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ABSTRACT

 
A video based method to detect volatile organic compounds 
(VOC) leaking out of process equipments used in 
petrochemical refineries is developed. Leaking VOC plume 
from a damaged component causes edges present in image 
frames loose their sharpness. This leads to a decrease in the 
high frequency content of the image. The background of the 
scene is estimated and decrease of high frequency energy of 
the scene is monitored using the spatial wavelet transforms 
of the current and the background images. Plume regions in 
image frames are analyzed in low-band sub-images, as well. 
Image frames are compared with their corresponding low-
band images. A maximum likelihood estimator (MLE) for 
adaptive threshold estimation is also developed in this 
paper. 
 

Index Terms— volatile organic compounds, fugitive 
emission, wavelet transform, parameter estimation
 

1. INTRODUCTION 
 
Petroleum refineries and organic chemical manufacturers 
periodically inspect leaks of volatile organic compounds 
(VOC) from equipment components such as valves, pumps, 
compressors, flanges, connectors, pump seals, etc [1]. 
Common practice for inspection is to utilize a portable 
flame ionization detector (FID) sniffing the seal around the 
components for possible leaks [2]. A single facility typically 
has hundreds of thousands of such components. A FID 
based monitoring approach turns out to be a tedious work 
with high labor cost even if the tests are carried out on a 
quarterly basis.  

Several optical imaging based methods are proposed in 
the literature for VOC leak detection as a cost-effective 
alternative [3, 4]. In these approaches, infra-red (IR) 
cameras operating at a predetermined wavelength band with 
strong VOC absorptions are used for leak detection.  

Video processing based VOC plume detection method 
is proposed in this paper. The method processes sequence of 
image frames captured by a visible-range camera. Although 
it is explicitly devised for visible-range cameras, techniques 
similar to the ones described in this paper can also be 

applied for image sequences captured by IR camera, as in 
[5].  

There are different types of fugitive VOC emissions 
with varying plume characteristics. For example, diesel and 
propane have vapor similar to smoke coming out of a pile of 
burning wood whereas gasoline vapor is transparent and 
wavy. This results in visible, smoke like semi-transparent 
flickering plumes for propane and diesel. What is common 
in these VOC types is that the temperature of the VOC 
plume emitted from a leaking component drops during the 
initial expansion [1]. This causes a temperature difference 
between the VOC plume and the surrounding air. For 
gasoline, this temperature difference generates a fluctuation 
in the refractive index of the surrounding air causing blur 
and a net radiation difference by the gas absorption which 
can be observed with visible-range cameras.  

Independent of the VOC type, plumes emitted from 
leaking components softens the edges in image frames. This 
characteristic property of VOC plumes is a good indicator 
of their existence in the range of the camera. It is well 
known that edges produce local extrema in wavelet 
subimages [6, 7]. Degradation of sharpness in the edges 
results in a decrease in the values of these extrema. 
However, these extrema values corresponding to edges do 
not completely disappear when there is VOC plume in the 
scene. In fact, they simply loose some of their strength but 
they still stay in their original locations, occluded partially 
by the (semi-) transparent plume. Therefore a decrease in 
wavelet extrema values or wavelet domain energy is an 
indicator of VOC plumes in the monitored area. 

Regions with VOC plume are also analyzed in low-low 
subband images of wavelet transform. Energy of the image 
regions with plume is concentrated in low-low subband. 
Image regions with possible plume are compared with their 
corresponding low-low subband images. 

Thresholds defined for high and low subband images 
are adaptively determined by a method using maximum 
likelihood estimation (MLE). This new approach is similar 
to the method described in [8]. In this way, the method 
adapts itself for various VOC types.  

In Section 2, the adaptive background subtraction 
method to obtain a wavelet domain background image of 
the monitored scene is reviewed. Subband analysis based 
VOC plume detection method is described in Section 3. 
Threshold adaptation scheme is explained in Section 4. 
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Experimental results and conclusions are presented in 
Sections 5 and 6. 

 
2. ADAPTIVE BACKGROUND SUBTRACTION IN 

WAVELET DOMAIN 
 
The first step of the VOC plume detection method is to 
detect changing regions in video. Background subtraction is 
a standard method for moving object detection in video. The 
current image of the video is subtracted from the estimated 
background image for segmenting out objects of interest in 
a scene. In [9], a computationally efficient method based on 
recursive background estimation method was proposed. In 
this paper, we use this method in wavelet domain to get an 
estimate of the background image.  

Let In(k,l) represent the intensity (brightness) value at 
pixel position (k,l) in the nth frame. Estimated background 
intensity value at the same pixel position, Bn+1(k,l) is 
calculated as follows: 
               (1) 
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where Bn(k,l) is the previous estimate of the background 
intensity value at the same pixel position. Initially, B0(k,l) is 
set to the first image frame I0(k,l). The update parameter a is 
a positive real number where 0<a<1. A pixel positioned at 
(k,l) is assumed to be moving if the brightness values 
corresponding to it in image frame In and image frame In-1 
satisfy the following inequality: 

             |In(k,l) – In-1(k,l)| > Tn(k,l)                       (2) 
where In-1(k,l) is the brightness value at pixel position (k,l) 
in the (n-1)-st frame In-1, Tn(k,l) is a threshold describing a 
statistically significant brightness change at pixel position 
(k,l). This threshold is recursively updated for each pixel as 
follows: 
               (3)   
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where c>1 and 0<a<1, [9].  
The wavelet transform of the background scene can be 

estimated from the wavelet coefficients of past image 
frames [10]. When there is no moving object in the scene, 
the wavelet transform of the background image is stationary 
as well. On the other hand, foreground objects and their 
wavelet coefficients change in time. Therefore equations 
(1)-(3) can be also implemented in the wavelet domain to 
estimate the wavelet transform of the background image as 
described in [10]. Let Dn represent any one of the subband 
images of the background image Bn at time instant n: The 
subband image of the background Dn+1 at time instant n+1 
is estimated from Dn as follows: 
           (4) 

movingjijiD
movingnonjijiJajiaD

jiD
n

nn
n ),(),,(

),(),,()1(),(
),(1

where Jn is the corresponding subband image of the current 
observed image frame In. When the viewing range of the 

camera is observed for a while, the wavelet transform of the 
entire background can be estimated because moving regions 
and objects occupy only some parts of the scene in a typical 
image of a video and they disappear over time. Non-
stationary wavelet coefficients over time correspond to the 
foreground of the scene and they contain motion 
information. In the proposed VOC plume detection 
algorithm, Dn is estimated for the first level LL (low-low), 
HL (high-low), LH and HH subband images. These 
estimated background subband images are used in the 
subband based plume detection method.  

Estimated subband image of the background is 
subtracted from the corresponding subband image of the 
current image to detect the moving wavelet coefficients and 
consequently moving objects as it is assumed that the 
regions different from the background are the moving 
regions. In other words, all of the wavelet coefficients 
satisfying the inequality 

|Jn (i,j) – Dn(i,j)| > Tn(i,j)                    (5) 
are determined as moving regions.  

 
3. PLUME DETECTION 

 
As discussed in Sec. 1, fugitive VOC plumes soften the 
edges in image frames independent of the VOC type. It is 
necessary to analyze detected moving regions further to 
determine if the motion is due to plume or an ordinary 
moving object. Wavelet transform provides a convenient 
means of estimating blur in a given region because edges in 
the original image produce high amplitude wavelet 
coefficients and extrema in the wavelet domain [6, 7, 11]. 
When there is plume in a region wavelet extrema decrease. 
Therefore, (i) local wavelet energy decreases and (ii) 
individual wavelet coefficients corresponding to edges of 
objects in background whose values decrease over time 
should be determined to detect plume. 

Let Jn,LH, Jn,HL and Jn,HH represent the horizontal, 
vertical and detail subbands of a single stage wavelet 
transform of the n-th image frame In, respectively. An 
indicator of the high frequency content of In is estimated by 
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Similarly for the background image Bn:  
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Following inequality provides a condition for the existence 
of VOC plumes in the viewing range of the camera: 
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where the threshold T1 satisfies 0 < T1 < 1. 
Candidate plume regions are determined by taking the 

intersection of moving regions and the regions in which a 
decrease in local wavelet energies occur according to (8). 
These candidate regions are further analyzed in low-low 
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subband images. Most of the energy of the plume regions in 
image frames is concentrated in low-low subband. Hence, 
the difference between the average energies of plume 
regions in the current frame and its corresponding LL 
subband image is expected to be close to zero. 

Let a single stage wavelet transform be used for 
subband analysis. Let a candidate plume region, Rs is 
determined in LL subband image, JnLL according to (5) and 
(8). Average energy of Rs is given as 

2
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where N is the total number of pixels in Rs. Average energy 
of the corresponding region, Ro in the original image In is  
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Since the LL image is a quarter size of the original image, 
one needs to use a scaling factor of 4 to calculate the 
average energy of a pixel in (10). The candidate regions for 
which the difference between average energies is small are 
determined as plume regions: 

2(n)=| ERs,n – ERo,n | < T2                          (11) 
where T2 is a threshold. 

Thresholds T1 and T2 are not fixed and adaptively 
determined by the following MLE based method.  
 

4. THRESHOLD ESTIMATION 
 
Thresholds T1 and T2 defined in Sec. 3 are adaptively 
estimated to account for various VOC types and changes in 
the lighting conditions. An MLE based threshold adaptation 
scheme is developed similar to the method in [8].  

The clairvoyant MLE estimator for decision functions 
1(n) and 2(n), defined in (8) and (11), is simply the 

sample mean estimator. Based on this estimator threshold 
values T1 and T2 can be easily determined. However the 
thresholds may not be robust to changing environmental 
conditions. 

Let us consider the problem of estimating a threshold T 
in an adaptive manner from observed images. We assume 
that the threshold values vary according to the following 
expression for each image  

1,,1,0],[][ NnnwTnf           (12) 

where  is zero-mean additive white 
Gaussian noise (AWGN) and n  is image frame number.  
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For each image frame, plume detection functions (n) 
defines a binary image mask which is determined according 
to (8) and (11). One can also regard a binary mask as 
indicator variables defined by quantized observations f[n] 
with respect to the threshold T  

),(][1)( nfnb               (13) 
where  is an initial parameter defining the mask b(n). 
 

 
 

Each b(n) in (14) is a Bernoulli random variable with 
parameter 

)(1)(Pr)( TFnbTqk          (14) 
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is the complementary cumulative distribution function of 
w[n]. In this case, the threshold is estimated in N = 10 

consecutive frames as follows 
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which can be obtained as in [8].  
In this paper, we have two indicator functions 1(n) and 

2(n), hence two separate thresholds, T1 and T2. We 
formulate and implement a more general approach than 
above which can be summarized in the following three 
steps: 

1- Define a set of initial parameters 2,1| uu  
2- Obtain binary observations bu; u=1, 2. 
3- Find MLE for T. 
Log-likelihood function is given as 

    (16) 
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from which the MLE of T can be defined as 
)(maxargˆ TLT T                   (17) 

Since T in (17) cannot be determined in closed-form, 
Newton’s algorithm is utilized based on the following 
iteration: 
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where and are the first and second derivatives 
of the log-likelihood function. Since the MLE problem (16), 
(17) is convex on T, the MLE in (18) is guaranteed to 
converge to the global optimum of L(T). These steps can be 
applied for both T1 and T2 separately.  

)(xL )(xL

5. EXPERIMENTAL RESULTS 
 
The proposed method is implemented on a PC with an Intel 
Core Duo CPU 1.86GHz processor and tested for videos 
containing several types of VOC plumes including propane, 
gasoline and diesel. These clips also contain ordinary 
moving objects possible to trigger false alarms like shadows 
of swaying leaves on the surface of a pond.  

The computational cost of the wavelet transform is low. 
The filterbank used in the implementation for single level 
wavelet decomposition of image frames have integer 
coefficient low and high pass Lagrange filters. Threshold 
updates are realized using 10 recent frames.  
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Plume detection is achieved in real-time. The 

processing time per frame is less than 15 msec for 320 by 
240 pixel frames. 

Figure 1. VOC plume detection results. Detected regions are 
marked with bounding rectangles. Image frames at the top 
row are gasoline plume, whereas images at the bottom are 
diesel and propane vapor. 
 

Sample image frames with detected VOC plume 
regions are presented in Fig 1. Gasoline has transparent 
vapor whereas diesel and propane have semi-transparent 
regular smoke like plumes. Detection results for fixed and 
adaptive threshold methods for different VOC types are 
presented in Table 1. Threshold values are adjusted for 
gasoline type VOC plumes for the fixed threshold method in 
Table 1. Therefore, the detection performance for VOC 
plumes is decreased as well as the number of false positives 
is higher. No false alarms are issued for regular moving 
regions like shadows of swaying leaves when adaptive 
thresholds are used as shown in the last column.   

 
Table 1: VOC plume detection results for adaptive and non-

adaptive threshold implementations 
Number of detected 

frames 
Number of false 

positives VOC type 

Number of 
frames 
with 

plume 
Fixed 
thresh.  

Adapt. 
thresh. 

Fixed 
thresh. 

Adapt. 
thresh. 

Gasoline 1241 1088 1120 0 0 
Diesel 443 265 405 38 0 

Propane 310 120 288 14 0 
 

6. CONCLUSIONS 

A VOC plume detection method based on wavelet 
analysis of video is developed. The method relies on 
comparing subband energies of image frames with those of 
background images. Thresholds defined for energy 
comparisons are updated by a novel MLE based adaptation 
scheme. The system proposes a cost effective alternative to 
flame ionization detectors which are currently in use to 

detect VOC leakages from damaged equipments in 
petrochemical refineries. 
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