSIGNMENT PROBLEM: A STRUCTURAL APPROACH 52

to an augmented system

T (A 0 z b 0 u
Sa: = +
z 0 0]z 0 I|]| w.
. < (3.20)
Y T 0 T
Ye 0 I I

Thus the pole assignment problem by dynamic output feedback is essentially
the same as the pole assignment by constant output feedback, and hence, can

be attacked with the graph-theoretic approach of Section 3.2.2.

We assume that S is structurally controllable and observable, that is, it
has no structurally fixed modes. Let D(f) be the digraph of the closed-loop

system consisting of S and the (scalar) constant output feedback
F: u= fy.

Then, § having no structurally fixed modes is equivalent to the following two

conditions [36]:

(a) D(f) contains a cycle family CF of width n.

(b) D(f) is strongly connected, that is, each state vertex reaches every

other either in D, or through the feedback edge (y,u).

We further assume that each cycle in CF has a vertex in common with some
input-output path in D. This is a crucial assumption that enables us to define
the auxiliary variables fj in ( 13) using simple polynomials ¢, as will become

clear in the following development.

We now choose the order of the controller $ to be # = n — 1, and fix its
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structure as

(0 0 - 0 fln_l "A b
bn—l
10 0 &,_o A
- N bn—'Z
A= 101-0 a3 |> b=
(3.21)
by
00 --- 1 & - .
T =1oo0 .0 1 |, f=f

where @;, b;, i = 1,2,---,n — 1, and f are variable feedback gains. Thus, of
the n? elements of F, in (3.19), n? — (2n — 1) are fixed at 0 or 1 with the

remaining 2n — 1 left as variable parameters.

With S chosen as above, the closed-loop digraph D,(F,) which corre-
sponds to the system S,(F,) has the structure shown in Figure 3.11.

7/
/
4
/
/
/
/
/
/
/
/
/
/
ﬁn-l" E . Yn-1
\
\
\
\
\
\
\
\
\
\
\ .
\ .

Figure 3.11. Illustration of the closed-loop system digraph D,(F,).

We now prove the following result about pole assignability of S,(F,):



CHAPTER 3. TIHE POLE ASSIGNMENT PROBLEM: A STRUCTURAL APPROACH 54

Theorem 3.4 Suppose that D(f) contains a cycle family of width n, each
cycle of which has a vertezr in common with some input-output path in D.
Then Do(F,) satisfies the conditions of Theorem 3.2 with n replaced by n, =

2n — 1.

Proof: Referring to Figure 3.11, we first note that D,(F,) = (VUV,EU
£ U &), where D = (V,£) is the digraph of S, D = (V,€) is the digraph
associated with the fixed parameters of §, and &; is the set of (variable)
f-edges corresponding to the feedback parameters d;, bi,1=1,2,--+,n— 1;
and f. Thus D,(F,) has n, = 2n—1 state vertices, which is exactly the same
as the number of f-edges. We will show that these f-edges can be suitably

ordered so as to satisfy the conditions of Theorem 3.2.

We first observe that f-cycles in D,(F,) are of one of the following forms:

Cr = {(yu)(u,y)}

Cir = {(§1, %), (i, §1)}

Cur = {(y,%i), (@i, 1), (91, ) (u,9)}
where (u,y) denotes a path in D and (@;,%1) denotes a path in D.
Consequently, no f-cycle in D,(F,) contains more than one f-edge, satisfying
condition (i) of Theorem 3.2. Also, only f, = (y,u) and an f-edge f,; =
(41,%), 1 = 1,2,---,n — 1, can appear in disjoint f-cycles ( of forms C; and
C11, respectively). It is not difficult to see that for every such pair (f,, fu),
d, = (h,u) and f,; = (y, 4;) form a unique pair which satisfies condition (zz)’
of Theorem 3.2.

To continue the proof we need the following result:

Fact 3.4 D(f) has a subgraph D with the following properties:

(a) D contains a unique cycle family CF of width n.

(b) Each cycle in CF has a vertex in common with some input-output path.
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(c) D is minimal in the sense that removal of any edge violates (a) or (b)

above.

Proof of Fact 3.4. Pick an arbitrary cycle family CF of width n in
D(f), and a minimal set £, of additional d-edges such that each cycle in CF
has a vertex in common with some input-output path in the subgraph D,
formed by CF and these additional d-edges. Include the f-edge into D, if not
already included. If D contains another cycle family CF of width n, then
one of the cycles in CF contains a d-edge which is not included in CF. The
subgraph D of D obtained by removing this particular d-edge still contains
a cycle family of width n each cycle of which has a vertex in common with
some input-output path. Replace D by D, CF by CF, and repeat the same
argument. Each time by deleting a d-edge from D and modifying CF, we
eventually obtain a subgraph which satisfies properties (a) and (b). Finally,
removing some d-edges from &, if not needed for (b), minimality of D with
respect to the properties (a) and (b) is guaranteed. This completes the proof.

g

We note that in D in Fact 3.4 may or may not contain the f-edge (y, ).

We continue with the proof of Theorem 3.3 by considering the two cases

separately:
Case I: D does not include the f-edge (y, u).

In this case, CF is a d-cycle family of width n. Let D,(F,) be the digraph
obtained from D,(F,) by replacing D with D. Since ﬁa(fa) is obtained from
D,(F,) by removing some d-edges of D, it suffice to complete the proof for
Do(F.), because D,(F,) still satisfies conditions (i) and (i)' of Theorem 3.2,

and if it also satisfies condition (i:7), then so does D,(F,).

Let {Py, P2, -, P,} be a family of input-output paths in D such that any
d-cycle in CF has a vertex in common with some P;. Define CF; to be the
subfamily of all cycles in CF which has no vertex in common with any P,

I > j. The definition of ’ﬁj and CF; is illustrated in Figure 3.12 for a simple
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D:
u
\
CFo=10 N
CF1 ={C2} T

6?2 =CF = {Ch CZ’ C37 C‘i}

Figure 3.12. Definition of P; and CF;.

digraph D. Note that CFo = 0, CF, = CF,and CF;.1 CCFj, j=1,2,---,s.
We further define the integers a; and j3; as the number of state vertices in
75]- and CF;, that is, a; = '}’(75]') and B; = v(CF;), j = 1,2,---,s, and let

ag41 = -1 = Po = 0 for convenience. It is easy to see that «; and f; satisfy

(a) lsﬂl<,32<"'<ﬁ_,:n

(0) aj+Bi-i1<ajp+6;-1, 1<j<s.

We partition the integers {1,2,---,n, = 2n — 1} into two groups at s

levels as
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Level Group A Group B

0 1,---,ap -1 oy, + 0~ 1

1 ay+ By, o2+ 81+ 61— 1 a2+ b1+ b1, a2+ 814+ P21

P ap+ Bp—1 + Bp,---app1 + PBp+ Bp—1 apy1+ Bp+ Bpy -+ opp1 + Bp 4+ Bpya — 1
s—=1 o314 B2+ 851,05+ Bey+ o1 —1 s+ Bs1+ L1y as+ 851+ 85— 1

s as+ Bs—1+ Bsy-+y2n— 1.
where Group A/ Level 0 is empty if a; = 1, and Group A /Level s is empty if
o5+ Bs-1 = n.
We now define the feedback edges fx and the associated cycle families
CFr, 1 <k <2n—1, for D,(F,) as follows:
(a) If k € Group A/ Level p, that is, if
ap+ Bp-1+ Bp S apr1 + B+ Bp — 1,
then
fe = (1, 0ik-p,),
CFe = {(@r-p,,51): (91, 8x-5,)} UCT,
(b) If k¥ € Group B / Level p, that is, if
apy1+ Bp+ Bp Sk S apr + Bp + Bpir — 1,
then

fk = (y7 ak—ap‘H _ﬁp)

c?:; = {(ﬁk—a,.,.; -Bp» gl)a (:‘;h u)’ ﬁp-{-l ’ (y’ ak—ap.‘.] —ﬂp)} U C‘:?:.p

Note that in case (a)
= A(@k-p,,51)) + 7(CFy)

= (k= Bp)+ B, =k,

v(CFY)
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and in case (b)

YCFL) = Y((Gk-apsr—pyr 91)) + ¥(Pps1) + ¥(CF,)
= (k — Qpi1 — ﬂp) + apy1 + B, = K,

so that th: is an f-cycle family of width k in ﬁa(fa). By definition, it includes
fr and no other f-edge, satisfying condition (22 — a) of Theorem 3.2. Finally,
to prove condition (i — b), let CFy be a simple f-cycle family of width k,
which includes some f-edge f; with [ < k. We consider all possibilities for k
and [:

1. k € Group A or B / Level p, I € Group A/ Level ¢, ¢ < p. In this
case, CFp = {m, (1, ti-p, )} U CF4, where CF,is a d-cycle family in
D. If CF4 contains a d-edge which does not belong to CF, (remember that
k € Level p), then that d-edge does not belong to any CF,, r < p, either.
Since any j < k is at some level r < p, and C’:?'; includes CF,, this particular
d-edge appears in no th;, j < k, and condition (3¢ — b) is satisfied. If CF
does not contain such a d-edge, then minimality of D implies CF,; C C't7:,,.
Then, v(CF4) < B,, and we must have ¥(CFi) = | — B, + B,, with equality
holding only if CF4 = Ct?-'p. This, however, is impossible because

(a) If ¢ = p, then either 7(CF) <1< k or v(CFi) <1< k (for
v(CFy) =1 =k can occur only if CF; = CF}),

(b) if ¢ < p,thenl—Fe+ 0y < agp1+Bi+Fp—1 < app1+Bp+Bp~1 < k-1,
contradicting the assumption that 7(C37k) = k.

2. k € Group A/ Level p, I € Group B/ Level ¢, ¢ < p. In this case,
CF, = {(a,_,,w,_,,q,gl),(gl,u),75t,(y, Uimogyr-,)} U CF4 where P, is some
input-output path in D, and CF, is some d-cycle family in D. As in case 1, if

CF, contains a d-edge which does not occur in CF,, then condition (#1i — b)
is satisfied. On the other hand, if t < p + 1;then P, contains a d-edge which
has no vertex in common with any C:f',, r < p, and again condition (z¢7 — b)

is satisfied. The only remaining possibility is the case when CF; C CF,
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and ¢ < p. This case, however, can be shown, as in case 1, to lead to a

contradiction that 7(thk) < k.

3. k € Group B/ Level p, | € Group B/ Level ¢, ¢ < p. CF} is as in case 2.
Again, if CF, contains a d-edge which does not occur in CFp orift>p+ 2,
then condition (4i¢ — b) is satisfied. Otherwise, CF; C CFpand t < p+1,
then V(Cffk) < k unless | = k and CF, = C:?-'p, in which case CF; = Ct?-—,:,
and if ¢ < p, then again v(CFk) < k, both contradicting the assumption on
CFk.

As a result, condition (4i¢ — b) is also satisfied, and the proof is complete

for Case I.
Case IL. The f-edge (y,u) is included in D.

In this case, CF is an f-cycle family of width n, which includes the f-
cycle {(u,y),(y,u)} with P = (u,y) being some input-output path in D.
Let the family of the remaining d-cycles of CF be denoted by CF. Let
{P1,Pa, -+, Ps}, Pi # P, be a minimal family of input-output paths in D
such that any d-cycle in CF has a vertex in common with some P;, and let
P,41 = P. We now define subfamilies of CF;, 1 < j < s, the same way as
CF;’s are defined in Case I, but with respect to CF and {P;} rather than CF
and {P;}, and similarly define integers «; and 8;, 1 < j < s, in terms of CF;
and P;. With these definitions, the proof follows the same lines as the proof

of Case I, except that the integers at Level s are modified as

Level GROUP A GROUP B

3 Qo+ﬁs—1+ﬁh"'vas+l+ﬂa+ﬁs—1 Ag41 +ﬁa+5h"'.2n—1,

where, obviously, a,41 + s = n. This completes the proof of Theorem 3.4. O

The following two examples illustrate the ordering of the feedback edges,
and the definition of D}, 1 < k < 2n — 1, for D.(F,) of a structurally
controllable and observable system controlled by dynamic output feedback,

according to the scheme given in the proof of Theorem 3.4.
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Example 3.7 The digraph D(f) associated with a structurally controllable

and observable single-input/single-output system under feedback u = fy,is
given in Figure 3.13(a). Figure 3.13(b) shows a subgraph D of D(f), which
satisfies Fact 3.4.

(a) (b)

Figure 3.13. D(f) of Example 3.7.

The corresponding cycle family CF of width n = 6 is a d-
cycle family (Case I in the proof of Theorem 3.4) defined as CF =
{ {d7,d6,d5,d2},{d4},{d10} } Then: 'P~1 = {d17d2’d37d9}’ ’P~2 =

{d:,dz,ds, ds, d11 } are the input-output paths such that any cycle in CF hasa
common vertex with either P; or P;. Thus we have, CF; = {d10}, CF,=CF,
so that a; = 3, @z = 4, f; = 1, B2 = 6, and the partitioning of the integers

k=1,2,--+,n,, n, = 11, becomes

Level Group A Group B

0 1,2 3
1 4,5 6,7,8,9,10

2 11 -
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Figure 3.14 shows the corresponding definition of the feedback edges in
D,(F,). Then, our choice of Ct?-';, 1 <k <11, becomes

CFy={f}
CFy=1{f2}
CFy = {ds,ds,ds, dy, f3}
CFi={fi}
CF5 = {fs}

CFe = { {ds},{d11,ds,ds,d2,d1, f&} }

CF; = {{ds},{di1,ds, ds,ds,ds, f1} }

CFg = { {ds}, {di1,ds,ds,d3,d1, fa} }

Figure 3.14. D,(F,) illustrating the ordering of the f-edges corresponding to
D(f) of Figure 3.13(a).
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er; = { {d4},{dn,ds,ds,dz,dl,fg} }
er;o = { {d4}7{dllad87d57d2ad17f10} }

C:T;l = { {d4}, {dlo}, {d77d67 d57d2} }

Example 3.8 Consider the digraph D(f) given in Figure 3.15(a). The
subgraph D of D(f) (there exists only one) is shown in Figure 3.15(b).

(a) (b)

Figure 3.15. Illustrations of (a) D(f), and (b) D of Example 3.8

CF is an f-cycle family (Case II in the proof of Theorem 3.3 ) defined as
CF = { {ds,dr,d2,d1, f},{ds,ds} }. Then, we have P = {d;, d,,d7,ds}, and
CF = {ds,ds}. Thus, P, = {dy,ds,ds}, P, = P, CF1 = CF and a; = 2,
ay = 3, By = 2. This results in a partitioning of the integers k = 1,-- -, n,,

n, =9, as

Level Group A Group B

0 1 2,3

1 456 78,9



CHAPTER 3. THE POLE ASSIGNMENT PROBLEM: A STRUCTURAL APPROACH 63

Ordering the feedback edges as shown in Figure 3.16, we define CTF;,
1<k<9, as

C:f; = {fl}
C}:; = {d9)d3adl’ f2}

C‘?; = {d97 d3a dla f3}

C:7-'; = {f4}
C:?-'; = {fs}
CFe={fe}

CF, = { {ds,ds}, {ds,dr,d2, d1, f~} }
CFg = { {ds,ds}, {ds, dr,ds,d1, fs} }

C:'ﬁ-; = { {d5’d6}7 {d8ad7)d2,d1a f9} }

Figure 3.16. D,(F,) illustrating the ordering of the f-edges corresponding to
D(f) of Figure 3.15(a)

We note that our assumption that each cycle in the cycle family CF of
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width n has a vertex in common with some input-output path is obviously
not essential for structural pole assignability of S using a dynamic output
feedback controller . However, it is needed for proving generic pole
assignability using Theorem 3.2. On the other hand, we have observed
through the study of several examples that it might be possible to remove this
assumption by modifying Theorem 3.2 to include more general cases when
¥y of (3.11) contains linear terms in addition to a single quadratic term. We

illustrate this situation by the following example.

Example 3.9 Consider the digraph of Figure 3.17. The only cycle family
of width n = 4 in D(f) is CF = { {d2,d1, f},{d7,ds,ds} } and the cycle
{dr,ds,ds} in CF does not have a vertex in common with any input-output
path. Therefore, we cannot apply Theorem 3.4 in this case. Let us choose

the controller § as before and consider the enumeration of the feedback edges

for the resulting D,(F,), as shown in Figure 3.18.

f
////" \\\\\\\
o —o
u y
d; d,
ds
X
d, 3
dg
X4

Figure 3.17. D(f) of Example 3.9.

Obviously, conditions (z) and (iz)’ of Theorem 3.2 are satisfied and thus
each cycle family contains at most two variable weights. We claim that for
the definition of the feedback variables as in Figure 3.18, the system satisfies

the conditions of Corollary 3.1. To see this, we first obtain the cycle families

of D,(F,), as given in Table 3.5.
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Figure 3.18. D,(F,) illustrating the ordering of the f-edges for D(f) of

Figure 3.17.

Let us now define fl = f], f2 = f2 +f1f3, f3 = f37 f~4 = f4> _fs = J5
fG = dgdlfs + d2d1f1f4 + f5, f7 = f7 + f1f5. Then, _(} of (312) can be written

as
[ 1 [
0 d,dy 0 1 0 0 0
dsds 0 dad, 0 1 0 0
0 0 0 dyds 0 1 1

drdsds | T | drdedsdady 0 d7deds dsds O 0
0 0 drdegdsdydy, 0 dideds dyds 0

0 0 0 0 0 0 drdeds

0 ] 0 0 0 0 0 0

o
S
2

0

d:deds
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k CFrs

1| {dz,di, f1}

| {fs}

2 | {ds,d5}

{d2,dy, f2}

{fa}

{ {d2,ds, fi}, {f3} }

3 | {d+,ds,ds}

{dz, dy, fe}

{ {ds, s}, {fs} }

{fs}

{{d2,di, f},{fa} }

4 | {ds,d1, fr}

{ {d7,ds,ds}, {d2,ds, 1} }

{ {dr,de,ds}, {fs} },

{ {ds,ds}, {fu} }
{{d2,d1, 1}, {fs} }

5| { {dr,ds,ds},{dz,ds, f2} }

{ {ds,ds}, {fs} }

{ {dr,ds,ds},{d2,d1, i}, {fs} }
6 | { {dr,ds,ds},{d2, s, fe} }

{ {dr,ds,ds},{fs} }

{ {dr,ds,ds}, {d2,d1, 1}, {fa} }
7| {{dr,ds,ds},{d2,ds, fr} }

{ {d7,ds,ds},{dz,ds, f1},{fs} }

Table 3.5. F-cycle families for D,(F,) of Figure 3.18.
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The diagonal elements in E are nonzero, and an argument similar to that used
in showing the generic nonsingularity of the coefficient matrix in the proof of

Theorem 3.1 can be used to justify that E is generically nonsingular.

Before closing the section , we finally note that, provided Theorem 3.2 is
modified to remove the assumption mentioned in Theorem 3.3, our second
assumption which restricts S to be a single-input/single-output system can
easily be relaxed. One way of doing this is to employ preliminary constant
output feedback to reduce the system to a single-input/single-output system
without destroying structural controllability and observability, and then
design S. A more efficient way, which also allows generic pole assignment
using a smaller order dynamic compensator is to imitate the well-known
results of [49,50] in a structural setting. This, however, requires a structural
interpretation of controllability and observability indices of S, which is not a

straightforward task, as we consider in the Chapter 5.



Chapter 4

STABILIZATION:
A STRUCTURAL APPROACH

This chapter is devoted to a qualitative analysis of the stabilization
problem, again based on the structure of the pair (S, F). We first give an
algebraic result on stabilizability of (S, F). Then, based on this result, we

develop sufficient conditions for generic stabilizability of (S, F) in terms of

the system digraph, D(F).

4.1 ALGEBRAIC FORMULATION

Consider the system S of (2.1) with a feedback F of (2.4) applied to it.
The characteristic polynomial of the resulting closed loop system S(F) is p(s)
given by (3.1). Let the points f = (fi, fa,-++, f.) and p = (p1,p2,- -, ps) be

defined as in Section 3.1 . In the following, we propose and prove a result on

the stabilizability of S of (2.1) with F of (2.4):

Lemma 4.1 Let f be partitioned into f, and f. as in Lemma 8.2, with
feedback wvariables in f, renumbered as fi,fa, -, fn. Suppose that the

mapping § between p and f can be written in the ‘staircase’ form

68
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p=a(fo)=cat(erfi +ea)bur+ - H(anfu + cxdbrr+ -+ +{anfn + n)bm
Pr = gx(fo) = ox ok fk + cx)brr+ - F(anfn + cn)bnx (4.1)

Pn = §n(fv) = Qan +(anfn + Cn)bnn
where ak, bij, cx are polynomials in fy, -+, fio1, 1<k <n,1<j<k-1,
with ar # 0 # bix and ar’s are constants. Then S of (2.1) is stabilizable with

F of (2.4).

Proof: Suppose that conditions of the lemma hold, and let o = 0,

k=1,2,---,n. Then, p(s) can be written in a nested form as
p(s) = s[---sls(s + fiar(s)) + fota(s)] + - fac1@n-1(8)] + faga(s)  (4.2)

where fi = axfi + ¢, and gx(s) = bpas*¥ 1+ bos* 24 4 by, 1 < k < n. We
use induction to show that (4.2) can be stabilized using a recursive root-locus

technique. For this, we define

pi(s) = s[---s[s(s + fim) + faqo] + - froaqr-1] + g

(i) For k =1, pi(s) = s + flql = s + (a1 f1 + ¢1)b11 can be stabilized by

choosing f, so as to place the only root of p;(s) on the negative real axis.

(77) Suppose that pi_;(s) is stabilized by a proper choice of fi, fa,- - -, fi_1,
and consider the root locus of py(s) = spr_1(s) + frqk(s), with respect to fi.
Since spk-1(s) has k roots, all stable except one, which is at the origin, and
deg (q) < k — 1, fi can be chosen to stabilize all the roots of pi(s). Since
fi = ar(fi, fo, - fa=1) foter(fiy fas - fe-1), fi can be determined uniquely

in terms of fk and fi, f2,- -, fr—1. This completes the proof for the case when

a,=0,1<k<n.

We note that , starting with an arbitrarily large f1, and using high gains at
each step, px(s) can be stabilized with arbitrary degree of stability. In other
words, all the roots of p(s) can be placed to the left of the line Re(s) = —ag

in the complex plane for arbitrarily large real oo. With this observation
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in mind, replacing pi(s) by pi(s) — ax in the proof above, we can stabilize
pr(s) — ax with arbitrary degree of stability (no matter how large ay are),

implying stabilizability of pi(s), 1 < k < n. This completes the proof. O

The examples below demonstrate this result:

Example 4.1 Consider the system given by

010
r = 000 |x+ u
01 0| 0
_[100]
R R

and controlled by the feedback

50,
fr fa
The closed loop characteristic polynomial is obtained as

p(s)=s2—(fi+ f3)s* = (fa+ fo— fifs)s + fifs.

Thus, we obtain the mapping between p and f as

p=—fi—fs
pe=—fa—fa+ fifs
p3=fifs

which can be written in the staircase form as

pr=(fH)(=1)+(f2)(0) +(fs)(-1)
P2 = (f2)(-1)+(fa)(-1+ f1)
b3 = (f3)(f1)

and hence is stabilizable by Lemma 4.1.
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Example 4.2 Let the system equations be given as

(0 0 0] 0
z = |1 00]z+}10 1]u
010 00
10 0]
= X
y 01 1|

and suppose that the allowed feedback has the form

uz[fl fz]y_
0 fs

This results in

p(s)=8*—(fi+ fa)s* —(fo+ Fs— fifs)s = (fa — fifs)

so that the mapping between p and f becomes

n=—hH—-1
p=—fi—fat+ fifs
pa=~fr+ fifs

and can be written in the staircase form as

1 =(f1)(=1) +(f)(=1) + (f2 — f1f3)(0)
P2 = (f2)(=1) +(f2 = ifs)(-1)

p3 = (f2 = fifs)(—1).

Therefore, this system is also stabilizable.

4.2 GENERIC STABILIZABILITY

4.2.1 Problem Formulation

71

Let us first give a definition of structural stabilizability, following the

previous definitions of certain structural properties.
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Definition 4.1 A system S of (2.1) is said to be structurally stabilizable by a
feedback F of (2.4) if there exists a system structurally equivalent to S which
18 stabilizable by F.

Now, as before, we associate a data point d € R* with the nonzero
parameters of the system structure matrix of &, which are assumed to be
algebraically independent. In this case, the relation in (4.1) can be expressed
as

p=§(d, f,) (4.3)
with ar = ax(d, fi), be; = b;(d, fi) and cx = ck(d, fi) polynomials in d and
fx 2 (fi,-r s fk=1), 1 £k <n, 1< 5 <k and ar = ax(d) is a polynomial in

d. Then, we have the following straightforward result:

Lemma 4.2 Let f, = (f1, f2,- -+, fa) and f. be as in Lemma 4.1 and suppose
that the closed-loop characteristic polynomial coefficients in (4.8) can be
written as in ({.1), with ar and by being nonzero. Then, S i3 structurally
stabilizable by F.

Note that, as in the case of structural pole assignability, structural
stabilizability is not a generic property, in general. It is clear, however, that

structural stabilizability implied by Lemma 4.2 is a generic property.

4.2.2 Graphical Conditions for Generic Stabilizability

We will use Lemma 4.2 in order to develop graphical conditions sufficient

for generic stabilizability.

Let D(F) = (V,€ U Er) be the digraph associated with the closed-
loop system S(F), in the usual way. The definition below allows for a
generalization of condition (it)' of Theorem 3.2 to any pair of edges of the

digraph.
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Definition 4.2 In D(F), consider a pair of edges, denoted by {e,,e,} which
never appear in the same cycle. Suppose that there corresponds to the pair

{ep, €4} @ unique ordered pair of edges (e,,es) such that,

(¢) e, appears in every cycle of e, but in no cycle of e, or e,, and

(b) to any two disjoint cycles C, and Cy of e, and e,, there corresponds a
cycle C, of e, which covers ezactly the same state vertices as C, and C,
cover, with no input and/or output vertices that occur in C, UC, taking

part in a cycle disjoint from C,, and vice versa.

Then, we say that {e,,e,} i3 a pair biased to (e,,es) and that any cycle family

of {ep, €5} 13 an accompanying cycle family of e,.

Note that, as in Fact 3 in the proof of Theorem 3.2, for a pair {e,,e,}
biased to an ordered pair (e,, €,), whenever e, appears in some product term
in g(d, f,) of (4.2), so does the product e,e,, and vice versa. Moreover, every
product term that contains e, in any gi(d, f,) can be grouped with another
term that contains the product e,eq, as By, (Bre, + Bpeepeq), with B, and G,

being the same in all such expressions.

We can now state and prove our first result on stabilization:

Theorem 4.1 Suppose that in D(F) there ezists a choice of n distinct f-
edges, renumbered conveniently as fi, fa,---, fn, which after converting the
remaining f-edges into d-edges by firing their weights at arbitrary wvalues,
satisfy the conditions listed below. Then, S is structurally (generically)
stabilizable with F.

There ezists an integer n, 1 < A < n, such that,

(2) for k =n,n—1,---,7, there ezist particular cycle families of width k,
denoted by CFy, such that f, € CFy, f; & CFy, 7 > k, and either of
the following holds:
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(a) Any cycle family of width | < k which contains fi either
contains some f; or is an accompanying cycle family of f;,
J> k.

(b) Any other cycle family of width k which neither contains nor
13 an accompanying cycle family of any f;, 7 > k, contains
either fi or a pair of edges {e,,e,} biased to (fi,e), for some
e such that if e, = fi (respectively e, = fi), then CF} does
not contain e, (respectively e,),

I <k.

(i1) With fi and all {e,,e,}, which are biased to ( fi,€) for some e, removed,
k > n, the remaining digraph satisfies Theorem $.1, with n replaced by

n— 1.

Proof: For k =n,n—1,.--, 7, existence of CF} as in condition (¢) implies
that each gy in (4.3) contains an identically nonvanishing term that contains

fx, but no f;, 3 > k. Let us denote this term by ar b}, fk.

Consider the case k = n, and suppose that condition (z-b) holds. If every

other f-cycle family of width n contains f,, then g, can be written as

gn(d’ fv) = anfn(b:m + bnn)

where for convenience, we let a,f,b,, represent sum of product terms
corresponding to other f-cycle families of width n, which contain f,. Then,
the arrangement of the product terms that contain f, in gx, £k = n,n —
1,---,2,1, as in (4.1) follows with ¢, = 0. If, on the other hand, there are
f-cycle families of width n which do not contain f, but which contain a pair
of edges {e,,€e,} as in condition (i-b), then every such cycle family is an
accompanying cycle family of f, and corresponds to a term including the
product ey,e, which can be grouped as Bin(Bnfn + Bpgereq) With B, and By,
being the same in all such expressions. This, however, defines nothing but the

grouping (an fu + ¢n) of the staircase form of (4.1), with ¢, = By.e,e,. Note
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that, this is consistent with the definition of ¢,, which is a polynomial in
d and f1, f2, -+, fa-1. Moreover, the condition which says that if e, = f;
(respectively, e, = fi) then CF; does not contain e, (respectively, e,),
guarantees that after this grouping, each gi still contains the product term

akb'i_kfk, k= n,---,2,1.

Alternatively, if (i-a) holds for k¥ = n, then f, appears in no gy,
k=mn,---,2,1, so that every product term in gy is considered in the grouping

(anfn + €n)bun and we are done since by =0,l=n—1,---,2,1.

For k = n — 1, if condition (:-b) is satisfied the same argument as above
applies. If, on the other hand, (:-a) is satisfied, then every product term in gy,
k=n-2,---,2,1, which includes f,_; is a term associated with the grouping
of f,. This implies that, every product term in g,_; not associated with f,
can be considered in the grouping of f,_1, i.e., in (@n-1fa—1 + ¢n-1)bu1,n-1

and again we aredone as b,_;; =0,l=n—-2,---,2,1.

The same argument can be repeated for k =n—-2,n —3,---,7 so that

we have the following structure:

g1(d, fo)= +(anfn+en)bnr 4+ (anfn + cn)bn
(flvf?v"'lfn—l)
Fn—1(d, fo}= +(enfn+cn)ban—1+  -+{@nfn + cn)bn,n-1 (4.4)
gn(d, fu)= on +anfn +ca)bnn  +--+(anfn + cn)bn,n
§n(drfv)= Qan +(ﬂn.fn + Cn)bnn

The part appearing in box in (4.4) is exactly the part that satisfies

condition (z7) of the theorem; and it is easy to show that by algebraic

manipulations we can get,
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Gild, o) —a1=(a1fy + c1)bua+ (22f2 + c2)bay+---+ (an—1fa—1 + cn—1)bn_1

g2(d, fo) —az2= (a2f2 + c2)b224+-- -+ {an_1fn_1 +en_1)bp_i2

gn—1(d, fo) —an_1= (an—1fa—1+en—1)bn_1,n-1

where ay, by, ¢y and ax, 1 <k <n-1,1<1 <k, are polynomials in d.
Note that condition (z:i-b) of Theorem 3.2 guarantees the existence of the
term apbiy fi, for all k, k =1,2,---,72 — 1. The rest of the proof follows from
Lemma 4.2. O

We illustrate Theorem 4.1 by few examples:

Example 4.3 Consider a system whose closed-loop digraph, D(F), corre-
sponding to

(fu 0 0 0 |
fa fa fz O
0 f2 faz fas
| 0 0 faz faa ]

is as given in Figure 4.1.

Let us fix f3 = fa3 = 0 and renumber the remaining nonzero feedback
variables as fi = fu1, f2 = fa2, f3 = fa1, fa = fas, fs = fas, fo = faa, f1 = fas.
The resulting f-cycle families are listed in Table 4.1. Consider the following
choice of CF*, k =n,n—-1,---,1

CF; = CFrn = {{dz da,ds,ds, fs},{dro, ds, d11,dr3,dh2, f7} }
CFs = CFa = {{ds,di, fi},{ds,dr,do,ds, fs}, {dra, 3, dr2, fo} }
CF: CFss { {d2, d3,ds,dy, f3},{d10,ds, ds, f5} }

CF; = CFa = {{ddi, fi},{ds,dr,do,ds, fi} )

c]:-; = CF3 = {dz,da,ds,dhfii}

CFy = CFn = {ds,ds,ds, f2}

CF; = CFu = {dz,dy, f1}

I
I
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Figure 4.1. D(F) of Example 4.3.

We observe the following:

For k = 7, any f-cycle family of width 7, other than CF7, contains either f;
or the pair {fs, fe} biased to (f7,d11). Moreover, CF; and CF§ do not contain
fe and fs, respectively, so that condition (i-b) of Theorem 4.1 is satisfied.

For k = 6, there are two f-cycle families, CFg; and CFg3, of width 6, other
than CFg, but CFe; is an accompanying cycle family of f; and CFg; contains

f7. So again, condition (z-b) is satisfied.

For k = 5, there exists only one f-cycle family, CFs;, of width 5, which
neither contains nor is an accompanying cycle family of fs or f7; but it

contains fs, and hence, condition (i-b) is satisfied.

For k = 4, there exists no f-cycle family of width 4, other than CF7}, which

neither contains nor is an accompanying cycle family of fs, fe or f7.

Finally, with 2 = 3, condition (¢¢) of Theorem 4.1 is satisfied for
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Y(CF)

w(CF)

{d2,d1, f1}

{dG) d5a d4v f2}
{dlo) d9) d8, fs}
{d14, dl37 d]Z) f6}

{d2’d37d57d43f3}

{d6)d77d97 d8, f4}

{ {d2)d1af1}7{d67d57d4,f2} }

{ {d%dl,fl}’{dlo,d9>d8’f5} }
{ {d2ad1,fl}’ {d14ad13,d12,f6} }

{d10, ds, d11, d13, dr2, f7}

{ {d2adl,fl}){dﬁad71d91d87f4} }

{ {ds, ds,ds, f2}, {d10,do, ds, fs} }

{ {ds,ds,du, f2}, {d14, dr3, dr2, fe6} }
{ {d0, ds, ds, fs}, {d14, d13, d12, f6} }

{ {d2,dv, f1},{ds, ds,d4, f2}, {d10,ds, ds, f5} }

{ {d2ad1’fl}7 {d6, d:’)yd‘h f2}7 {dl4ad13ad127f6} }
{ {d2ad31d57 d47f3}$ {dIOad97d87 f5} }

{ {d2)d37d5,d47f3},{d147d13,d127f6} }

{ {d63d77d9) d8,f4}’{d147d137d12)f6} }

{ {d27d1’f1}, {dIOad9>d87f5}v{d14ad137d12,f6} }
{ {d27d17f1}’{d107d9ad11,d137d127 f7} }

{ {dZadI’fl}a {d67 d7’ d97 d8)f4}7 {d14)dl3adl2yf6} }
{ {dG)dS’ d4a f2}7 {d107 d9) dB) f5}) {dl4,d]37d127f6} }
{ {dﬁ, d5)d4’ f2}, {dIO)dQ,dll)dl"B)dI?) f7} }

{ {d2,d1, i}, {de, ds,ds, f2},{d10,do, ds, fs}, {d14, d13, dr2, fe} }
{ {d2,ds,ds, dy, f3},{dro,ds, ds, fs}, {d14, d13, dr2, f6} }

{ {d2,d1, 1}, {ds, ds, da, f2}, {d10, d9, d11, d13, d12, fr} }

{ {d2, ds, ds, d4, f3}, {dro, do, di1, d13, d12, fr} }

Table 4.1. F-cycle families in D(F) of Figure 4.1.
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k =1,2,3 and hence the system is structurally stabilizable.

Indeed, the components of § can be written in the staircase form of (4.1)

g1 = H(1) + £2(0) + f3(0) + fu(0) + f5(0) + fo(0) + f+(0)
g2 = A1)+ f5(0) + £a(0) + fs(1) + fs(1) + f+(0)
gz = AW+ f1(1) + f(A)+ fs(f) + f2(0)
gs = Fa(F) + f5(F2) + fo( f2) + f2(1)
gs = B +fe(fs+ ) +F(R)
g6 = fo(frfs + fofs) + fo(f2)
g7 = F(f3)
with

fi = (—=dzdr f1)

fz = (_d6d5d4f2)

fs = (—dadsdds f3 + dadsd-d1de fi f2)

f1 = (—dedrdadsfs)
fS = (_d10d9d8f5)
fG - (_d14d13d12f6)

fr = (—diodedi3dr12d11 fr + drodediadizdsdrafs fo)
verifying the result of Theorem 4.1.

Example 4.4 Consider the digraph of Figure 4.2, whose f-cycle families are

listed in Table 4.2.

Choosing

CF;
CF;
CF;
CFi

= CFa
= CFa
= CFn

CFn

{ {d2},{ds}, {ds, do, d1o, fs} }
{ {d2},{ds}, {ds, dr, f3} }

{ {d2},{de,ds, f2} }

{ds,dy, f1}

we easily see that conditions of Theorem 4.1 are satisfied, with 7 = 4.
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Figure 4.2. D(F) of Example 4.4.

1(CF) w(CF)
1 | {ds,di, fi}
{d6yd4> f2}
{dsad7af3}
2 [ {{ds},{ds,dr, i} }
{ {dZ}’ {dsad'h f2} }
{ {dZ}’ {d8,d7) f3} }
{ {d5}7 {dg,d-,v, f3} }
{d87d9’dloa f4}
3 | {{d2},{ds}, {ds,dr, fs} }
{ {d37d1vf1}7{d81d9v d107f4} }
{ {dﬁadh f2}7{d8>d97d107 f4} }
{ {d2}’ {d8id9>d107f4} }
{ {d5}7 {dB)d97d10,f4} }
4 { {dz}v{d5}7{d87d97d10,f4} }
{ {ds}, {d3,dr, f1},{ds, do, dr0, fu} };
{ {dZ}) {dGad4a f2}” {dB’ d8,d10a f4} }

Table 4.2. F-cycle families in D(F) of Figure 4.2.
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Example 4.5 Consider the digraph D(F) of Figure 4.3, whose f-cycle

families are given in Table 4.3.

flo
————— ‘-_‘\~§
- T~
- DN
/// Uz ~
// f3 ————— Y3 ~~o N\
Vs Y o ~o N
/ - d \ \\
///// ? de f2 \\\\
/ d1 dZ d d d !
u & o - 4 = 5 7 \%
3 \\\\\ b hd hd - y2
5 \\\\
s~ Gs dig
AN 7’ u,
\\ ’/
\\s_’__,
f1

Figure 4.3. D(F) of Example 4.5.

1(CF) w(CF)
1 {ds, do, f1}
{d7)d6af2}
2 {d37d27d17f3}
{ {d97d107f1}7{d77d6af2} }
3 { {do}, {dro, f1},{d3,d2,ds, f3} }
{ {d7,ds, fo},{ds,d2, d1, f3} }
4 {d77d57d47 d27d1’ f4}
{ {d9;d101f1}7 {d7ad6)f2}7 {d37d2’ dl’ f3} }
) {d9ad8ad57d47d2, dl) f5}
{ {d97d107f1}’{d77d57d4ad27d17f4} }

Table 4.3. F-cycle families in D(F) of Figure 4.3
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Choosing
CF; = CFs1 = {do,ds,ds,dy,d>,di, fs}
C]'-; = Cf41 = {d7’d5ad47d2adlaf4}
CF; = CFa = { {d9,d10, fl}’{d37d2adlyf3} }
CF; = CFrn = {{do,dro, fi},{dr,ds, f2} }
C]:I = CFn = {dQ,dIOafl}
Theorem 4.1is satisfied with 2 = 2. Note that condition (i-a) of Theorem 4.1
holds for k = 5,4, and (:-b) for k = 3.

We know turn our attention to systems whose characteristic polynomial
coefficients are not in the form of (4.1), but can be put effectively into
that form with certain modifications. Our desire is motivated by the fact
that the stabilization procedure in the proof of Lemma 4.1 involves use of
high feedback gains, which suggests that certain system parameters can be
neglected to bring the coefficients into the desired form of (4.1). The following

results are based on such an asymptotic approach involving use of high gains.

Let us denote by #/(-) the number of variable f-edges in (-).

Theorem 4.2 Suppose that, for k =1,2,---,n, there exists particular cycle
families of width k, denoted by CFy, in D(F) such that

(i) fx €CFy and f; €CF}, 5 > k;

(i1) for any other f-cycle family CFy of width k, #;(CFy) < #4(CF}), with
strict inequality if CFy contains no f;, j > k.

Then S is generically stabilizable by F.

Proof: Let fi = fip, where p > 0 is an arbitrarily large parameter, and
let nx = max{#;(CFi)}, where the maximum is taken over all cycle families

of width k. Then each characteristic polynomial coeflicient has the form

Pk = gk(d> fv) = Pnkgk(d, fv) + hk(da fhp)’
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where f, = (fi, f2,* ", fo), and deg[hr(d, f,,-)] < M. Thus, for fixed f, and

d, as p — o0, roots of p(s) approach the roots of
p(s)=s"+p1s" "+ + P,

where pr = p™gi(d, f,). The conditions of the theorem guarantee that the
cycle families which correspond to the product terms appearing in gi(d, f,)

trivially satisfy conditions of Theorem 4.1, and the result follows. O

The example to follow is an illustration of the result of Theorem 4.2.

Example 4.6 The closed-loop digraph, D(F), associated with a two input-
three output system under the feedback

£ u:[fu fiz O }y
fa 0 fo3

is given in Figure 4.4. Table 4.4 displays a list of the f-cycle families of D(F)

corresponding to a reordering of the feedback variables as fi = fi;, fo = fa1,

f3 = f23> f4 = f12-

Figure 4.4. D(F) of Example 4.6.
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V(CF) w(CF)
1 {ds,dr, f1}
2 {d47d5ad7a f2}
{d9)d8,d7,f3}
{d37d27d1)f4}
3 {d4, d6,d8,d7’ f2}
{ {d9,d8,d7,f3}7{d4adlafl} }
4 {ds, d10,ds, dr, f2,d4,dy, fa}
{ {dg,dg,d7,f3},{d3,d2,d1,f4} }

Table 4.4. f-cycle families of D(F) of Figure 4.4.

We choose
Cf: = C]:‘ﬂ = {d3a lea d8’ d7, f27 d‘h dla f4} y M= 2
CF; = CFs = {{do,ds,dy, f3},{ds,d1, 1} } , n3=2
CJ:; = C]:?l = {d4, d5)d7a f2} y M2 = 1
CF; = CFu = {dsdy, f1} , m=1

Clearly, this choice satisfies Theorem 4.2. For k = 1,2,3,4, neglecting
those cycle families which contain less than 7, f-edges, the coefficients g can

be written as

g1 =fi(~dad1)+ f2(0) + f3(0) + f4(0)

g2 = J2(—dydsdy) + f3(—dodadr) + fa(—dzd2d;)

g3 = Sa(dodsdrdydady) + f4(0)

Ga = Ja(dsdr f2d1[—dadiody + dyd3da))

verifying Theorem 4.2.

As a preparation for our last result on generic stabilizability of S(F),
consider the following recursive reduction process applied to the closed-loop
digraph D(F):

(z) Delete from D(F) all edges that do not appear in any cycle.

(7¢) Let a be a d-edge such that to every simple cycle Cf, | = 1,2,---,
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that contains a, there corresponds a cycle family CF} with the following

properties:

(a) CF} covers the same state vertices as Cf does,

(b) CF} covers no input or output vertices which are covered by some {-

cycle disjoint from Cf,

(c) CF7 includes all the f-edges that appear in C}' and at least one additional
f-edge.

Let £f(f) denote the set of the additional f-edges in CF}, but not in Cf.
Delete a, and record EF(f).

Let the digraph obtained from D(F) by successive application of () and
(i1) above be denoted by D(F). We state the following:

Theorem 4.3 Suppose D(F) satisfies either Theorem 4.1 or Theorem 4.2
with at least one f-edge from each EF(f) included in f,, | =1,2,--- . Then
S(F) s generically stabilizable.

Proof: Let D(F) be obtained from D(F) by deleting a single d-edge
satisfying either (¢) or (i¢) of the reduction process. If the d-edge deleted is
one which does not take part in any cycle, then $(F) and §(F) have the same
closed-loop characteristic polynomials, so that stabilizability of S(F) implies
stabilizability of S(F). Suppose that the d-edge deleted is of the second type,

i.e., satisfies condition (iz) of the reduction process. Then,
szpk+71k(d,fu), k=1,2,---,n

where p; and p; are the closed-loop charateristic polynomial coefficients of
S(F) and 8§(F), and h; is a sum of product terms each of which corresponds
to a cycle family of width k& which includes one of C, | = 1,2,---. By
conditions (77)(a-c) of the reduction process, corresponding to every such

product term, §; contains a product term (due to CF}), which includes
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more f-variables. Choosing fi = pfi, and letting p — oo as in the proof
of Theorem 4.2, we observe that roots of p(s) approach those of p(s). Since
D(F) is stabilizable by assumption, then so is D(F). This finishes the proof

dor a one-step reduction process. Repeating the same argument for every

d-edge deleted, the proof is completed. O

We illustrate this result in the example below.

Example 4.7 Figure 4.5 shows the closed-loop system digraph D(F) to be

considered.

// y\\
N
T T Tl 4 N
¢ AR
%/ 7 N
p / d1 N
/ /! 7 \ \\
‘/ y. / 3 f31.\\
S
‘ 3 d]‘ dﬁ \\‘ //’ \\\
\ if d v yd
N\ V2B 15 \,|/ Uy
=TT
H2} di3 Uy S
\ d d \
\ 10 C|11 ! \\11
\ ! d d y1
\
N ? ds
1‘25\\ dG
L /
\\ d7 //
\ d /
/
\\\ 8 d‘ // ,
N 7/ py
N e 7
y5 \\\\ yzé,// //

~
S, —————

Figure 4.5. D(F) of Example 4.7.

The reduction process proceeds as follows:

1. For a = ds, the cycles containing a are C{* = {ds, dy,ds}, and

Cs* = {ds,ds,dr,ds, fo,dr}.

Corresponding to these cycles, D(F)
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contains the cycle families CF$ = { {di,ds, f1}, {ds,ds, fss,d11} },
and CF® = { {di,d3,dy,fo},{ds,ds, fss,d11} }, which satisfy
conditions (i¢)(a-c) of the reduction process. Let &P = {fi, fas},
535 = {f3s}, and delete ds.

2. Delete dg and d; as they form no cycles.
3. For a = d;s5, the only cycle to be considered is C’f”’ = {dis,d16}, to

which there corresponds C.’F‘f“ = {ds, d17, foa,d13}, with £ = {faa}.
Delete d;s.

After the reduction process, D(F) consists of two decoupled subgraphs
D, (F1) and D,(F3) are as shown in Figure 4.6.

(1) (2)

Figure 4.6. Reduced digraph D(F) corresponding to D(F) of Figure 4.5.

Subsystem S;(F;) corresponding to D(F;) is stabilizable (in fact, pole
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assignable) with the only possible choice of f,3 = (fZ, f2), where fZ = fi
and f22 = f12.

Keeping in mind that fs3s and f;4 should be chosen as variable f-edges,
let us fix fos5 = fas = 0, and renumber the remaining f-edges to get f,; =

(f1, 13, 3, f}), where fl = fas, f} = foa, f3 = fas, fi = fazs. The f-cycle
families of D,(F;) are listed in Table 4.5.

v(CF) w(CF)
1 {d1a, dr3, f1}
2 {d17,dse6,d13, f7}
{d8, d9)dll7f4l}
3 {d14,dr2,do, d11, f3}
{ {ds,ds, d1, fi},{dra, drs, f1} }
4 { {di7,ds6, 13, f3}, {ds, do, du1, f4} }

Table 4.5. F-cycle families in D;(F;) of Figure 4.6.

Now, choosing

CF:y = {{dir,dis,d13, 3}, {ds, do,dn1, f3} }

CF; = {du,diz,do,dny, f3}

CF; = {di7,dis,ds3, f3}

CF1 = {du,dis, fi}
we observe that conditions of Theorem 4.1 are satisfied so that the subsystem
is generically stabilizable. Hence, by Theorem 4.3 the overall system is

structurally stabilizable.

As demonstrated by Example 4.7, reduction of D(F) by deleting certain
d-edges provides considerable simplification in the stabilization process
especially when the reduced digraph D(F) consists of decoupled components.
This shows a parallelism with the decomposition approach to stabilization
of large-scale systems. In the following, we take a closer look at how the
reduction process can be applied to decentralized stabilizability of a class of

interconnected systems.
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4.3 A CLASS OF GENERICALLY
STABILIZABLE SYSTEMS

In this section, we show that certain class of structures which is known
to be stabilizable by decentralized state feedback satisfy the conditions
of Theorem 4.3, thus demonstrating the nontriviality of the result of
Theorem 4.3.

Consider a system S composed of N interconnected structurally control-
lable subsystems described by
N
S; :i:;=Ai$i+ZA;j$j+biu;, 1=1,2,---,N. (4.5)
=1

Suppose that local state feedback law
Fir wi = flz, (4.6)
is applied to the decoupled subsystems

SP. z; = Aiz; + bu;. (47)

1

where z; € R™ and u € R, with YN n; = n, and fF = (fiu, fi, =+, fin;)-
By the results of Section 3.3.1 we know that each decoupled subsystem
SP(F;) is generically pole assignable. Qur aim is to show that the overall
system is generically stabilizable under some well-known restrictions on the

interconnection structure.

For this, we first note that the closed-loop digraph D(F) has the structure
D(F) = (V,EP U EC U EF), where DP(F) = (V,EP U &F) is a collection of
disjoint subgraphs DP(F;) = (V;,EP U £F,) associated with the decoupled
subsystems SP(F;), and £° is the set of interconnecting edges corresponding

to the nonzero parameters of A;;.

We assume that each (A;, b;) is in controllable canonical form, and that
the interaction between the states of the subsystem satisfies the following

condition:
ImAijCImb;, 2;&], i,j=1,2,°'~,N (4.8)
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i.e., the interaction from the states of S; to those of S; has the same effect
on S; as the constant input u;.

Due to the special forms of the pairs (4;, b;) and the interconnection terms

A;;, the digraph D(F) has the structure shown in Figure 4.7.

Figure 4.7. The interconnection structure between the subsystems of
D(F) mentioned in Theorem 4.3.

Referring to Figure 4.7 we state the following;:

Theorem 4.4 All the d-edges of D(F) corresponding to the interconnection
matrices A;; of (4.8) can be deleted by the reduction process. The resulting
digraph D(F) consists of decoupled components Di(F;) associated with the
decoupled systems SP(F;). Since SP(F:) are generically stabilizable by
Theorem 3.3, then so is S(F) by Theorem 4.3.

Proof: An edge of D(F) due to a nonzero term of some interconnection

matrix A;; is of the form (zjy,,Tin;), where 1 < ¢; < nj. If such an edge
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occurs in a cycle covering some state vertices of the subsystems §;, S;, - -,S;,

then this cycle is of the form

Cia = {(qu,v :L',',...), (Iin-‘ ) xiqi)’ T (:Blﬂx ’ xlqz)a (mlqn xj"»j)’ (zjnj, TLjq; )}

where -(:v,-,,,‘.,x,-q‘,), 1 < ¢; < n; denotes the unique path in DP from z;,, to
T;;. We note that such a cycle contains no f-edges. Now, the f-cycle family

consisting of the cycles

{ (upzin) 5 (Tin Tig) s (Tigi, ui) }

{ (o) 5 (@npz)  (Tgpw) }

{ (%) 5 (TingsTig,) » (Tigpny) }
covers exactly the same vertices, and includes the feedback edges
fi = (@igi,ui)y oo, Jioq = (Tig,w), fig; = (Tjg;,u;). Moreover, none of
the input vertices covered by this cycle family, namely, u;,---,u;, u;, can be
covered by a cycle disjoint from Cj;..;. Hence the conditions of the reduction
process are satisfied, and the interconnection edge (z;q;,%in,) can be deleted
from D(F). Since this is true for all interconnection edges, and since all f-

edges are used in stabilization of the resulting decoupled system associated
with D(F), the proof follows from Theorem 4.3. O



Chapter 5

A GRAPHICAL INVESTIGATION

OF STRUCTURAL
OBSERVABILITY

In this chapter, we present a graph-theoretic interpretation of the so-
called structural observability matrix and develop graphical conditions for
this matrix to have full generic rank. We then show that the digraph of
any structurally observable system satisfies these conditions. We also define
structural observability index and provide graphical techniques to compute

bounds for it. Dual results concerning controllability can easily be obtained.

5.1 STRUCTURAL OBSERVABILITY

Since structural observability is a property of the pair (4, C) of system

S of (2.1) we consider the reduced system structure matrix

A O

S (5.1)

S,, =

and associated input-truncated digraph D;, = (X U ),&;,) obtained by

removing the input vertices and the edges connected to them.

For structural observability it is necessary and sufficient that

92
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(1) every state reaches an output; and

(i) ﬁ{g]zn.

A structural equivalent of these conditions is the existence of a family of
disjoint output cacti spanning D.;,. On the other hand, let us denote
conveniently the vector of reduced system parameters by d and define

structural observability matrix as

Onr(d) = : (5.2)

where

C =

G

Then, it is obvious that the pair (A4, C) is structurally observable if and only
if p[Op-1(d)] = n.

5.2 GRAPHICAL INTERPRETATION

OF THE
OBSERVABILITY MATRIX

Consider the input truncated weighted digraph D,, in which weight of

any edge, denoted by w(v;,v;), is the parameter value of the corresponding
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entry of the related system structure matrix S,,. Here, let us generalize our
definition of a path so as to allow it go through a vertex more that once and
hence also include a multiplicity of some edges ( A path which does not go
through any vertex more than once will be distinguished, where necessary,

by the term simple path).

Recall that Sﬁ’y = S,f; 1 xS,y can be interpreted as the L-step reachability

matrix where

L AL O
¥ | car o
In SZ,, (4, k)-th nonzero entry in the lower block row implies that state vertex

zj reaches output y; in L-steps, 1.e., D,y contains a path of length L from
zj to y;, which we denote by WL Combining this with the definition
of the structural observability matrix O,_1(d), we conclude that the (7, k)-th
entry of the L-th block row of O,_1(d) is given by Y w([(zk,y;),] where w(-)

denotes the weight and the sum is over all L-step paths from z; to y;.

Let us illustrate this with an example.

Example 5.1 Consider the system digraph of Figure 5.1.

Figure 5.1. D,y of Example 5.1.

For this system, structural observability matrix can be obtained by
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inspection of the digraph as

( ds 0 dr 0 |
Ou(d) = 0 dids + dd, dids  crds
didsds + d-dyd, d:ded, drd?  d-deds
| drdeduds drd2ds + didsdyds + drdsdyds  drdd drdids |

Structural observability matrix O,_.; is not a structured matrix as its
nonzero parameters are not necessarily algebraically independent. Therefore,
existence of n nonzero elements lying on independent rows and columns (i.e.,
no two elements lie on the same row or column), is a necessary but obviously
not sufficient condition for O,_; to have full generic rank. In terms of system
structure, this necessary condition is equivalent to having, in D,, for every
distinct zj, a particular path denoted by mzk, 1<r<r,1<Liy<n,
such that for j # k either r; # ry or Lj # L.

In order to guarantee full generic row rank for O,_1(d), rows correspond-
ing to the n nonzero elements mentioned above should be generically linearly
independent, or equivalently the square matrix obtained by taking only the
rows and columns that contain these n nonzero elements should be generically
nonsingular. Formulation of a structural counterpart of either one of these is
not an easy task at all. We derive however, some partial results concerning

the second one.

Numerous examples which we have considered reveal a similarity between
this case and and the problem of deriving structural conditions for the generic
nonsingularity of the coefficient matrix F, dealt with in Theorem 3.1. This

leads us to the result stated and proven below:

Theorem 5.1 Suppose that in Dy, after a suitable enumeration of states,
there exists particular paths of length Ly, denoted as Py = (xk,y,k)zk, 1<
Ly <n, k=1,2,---,n, which satisfy the conditions (i) — (¢i2) below. Then

S is structurally observable.
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(z) For 5 < k, LJ’ < L; and if Lj = L, then r; < Tk.

(i11) Any other path (zk,yr, )Lk of length Ly contains an edge which appears
in no Pr, 1> k.

(31) For 1 < k < 3 < n, if there ezist paths mj—)L,-’ then all of these
paths, except possibly one, say P;, contain an edge which appears in no
Pr, 1 > k. If P; ezists, then it contains an edge, a;, with multiplicity &;
such that a; appears in no Py, 1l > j; P; contains a; with multiplicity
< 0; and if a; appears in any Py, k < a < j, then every path mLk

contains another edge which appears in no Py, > k.

Proof: Consider the structural observability matrix O,_1(d) of the
system with digraph D.,. Denote by T(d) the submatrix obtained by
taking the rows and columns of O,_,(d), which contain the product terms
corresponding to P = (:c—k,mzk,'k =1,2,--+,n. Obviously, O,_;(d) has full
generic rank and hence system structurally observable if T(d) is generically
nonsingular. Consider now the n x n matrix T(d). By condition (7), diagonal

elements of T'(d) are of the form
tir(d) = ti(d) + tr(d),

where t%(d) is the weight of P}, and #3;(d) is the sum of the weights of all
other paths (zx,yr, ), Let us define d; = d, Ti(d;) = T(d), and partition T

as

ti(dh) + tu(dy) | tu(di)'s ]
tjl(dl)'s ( Tg(dl)

where, for a fixed j > 1, ¢;1(d;) is the sum of the weights of all paths

Ty(dy) = [

(¢1,9r;),, - By condition (i) every product term in ¢11(d ) contains the weight
2

of an edge which occurs in no Pg, k > 1. Let dj denote the parameter vector

after all parameters corresponding to such edges are set to zero. Then, T1(d})

has the form

) | tu(dy)'s }

Ti(dy) = [tjl(d'l)'s l T2(dy)



CHAPTER 9. A GRAPHICAL INVESTIGATION OF STRUCTURAL OBSERVABILITY 97

where each diagonal term tx,(d}) of T2(d}) still contains the product term
wd)) = ti(dr). If tj1(d}) = 0,5 = 2,---,n, then let d; = d|. Otherwise,
by condition (:¢), all product terms in each nonzero t;;(d}), except possibly
those thai correspond to P;’s, contain an edge which appears in no Py,
kE > 1. Let df be the parameter vector after all such terms are set to zero.
Then Ti(d}) has the same structure as Ty(d}) with txx(d}) still containing
ti(dy) = ty(dy) = ti(dy), and each t;1(d}) either being zero, or containing
a single nonzero product term due to P;’s. If ¢;;(dy) = 0, j > 2, then let
d; = df. Otherwise, condition (¢:z) implies that each nonzero t;; is of the
form t;,(dy) = @;’t;:(d}), with no t;(dy), | > j, containing a;; and tj(d}) =

a1
J

suitable multiple of the 1-st row from the j-th row. After such operations,

Ti(d}) becomes

a?*#;(dy), with oy < o;. We can then eliminate all such t;; by subtracting a

Ti(dy) =

t(d)) | tu(d))'s
0 | Tod) |

where some elements £;(d}) of To(d}), j,1 > 2, are of the form
ta(dy) = tu(dy) — @ ™" tiuldy)tu(dy)/#5(dy).

Now, if no t3(df), 1 £ a < j, contains a;, let do = dj. Otherwise, by
condition (7:7), every product term in each t;,(d}) such that ¢2(d}) contains
a;, contain an edge which appearsin no ¢}(dy), ! > 1. Let d; be the parameter
vector after all parameters corresponding to such edges are set to zero, and

consider

- [0 e
0 | Ty(de)
Clearly, the elements of T,(d;) contain fewer product terms than the
corresponding elements of T(d”). Moreover, the diagonal elements still
contain the terms t;(d;) = ti(dy). Now, if T>(d;) has full generic rank, then
so does T1(d;), and therefore, T(d) = Ti(d;). Continuing with the same
argument with d; and T1(d;) replaced by d; and T3(d:), and so on, we finally
reach the conclusion that if T,(d,) = t%(d,) + £%,.(d,) is nonzero, then T(d)
is generically nonsingular. The fact that ¢;(d,) = t;(d) # 0 completes the

proof. O
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L|j (xlayj)[, {(‘T?’ yj)L} {(1‘373/]')1,} {(‘T"lvyj)L}
111 {d:} {d-} {ds}_

2 {ds} {ds}
211 {dz,d:} {ds, ds} {ds,d2}

2 {ds, ds}
31| {dr,dsds} {ds, ds, d2} {ds, d3,ds}

2| {dr,d3,ds} {ds, d3,ds}
4 | 1| {dr,d3,ds,d3} | {ds,d3,ds,ds} | {ds,dys,d3,d2}

2 {d37d37d43d5}

Table 5.2. Paths from the state vertices to the output vertices in D,
of Figure 5.3.

It is easy to see that the choice of

Pio= (z,m), = {d}
P; = (v4,92), = {ds}
P; = (zs,u1); = {ds,d2}
Pr = (22,y2); = {ds.ds}

satisfies the conditions of Theorem 5.1, and hence the corresponding system

is structurally observable (as expected).

Another choice of paths would be

Pr = (21,u1); = {d1}

Py = (x4,y2); = {ds}

P; = (z3,41); = {da, &2}
Pi = (22,%1); = {ds,du, o}

which also satisfies Theorem 5.1. Note that by deleting all other edges, D,,
is decomposed into two disjoint cacti, the existence of which is the necessary

and sufficient condition for structural observability.
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In the following, we study a few examples which illustrate the implications
of Theorem 5.1.

Example 5.2 Consider the digraph D,, of Figure 5.2.

Figure 5.2. D,, of Example 5.2.

All the paths of length L, 1 < L < n, between the state vertices and the
output vertex are listed in Table 5.1. (Note the one-to-one correspondence

between this table and O,_,).

L (371,3/)[, (-772, y)L {(9337 3/)1,} {(334» y)L}
1| {di} {d:} {d4} {ds}

2 {ds, d2} {ds,ds} {dr, de}
3 {d3,d37d2} {ds,ds,da} {d7ad7,d6}

D, of Figure 5.2.

Table 5.1. Paths from the state vertices to the output vertex in
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We choose

P = (z1,9); = {di}

P; = (22,y); = {ds,d2}

P = (23,9); = {ds, ds,ds}
P = (z4,9), = {dr,dr,dr,ds}

which satisfy conditions (z) and (i7) of Theorem 5.2 trivially. For k = 1,

condition (7i7) is also trivially satisfied. Consider k = 2. We observe that

there exist paths (z3,y), and (z2,y), which contain dz with multiplicity 2
and 3, respectively, and dz occurs in P; with multiplicity 1, while it occurs
in no P}, I > 2 so that condition (¢4z) is satisfied. Similar argument applies
for k = 3. Thus, by Theorem 5.1, the system is structurally observable. This
result is also verified by the fact that the corresponding digraph D,, is a

cactus.

Example 5.3 Let us now study a two-output system whose digraph D,
and the corresponding list of state-output paths are given in Figure 5.3 and
Table 5.2.

Figure 5.3. D, of Example 5.3.
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The preceding example leads us to the result which we state and prove

below:

Theorem 5.2 The following are equivalent:

(a) The system S in (2.1) is structurally observable.

(b) The input-truncated digraph D, associated with S is spanned by a

collection of disjoint output cacti.

(c) Dyy satisfies the conditions of Theorem 5.1.

Proof:
(a)<(b) : Obvious.
(c)=>(a) : By Theorem 5.1.

(a)=(c) : First consider the case when r = 1 (single output) and D, is
a cactus, with output y. Recall that in the cactus, every state vertex reaches
the output vertex along a unique simple path so that for fixed L, there exist
one and only one path of length L from any state vertex to the output vertex.
If the cactus is just a stem, then Theorem 5.1 is trivially satisfied. Otherwise,
denote the stem of D,y by By, and order the buds of D,, as By, B,,- -, etc.
such that for j < 2, no vertex in B; occurs on a simple path from a vertex in
B; to y. (Note that denoting the stem as By is consistent with this reordering
of the buds.) Then, first scan By and label its vertices as 21,25, - -, etc. such
that the length of the unique (simple) path from z; to y is k. Next, scan
the buds B;, 1 = 1,2, -+, in their order and label their vertices according to
the following scheme: Let the bud to be scanned be B;, and the last vertex
in B;_; which has been labeled be ;. Suppose that the length of the unique
simple path from the tail, z, of the distinguished edge of B; to y is L;; where
1 < L; < k due to the ordering of the buds. Identify in B; the unique state
vertex that reaches in B; to zy through a path of length £ + 1 — L;, and
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label it z441. Once, zr4y 1s identified, label the remaining vertices of B; as
Tky2,Tk43,"*, etc., where xi 1141 is the unique vertex in B; that is adjacent to
Tr41, I = 1,2,---. The enumeration of the state vertices in the output cactus

shown in Figure 5.4 illustrates the scheme.

Figure 5.4. Enumeration of the state vertices in a cactus, according to the
scheme mentioned in the proof of Theorem 5.2.

With the state vertices of D,, labeled as above, let the unique path of
length k from z; to y be denoted as Py = (:u_,yj,:, 1 < k £ n. Then,
the conditions (¢) and (¢z) of Theorem 5.2 are readily satisfied. Also,
condition (2i7) is trivially satisfied for those z) that belong to By as Py is
the only path from z; to y. Consider the case when z; belongs to some bud
B;, i > 1, and suppose that, for a fixed j > k, it reaches y through several
paths Pj1,Pjs, - -+, etc., of length L; = j. Then each P;; should necessarily
travel through the cycle of at least one bud B,,,, with m, < i, at least once.
If P;; travels through the cycle of some B, with m; < 7, then it contains
an edge (from the cycle of B,,, ), which appears in no P, | > k. On the
other hand, at most one of P;’s, denoted by P;, loops in B; but in no B,

with m < i (because, the lengths of such paths differ by an integer multiple
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of the length or width of the cycle of B;). A typical situation is illustrated
in Figure 5.5, corresponding to the case when j = k 4+ 3. Referring to the
figure, we identify @; = (z;_1,2;-2), which obviously occurs in no Py, I > j,
and the multiplicity of @; in Pj is at least one less than its multiplicity in
P;. Moreover, only a, k < a < j, such that a; appears in P> can possibly
be a = j — 1. Then, any path of length Ly = k from z;_; to y should loop
in some B,,, m < ¢, and therefore, should contain an edge which appears in
no P;, 1 > k. Thus, condition (z¢7) is satisfied, and the proof is complete for

the single output case, and when D, is a cactus.

Figure 5.5. Illustration of P} and P; for j = k + 3.

For the general case, let D,y = (X U Yo U Y4, Ec U E4), where X = UA,,
Yo = U{y:} and &c = U&, t =1,2,. .- are such that the disjoint subgraphs
D, = (XU {w:}, &) form a family of spanning cacti D¢ = UD; = (X U, &¢)
for D,,. Let the state vertices z} of each individual cactus D, be labeled as in
the single output case. Then, it is easy to see that D,’s can be reordered, and
the sets X;’s can be merged to obtain a new ordering of all the state vertices
in such a way as to satisfy condition (i) of Theorem 5.2. Also, the paths in
the collection D¢ of cacti satisfy the remaining conditions. Noting that any
other path in D;, whicir does not appear in D¢ is due to the additional edges

in £4, which obviously appear in no P;, the proof is completed. O
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The significance of interpreting structural observability in terms of the
particular paths mentioned in the statement of Theorem 5.1 lies in its
contribution to the structural interpretation of the observability index.
Furthermore, we show in the next section that it provides a better upper

bound for the estimate of the so-called generic observability index.

5.3 GENERIC OBSERVABILITY INDEX

Generic observability index can be defined as the structural counterpart

of observability index as follows:

Definition 5.1 Let Op_1(d) denote the L-step structural observability ma-
triz. Then
L = min{p[03+(d) =)

is defined as the generic observability indez.

If we let
OL_ 1 (d)

L;= mgn{p [ T

} =p [OL—I(d)]}’

then we can easily deduce from this definition that

A characterization of generic observability index can also be given in
terms of Rosenbrock’s extended observability matrix [51]. Consider the L-

step Rosenbrock matrix which is an [Lr 4+ (L — 1)n] x Ln matrix written in
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terms of the structured matrices A and C as

[ C 1
I, —A
C
I,
Rp(d) = (5.3)
—A
C
I, —A
L C J

Generic observability index L, can also be written as
L,= 111211{5[RL(d)] = Ln},

i.e., it is the minimum L for which Ry(d) has full generic column rank. In

the following, we state two facts that provide bounds for L,.

Fact 5.1 Let «(-,-) represent the number of state vertices, equivalently the
steps, occuring in (-,-). Then,

L, > max {lrgjlgr Y(zi,y;) — 1}

Proof: Let

) = ; Y
v(#',y') = max{min (zi,y:)}
and suppose that L, < y(z’,y’). This implies that Oy _,(d) has a zero column,

which contradicts the definition of L,. O

Note that any shortest path algorithm can be used to determine this lower
bound for L,.
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Next fact is concerned with an upper bound for L,.

Fact 5.2 :

L, < min{max (n;)}
where the minimization is over all possible decompositions of Dy, into disjoint
subgraphs D; = (X; U {y;},&;) with v(X;) = n;, each of which is spanned by

an output cactus.
Proof: Obvious. O

Example 5.4 Consider the digraph of Figure 5.6:(a). The two possible

decompositions of this digraph is as given in Figures 5.6:(b) and (c).

% X, X,
X2 X
Y, 2 Y, 20y,
e
x3 xa TN //
! ( X3
i
e
Xy Y, X4 Y2 Y,
(a) (b) (c)

Figure 5.6. D,, and the associated possible cactus decompositios of
Example 5.4.

Clearly, L, = 2 for this system as also revealed by the decomposition of
Figure 5.6:(c).

Another upper bound for L, can be obtained using the results of the

previous section:
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Fact 5.3
L, < min{+(P2)}

where the minimization 13 over all possible choices of a set of n particular

paths Py,---, Py as stated in Theorem 5.1.

Proof: Obvious. O

We finish this section by the following two examples which illustrate the

result of Fact 5.3.

Example 5.5 For the system of Example 5.2, we know from Fact 5.2 that
L, < 2. However, by the first choice of the set of particular paths of

Example 5.2, Fact 5.3 also gives the same bound, and indeed L, = 2.

Example 5.6 Consider the digraph of Figure 5.7.

A Y

d>

ds ds ds

Figure 5.7. D,, of Example 5.6.

Again, Fact 2 gives L, < 3, whereas the existence of the choice of the set

of particular paths as

Pr = (x_l,_yl—) = {di}
P; = W= {ds}
P; = W = {ds, d>}
Pi = m = {dy, d5}

reveals that L, < 2 (clearly L, = 2, as L, > 2 by Fact 5.1).



Chapter 6

AN ALGEBRAIC STUDY ON
GENERICITY OF SEVERAL
RESULTS ON POLE
ASSIGNABILITY AND
STABILIZABILITY

In the previous chapters we studied generic pole assignability and
stabilizability problems using a graph-theoretic approach. The results we
have obtained were essentially algebraic ones, which were stated in a graphical
framework. Although the graphical approach provides extreme simplicity in
testing certain sufficient conditions for pole assignability and stabilizability,
it has a serious limitation: No similarity transformation, which changes the
system structure or destroys algebraic independence of nonzero parameters,
is allowed in a graphical analysis. Therefore a more general algebraic
approach would be preferable for those systems which are not already in
a canonical form that allows for the use of graphical procedures without any
transformation. In this chapter, we consider genericity of some well-known
results on pole assignability and stabilizability of certain classes of systems

following an algebraic approach.

108
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6.1 Pole-Assignability By Dynamic Output Feedback

The first problem we consider is pole assignment in single input/multi
output, structurally controllable and observable systems, single input/single

output version of which was considered in Section 3.3.2.

Consider a system represented as

S z = Az + bu (6.1)
y = Cuz,

and a dynamic output feedback controller
i = Ai+ By

§: +Ta 4 fT
u = &+ fly,

(6.2)
where z € R*, u € R, y € R" and £ € R™. As has already been discussed in
Section 3.3.2, the pole assignment problem for the pair (S ,S) is equivalent

to the pole assignment problem for the augmented pair (S,, F, ), where S, is

described by

(:c (4 0]z ] b u
sl T loollalT 1lla
z

Sa ::l,': L - u (63)
Y _ C z
9] L Ifl&]

and o (
AT "T-‘

PN B I A [y} (6.4)

u B A Y

- o4 ke -

represents an equivalent constant output feedback law for S,. Again, as in
Section 3.3.2, we assume that the pair (A, &T) is in observable canonical form
of (3.21), which corresponds to the case where some of the feedback variables

have already been fixed at either zero or one.

Let us first consider the case when # = 0, that is, when S of (6.1) reduces

to constant output feedback

F: u=fTy, (6.5)
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so that S, = & and F, = F. Rewriting (6.5) as
F: u=fTz, fT=f7C, (6.6)

and using the result of Section 3.3.1, we observe thai the coefficients of the

closed-loop characteristic polynomial can be expressed as
p=a+Ef=a+ECTf, (6.7)

where a = a(d) and E = E(d) are as in the proof of Theorem 3.1. Let us

partition the matrix CT = ECT into its rows as

o
_ 2
CT=ECT=| " |, (6.8)
A
and rewrite (6.7) explicitly as
Y a(d | | @
as(d cl(d .
Pl = 2,( am 2F N (6.9)
Pn v a’n(d) ég(d)

Note that ay(d) in 6.9 are due to d-cycle families of width k, and & (d)f are

due to simple f-cycle families of the same width in the closed-loop digraph

Du(Fa) = D(f).

Next consider the case when i = 1, for which the closed-loop digraph
D,(F.) is shown in Figure 6.1. An inspection of Figure 6.1 reveals the

following facts about the cycle families in Dy(F,):

(z) Any d-cycle family of width k in D(f) also appears in D,(F,) ; and
in addition, forms an f-cycle family of width k+1 together with the cycle

{(a1,91), (41, 1)},
(1) The same is true for the f-cycle families of D(f),

(217) The cycle {(#@1,%1), (§1,%1)} is a single f-cycle family of width 1 by
itself,
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D.(F.):

Figure 6.1. Illustration of D,(F,) for i =1

(iv) Every f-cycle family of width k+1 formed by the f-cycle in (iii) and an
f—cycle family of width & in D( f ) is accompanied by a simple f-cycle family
of width k + 1 which contains an f-edge from y to ;.

Based on these facts it is easy to see that the coefficients of the closed-

loop characteristic polynomial are given as

r h h ’ -T 7
P ( o ( 1 ¢ O
=T =T ~
P2 a ay Cy (&1 —ay
= + f (6.10)
- o oz
pn a'ﬂ an—l cn cn-—] b alf
=T
L pn+l . N 0 . L An 0 Cn .
Similarly, in the most general case, we have
- - 1 g o i -
B (e ] | i -
P2 a2 ay g .
1 . : 0 —ay
Pn = on | + | ana o1 L LA 28 f (6.11)
0 ' : 0
Pn+1 on : 0 (_:'7; by — a1 f
.. T
On—1 DR - N
0 n—1 by — &,
[ Prntn ] R J \_ on 6'7; L b —anf |

where B = [31 by --- b;). Rewriting 6.11 in compact form as

p = a(d) + %u(d)f, (6.12)
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where f are the auxiliary variables in Corollary 3.1, we observe that S (S) is

generically pole assignable if and only if

p(la)=n+n (6.13)
A sufficient condition for (6.13) to hold is given below:

Lemma 6.1 If Ly is the generic observability indez defined in Section 5.8,
then (6.13) is satisfied for i = Lo — 1.

The proof of the lemma is based on the following fact.

Fact 6.1 In D,, there exist a spanning cactus D, and an ordering of the

state vertices T1,Ta,- -+, Tn, such that any x; which is adjacent to z, in D,,,

occurs in the same bunch of D, as z;.

Proof: Let D, be an arbitrary cactus spanning D,,, the vertices of which
are ordered according to the enumeration scheme of Lemma 3.4. If D, consists
of a single bunch, then there is nothing to prove. Otherwise, order the bunches
of D, as By, B,,---,B;, where z; € B; and B; is the terminal bunch. If any
x; which occurs in some B;,l > 1, is adjacent to z; in D,,, then modify D,
by deleting the edge which connects B; to v and adding the edge (71, z;) to
D.. This way B; is combined with B; to form a single bunch. Reorder the
vertices of the modified cactus, and repeat the same process, until either D,

consists of a single bunch, or else, no vertex of any B;,! > 1, is adjacent to

z1 1n Dy;.

Proof of Lemma 6.1: Fact 6.1 implies that, after a scaling of the weight
of the edge (u,z;) in Dyz, the matrices A and b in (6.1) can be assumed to
have the forms
an aiz - aln- [.1-

* * v * *

A = . . . ’ b= . ) (614)
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where * denotes any zero or nonzero element. In (6.14), a;; # 0 implies that
there exists an edge (zj,z) in D, which, by Fact 6.1, takes part in a cycle

covering z; and ;.

Now, let R;(d) denote the Rosenbrock’s L-step observability matrix
defined in (5.3), with each block column postmultiplied by E7, that is,

C
ET —A
ET
R, = ) (6.15)
.y
C
ET —A

L

where A = AET, and C is as defined in (6.8).

Perform the following column operations on Ry : Starting with the first
block column, add i-th column of block k to the (z — 1)st column of block
k+1,:=2,---,n,k = 1,2,---,L — 1. The resulting matrix Ry has the

structure illustrated below for L = 3.

Cp € -+ Cp|C2 -+ Co 0 |C3:--- €n 0 O
L * .o Kk |y v Qip—1 Qipy |G12 ©0 Gino1 G1n O
* X e % * ¥ cee % * 0
E;-r 0
* * * * * * * 0
R3 = 61 v En—l En 52 v 6n_1 En 0 (616)

~

* ¥ 1dj1pcrc Q1p-2 Qin-1 Q1n

* * .. % * *

(& Cn-2 Cn-1 En |
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By the proof of Theorem 3.3, ET has full generic rank n — 1, so that

ARUD) = AlRLUD) = (- Vn—1) + AR  (6.17)
where
(& & en ]
1 an axp ain
C1 62 En
RZ(d) = 1 gl]l 612 &1,, (618)
1 an ap d1n
i C1 ) Cn |

with 2L — 1 block rows, is the matrix obtained from R(d) by deleting the

rows and columns that correspond to rows and columns of EY’s.

We now claim that

pIRL(d)] = p[Qr-1(d)], (6.19)

where Q; is defined in (6.11). To prove the claim, first note that the first row

elements of A in (6.13) are related to the first row elements of 4 in (6.14) as

(511 an

a2 ar?

. = El | (6.20)
ayn ain

If in D,., the edges (z;, 1) that correspond to nonzero a,;’s were replaced by
hypothetical f-edges (z;,u), then the left-hand side of (6.20) would represent
the coefficients of the characteristic polynomial of the resulting hypothetical
closed-loop system, as the weight of the edge (u,z;) is normalized to unity.
Therefore, each @,; in (6.20) is nothing but the sum of the weights of all cycle

families of width j in D,, which contains z;. Next we note that in

-
1 €2 -+ enn

% % “ee *

T _
E =1 1,
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cach nonzero ej;,7 > 2, is the sum of the weights the cycle families of width
7 — 1 not containing x;. As a result of these two observations we conclude
that each @;; = @1; + €1,j4+1 in (6.16) represents the sum of the weights of all
cycle families of width j in Dy, so that @; = a;, where a; are as in (6.9).
Hence, R} is nothing but the transpose of 2;_; with columns rearranged, so

that (6.19) is true.

Finally, the definition of the generic observability index Lo, together with
(6.17) and (6.19) implies that

plr,-1(d)] = p[Rr ()] =n+ L, - 1,
completing the proof of Lemma 6.1.

Combining the result of Lemma 6.1 with (6.11), we reach the following

conclusion about stabilizability of S(S), the proof of which is obvious.

Theorem 6.1 The single input, structurally controllable and structurally
observable system of (6.1) is generically stabilizable by an (Lo — 1)st
order dynamic output feedback controller of (6.2), where Lo is the generic
observability index of S.

Before closing the section, we finally note that the dual result applies to

single-output systems with L, replaced with the generic controllability index

L..

6.2 Stabilization Of A Class Of Interconnected
Systems Using Decentralized State Feedback

The next problem we consider is the stabilization of the interconnected system
consisting of controllable subsystems as described in (4.5) using decentralized
constant feedback of the form (4.6). We assume, as in Section 4.3, that the
interconnections satisfy the matching conditions in (4.8); however, we do not

require the subsystems to be in any specific form.
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We assume, without loss of generality, that the input vectors are of the

form
T
bi p—rp [ bil biz .. b{q‘ 0 tee 0 ] ] 1 S 2 S N’ (621)

where 1 < ¢; < n; and by # 0,1 < k < ¢;. We also express the matching
conditions as
Ay =bhL, i,j=1,2,--- N, (6.22)

139

where

T i pij i

L = [ K Ry - mE . (6.23)
The overall system then has the representation

S(.'F) i‘=(AD+BDFD+BDH).‘I:, (6.24)

where

AD = dzag {Al,Az,' .. ,AN},

Bp and Fp are defined similarly, and H = (hg)NxN-

Keeping in mind that the k — th coeflicient p; of the closed-loop charac-
teristic polynomial consists of product terms, each of which corresponds to a
nonzero term in the determinantal expansion of some & X k principal minor

of Ap + BpFp + BpH, we can write
p=pi+pl+p}, 1<k<n, (6.25)

where p? contains all product terms which include one or more h-parameters;
pi contains those which include one or more f-parameters but no h-
parameters; and p) is a constant due to parameters of Ap. Obviously, there
are, in general, more than one product termns in p} which contain exactly the
same h- and f-parameters; and similarly, more than one product terms in p]
which contain the same f-parameters. However, some of such terms cancel
each other algebraically; and the remaining terms which differ only in a- or
b-parameters can be grouped together to form a single product term. We

can, therefore, assume that no two product terms in p} contains exactly the
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same h- and f-parameters, and no two terms in p/ contains exactly the same

f-parameters.

Now using the matching conditions (6.22) and simple matrix manipula-

tions, it is not too difficult to see that

(¢) if a (grouped) product term in p} contains k¥, 1 < p <nj;1<i,j <

N, then it contains no fi;,1 < ¢ < n;; and vice versa; and

(i1) to every (grouped) product term in pf there corresponds a (grouped)

product term in pi, which contains more f-parameters than the former.

These observations guarantee that choosing high feedback gains for the
decoupled subsystems as in the proof of Theorem 4.2, the terms in p{ can
be made to dominate over p) and p} in (6.25), so that the poles of the
overall closed-loop interconnected system approach to those of the closed-
loop decoupled subsystems. Moreover, genericity of pole-assignability of the
decoupled subsystems, which was proved in Theorem 3.2, implies genericity

of stabilizability of S(F') of (6.24). We state this result as a theorem.

Theorem 6.2 The interconnected system described in (4.5), in which the
subsystems are structurally controllable, and the interconnections satisfy the
matching conditions in (4.8), is generically stabilizable using decentralized

constant state feedback.

6.3 Stabilization of a Class of Interconnected Systems

Using Decentralized Dynamic Output Feedback

The final problem we study is the generic stabilizability of a class of
interconnected systems using decentralized dynamic output feedback. The

interconnected system we consider consists of structurally controllable and
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structurally observable single input/single output subsystems described as

& = Awi+ YN Az + b,

S;i: 6.26
¥y = C;'Txi, Z.=1,2,"'.‘,JV, ( )
where r; € R™ and u;,y; € R. To each d‘ecoupled subsystem
T = A+ bu;
SP . o (6.27)
Yyi = C;'Txi’ ’L=1,2,"',N,

obtained from (6.26) by setting A;; = 0, we apply local dynamic output

feedback _ ) X
T; = Az + by,

. 6.28
u = &+ fu, (629

S,' .
where £; € R%™1 .

As in Sections 3.3.2 and 6.1, we interpret the dynamic output feedback S;
in (6.28) applied to SP of (6.27) as a constant output feedback F,; applied
to an augmented subsystem SZ2, where S and F,; are as in (6.3) and (6.4).
Also, we choose (A;,&T) to be in observable canonical form of (3.21), which

corresponds to fixing all but 2n; — 1 elements of F,; at zero or one.

The class of interconnected systems we consider is characterized by the

following two assumptions:

(1) The decoupled subsystems SP of (6.27) generically have no transmis-

sion zeros,

(i7) There exists a subset M of the set M = {1,2,---, N} such that the

interconnection matrices A;; in (6.26) satisfy

A = bihz; , LEM,jeN (6.29)
Aji= g,-.-c:-‘r , tEN-M,jeN (630)
where hi; = [hY h§ .- hii ] and gji = [gFf gbt - #]T. In other words, we

assume that for each S;, either the interaction from any other subsystem has
the same effect on S; as the control input u; (when i € M) or the interaction

from S; to any other subsystem is a reproduction of the measured output y;

( when i € N = M).



CHAPTER 6. AN ALGEBRAIC STUDY ON GENERICITY OF SEVERAL RESULTS 119

With this set-up, we now state our main result as follows.

Theorem 6.3 Under the assumptions (i) and (ii) above, the interconnected
system consisting of the subsystems S; of (6.26) is generically stabilizable by
decentralized output feedback controllers S; of (6.27).

The proof of Theorem 6.3 depends on the following characterization of

transmission zeros of a single input/single output system by Reinschke[52].

Lemma 6.2 Let D(ey) denote the closed-loop digraph of a single input/single
output system described by (6.27) with a feedback edge e; of weight w(e;) =
—1. Then the coefficient B of the numerator polynomial B(s) = frs™ ! +
By8™"2 4 +-- + B, of the transfer function of the open-loop system are given
by

Br= ). (_1)‘7(C}')w(C}'), k=1,2,---,n, (6.31)
w(CF)=k

where the summation is carried out for all cycle families of width k which

include eg.

Proof of Theorem 6.3: The closed-loop digraph of the equivalent
augmented system is of the form D,(F,) = (V,,E,UEFUE,), where DP(F,) =
(Va, & U &) is a collection of decoupled closed-loop digraphs DE(F.) =
(Vai, Eai UEy;) associated with the decoupled augmented subsystems SE(F;),

and &, is the set of coupling edges due to nonzero parameters of 4;;, 1,7 € N.

Each closed-loop decoupled subsystem graph DP(F,;) has the structure

shown in Figure 6.2

Assumption (i) concerning the decoupled subsystem implies that the
coefficients B} of the numerator polynomial of the transfer function of SP are
all zero except fi . Graphically, this means that in DP(f;) there exists only
one cycle that includes f;, and this particular cycle is of width n. Equivalently,

in DP there is a unique input/output path which covers all the state vertices
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DO(F.;) : DP(f)

Figure 6.2. Closed-loop decoupled subsystem graph D2(F,;)

zi,1 <k <n;,1 << N. Translated into the structure of the matrices 4;, b,

and ¢/, assumption (z) means

F** LI *- rl-
X Ok cee ok ok ok
0 * =x * ok X
A= = ! (6.32)
00 0 - * ok ok
000 - X kK
_000- 0 = * | _OJ
¢ = [000 00 1]

Since each SP is structurally controllable and observable, by Theorem 6.1,
SP(F.;) are generically pole assignable. In particular, the variable feedback
gains &f,fi and bf,l <1< n;—1,1 <: < N can be computed from (6.11),
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which, due to (6.32), takes the form

.- [ 1 ] v -
pi ( aj
. of :
2 1 :
: : 1 a;’u
Pn, = | e o 1 fi (6.33)
Phipa ol s 1 b+ fiag
al :
i ni=l bi Fi ~i
L pgﬂi—l J CY:,', 1 J L “n;~1 + f an.'—l n

We choose the feedback gains so as to place the poles of the closed-loop
decoupled subsystems S2(Fqi) at —poi, where 0f > 0,1 <1< 2n; —1,1 <
¢ < N, and p > 0 is an arbitrarily large parameter. Then, pi € O(p'), and
(6.33) implies that

[ ai ] [ %i(d,p)
&izg—l :'Li—l(d’p)
fi = r(dp) | (6.34)
b ;1.-+1(d1p)
L 351.‘—1 J L Qp;n;—l(d,p) J

where vi(d,p) are polynomials in p of degree I, with coefficients being
polynomials in d. That is, degj(d,-) = 1,1 <1< 2n; — 1.

The structure of DE(F,;) shown in Figure 6.2, together with assumption
(i) also implies that no cycle in D,(F,), which includes a coupling edge due
to a nonzero parameter of some h?} or g;j, can include a feedback edge. To
see this, consider such a cycle C. which pass through the state vertices of
DPle LCN. Lt Ly =LNMand Ly-y=L—-Ly = LNN = M).
Then assumption (i7) implies that C. should cover the state vertices z} for
| € Ly and 2!, for | € Ln_pm. Therefore, C. cannot contain any fy or I;f",
1< q <n-1,1€ L. Obviously, C. cannot contain any fn or I;;"m, me~N-L
either, for then it would have cover z] , contradicting definition of the set

L. Finally, that C, cannot contain any a-type feedback edge is clear from the

structure of D2(F).
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Now consider an arbitrary cycle family CF, of an arbitrary width in
D,(F,), which includes a coupling edge. Let CF, = Cq UCFz U---UCui U
CFax UCF4UCFy, where

— Ceky Cary 1 < k < K, and the cycles in the cycle families CF,; and CFy

are all disjoint,

— each Cc is a simple d-cycle which includes a coupling edge, and covers
some (or all) state vertices of DP,1 € L, , where £ C N are disjoint,

1<k<K,

— for each 1 < k < K, CFy is an a-cycle family, which consists of simple
a-cycles Ck formed by the feedback edges @, 1<q<n—1,1€ Ly, where

not all cycles need to exist (in fact, CF s may be empty),

~ CFq and CFy are families of simple d- or f-cycles in DE(F,;), i €
N - ULy
Let each coupling cycle Cex, 1 < k < K, cover #; state vertices of DP, 1 €

L. We now construct another cycle family CF of the same width as CF.,

which includes no coupling edges as follows:
CF=CFiU---UCFgUCF4UCFy,
where each CF consists of simple cycles ac, | € Ly, which include

hyq o U+ @<m
oo ifata=mn (6.35)
bitq-my > f A+ q>ny

Note that, in each case 7@;‘) = i+ @1, 50 that Y(CF%) = Yiec @ + Tiec a1 =
v(Cer) + 7(CFsx), and therefore, v(CF) = v(CF.).

We now compare weights of CF, and CF. By the choice of the feedback
gains as in (6.34), w(CF: = v.(d,p) and w(CF) = ¢(d,p) are both
polynomials in p. By definition of CF, we have

K K
W(CFe) = [] w(Cat) - w(CFa) - w(CFy)- T IT w(C)-
k=1

k=11€L;
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so that

K
deg he(d,") = degypy(d,-)+ Y. Y deg p¥(d, ") (6.36)

k=1 el

,
= degvs(d,-)+> Y g (6.37)

k=1 lely

On the other hand, by construction of C.£ , we have

.
deg ¥(d,-) = degs(d, )+ 3. 3 deg ¥r(d, ) (6.38)
k=1 [EC;;
-
= deg ¥;(d,")+ 3. Y A +q, (6.39)
k=1 leLy

where the last equality follows from (6.34) and (6.35).

As a result, associated with every cycle family CF, which includes a
coupling edge, we have another cycle family CF , which includes no coupling
edges such that v(CF) = 4(CF,), and deg ¥(d,-) > ¢(d,-) . The proof then

follows the same lines as the proof of Theorem 4.2 on letting p — oo.



Chapter 7

CONCLUSION AND
SUGGESTIONS FOR
FURTHER RESEARCH

This thesis concerns a qualitative analysis of certain (potential) system
properties, namely, pole assignability, stabilizability and observability. In the
following, while we summarize and comment on the results of each chapter,

we also give suggestions for points which need further studying.

We know that the well-known result of Brasch and Pearson [49] which
states that all the poles of a controllable and observable system can be
assigned arbitrarily using a dynamic feedback compensator of order L =
min{L.,L,} — 1, where L. and L, are the controllability and observability
indices of the system, is overly sufficient. This can be explained by the fact
that their algebraic criterion does not take into account the structure of the
system, which actually plays the most important role in the solvability of
the problem. In Chapter 3, we investigate arbitrary pole assignability as a
structural property of the system by means of digraphs and prove two main
theorems, namely, Theorem 3.1 and Theorem 3.2, that provide graphical
sufficient conditions for structural pole assignability. Indeed, our results
show that, in some systems for which we would normally attempt to use

dynamic output feedback in order to place all the poles at desired locations,

124
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it is sufficient to use constant output feedback or at least a compensator of
smaller order. Furthermore, the conditions, being in terms of the digraph,
turn out to be sufficient for generic pole assignability, too. We prove that
certain classes of systems which are known to be generically arbitrarily pole
assignable satisfy the conditions of one or the other of these two theorems,

also demonstrating the nontriviality of the theorems.

Note that Theorem 3.2, which is a slightly generalized version of
Theorem 3.1, represents a special case of Corollary 3.1, stated in graph-
theoretic terms. It corresponds to the case when ¥ of (3.11) contains a
single quadratic term and it seems possible to obtain more general results
by considering modifications of this theorem to cover other forms of ;. For
example, in showing the pole assignability of structurally controllable and
observable systems with dynamic output feedback, via Theorem 3.2, we had
to limit ourselves to a class of systems with a certain structure. However,
as verified by Example 3.9 of Section 3.3.2, modifying Theorem 3.2 somehow
to include the case when 3 contains linear terms in addition to a single
quadratic term might solve this problem. On the other hand, Corollary 3.1 is
still a special case of some other result, namely, Lemma 3.2, which possibly

has hints for characterizing a broader class of pole assignable structures.

In Chapter 4, we extend the approach used in the preceding chapter, to
investigate structural stabilizability. Assuming high gain feedback, we state
and prove three results each characterizing a class of structurally and at
the same time generically stabilizable systems. Similar to the situation in
Chapter 3, the first two problems in this chapter describe special cases of the
algebraic result of Lemma 4.1. This lemma demands a very limiting structure
for the coefficients of the closed-loop characteristic polynomial which might

probably be relaxed, hence allowing for more general graphical results on

stabilizability.

In Chapter 5, we present a graphical interpretation of the observability
matrix and provide a new graphical criterion necessary and sufficient for the

structural observability of a system. Generic observability index is defined
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and lower and upper bounds for it are obtained. We actually aimed at
but were unsuccessful in developing a graphical interpretation of the generic
observability index which would have possibly led to a graphical method to
compute the index. This requires checking the generic linear independence of
rows with elements which are not necessarily algebraically independent and
hence it is extremely difficult to progress in this way. An alternative way
of attacking this problem might be through consideration of Rosenbrock’s

extended observability matrix instead of the regular observability matrix.

Chapter 6 considers genericity of some well-known results on pole
assignability and stabilizability of classes of systems with certain structures,
using an algebraic approach in conjunction with some purely graph-theoretic
results. In addition to the cases studied here, it might be worthwhile
to consider the problem of stabilizability using dynamic output feedback
for other classes of systems, for example for interconnected systems whose

subsystems have stable zeros.
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