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ABSTRACT

REGULARIZED MOTION ESTIMATION TECHNIQUES 
AND THEIR APPLICATIONS TO VIDEO CODING

Serkan Kiranyaz
M.S. in Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Levent Onural 
Sei)tember 1996

Novel regularized motion estimation techniques and their possible applications 
to video coding are presented. A block matching motion estimation algorithm 
which extracts better block motion field by forming and ininimizing a suitable 
energy function is introduced. Based on ciri ¿idciptive structure onto block 
sizes, cui cidvcinced block matching ¿ilgorithm is presented. The block sizes 
are adaptively ¿idjusted according to the motion. Blockwise coarse to fine 
segmentation based motion estimation algorithm is introduced for further 
reduction on the number of bits that are spent lor the coding of the block 
motion vectors. Motion estiiricition algorithms which can be used lor ¿iverage 
motion determination and artificial frame generation by fractional motion 
compensation are ¿ilso developed. Finallj^, an alternative motion estimation 
cind compensation technique which defines feciture based motion vectors on the 
ob ject boundciries and reconstructs the decoded frame from the interpolation of 
the compensated object boundaries is presented. All the algorithms developed 
in this thesis are simulated on recil or synthetic images cind their performance 
is demonstrcited.

Keywords : Video Coding, Regularization, Motion Estimation, Motion 
Compensation, Motion Detection, Line Field.
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ÖZET

DÜZGÜNLEŞTİRİLMİŞ HAREKET KESTİRİMİ 
TEKNİKLERİ VE VİDEO KODLAMADAKİ 

UYGULAMALARI

Serkan Kırarıyaz
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. Levent Onural 
Eylül 1996

Yeni düzgünleştirilmiş hareket kestirirni teknikleri ve ohısı video kodlama 
uygulamalcirı sunulmuştur. ilk olarak, uygun bir enerji fonksiyonunu 
minimize ederek daha iyi bir İmreket vektör alarn oluşturan hareket 
kestirirni algoritması tanıtılmıştır. Daha sonra blok boylarına adaptif bir 
yapı konulmasıyla oluşturulan bloklara dayalı hareket kestirirni cdgoritması 
sunulmuştur. Blok boyları harekete bağlı olarcdr bulunmaktadır. Blok hareket 
vektörlerine harcanan bit sayısında daha fazla indirim yapabilecek hierarşik 
yapıda bölütlerneye bağlı bir blok hareket kestirirni algoritması tanıtılmıştır. 
Ayrıca ortalama hareket belirlenmesi ve parçalı harekete göre kaydırmayla, 
sanal görüntü üretiminde kullanılabilecek hareket kestirirni algoritmaları 
geliştirilmiştir. Son olarak özelliklere dayalı hareket vektörlerini nesne sınırları 
üzerinde tanımlayan ve kaydırılmış nesne sınırlarmm iriterpolasyonurıdan 
çözülmüş görüntüyü oluşturan hareket kestirirni ve ona göre ka.ydırrna 
teknikleri sunulmuştur. Tezde geliştirilen algoritmalar gerçek ve sentetik 
görüntüler üzerinde denenmiş ve perlbrmansları gözlenmiştir.

Anahtar Kelimeler : Düzgünleştirme, Hareket Kestirirni, Harekete Cöre
Kaydırma, Çizgisel işlevler.
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C hapter 1

Introduction

Stcirting from the late sixties, much effort has been spent on the development of 
videophone or such apparatus which cire operating at low transmission bit rates 
[1, 2, 3]. In this area, the main objective is the transmission of video frames as 
efficiently as possible within cin acceptable loss of visual image quality. This 
can only be achieved by taking advantage of the interfrarne correlation. The 
key tool for that is motion estimation and compensation. Motion estimation 
is a highly ill-posed problem and therefore, should be solved by regularization. 
Regularization should be performed in such a way that motion estimation 
cilgorithrns can extract a motion field which is suitable for the application 
aspects. Various regularization techniques [4, 5, 6] ha.ve been proposed to 
provide reliable estimates from ill-posed measurements [7].

Motion estimation, as its name implies, is concerned with the extraction 
of motion information from a sequence of video frcimes. It is used in a 
wide range of applications including video coding, computer and robot vision, 
tra.ffic monitoring, military defen.se systems, autonomous imvigation of mobile 
vehicles, biomedical research.

In various motion estimation applications, the motion is represented by a 
2-D field which is the projection of a 3-D object motion onto the image plane. 
2-D motion estimation is concerned with displacements of 2-1) projections of



object points in consecutive frames for various applications of the digitcil video 
frames (i.e. video coding).

In this thesis, we are concerned with 2-D motion estimation algorithms 
cuid their applications to very low bit rate (VLBR) video coding. .Since 
2-D motion estimation is an ill-posed problem, we are looking lor suitable 
regularization techniques. Furthermore, some eildctive improvements are also 
proposed for some chissical methods. Especially in very low bit rat(i video 
coding, improvements for the classical block matching motion estimation 
algorithm can realize better block motion estimation in terms of bit rate. Also 
segmentation bcised motion estimation algorithms are shown to further improve 
the performance in such a wiiy that more reduction in the bit rcite can be 
achieved.

1.1 Basic Problem s in M otion Estim ation

The aim in 2-D motion estimation is the computation or extraction of the 
movement of the objects which cire in the inuige plane. There are various 
algorithms which hcive been developed to estimate 2-D or 3-D motion from the 
video frames [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. However, there are still open 
problems and some difficulties in that area.

One of the main problems is the overlapping of moving objects. This 
situation is called as “occlusion” [18]. Occlusion effect makes the detection 
and estimation of the motion difficult. Also there can exist some self-occlusion 
effects of a single moving object. For example, a 3-D rotation of an object 
causes some parts of the object to be unseen and some unseen parts of the 

to become visible. This problem is out of the scope of this thesis.

Another important problem in motion estinicition is the relative motion 
between the objects and the Ccirnera. Such relative motion causes difficulties 
in the detection of the moving objects as well as estimation of their actual 
movements. This implies that the term of motion estimation often indicates a 
combined detection-estimation process, such as segmentation of the individual



moving objects and then estimating their motion. Since the detection of 
the objects requires thcit the motion has to be estimated beforehand while 
the motion estimation requires the detection of moving objects, detection- 
estimation processes are not independent of each other, and therefore, any 
motion estimation algorithm should be developed, accorc

In order to improve the robustness of the motion estimation algorithms, 
the presence of camera noise in the observed images is explicitly taken into 
account [19]. This is well done by a preprocessing stiige lor the video frames. 
The main idea is to obtain such a motion field which can represent the actual 
movement as much as possible and also which can be coded effectively. Such 
noise reduction techniques are not adressed in this thesis.

In the coding j^oint of view, there is another problem or even a dilemma. 
It is the difference between well matched and well codable motion field. 
That is to say that well matched motion field is obtained by taking “good 
matching” into account but on the other hand a well codable motion field 
is extracted by regularizing the motion field and therefore, it tends to have 
less matching but better coding of the motion field. As a result, the motion 
estimation algorithms that are used in video coding should be designed in such 
a way that the amount of regularizcition should be arrcinged according to the 
application aspects (such as channel bandwidth (bit-rate) and minimum signal 
to noise ratio (SNR) requii'ernent).

1.2 Regularization of 111 Posed Problem s

As stated previously, motion estimation is an ill-posed problem [6, 5, 7]. 'riie 
reason behind the ill-posedness is that the number of constraints is insufficient 
to find a unique and robust solution. It is beccuise of the fact that there is 
only one constraint for each motion vector which consist of two components. 
That constraint depends on an ¿issumption which may not be always true: that 
assumption is brightness constancy of an object point and yields the following 
optical flow equality:



It{x) = It-\{x -  d{x)) (1.1)

where x is any pixel location vector, /,. is the intensity (or color) value for 
the pixel x at time t and d{x) is the candidate motion vector. For real world 
images, this equality usually does not hold because of noise. Therefore, it ccui 
be converted to a well-known constraint.

d{x) = arg rnin[L(It(x), It-i{x ~ d(x)))] (1.2)

where L(.) is the absolute difference operator. Eqiuition 1.2 is still insufficient 
to obtiiin a unique solution for d(x). The main reason of the ill-posedness 
is because d(x) consists of two unknown components but there is only one 
constrcunt present.

So in order to obtain a unique and robust solution, this problem is 
regularized by adding several constraints to the problem. The choice of 
consti'ciints determines the type of the regularization cind it varies due to 
application requirements. In other words, requirements of any specific 
appliccition determine the reguhirization technique. Especicilly, bit rate and 
signal to noise ratio (SNR) are the most significcuit requirements that can 
determine the choice of the regulcirization technique.

Usual regularization techniques result in a smooth motion field. In other 
words, those techniques put a smoothness constraint in addition to the optical 
flow constraint. Hence one can state the total constraint employed on the 
motion field as follows:

d(x) = arg rnin[L(Itiyi), /¿-i(x -  d(x))) + AR(d(x))] (l..‘l)

where A is the regularization i^arameter and R{.) is the regularization operator 
which imposes smoothness on to the motion field, x can be either a single pixel 
or a group of pixels depending on the constraint aspects.

Different algorithms are formuhited by different choices of R(.), L(.) and A. 
In the BMME algorithms for example, R(.) operator is the assignment of just 
one (block) motion vector for the whole block of pixels. This is a smoothness



constraint for regularization. Furthermore, there are various algorithms ecich 
ol which is based on stochastic models for regularization. The one which is 
based on a stochastic fonnulation is the “Gibbs Formulation” or equivalently 
“McU’kov Rcindorn Field” (MRF) modeling of the motion held.

1.3 Constrained and Stochastic M otion

M odels

One common approach to the motion estimation problem is by optic flow 
concept [9]. Optic flow refers to the distribution of instantaneons velocities 
of moving brightness elements in an image or video frame. Those elements 
can be the ol^jects which cire in the field of view of the observer cuid optic flow 
actually ¿irises bectiuse of the relative motion of these objects and the observer. 
Actucilly optic flow is the main information source of moving objects, their 
spatial cirrangements cind structural features.

Optic flow estimation techniques ¿ire biised on the ¿issurnption that the 
intensity of a pixel located at (.r, y) on the irruige phine is constfint over time. 
Let ?/, t) represent the intensity ¿it points on a path that is defined by 
(x=x(l), y=y(t), t) in the 2-D image phirie. Hence the following equation 
relates with optic flow:

d l(x ,y ,t)  _  dx rd y
d ~  '  ‘' m

(1.4)

where and v,, = | | ,  Uj, = |^ . Thus the equation 1.4
becomes:

—  0 (1.5)

Since V — [gi-Wj,]' is the motion vector tlmt we ¿ire looking for, equation 1.5 
reliites the 2-D motion with the gradient of the image ¿uid is true if the 
constcincy of image pixel intensity ¿issumption holds.



For regularization we need at least one more constraint to reverse the 
problem to a well-posed problem. Horn cind Schunk [9] introduces two types of 
smoothness constraints. One is the sum of square of the motion held gradient:

dx  dv dx
'  9vy'^+dy ' dx  ' dy 

and the other one is the square of the Laplacian opercition:

( 1 .6 )

d'^v^^ d '^vj d'^v,/ d'^Vy
I (\ o I r\ o I (1.7)

dx'^ ' dy'^ ' dx?  '  dy'^
Both constraints depend on the assumption that pixels close to eiich other tend 
to have the same velocity. As a result the weighted sum of optic flow terms 
in equation 1.5 and one of the constraint terms given in equation 1.6 or 1.7, is 
minimized. Thus we obtain regularized optic flow (motion) held. If the discrete 
estimates of the derivatives are well-behaved, resultant optic flow achieves a 
good estimate of the actual motion field.

Another approach for the regularization of the motion estimation problem 
is to model the motion field as a Mcirkov Random Field (MRF). Equivalent 
stochastic model namely Gibbs distribution can be used under the positivity 
condition (i.e. T’(f) > 0). This type of modeling results in a maximum a
posteriori (MAP) estimate of the motion field. Let us first define the model:

Definition: Let f = [fi], i € S be a collection of random variables defined on 
a regular lattice S. f is called a MRF if it satisfies the following condition:

i.Vj e S),Vt = P(j.\f„, # i,Vj € iY,).vi (1.8)

where P{f) is the probability density function of the rcindom field f and fi is the 
value of the distinct element at i in the field, S is the entire set of sites and Ni is 
the neighborhood of the site i. So this condition which is the basic assumption 
of MRF stcites that given only the elements in a predefined neighborhood of the 
i’th element, the probability distribution for the i’th element is independent 
from the rest of the elements.

Besag [20] and also Gernan and Gerncxn [21] present the equivalence of the



MRF and Gibbs distribution. They have proven that under the positivity 
assumption, random field f is a MRF with respect to neighborhood Ni if 
and only if there exist a Gibbs distribution on the same neighborhood. 
Gibbs distribution allows to construct a loccil structure through potentials 
and energies that describe the interactions of each element in the field. 'The 
probability density function of the Gibbs distribution is given as:

1
 ̂ (f) = y  ) (1.9)

where H(i) is the energy (Hamiltonian) that describes MRF, 7' is the 
temperature of the state and Z is the partition function that can be formulated 
as follows:

/  =  2 ^  e x i i ---- ------ )
hes

( 1.10)

and in order f to be a random field, the equcition 1.10 should be always satisfied.

In order to achieve a well-reguhirized motion field, the hamiltonian 
should be properly determined. A simple choice includes just two basic energy 
terms: ricirnely “matching” and “smoothness”. 'Fhose terms can be chosen cis 
follows:

HM{d) = y) -  h-\{x  -  dr:{x, y), y -  dy(x, y))Y
y ^

( 1. 11)

^ds(d) = 1 ]  5 ]  {d(x, y) -  dix -  y -  j))  ^
y i ,j£N,ry

1.I2)

H{d) = f t / /„ (d )  + fi-Jhid) (1.13)

where d is motion vector field, /¿(.r, y) is the intensity (or color) value of a pixel 
located at (x,y). //M(d) is the matching term which forces motion vectors to 
represent true displacements. It is a well-known term from the optic flow 
equation and sometimes rehited with posteriori distribution. //s(d) is the



smoothness term which imposes the basic regularization to the motion held. 
That term forces the motion vectors to have similar values with their neighbor 
motion vectors. Minimization of the total energy function //(d) maximize the 
probability distribution (Gibbs) so that we obtain MAP estimate of the motion 
held [4].

1.4 M otion Com pensation and Video Coding

Motion compensation in video coding is the disphicernent of the previous friime 
by an amount of estimated motion held. This action satisfies a temporal 
redundancy reduction and therefore, it is the basic tool which makes temporal 
prediction between consecutive video frames.

Motion compensated predictive coding basically depends on the following 
observation: a sequence of video frames in general do not change so much 
and therefore, have temporal correlation with each other. That is to say that 
except for the newly exposed scenery, ecich pixel in the previous frame moves 
along a motion trajectory and hence, if the motion held of the image is known, 
a reasonable prediction of the current frame can be obtained by shifting and 
interpolating those moving parts of the previous frame accordingly.

Many motion estimation techniques have been shown to give good 
bandwidth reduction and image fidelity. The one whicli is most common and 
used in most of the VLBR video coding applications is the block matching 
motion estimation (BMME) algorithm [17, 22, 16, 12]. In BMME algorithms, 
current video frame is divided into blocks. The blocks are rectangular in shape 
cind consist of certain number of pixels each of which is assumed to undergo 
the same displacement, and therefore, the pixels inside a block have the same 
motion vector. So the algorithmic task is to find a motion vector for 
each block such that a suitiible matching criteria is maximized. Therefore, the 
fumhunental approach towards BMME algorithm can be formulated as follows:

d =  arg mn?,[ V  $(/f., /f._[/, d,:j)j Ví/¿j G D
x^S

(1.14)



where $ ( / j , / J l , / , is the cost function and D is the search space on the 
previous ima.ge. x is the position vector inside the image S. Usually, search 
space consists of integer translations and the minimum is Ibund by full search 
or by some iterative search techniques. Many other search techniques can be 
cipplied such as three step search [23], four step search [24], log(D) algoritlmi 
[25], and so on. Those techniques have beendeveloped in order to reduce the 
massive computation required by the full search.

Experimental results show that block motion field of a real world image 
sequence is usually smooth cuid varies slowly. So it makes the coding of the 
Ijlock motion vectors efficient in terms of bit rate.

1.5 Block M otion Estim ation Algorithm s and 

V ideo Coding Im plem entations

In this approach video frcimes are divided into blocks, each of which is assumed 
to undergo the same translation and thus block of pixels have a single block 
motion vector (BMV). Block motion estimation algorithms are widely used 
in video coding applications [16, 22, 17] and the main contribution of those 
algorithms is that BMV’s can represent rigid body motion field with the 
minimum number of motion vectors.

As shown in Figure 1.1, in order to find a BMV for a block centered at 
(.T, y), block of image pixels is taken at frame t and an attempt is made to find 
the best match for it within a search area in the frame I — 1. If D^ax is the 
maximum displacement allowed to occur either horizontally or vertically, then 
the area of the searched region is given by: SA  = {M + ‘2,D,nai){N + 2/d,„,„„)

The M X N  block is moved in the secirch area till the best match is ibund. 
The distance between the block center and the center of the best match is 
considered to be the BMV of that block.

There are several BMME algorithms in the literature: H,obl)ins and
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Figure 1.1: Given two frames, block motion estimation is performed within a 
search area in the previous frame

Netravali [26] evaluate an algorithm based on the steepest descent approach 
and the algorithm attempts to estimate a BMV by minimizing the square value 
of the displaced frame dilference (DFD) which is defined as follows:

DFD{x,y,d(x,y))  = It{x,y) -  It-i(x -  cU x,y),y  -  dy{x,y)) (1.15)

where d{x,y) is the BMV of the block centered at (x,y), d^(x, y) and dy{x, y) 
are the x and y components of the BMV, respectively.

Houkes [27] presents a similar procedure using an iterative least squcires 
linear estimation procedure. However Houkes includes a rotation and scale 
factor in addition to the transla.tional motion vector. Jain and Jain [25] divide 
the iiricige into fixed sized blocks whose best match is found by minimizing a 
distortion function between the consecutive frames.

An important issue for block matching is the block size. The visual 
degi-cidation in block motion compensation is usually proportional with the 
block size. Smaller blocks generally reduce the visual degradation since 
any rotation (or nonlinear motion) can be better expressed by smaller block 
translations. So the performance of the BMME algorithms generally depends
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on three factors: block size, mcitching criterion and search method. We have 
already discussed the first two of them. Search method is also important. 
Usually the search space consists of integer trcinslations and the minimum 
is found by direct search techniques. The mostly used search technique is 
the exhaustive search. The disadvantage of the exhaustive search is that the 
computation time is proportional to the search area, but on the other Imnd, 
global minimum is always guaranteed to be found. Many diflerent search 
techniques have been adopted such as cross search [28], three-step search [23], 
four step search [24] and etc. Those techniques are developed to reduce the 
computation time and also to find the global minimum in most of the cases. 
However, the main disadvantage for those techniques is that finding the global 
minimum is not alwciys guaranteed.

The most famous video coding standards are MPEG phases. MPEG 
is an acronym for Moving Picture Experts Group which is under LSO- 
iEG/JTGl/,SG29/WGll and started its activity in 1988. There are two 
complete phases of MPEG namely MPEG-1 cind MPEG-2. MPEG-1 is 
a standardization of coding for storage. MPEG-1 results that video and 
its associated audio can be stored and retrieved at about 1.5Mbits/s in a 
satisfactory quality.

In MPEG-1, images are in CIE format (Common Intermediate Eormat: 
352x288) and frame rate is 30 frames/s. The draft of MPEXl-1 has been 
finalized in June 1992. The second standard, MPEG-2, is intended for higher 
delta rates than MPEG-1 (It is about 2-15 Mbits/s).

The last phase of MPEG, MPEG-4, mainly involves very low bit rate video 
coding (about several tens of Kbits/s) cind hcis begun officially in 1993.

Another stcindardization organizcition is CCITT which formed a Specialist 
Group in 1984 toward a coding standard for visual telephony. In December 
1990 the first picture coding standard (H.261) has been resulted [3]. Second 
standard is called H.263 and is primarily intended for very low bit rate video 
coding (about several tens of Kbits/s). The work of H.263 has been resulted 
in 1995.

In Appendix A, we present the motion estimation algorithms used in H.261

12



and H.263.

1.6 Scope and Outline of the Thesis

The scope of this thesis is the investigation of novel regulcirization techniques 
that can be used to remove the ill-posed behavior of the motion estimation 
problem for various applications, especially for video coding implementations. 
Moreover, the mciin contribution of this thesis is to obtain various motion field 
representations which can be coded efficiently.

We basiccdly cast the motion estimation as a problem in rninirnizcition 
of an energy function which is formed by combining the motion constraints. 
Those constrcunts are related with the severed requirements so that problem 
a.s23ects Ccin be realized. As a I'esult, a distribution function (such as Gibbs 
distribution) is formed and minimized to obtain the MAP (maximum a 
posteriori) estimate of the motion. Therefore, the common feature of different 
motion estinicition afgorithms and related tools is the Ibllowing idea: all motion 
estimation algorithms are modelled as GRFs such that we assign diflbrent Gil)bs 
distributions ciccording to the problem aspects. Therefore, all the algorithms 
are formalized by enei'gy functions which differ by the constraints of the 
probfern (and ai^pliccition requirements).

In Ghapter 2, we focus on the regularization techniques for video coding. 
Since the most implemented model of motion estimation for video coding 
a^Dplications is the block matching algorithms, we are concerned with several 
advanced block matching algorithms in that chapter. Those proi)osed 
algorithms cire designed to improve the performance of the block matching 
motion estimation (BMME) algorithms, ¿is well as to reduce the visual 
perception degradation that is caused from the disadvcuitages of BMME 
algorithms. The basic disadvantages of the BMME algorithms are blocking 
artifacts in visual perception and redundant block motion field representation. 
As a result, in chapter 3 those disadvantciges are shown to be reduced by using 
those projiosed techniques.
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In Chapter 3, some alternative motion estimation techniques, which can 
be used in a video coding implementation, are introduced. Since motion 
estimation is generally used for temporal prediction in a typical video coding 
application, we now refine the problem and present a different type of usage for 
motion estimation. Essentially, we present average motion determination and 
motion compensated interpolation concepts. Average motion determination 
can be used for frame rate adjustment. The frames which remain stationary 
can be detected by average motion determination algorithm, and tliose frames 
Ccui be skipped. Then in the decoder side by motion compensated interpolation 
those stationary frames are generated artificially. So in cluipter 4, we 
state whether or not the usage of those techniques can increase the coding 
performance of a particular video coding application.

In Chapter 4, we propose an alternative motion field representation which is 
the sj^arse field model. In that model, we present a motion field which is defined 
on the line field of the image. Since the line field consists of object boundaries 
which are the most important field carrying characteristic visual information of 
an image, we try to extract the motion compensated (MC) image from the MC 
line field. Further, we show that this technique can achieve high compression 
rate as a video coding implementation. However the visiud quality is not so 
high, as expected.

Finally, Chapter 5 gives some interpretations about the rojsults of the 
research presented in this thesis and outlines the further questions that arose 
in connection with the investigated cdgorithrns that can be considered to be 
the subjects of future research.
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C hapter 2

R egularized M otion E stim ation

In this chapter regularized motion estimation algorithms which can be 
effectively used in very low bit riite (VLBR) video coding applications, are 
presented. In video coding cipplications, motion estimation is generally used to 
remove the temporal redundancy. Especially in VLBR video coding, motion 
estimation algorithms should be designed by taking the following three faetors 
into account:

i) They should be accurate enough to provide an accejjtable motion 
compensation, ii) they should have non-complex structure so that computation 
time would be suitable for real time execution, and iii) they should extract a 
motion field which can lie coded effectively.

Block matching motion estimation (BMME) algorithms are the (juite 
suitable Ccindidates having the features described cibove. So it is not suprising 
tha.t those are the most widely used algorithms in VLBR video coding 
implementations, devices and standcirds. Therefore, BMME ¿dgorithms are 
simple, fast and can be implemented in hardware very easily. But they also 
ha.ve serious disadvantages which can be stated as follows:

i) BMME can cause degradations in visual quality such as blocking artilacts.

ii) Since only the “best match” criteria is taking into account while finding
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the BMVs, they can have quite arbitrary values which need high bit rate during 
coding.

iii) For any kind of motion (simple or complicated) between two video 
frames, always the Scurie number of blocks (and BMVs) are used to represent 
that motion. In other words, number of blocks and block sizes are constant 
(predehned) and independent from the motion. That can cause redundant or 
insufficient usage of the blocks.

iv) BMVs are raster-scanned in the coding stage. That type of scanning 
breaks the vertical correlation between BMVs and therefore, the overall coding 
performance would be reduced as a consequence of this scanning process.

v) Global motion can not be efficiently represented by BMME algorithms. 
This problematic insufficiency are examined in detail in the sections 3.1, 3.2 
and 3.3.

In order to overcome those disadvantciges we develop some novel BMME 
algorithms which are presented in this chapter.

2.1 Block M otion Estim ation by Energy  

M inim ization

As discussed previously, classical BMME algorithms are usually designed 
by tciking only matching criteria into account. Smoothness of the BMVs 
are only imposed by the constraint which is the assignment of only one 
motion vector per block. However, considering the coding efficiency this may 
be insufficient. Especially in VLBR video coding implementations further 
smoothness constraints may be necessary to achieve suitable BMVs for VLBR 
coding implementations.

fn this section we introduce an advanced BMME algorithm which improves 
the BMME algorithm in order to overcome the above problem, fn this 
approach, while searching the optimum BMV for a particular block, not only
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the matching criteria but also the smoothness of the BMVs cire taken into 
account. In order to do that, an energy function containing l:)oth matching 
cind smoothness terms are formed and then minimized. The contribution of 
the smoothness term should be adaptive with respect to the block size of the 
algorithm. So we saw that a good way to do it is to reduce the smoothness 
constraint inversely proportional with the area covered by a particular block 
(cilso stated in [29]).

2.1.1 Energy Based BM M E A lgorithm

As stated in sections 1.3 and 2.2, we form an energy function like as in Equation
1.3. This energy function is given as:

BS BS
Em^y {h{x + A 2/ + j)  -  + i + 4(·^·, y),y  + j  + dy{x,y))Y

i i
( 2 . 1)

Nd Nd

E s,y=  E  E  \ \ d i x , y ) - d{x  + zBS,y + :jBS)\\ (2.2)
i = - N d j = - N d

Exy = ftiEnixy + P2Esxy (2-3)

where Ê y is the total energy function for the block which is represented by 
the offset pair (x,y). Those offset pairs can be the multiples of the block size 
BS (i.e., (0,0) (0,BS) (BS,BS) (BS,0) (BS,2BS) etc ...). Enixy and Es^y are 
the matching cuid smoothness constraint energy terms as before. The varia.bles 
dxix·, y)i dy(x, y) are the x and y components of the block motion vector d{x, y) 
as shown in Figure 1.1. Nd determines the size of the neighborhood.

All variables and energy terms are defined as blockwise and associated 
block is represented by the offset pairs (x,y)· /¿(.r + 2/+ .f)

f + 4 ( .r ,  y), 2/ + i  + dj,(;c, 2/)), VAi e [T.B,S'] cire the pixel inten.sity 
(or color) values of the current and previous motion compensated special 
frames, respectively.

Minimization of the total energy function in Equation 2.3 for each block in 
the current special frame, with the block motion vectors as variables yields the
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local optimum BMVs. Minimization method is the Iterated Conditional Mode 
(ICM) [30, 31].

In the minimization process, there are still some factors such cis boundary 
problems which may cause unreasonable results. Although it was not shown 
in the previous energy expressions, effects of boundary problems are avoided 
by adding some “if” statements to those energy expressions. Those “if” 
stcitements restricts out of border sitiuitions. In Equation 2.1, the term 

+ d.j;{x,y),y + dy{x,y)) represents the shifted pixels by the candidate 
motion vector components. For the pixels on the image boundary, if resultant 
shift operation cause an “out of border” situation, an “if” statement gives 
infinite penalization. Therefore, such a situation is strictly avoided. Also in 
Equation 2.2, dx+BSi,y+BSj are the neighbor motion vectors and the neighbor 
motion vectors which are out of border of the image are avoided by the same 
“if” statement as before by assigning infinite penalization.

Computational Complexity

In proposed algorithm, the only extra work is the computation of 
the “smoothness” energy term for each block. Since the calculation of 
“smoothness” term requires negligible computations with respect to the 
“matching” term of all the pixels in a block, computation time of our algorithm 
is slightly more than the classical BMME. Since the minimization process is 
carried out by ICM, the matching criteria of the pixels inside a block are once 
found cuid stored. Therefore, though the computation time is same as classical 
BMME algorithm, this technique requires much more memory.

2.1.2 R esults

VVe simulate our BMME algorithm with two video sequences and test its 
performance with the classical BMME cilgorithm. The FSNR and Hit Rate 
graphics are given in Figures 2.1 and 2.2. Those results are obtained by taking 
one step compensation from the original frames. The BMVs are then entropy 
coded by LZV coding so thcit Bit-Rate graphic indicates the number of bits 
spent for coding of the BMVs. PSNR graphic shows the usual Peak Signal to
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Noise Ratio which has the following formula:

P S N R  = lO/o^io I ^  Y (2.4)

where MCt is the motion compensated image from the pi'evious fi'cime (It-i). 
In both simulations, BS is chosen as eight, and /3j ¿ind /3s values are 1 and 150, 
respectively. Frames are in QCIF format {Xsize = 376, Ŷ ize = ¡44) and they 
are grciy-scale images (256 intensity levels with integer values form 0 to 255).

In Figures 2.3 and 2.4, resultant BMV fields, which are for the two typical 
video frames [Mother & Daughter, frames:10-ll and Foreman, frames:29-30), 
are shown. Those fields are obtained by using both classical and regularized 
BMME techniques.

Figure 2.1: PSNR (top) and Bit-Rate (bottom) graphics of the classiccd (o) and 
regularized (*) BMME algorithms for the Mother & Daughter sequence.
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Figure 2.2: PSNR {top) and Bit-Rate (bottom) graphics of the classiccil (o) and 
regularized (*) BMME algorithms for the Foreman sequence.

We achieve quite good results: the number of bits spent for coding of 
the BMVs are reduced almost twice without any significant visual quality (or 
PSNR) reduction. However, we are still far ciwciy from our total objectives 
that cire stated at the beginning of this chapter. Therefore, in the next section 
we focus on an adaptive BMME algorithm which can almost achieve the same 
visucil perception quality (and also PSNR) while further decreasing the l)it-rate 
for BMVs.

2.2 A daptive Block M atching Algorithm

In this section, we propose an adaptive block matching algorithm which is 
shown to almost solve the problems explained at the beginning of this chapter. 
This algorithm, first of all, operates on the variable sized blocks such that the 
block size is determined cidaptively by the matching criteria, i.e., if a good 
matching of a large (pcirent) block could not be achieved, by sub-dividing 
that parent block we try to improve the matching perlbrmance. So only the
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Figure 2.3: BMVs extracted from classical (left) and regulcirized (right) BMME 
cilgorithms for the frames (10-11) that are taken from the Mother & Daughter 
sequence.
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BBBBBBBaaaaaBBBBBaBBan BBBBBBaaaaaBBaaBBBBaan nS"""SSaaajiHHaBBnBBnBn BBBBBBaaaaauHaaBBBflBBB

Figure 2.4: BMVs extracted from classical (left) and regularized (right) BMME 
algorithms for the frames (29-30) that are taken from the Foreman sequence.

least number of blocks, which are required to represent the motion between 
frames, are used. If a subdivision occurs, there are two possibilities: II the 
parent BMV has an acceptable matching score, it influences the child BMVs, 
otherwise child BMVs are determined independently. By this way, starting 
from the root parent block, that is the image itself, producing the child blocks 
if needed, we can achieve desired regularization. As a result, without significant 
visual degradcition, we can obtain the reduced description of the (true) motion 
field in terms of bit consumption.
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2.2.1 A daptive Block M atching A lgorithm  (A B M A )

Before explaining the whole algorithm of ABMA, let us first define a few 
parameters as follows:

Matching Firror: It is the indication of mean square error (MSE) for a block. 
The matching error of a block is equal to the ratio of sum of intensity difference 
squares to block area. So it is the average difference square (per pixel) lor a 
block.

Depth: It is the number of the root parent block (image) sub-division.

Satisfaction Threshold: It is the maximum error for a candidate BMV to 
assign it as the BMV of that block. Above the satisfaction threshold, the block 
is sub-divided into four child blocks.

Effective Threshold: It indicates whether or not the parent block BMV 
cilfects the BMVs of the child blocks. The matching error which is above 
the effective threshold is assumed to give very bad matching performance so 
that parent BMV is now totally ignored.

Parent Multiplier: It is simply the parent block effect on the child blocks 
BMVs. If the matching criteria of ci pcirent block is in between the satislaction 
threshold and the effective threshold, that parent BMV is permitted to be used 
in the estimation process of the child BMVs.

Motion Estimation Algorithm

After the general parameters are defined, ABMA stcirts by taking the root 
parent block (image) as the current block and then finds the BMV which 
achieves the minimum matching error. The minimum matching error of the 
root parent block (image) is compared with the satisfaction threshold and 
effective threshold. If it is under satisfaction threshold, ABMA stops cind no 
further sub-division is carried out afterwards. That means just one BMV which 
is the root parent block motion vector is sufficient to represent the motion 
between video frames (i.e., as in the case of global camera motions or a single 

displacement as in Figure 2.5).
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Otherwise, if the matching error is above the Scitisfaction threshold, parent 
block is divided into four child blocks. The child BMVs are determined by 
the minimization of an energy function that consists of two terms; “matching” 
and “parent resemblance”. Those terms and energy function are ibrmulated as 
follows:

X e n d  V end

Em{b)= + + dyib))y)
i= X  st j= Y  st

(2.5)

Es(b) = II {dpar -  d(b) II (2.6)

E =  iEm(b) + PMEs(b)) (2.7)
vbeit

where E  is the total energy function which is the sum of matching Ern(b)
and parent resemblance Es{b) terms for all blocks in the current frame. The
coefficient Pm is the parent multiplier which has a nonzero vcilue if the matching
error of the parent block is under the efective threshold. The child BMVs are —̂ ^
rei^resented by d{b), b = 1 ,2 ,3  or 4 and their parent BMV is dpar· (Xst, Yst)
and (XendjYend) are the corner points of the block b. As before and

+ da:{b),j + dy[b)) are the current and previous compensated (by the
BMV: 7l{b) = [4(^) d,j{b)\) blocks.

As a result the motion estimation is realized in a quad-tree structure such 
that each (parent) block inside the current frame is either sub-divided into four 
child blocks or finds itself ci BMV by minimizing the energy term in Equation 
2.7. Sub-division process is allowed to be continued up to a iDredefined depth 
value (i.e., zeroth depth represents the root-parent block, if process is over 
after the fifth consequent sub-division, max. depth = -5). In a,certain depth.
the block which is in that depth can have the size as (- X r) ('-e.,, 2 depth ^ 2 depth .
for a QCIF (176x144) image cind depth = ^, a block has the size (11 x 9)). In 
practice maximum depth value can not be allowed to exceed five for the QCIF 
images.

Simulation results show that we Ccin hewe better results if for each block 
the parent multiplier Pm is adaptively determined by using the depth. This 
is also an expected result because as depth increases (blocks become smaller) 
the relation between the child blocks and their parent block increases. This
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is cl consequence oi the spatial correlation increase between smaller blocks. 
Since the block size reduction is proportional with the parent irmltiplier
should be proportional with the same factor, that is;

Pm  = (2.8)

where P^f is a constant real number which determines the amount of 
regularization for the BMV field. It is usually chosen according to the bit- 
rate lor BMVs. For low bit-rate cipplications the value of is chosen larger 
than 8.

Back Propagation Process

This process is nothing but the grouping of the child blocks which have 
the same BMVs to a single parent block. If all the child blocks have the same 
BMV, there is no need to use four (same) BMVs for them instead of only one. 
Therefore, they are combined to create one pcirent block. Such a situation can 
occur in such a case: sometimes the sub-division of a parent block may not 
crecite the child blocks which achieve better matching thcin their pai'ent block 
and thus all the child blocks can hcive the same BMV (which is their parent 
BMV). In such situations Back Propagation process reduces the number of 
blocks so that the number of bits spent for the coding of BMVs, are reduced.

Computational Complexity

We again compare the computation time with the classical BMMl'l 
algorithm. In classical BMME algorithm the matching scores of every pixel 
in the image are calculated once in order to determine the matching score of 
the constant-sized blocks. Therefore, the computation time for our algorithm 
would be almost the same with the chissiccil BMME algorithm because of tlie 
following reason: Since in the first depth, all the matching criteria (MSE) of the 
pixels are found once and then stored, for the remaining depths, only the parent 
resemblance term is to be calculated for each (child) block. That calculation 
requires only one subtraction cind one rnultipliciition for each block in the 
image and therefore, the computation time for it is negligible with respect to 
the calculation of the matching scores of the pixels. Thus the abovementioned 
result holds.

24



2.2.2 R esults

We compare the performance of the ABMA with the classiccil block matching 
algorithm. First, consider the simple motion of a rectangle shown in Figure 2.5 
(top). In this example, the frame size is (176x144) and blocks are (16x16) pixels 
tor the classical block matching algorithm. So, there are 99 blocks to represent 
that simple motion where the BMVs are shown in Figure 2.5 (bottom-left). 
When the ABMA is applied to this excvmiile, with only one block which is the 
friirne itself, the motion is represented as shown in Figure 2.5 (bottom-right).

■ E H · ·

Figure 2.5: (top) Previous and current frames, (bottom.) BMVs by (left) 
classical block matching algorithm, (right) proposed algorithm

The ABMA is also applied to “head and shoulders” type video frames as 
shown in Figures 2.6 and 2.7. The previous and current irruiges are shown at the 
top. In the middle row, the motion compensated frames by using ABM A and 
classical block matching algorithm are shown. At the bottom, the BMVs and 
their associated blocks are illustrated. Also, in order to emphasize the ellect 
of ABMA on the blocking artifacts compared to the classical block matching 
cilgorithm, some zoomed parts of the original video frames cire shown in Figure 
2.8. The parameters used in those simulations are given in Table 2.1.

I l l Table 2.1, values are chosen according to the amount ol regularization
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PA R A M E T E R S W  hiteRectangle M  other hDaug liter Foreman
D epth 1 5 4

Satisfaction  R ate 25 25 25
Effective R ate 100 100 100

Parent M ultiplier C onst. (P ^) 0.5 3 3
Search Range -1 0 ,+ 1 0 -7 ,+ 7 -7,+7

Table 2.1: Simulation parameters for ABM A

required. Normally we can choose value between 0 (for no regularizcition) 
and 20 (sufficiently high regularization factor even for depth 6). Therefore, 
according to the smoothness required, parent multiplier factor can be 
chosen cis any real number in this range.

Now for the comparison between AMBA and the classical BMME, we sketch 
PSNR and Bit-Rate graphics of ABMA as shown in Figures 2.9 cind 2.10. As 
shown in those graphs, ABMA is much better than the classical BMME, and 
even better than the regularized BMME which is discussed in the section 3.1.

Simulation results show that ABMA can reduce the number of bits spent 
for coding the BMMs approximately six times almost with the same PSNR 
values. The BMVs are entropy coded (same as before) so that Bit-Rate graphic 
indicates the number of bits spent for coding of the BMVs. PSNR graphic 
shows the usual Peak Signal to Noise Ratio.

2.3 B lockw ise Coarse to Fine Segm entation  

of M otion Fields

In this section, we develop a hierarchical segmentation algorithm and a 
BMME algorithm which extracts a BMV field that is suitable for hierarchical 
segmentation. Segmentation is cui efficient tool for VLBR video coding motion 
estimation algorithms. We believe that the number of bits which are spent lor 
coding of motion vectors can be further decreased by means of segmentation.
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Figure 2.6: (top) Previous and current frames {Mother & Daughter frames 78 & 
81)  ̂ (middle) compensated frames by (left) classical block matching idgorithrn, 
(right) proposed algorithm, (bottom) BMVs extracted by (left) classical block 
matching algorithm, (right) proposed algorithm (depth=5).
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Figure 2.7; (top) Previous and current frames (Foreman frames 66 & 69), 
(middle) compensated frames by (left) classical block matching cilgorithm, 
(right) proposed algorithm, (bottom) BMVs extracted by (left) chissical block 
matching algorithm, (right) proposed algorithm (depth=4).
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Figure 2.8: (top) Mother & Daughter, (bottom) Foreman, zoomed parts of 
the compensated frames by (left) classical block matching algorithm, (right) 
proposed algorithm.
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Figui’e 2.9: PSNR (top) and Bit-Rate (bottom) grciphics of the classical BMME 
(o) and ABMA (*) algorithms for the Mother & Daughter sequence.

Figure 2.10: PSNR {top) and Bit-Rate (bottom) graphics of the classical BMME 
(o) and ABMA (*) algorithms for the Foreman sequence.
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Segmentation of the block motion field is to combine the similar (or same) 
BMVs into groups so that the objects moving in a certain motion can be 
detected, extracted and then coded efficiently. In order to achieve this objective 
block motion field should have the following properties;

i) Block matching motion estimation (BMME) algorithm should extract a 
block motion vector field such that blocking artifacts in visual perception are 
minimal.

ii) Block motion field should be sufficiently smooth and correlated so that 
segmentation results in minimum number of segments.

iii) Block motion vector field should represent the global motion. That is 
to say that the motion between two video frames should be represented by the 
possible smallest number of BMVs so that segmentation Ccin be performed by 
using minimum number of segments.

In the light of the abovementioned features, we propose a well-regularized 
BMME algorithm. This algorithm has a simihir structure (quad-tree) as 
described in the previous section. However, there cire certain differences at 
the other parts of the algorithm. Eor instance motion estimation criteria, 
pcirent regularization effects to the child blocks, division determination rule 
and the other basic structural features which are mentioned later in detail, cue 
the basic different parts. Therefore, proposed BMME is an iterative algorithm 
which is repeated for every depth so that segmentation and block motion vector 
extraction are realised hierarchically (coarse to fine levels).

2.3.1 H ierarchical Block M atching A lgorithm

This algorithm is executed in two main steps. In the first step block motion 
vectors are obtained and in the second step blockwise segmentation is applied. 
The execution is repeated for every depth (sub-division stage). Sub-division 
process is shown in Figure 2.11. At the first depth there is only one block which 
is the video frame itself, so there can be only one segment and its block motion 
vector. Then in the second depth parent block (frame) is subdivided into four
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child blocks each of which is the quarter size of the frame. Block motion vectors 
are determined and segmentation is applied to those four blocks. The same 
algorithm is repeated for the remaining depths.
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Figure 2.11: Sub-division process in Quad-Tree structure for the depths =
1 ,2 ,3 , .. .

In any depth regularization is achieved by parent-child relation for the block 
motion vectors. So, in order to obtain a well-regularized block motion vector 
field, the parent block motion vector influences its child blocks in such a Wciy 
that if the best matching rate for the child block is not greater tlmn the parent 
matching rate multiplied with a coefficient, then, child block motion vector will 
be assigned as the block motion vector of its parent. By this way, from first 
depth to the last one, block motion vectors tend to have the same values as 
their parent block motion vector. Since cdl of the child blocks are generated 
from one root parent block, block motion vectors are forced to be similar with 
each other by the effects of parent blocks to their childs, and therefore, the 
final block motion vector becomes suitable for segmentation.

In this algorithm, the rruitching rate that is used in the determination of
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the block motion vectors is the ratio of matched pixels to the total number of 
pixels in the block. Therefore, the matching rate is ci real number between zero 
and one. In order to assign a displaced pixel ¿is ¿i “rncitched” pixel to ¿i pixel 
in the current frame, the difference between the intensities (or colors) must be 
below a certain threshold value. Otherwise that pixel in that block is assigned 
to be “unmatched”.

After finding all block motion vectors for a certain depth, segrnentcition is 
achieved in the following way: first, stationary blocks (BMV = 0) ¿ire put in 
a segment which is called background segment. For the rest of the (moving) 
blocks, following algorithm is realized: each new block can join into a preformed 
segment if its BMV is in the neighborhood of that segment motion vector. 
Otherwise it forms a new segment and the motion vector of the segment is 
assigned as the BMV of that block. Thus all segments with their motion 
vectors are obtained for every depth by repeating this process.

2.3.2 R esu lts

We test our ¿ilgorithm by using some ^•¿imes from the MPEG-4 test sequences 
a.s shown in Figure 2.12, 2.13, 2.14 and 2.15. In those Figures, top irmiges 
¿ire previous and current frames. At the bottom-left side, the result¿ınt block 
motion vectors and their segmentations ¿ire illustr¿ıted. Finiilly, ¿it the bottom- 
right side, motion compensiited frame for the hier¿ırchic¿ıl block miitching 
¿ilgorithm is shown.

The parameters used in the simulations are given in Table 2.2.

P A R A M E T E R S Fig.2.5 Fig2A2. Fig2.13 Fi.g2.i4:. /'■’¿</2.15.

D epth 1 3 3 4 4
M atch ing T hreshold 20 7 7 7 7

Search R ange -10,-K O -7 ,+ 7 -7,+7 -7,+7 -7,+7
P S N R (infin ity) 29.0212 24.0913 29.0598 31.3692

lab le  2.2: Simulation par¿ımeters for Hierarchical Block Matching Algorithm.
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Figure 2.12; (top) Previous and current frames {Foreman, frames: 0 & f), 
(bottom) (left) block motion vectors and segments (each gray-level shows 
different segmentation), (right) motion compensated image (PSNR=29.0212 
dB, depth=3).
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Figure 2.13: (top) Previous and current frames (Forem.an, frames: 77 & 
78), (bottom) (left) block motion vectors and segments (each gray-level shows 
different segmentation), (right) motion compensated image (PSNR=24.0913 
clB,depth=3).
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Figure 2.14: (top) Previous and current frames [Container Ship, frames: 61 & 
81), (bottom) (left) block motion vectors and segments (each gray-level shows 
different segmentation), (right) motion compensated image (PSNR=29.0598 
clB, depth=4).
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Figure 2.15: (top) Previous and current frames {Mother & Daughter, 
frames: f l  & 52), (bottom.) (left) block motion vectors and segments (each 
gray-level shows different segmentation), (right) motion compensated image 
(PSNR=31.3692 dB,depth=4).
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C hapter 3

Frame R ate R egulation  and  

Fram e Interpolation

Motion estimation (ME) and compensation are the basic tools which are 
used for temporal prediction in video coding aiDplications. Therefore, motion 
cornpensiition can realize high compressing rates and for this reason ME is 
usucdly supposed to be used only for the motion compensation (temporal 
estimation) of the frames. Nevertheless there are further applications of ME 
for video coding such as average motion determination (AMD) and motion 
compensated (MC) interpolation. We believe that if those tools can be used 
properly in a coding scheme they Ccin improve the coding performance ¿ind also 
achieve higher compression rates.

In this chapter we introduce AMD and MC interpolation concepts and then 
we present novel ME techniques which can be used in these tools. We also 
discuss how they can improve the coding performance in a particular coding 

::ation.
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3.1 Average M otion D eterm ination and Frame 

R ate R egulation

In a video sequence there can exist a group of stationary irarnes. Those group 
of f raines are very similar to each other since the amount of change is low. So 
especially in VLBR coding applications, those frames can be skipped if they 
can be estimated in the decoder (receiver) side. As a result instead of coding 
all the frames in the stationary group, just one of them is coded and the rest 
are assumed to be somehow reconstructed at the decoder side, d'he way of 
reconstruction is by “MC Interpolation” which is discussed in the next section, 
d'hen either the number of skipped frames or equivalently the “special frames” 
which are honored for coding are determined by AMD.

AMD, cis its name implies, is an algorithm which finds the average motion 
between two video frames and thus finds the amount of change within two 
frames. In order to have accurate estimate of change between two frames, 
AMD algorithm should contain a well regularized ME algorithm so that it 
really determines the average object motion and it does not take the false 
transitions into account. The following section is about the ME cdgorithm 
used for AMD.

3.1.1 M otion E stim ation  A lgorithm  for A M D

In order to find the motion vectors between two video frames, an energy 
function (such as given in Equation 2.3) in terms of motion constraints, is 
formulated and then minimized [4, 6]. Energy terms are written in terms of 
one or more variables. Tluit energy function is a local energy function which is 
defined in a predefined neighborhood in the irmige. Minimization is performed 
through a well known algorithm called ICM [30, 31].

In the applied motion estimation algorithm for AMD [8], the variables are 
vertical and horizontal components of the motion vector of a pixel located at 
(x,y) coordinates, and the binary line field [32, 5, 33]. The line field is used
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to indicate the discontinuities of the motion vector field on the image. It is 
defined on the dual lattice as shown in Figure 3.1. The line field has two types 
of elements defined along vertical and horizontal directions such thcit vertical 
line field elements indicate the continuity or discontinuity of the motion vectors 
of the pixels which are neighbors to each other horizontcdly, ciiid the horizontal 
line field elements indicate the continuity or discontinuity of the motion vectors 
of the ¡pixels which are neighbor to each other vertically. Those line fields get 
the value 1 if large amount of discontinuity between neighbor motion vectors 
exists. Otherwise, they get the value 0.

After defining line fields and motion vectors as such, in order to obtain 
local-optimum values for the motion vectors an energy function is formulated 
as follows;

Em^y  =  [It{x, y) -  +  4 ( a ; ,  y ) ,  y +  dy{x,  ?/))]'

^  -  2 .
ESxy = /  i II {dxy(i') da;y(0 )) II Vxy{l)

¿=1

(3.1)

(.3.2)

E lx y  — ^   ̂ {^L}i^crossings “i ” L h ^ijic lu sio n  L } i^p ara .llel) (3.3)
N h

+ E ( i  V ,crossings "t" L y ^iyiclusion  +  L  V ^p arallel) 
N v

Exy =  IdiErrixy P'zEsxy -|- l^sElxy. (•̂ •4)

Here, Exy is the total local energy function associated with the pixel located 
at (x,y) coordinates. It consists of three different energy terms: matching 
term (Enixy), smoothness term (Es^y) and line field term (Elxy) . It{x-,y) 
and I t - i ( x d x ( x , y ) , y d y ( x , y ) )  are the current and previous motion 
compensated irucvge pixel color values at loccition (x,y). In Equation 3.1, 
dx(x, y) and dy(x^ y) iire the vertical and horizontal components of the motion 
vector dxy, at the location (x,y), respectively. In Equcition 3.2, 4j/('0 is the 
motion vector and its location with the variation of i is shown in Figure 3.2. 
Also in Equation 3.2, I'xy is the uniformity field extrcicted from the line field as 
follows (see Figure 3.2):

r .,(l)  = (1 -  i_ , , ,_ ,) ( l  -  i:_.,,_i)(l -  i , , - . ) ( l  -  C , , , )  (2.5)

,',,(2) = ( 1 (3.6)
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xy (3) = ( l - i h
x - \ - l , y + \ j

' xy  

r

(3.7)

,(‘l) = ( l (-3.8)

xy{^) = (1 ~ (•̂ •9)

r . M  = (1 -  -  C -i„+ i)(i -  0 ( 1  -  lU y )  (3.10)

•'V ,(7) =  ( l - 0  (.3.11)

•̂.-,(8) = (1 -  -  C,,)(1 -  /¿+1 J ( 1  -  /;,+ ,). (3.12)

Here, in Equations .3..5 to 3.12, and 1̂ ^̂  cire the binary values
of the horizontal and vertical line field elements which are defined 
on the dual lattice as shown in Figure 3.1. In Equation 3.3,
i'll,crossings·! i'll,inclusion! i'll,parallel! i-'v,crossings! Ly,inclusion! Lv,parallel а.,Ге tile real ValueS
which penalizes several line field positions shown in h’igure 3.3. Nh iind N„ are 
the neighborhood regions of the vertical and horizontal line elements  ̂ and 
4!y), cuid is taken to be one pixel back and forth from the location (x,y) as 
shown in Figure 3.3. Finally, total local energy expression is given by Eciiuition
3.4.

Minimization of the total energy term in Equation 3.4 yields the local 
optimum solution of the correct motion between last previous frame cind current 
candidcite frcirne. Hence the average motion is Ccilculated using the optimal 
motion vectors as follows :

suruy

yn?··" Т . ' г ‘ ‘Ц х ,я ) ‘
X  Y■^^size size

dy{x,yf
Y Y^ s i z e   ̂ size

Average Motion = у .surn.x + sum.

(3.13)

(3.14)

(3.1.5)

So, once the motion vectors of each pixel of the current image are found, by 
the formulas given in Equations 3.13, 3.14 and 3.15, the average motion is 
computed. As a result, if the average motion between those frames is over a 
predefined threshold value, then the current Ccindidate frame is taken to be next 
special frame and it is honored for coding. Otherwise all the frames which have 
insufficient motion between the last special frame are assumed to be estimated 
by the decoder. Thus, those frames are skipped by the coder.
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Computational Complexity of the Motion Estimation Algorithm

Since this is a dense motion field estimation, we have three factors 
which directly effects the computation time and determines the computational 
complexity: i) image size, ii) iteration number and iii) search range of motion 
vectors. Since the line elements take binary values for ecicli pixel computation 
time for determination of the line elements can be ignored with respect to the 
computation time for the motion vectors.

The skipped frames are reconstructed at the receiver side from the special 
frames that are honored for coding. In the next section we show MC 
interpolation techniques for the reconstruction of the skipped frames.

3.2 M otion C om pensated Interpolation

In a very low bit rate (VLBR) video codec (coder-decoder) temporal and 
spatial redundancies are removed from the video sequence in order to ¿ichieve 
high compression rates. In addition to that compression performance can 
be further improved by reducing the frame rate to be coded. By this way, 
the number of coded frames are decreased and this can realize significant bit 
savings. One way to do that is to skip certain (predefined) number of frames 
from the video sequence. Alternatively, a better approach for it is to skip 
certain number of frames which can be artificially generated at the d(icoder 
side within a acceptable loss of visual quality. The basic technique for the 
cu'tificial generation is what is called “interpolation”.

Given two frames, interpolation generates certain number of skipped frames 
that are not honored for coding at the encoder side. The simplest interpolcition 
is linear interpolation. In this technique the pixel color values are obtained 
l:)y linear interpolation from the pixel color values of the given frames, 'riie 
disadvantage of the interpolation by linear interpolation is that it causes visual 
artifacts such as blurring effects at the edges of the moving objects. Because 
this is visually unacceptable most of the time, more powerful techniques were 
developed such as motion compensated (MC) interpolation.
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Figure 3.1: Line fields (horizontal and vertical) representation in dual-lattice.
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In MC interpolation schemes [34], motion estimation is performed between 
two frames and the interval frames are generated by fractional motion 
compensation. There are some serious problems that can cause visiuil 
degi’cidations. First of all, there can exist some problems if the motion vectors 
are chosen as they indicate where all of the pixels in the previous frcime tend 
to go in the current frame. One of them is what will happen to the unpointed 
pixels in the current frame. This is possible because motion vectors could not 
cover all of the pixels at the compensated frames. Another problem can occur if 
the motion vectors do not follow the object motion trajectory. In that case false 
transitions may occur and therefore, motion compensation in the interpolation 
will cause visual artifacts.

A simple interpolation method is “linear interpolation”. The basic idea 
behind it is to interpolate pixel intensities of the interval frames by using 
previous image pixels. For instance, suppose we are given two video frcunes such 
as It and A+zAf where /A is an integer which shows the number of images which 
are generated artificially by interpolation. Let Init^i be the interpolated 
image which is generated by the following formula:

Irrit-\-i = It + (It+rN — (3.16)

So for i=l to all interval frames are generated artificially by linear
interpolation according to Equation 3.16. This method is extremely easy to 
implement but however it can have serious visual problems such as blurring 
artifacts that will be demonstrated later in this section .

Motion compensated interpolation techniques are developed in order to 
remove those blurring artifacts as well as to obtain motion tracked images. In 
these methods the interval frames are generated according to the simplest (and 
shortest) motion trajectory tlmt can be found between those frames.

Because of the reasons explained previously, motion estimation is performed 
such that motion vectors indicate where all of the pixels in the current frame 
come from the previous frame. Therefore, every pixel of the current frame 
1ms a motion vector and by using those motion vectors, every pixel of the 
interpolated images can have a motion vector which is the fraction of the 
motion vector of the given current frame. Thus neither of the pixel renmin

46



without motion vector. Also the motion estimcition algorithm should be well 
regularized so that false transitions can be avoided. We use a regularized block 
motion estimation algorithm with sufficiently small block sizes so that blocking 
artifacts Cell! be reduced. In that algorithm an energy expression containing 
matching and smoothness constraints lor the block motion vectors, is first 
formed and then motion vectors are extracted by minimizing it. According to 
the regularized block motion estimation stated in section 3.1, we now present 
motion compensated (MC) interpolation techniques;

In this section, we present a motion compensated interpolation method 
which solves the problems mentioned previously. The basic ideas behind it are 
cis follows: first of all, motion estimation is performed such that motion vectors 
indiccite where all of the pixels in the current frame come from the previous 
frame. So, this solves the first problem mentioned before. Becciuse it is now 
giuu'anteed that every pixel in the current frame is covered since they all have 
motion vectors. Secondly, the motion estimation technique is a well-regulci.rized 
block matching algorithm which is ci quite successful technique tha.t Ccui trcick 
the object motion and it was presented in detail in section 3.1.

3.2.1 Single M C Interpolation

Single MC interpolation as its name implies, is the interpolation of the interval 
frames only from one source which is the given previous frame. After the 
block motion estimation is performed between two given frames, the interval 
frames are obtained by frcictional motion compensation from the given previous 
frcime. Fractional block motion vectors are the uniform fractions of the block 
motion vectors that are obtained from the given frames and therefore, they are 
obtained by the following equation:

dfrac T Ñ ^
(3.17)

where IN  is the number of interpolated interval images, d is the block motion 
vector between given frames and is the block motion vector ol the
(interpolated) interval image and of course it is not necessaril}' an integer pair.
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Therefore, in single interjDolation method the ¡previous frame is first expanded 
by IN  times in order to realize fractional motion compenscdion with integer 
block motion vectors and then intervcil frcune is generiited by compensciting 
the interpolated previous frame by the motion vectors i.d and then decimating 
the final image that is the cxpanded-motion compensated Ibrrn of previous 
frame, by the lactor IN. Single MC interpolation is illustrated in Figure 3.4.

One of the major disadvantage of this method is the loss of information in 
the generation of the interval (interpolated) frames. It is because given current 
frame is never used in the generation process of the interval frames. So in 
order to avoid from this problem we now present an advanced version of this 
technique which is discussed in the next section.

3.2.2 D ouble MC Interpolation

The main difference between double and single interpolation is that some of the 
intervcd frames are generated from the previous frcurie cincl some are generated 
from the current frame. Instead of calling previous and current frame, we 
now call frame 1 and 2 to the given frames. In double interpolation block 
motion estimation is performed twice such that one is between frame 1 and 2, 
one is between frame 2 and 1. So the nearest interval frames to frame 1 are 
generated by fractional motion compensation from the frame 1 with the block 
motion vectors on frame 1 (obtained at the first block motion estimation). 
Similarly, the nearest interval frames to frame 2 are generated l̂ y fractional 
motion compensation of the frame 2 with the block motion vectors on frame 
2 (obtained at the second block motion estimation). Double MC interpolation 
is illustrcited in Figure 3.5.

As stated before, the loss of information in the generation process of the 
interpolated imciges is avoided by this type of interpolation. However there can 
still be some visual artifacts in the interpolated frames because of the expansion 
of the fi’cunes 1 and 2 for the fractional motion compensation. Especially for 
the cases where IN  is high, expansion by IN  times of given iTarnes will cause 
l)lurring effects especially at the object boundcxries of the interpolated frames. 
So in order to solve this problem we now present another MC interpolation
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MC Interpolation

Figure 3.4: Single MC interpolation of the interval frames M l,M2,M3 and M4 
from the given previous and current frames. (IN=.5).

MC Interpolation MC Interpolation

Figure 3.5: Doitble MC interpolation of the interval frames M l,M2,M3 and M4 
from the given frame 1 & 2. (IN=5).
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technique which is discussed in the next section.

3.2.3 B inary Tree Structured MC Interpolation

The main contribution of binary tree structured (BTS) interpolation is that 
the visual cirtifacts such as blurring can be reduced. The basic intuition behind 
BTS interpolation is that interval frames are generated one by one (at a 
time) by double MC interpolation between two frames. In other words we 
do not follow the general procedure of the other interpolation techniques (i.e., 
expansion by IN  times, motion compensation ¿ind decimation by IN  times). 
Instead, we generate every interval friime one by one by the following procedure: 
First block motion estimation is performed between two given frames cind then 
one frame which is the frame of the interpolated frame sequence, is
generated by MC interpolation (twice expansion + motion compensation + 
twice decimation). Therefore, the blurring effect is caused by twice expansion 
(not IN times expansion). Then the same procedure is performed between 
frame 1 and that interpolated frame and also between frame 2 and that 
interpolated frame. By this way, frames of the interpolated
frame sequence is generated from given fi'cimes by just twice expansion. So this 
procedure is continued as generating alwciys hall-way frames at a time, until 
all the interpolated frames are genei'cited. BTS interpolation is illustrated in 
Figure .3.6.

As already discussed, this interpolation method like the double MC 
interpolation generates the interval frames by using both frame 1 and frame 2. 
When the number of interpolated images is high it reduces the blurring effects 
as compared to other MC interpolation methods.

3.2.4 R esu lts

We have tested the interpolation algorithms using frames from Akiyo and 
Container Ship sequences shown in Figure 3.7. We artificially generate eight
(IN=8) interval frames but for illustration only 2’“ ,̂ and C'' frames areHli
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Figure 3.6: Binary tree structured MC interpolation of the interval frarnes 
M1...M7. M1,M2,M4 is generated from frame 1, M7,M6 is genercited from 
frame 2 and M3,M5 is generated from M4 by MC interpolation. Note that 
except M3,M5, other interval frames cire compensated from the original frames. 
(IN=8).
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shown in Figures 3.8 and 3.9. The tested interiDohition methods are (as in 
the order top-bottom for the Figures 3.8 and 3.9), linear interpolation, single 
MC interpolation, double MC interpolation and binary tree structured MC 
interpolation. For the Irames, forward block motion estimation (between
frame 1 & 2) results in a PSNR value about 31.083618 dB and bcickward 
block motion estimation (between frame 2 L· 1) results in a PSNR value about 
31.798702. Those PSNR values lor Container Ship Iraines are about 28.466227 
dB and 28.560457 dB resj^ectively. Block motion estirmition is performed 
between (-8,4-8) pixels and block size is 8.

According to simulation results we can claim that MC interpolation 
techniques can achieve better visual quality than the linear interpolation. 
Moreover, among the already presented MC interpolation techniques BTS 
interpolation is the best but on the other hand for snicill values of IN  
performance of the BTS interpolation will be approximately equivalent to the 
performance of the double interpolation.

Computational Complexity in MC Interpolation Algorithms

There are two factors which determine the computation time of the 
cilgorithrns: i) motion estinicition and ii) fractional motion compensation. 
Since motion estimation process is the reguhirized BMME algorithm which 
is presented in section 3.1, computcition complexity is also given in section 3.1.

Fractioricd motion compensation requires expansion of tlie previous and 
current images by the number of interval frames. In single MC interpolation 
onl}̂  the previous frame is expanded. In double MC inteiq^olation previous cind 
current frames cire both expanded. So this requires twice (expcinsion) time 
comi^ared to the single MC interpolation. Finally in binary tree structured 
MC interpolation all frames are expanded by two and this is re];)eated hy tlie 
number of frames. So this requires significantly less cunount of computation 
time for the exi^ansion. On the other hand, the computation time for motion 
estimations (between interval frames) is increased by the number of interval 
frcimes. According to the simulation results, for snicill number of interval frames 
the computation time of the MC interpolation algorithms are almost equal to 
each other.
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Expansion of the images requires so much memory to hold the expanded 
images. Instead of expansion of the whole images, one Ccui Ccilculate the 
fractional motion compensation result for each pixel by just expanding one 
pixel neighborhood of that pixel and then hnding the fractional MC pixel color 
(or intensity) value. However, since this calculation must be processed lor each 
pixel in the image, it requires eight times more calculation with respect to the 
expansion of the whole images. This is becciuse there are eight neighbor pixels 
of a single pixel and the expansion is repecited for every pixel in the image. 
This means that we have eight times more calculation. So this local expansion 
method requires less memory but is slower than the previous method.

Simulation results show that the most important disadvantages of MC 
interpolation algorithms are false transitions cind visual artifcicts (i.e., blurring 
and blocking artifacts). It would be better to use linear interpolation 
with the MC interpolation whenever those artifacts cause significant visual 
degradations.

MC interpolation algorithms differ in the fractional block motion 
compensation process. It is obvious that double MC interpolation algorithm 
gives better results than the single MC interpolation algorithm. This is due to 
the fact that the double MC interpolation technique is realized by using much 
more information with respect to the single one. According to the simulation 
results we also observe that BTS interpolation and double MC interpolation 
achieve similar performances while the number of frames are less than six. 
Otherwise the most powerful one is the BTS interpolation because the frames 
are only expanded twice and thus the blurring caused from the expansion is 
minimized.
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Figure 3.7: Given previous and current frames are 120*̂  and 150’̂  ̂frames of the 
Akiyo sequence (top) and 60*̂  and 90*̂  frames of the Container Ship sequence 
(bottom).
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r’igure 3.8: Linear interpolation (top), .single MC interpolation, double MC 
interpolation, binary tree structured MC interpolation (bottom). Given 
previous and current frames are 120̂  ̂ and frames of the Akiyo sequence.
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Figure 3.9: Linear interpolation (top), single MC interpolation, double MC 
intei’i^olation, binary tree structured MC interpolation (bottom). Given 
previous and current frames are 60̂  ̂ and frames of the Container Ship 
sequence.
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C hapter 4

M otion  E stim ation  and  

C om pensation  on Line Field

Especially in VLBR video coding applications dense motion field Inis to be 
decirrnited because of the bit-rate requirements. The aim in decimation is to 
represent the dense motion held by the decimated field as good as possible, 
in other words, the goal is to hnd the decimation scheme which gives the 
minimum distortion. The mostly used technique is the BMME algorithm. 
In this technique, the dense held is down-sampled uniformly into blocks and 
the motion held is represented by BMV held with the reduced information 
approximately by the block area. But the important question is why this kind 
of (uniform) decimation has to be o2Dtimurn? So in this section we present an 
alternative sparse held representation for the motion field. Eirstly we introduce 
the sparse held scheme which is called “line held” [-32, .3.3, .5] . Then we show how 
the motion vectors can be dehned on the line held cind finally we describe the 
reconstruction of the motion compensated image from the motion compensated 
line held.
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4.1 Line Field D efinition and Extraction

Line field in a typical image is first proposed by Genian and Geman [21] for 
image restoration. As discussed in [8], forming an energy function including the 
line field elements leads to a non-convex optimization problem. Both stochastic 
and deterministic optimization methods using local iterative optimization hcive 
been applied and compared in [11, 4]. As discussed in section 4.1, line field 
of an image involves such a sparse region that shows basic properties such as 
intensity (or color) discontinuity and spatial continuity [32, 33, 5]. According 
to this definition one can claim that line field implies the object boundaries. 
Therefore, it is visually important field in an image. Recently the line field 
detection and reconstruction has been shown to be a good technique to image 
compression [35]. Additionally it is well known that human visual system for 
pattern recognition and motion estimation works based on the detection of the 
line field [36, 37].

In the work of image compression by line field, it has been shown that 
line field can reproduce a degraded version of its original image [38, 35]. So 
in lossy image coding applications, instead of coding the original image (the 
dense data), coding the line field cind then reconstruction of the original inicige 
can be cin alternative approach.

Extraction of the line field from the image is an important work and should 
be realized in such a way that spatially discontinuous intensity discontinuouties 
should not be included into the line field. Those points are what we 
called “details” and are not object boundaries. So a line field involves the 
spatially continuous intensity discontinuouties, and therefore, details should 
be excluded.

As a result line field differs from the discontinuous (intensity) points of cui 
image. So we choose a similar formation of line field in [8] rather than any 
discontinuity detection algorithm. Figure 4.1 indicates the difference between 
line field and discontinuities that are obtained by V + I ;  operation.dy
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Figure 4.1: The discontinuities (obtained by V operation) (left) cind line field 
{right) of the 40̂  ̂ frame in Mother & Daughter sequence.

4.1.1 Line Field E xtraction

Line field is extracted by forming an energy function (see section 5.1) and 
minimizing it. That energy function is formed in such a way that line field can 
represent the object boundaries. Accordingly the energy function is formulated 
as follows:

Hg{U) = ^ Y ^ { I { xdj) -  U {x,y)y
X y

(4.1)

Hs{U, 1) = Y ,Y ^ Y ,Y ,{ U { x ,y ) ~  U(x -  r, y -  t)j^ h(ir,t) (4-2)
X y r  t

l U l )  =  Y , { L h  ̂ crossings  “(“ Lji^iY iclusion  -^ /i,p a ra //e /)  
Nh

+ E ( i  V,crossings T hjŷ inclusion T Ly,parallel) 
Nv

(4.3)

H{u, 1) = /Si Hg{U) + hH s{U , 1) + ( ^ M l )  (4-4)

where U and / are the image and line field variables, h(f,.p) is the uniformity 
field which is shown in figure 3.2 and zV,/ is the integer number which takes 
values between 1 and 8, ciccording to the (r,t) pair.
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Line field I is defined on dual lattice and has two types: vertical 
and horizontal /̂ *. Those fields are illustrated in hgure 3.1. In

L/CJUatlO n 4 . 4 ,  J^hfCrossings ·) ^ h f in c lu s io n ^  ^ h , para l le l  crossings  ̂^v ^ in c lu s io n   ̂ parallel
are the real values which penalizes several line field positions that are shown 
in figure 3.3. Nk and Ny are the vertical and horizontal line elements 
neighborhood regions, and are taken to be one pixel back and forth from the 
location (x,y) as shown in the figure 3.3. Line field is again a binary field, that 
is, it indiccites discontinuity for (1=1) and otherwise continuity for (1=0).

Equation 4.1 presents similarity between image field variable U and original 
image /, Equation 4.2 is for extracting all intensity discontinuities of an image 
and Equation 4.4 is the necessary term in order to discontinuities be the line 
field by forcing spatial continuity of the edges. Finally, Equation 4.4, as the 
total energy function, is minimized to get the line field of the inicige.

4.1.2 R esu lts

We test the line field extraction program by using real world friirnes shown in 
figure 4.2. The extracted line fields are shown in figure 4.3. Horizontal and 
verticcil line fields are represented in the left and middle columns. At the right, 
part those fields are combined by an OR operation in order to illustrate the 
total line field of each image.

Figure 4.2: Original frames: 20*̂  frame in Container Ship sequence and 40*̂ '' 
frame in Mother & Daughter sequence.

According to the simulation results we saw that line field of the irmige covers
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Figure 4.3: Line fields (horizontal, vertical and both) of the original frames.

the object boundaries. In addition to that this technique can be used as cin 
image compression technique since line field is a sparse field cind it involves 
most of the characteristic information of an image.

In the next section, we try to assign specific motion vectors on line field in 
order use this technique for video coding applications.

4.2 M otion Vectors on Line Fields

As mentioned in the previous section line field of an image can be used for still- 
image compression [38, 35]. However simulation results show that compression 
rate by those methods is not as high as expected. The main reason is that 
spatial location information has to be coded in addition to the intensity at 
that location.

In this section we show how line field coding scheme C cin be applied to video
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compression in a more effective way than the still-image compression. It is well 
known that motion estimation and compensation are used to remove interfrarne 
temporal redundancies. By taking this into account, one can reconstruct 
the current frame line field from the line held of previous frame by motion 
estimation and compensation. Therefore, we can define two types line motion 
vectors: horizontal cind vertical. As we dehne the line field on dual lattice in 
an image, line motion vectors have to be defined on dual lattice, too.

4.2.1 E xtraction  of Line M otion Vectors

Line motion vectors (LMVs) are obtained by energy minimization. The energy 
function is formulated in terms of motion constraints such as matching and 
smoothness. So we write the energy function for vertical LMVs as follows:

( / i - i ( a ; - l , ? / ) - / i ( a : - l  + <(.T,i/),?/ + d,^(x,?/)))^ (4.5)

= I ]  y) -  y), y + dl{x, y ) ) f (4.6)

+ d l{x ,y ) ,y - \-dl{x,гJ))) (4.7)

Y Y \ d v { x , y ) - (4.8)

E .  =  + K E , , .  + (4.9)

where A and It-i are the current and previous images, // and l”_j are the 
current and previous vertical line helds and is the vertical LMV defined 
on the previous line field. In Equations 4.5 and 4.6, and are the 
penalizations of the intensity matching difference of the pixels which are located 
on the both sides of the vertical line held element. The second term in
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Equation 4.7 ¡senalizes the non-occurance of the comiDensated line field in the 
current frame. The third term is the smoothness term of the LMV within 
a neighborhood Nd(x, y). Finally by minimizing the total energy function in 
Equation 4.9 results with the smooth LMVs. As a result, tho.se LMVs points 
where the vertical line field elements in previous frcime tend to go in the current 
frcune.

Similarly for the horizontal LMVs the energy function can be formulated 
as follows:

Z] i I t - i { x , y - i ) - I t { x  + d l { x , y ) , y - l  + cPIXx,i/))f (4.10)

=  Z  y )  -  y ) ^  y + y ) ) f (4.11)

Ef,h = Z y)̂  y + y))) (4.12)

E,,i= Yi [<4(i,y) -  4 (!,i) (4.13)

Ek = (4.14)

As a result, given vertical and horizontal line fields, we minimize E^ and 
to obtciin vertical and horizontal LMVs. Those obtained LMVs are used to 
estimate the current image line field by motion compensation. So original 
current frame can be reconstructed from the compenscited line field of the 
previous frame. Hence we can reconstruct the original fVcune by using line 
held of the previous frame and their LMVs. Reconstruction process will be 
presented in the next section.
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4.2.2 R esu lts

We test line field motion vectors by using two video frames in Container Ship 
sequence. In figure 4.4 original line fields of those frames as well as the MC 
line field are shown.

Ehgure 4.4: Line fields (horizontcd, vertical and both) of the previous (ton 
current {middle) and MC {bottom) frames.

According to the simulation results, most of the line field of the current 
frame can be roughly estimated by motion compensation from the previous 
frame line field. But of course the compenscition Ccin not perfectly cover 
the origiiicil line field of the current frame. Also the pixels around the MC
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line field can have different intensity levels with respect to the ones in the 
current frame. Since the line field is the most important field for an iimige, 
such abovernentioned losses (caused from motion compensation mismatches) 
degrade the final MC frame visually. We show the results about it in the next 
section.

4.3 R econstruction  on M otion C om pensated  

Im age from M otion C om pensated Line 

Fields

In the previous sections we demonstrated how to assign motion vectors on line 
field and also how to extract those by energy minimization. Those LMVs are 
used to reconstruct the MC line field from the previous image line field. So 
in this section we will demonstrate how to obtain MC imcige from the MC 
line field and also briefly discuss the effects of that type of reconstruction onto 
visual quality.

The reconstruction algorithm is as follows: given the line field position in 
dual lattice and intensity values of the neighbor pixels, we form an interpolation 
function composed of the following terms;

Hs{U, 1) = Y , ' ^ ^ ^ { U { x , y ) - U { x  -  r, y -  t ) f  (4.15)
X y r t

I M ‘ ) =  E  ( L i lyCrossings "i" ¿/i,mc/u6T’on (4.16)
Nh

+ E ( i  Vycvossings T v̂̂ inclusion T v̂̂ parallei'} 
Nv

H{U,l) = a J M U J )  + (X2HL{l). (4.17)
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Those terms are the last two terms of the extraction energy function given 
in Equation 4.4. Therefore, if the image field is known, then by minimizing 
Equation 4.4, we obtain the line field of the image. Similarly if the line field is 
known by minimizing the similar (cross) terms in Equation 4.17 we extract the 
image field. Since the line field - image field pair have sufficient correspondence 
with each other one of them is to be almost sufficient in order to reconstruct 
the other.

4.3.1 R esu lts

The reconstruction process is tested by the motion compensated line field of 
the 20*''' frame of the Container Ship sequence. The reconstructed MC frame 
is shown in figure 4.5 at the right part.

Eigure 4.5: Previous, current and MC frames.

Reconstruction process is started with the initial frame which has the 
arbitrary values everywhere except at the neighborhood pixels of the line field. 
Minimization process is Stochastic Simulated Annealing (SSA) [39, 21]. The 
one important point is that at the neighborhood pixels of the line field, intensity 
Vcdues are not changed at the iterations so that they are allowed to take the 
original intensity values.

Firstly, we recognize from the simulation results is that most of the image 
field (especially located around the MC line field) can be reconstructed from the 
MC line field. However that reconstruction is degraded in visual qucility and 
that degradation depends on the compensation error of the line field. Since the
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line field is the only source for compensation and has the major characteristic 
information, few losses in this field can cause considerably large amount of 
visual degradations.

Secondly, for reconstruction we only need the line held which is the motion 
compensated line held of the previous frame and therefore, the next frame 
is reconstructed by using only the LMVs. Neither the intensity nor the 
spatial (position) information of the line held is necessary for this type of 
video coding technique. So the compression rate would be very high and the 
overall performance directly depends on the motion compensation success of 
the previous line held.

As a result we represent a dense (image) held by a sparse (line) held and 
use this technique in a video coding scheme. In most of the coding applications 
motion vectors are defined on a regular grid. Those grids are uniformly located 
in the image. An alternative approach is to dehne motion vector representatives 
on a more logical sparse held. In this way we can claim that line field motion 
vectors can be a good choice as an alternative motion field representcition.
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C hapter 5

C onclusions and Future W ork

In this thesis, we propose new methods for regularized motion estimation and 
their applications to motion estimation for VLBR video coding. The main idea 
behind our cipproach is that the reguliirization type should be determined with 
respect to the apiDlication aspects.

We first introduce an improved BMME technique which casts motion 
estimation as a problem in enei'gy minimization. This is achieved by modeling 
the motion estimation as a Markov Random Field (MRF) or equivalently 
one can write the Gibbs Distribution of the held in terms of Hcimiltonians 
(energy terms) which indicate motion constraints and then hnd the MAP 
estimate of it. When we compare it with the classical BMME cdgorithrn, 
our simulation results show that energy minimization based motion estimation 
techniques can give good performance in terms of Bit-Rate in such a way that 
developed algorithm can reduce the Bit-Rate twice almost with the same PSNR 
value. We then present hierarchically structured adaptive BMME cdgorithrns. 
The main contribution of those algorithms is that they can cichieve “global 
representcition” of any motion without significant loss of image quality. In 
addition to that not only the estimation performance, but also the overall 
coding performance is improved.

We introduce alternative usage of ME in video coding applications such as
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average motion determination and motion compensated (MC) interpolation. 
Average motion determination is the determination of the average movement 
or change between two frames. In order to find that average movement we use 
a well-regularized ME algorithm so that it detects the object motion -not the 
false transitions- in a dense motion field representation. So by mecins of average 
motion determination algorithms, frame rate is adaptively determined in a 
video coding implementation. The frames which show stationary behavior in 
time are not honored for coding -just skipped-. Those skipped frames are then 
cU'tificially reconstructed in the decoder (receiver) side by MC interpolation 
techniques. Those techniques developed are based on the fractional motion 
compensation principle and simulated on real iiruiges that are taken from a 
video sequence. From the results we conclude that MC interpolation techniques 
achieves high performances compared with the other interpolating techniques 
such as linear interpolation. In addition to that the proposed MC interpolating 
techniques are developed in such a way that they reduce the interpolation 
cirtifacts (such as blurring cind false transitions).

In video coding applications dense motion field should be somehow 
decimated because of the “very” low bit-rate requirement. One important 
lactor in decimation is to represent the true motion field as much cis possible. 
Another factor is to find the suitable decimation scheme which gives the 
minimum distortion. BMME algorithms are the mostly used techniques in 
VLBR video codecs, standcirds and devices. Those techniques are nothing but 
uniform decimation of the dense motion field. However such a sparse field 
representation may not be suitable in some certain cases. As an alternative 
representation we propose line field motion estimation. That technique achieve 
high compression ratio but the visual quality is not so high as expected. The 
reason for that the line field which is in fact the object boundaries of an image, 
СсШ be affected by the rigid body motion. That is to say that the intensity 
levels at the line field of an image (object boundaries), do not renmin constant 
over time. Even it is the most changing field in the image. For this reason 
the reconstructed image from the MC line field is degraded visually. In order 
to overcome this problem, a more advanced model which does not assume 
intensity constancy for line fields, should be developed. So by some refinements 
on the line field definition the visual quality of the MC frames can be improved.
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We have quite satisfactory results from the developed BMME algorithms. 
According to the simulation results we can claim that those improved BMME 
cilgorithms increase the performance of an VLBR video coding algorithms. 
Especially the amount of bits spent for coding the BMVs is efficiently reduced 
without any significant visual degradation. This can allow to spend much 
more bits to the intra coding part of the video coding algorithms and thus 
visual quality is to be increased. Therefore, those BMME cilgorithms developed 
would be good candidates for the motion estimation parts of the well-known 
standcirds such as H.261 and H.263. As well as the BMME cilgorithrns, the 
developed techniques in chapter four can be used to determine the frcirne rate 
cit the encoder side and also to reconstruct the skipped frames artificially at 
the decoder side. Simulation results show that they can further increase the 
overall performance of any video codec (coder/decoder).

As a future research, we will deal with some advanced motion estimation 
techniques which can extract the object motion adaptively. So those algorithms 
are going to set their parameters adaptively and also object motion can be 
represented in a global and minimum descriptive way. In addition to that, 
motion estimation algorithms will be based on other clmracteristic leatures 
of the image such as texture information. Thus we wish to develop superior 
motion estimation techniques which are more suitable for hunicui vision and 
motion ti'cicking system.
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M otion  E stim ation  A lgorithm s  

in H .261 and H .263

In this appendix, we present the existing standard motion estimation 
algorithms which are currently used in practical video coding appliccitions.

H.261:

It is the stcindcird which is finalized by CCITT in December 1990 and is 
primarily intended in image coding lor low and medium bit rates (p x 64 kbps, 
p = 1, 2, ... , 30) [3]. Motion estimation is performed only at the INTER 
mode and motion compensation is cin optional tool for the decoder. In INTER 
mode prediction is realized by motion estimation and the error signal is coded 
by DCT. Since DCT imposes a block structure on the image, the motion is 
estimated blockwise. This is realized as follows: for each block in the current 
frame we try to find the closest match in the previous reconstructed frame using 
some suitable distortion criteria such as SAD (sum of absolute differences) 
which has the formula;
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BS BS
SAD{x,y,d{x,y))  = Y^Y^ yA-j) I t - \ { x — dx{x̂  y), y-\-j — dy(x, i / )) |

« .7
(A.i)

where BS is the block size, d{x,y) is the BMV of the block centered at (x,y)^ 
dx{x, y) and dy{x^ xj) where x and y components of the BMV, respectively.

Therefore, motion estimation is the same (classical) BMME algorithm 
which is discussed in section 2.3.

H.263:

StcU’ting from 1993, efforts of Specialist Group in CCITT result in a VLBR 
video coding standard called H.263 [40]. In order to achieve VLBR objective, 
motion estimation algorithm is improved compared to the one in H.261. It has 
some prediction modes such as Normal, Restricted/Unx'estxdcted and Advanced. 
Those modes make the algorithm more efficient and can reduce the cirea of 
tempoi'cilly unpredictable (TU) regions.

In Nox'mal mode, motion estimation algorithm is the Scune as the 
one in H.261. It is the classical BMME algorithm with blocks size 16. 
Restx'icted/Unx'estxncted modes indicate the permission of a block motion vector 
to point towards the out of the image. In Uxxrestricted mode block motion 
vectors can point towcirds the out of the image but in Restricted mode they 
can not.

Motion Compensation

In H.263, one motion vector per macroblock (16x16) is used except in 
Advanced mode. In advanced mode, one or four block motion vectors can 
l)e used for a macroblock. If four block motion vectors are decided to be 
used, those vectors belong to the eight by eight sub-blocks and each of which is 
obtained by exhaustive search in a range [-16,15.5] within a hcdf pixel accuriicy.

In cidvanced mode one alteriicitive usage is the Overlapped Motion 
Compensation. In this mode each sub-block hcis three block motion vectors 
-one for the current block and two out of four (any) neighbor blocks-. So 
weighted sum of those block motion vectors yields the motion vector for any
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pixel in the eight by eight sub-block. The choice of two neighbor blocks are 
determined by the distance of that pixel to the blocks. So the nearest two 
blocks (one in left or right and one in up or down blocks) are chosen for the 
motion vector. The weights for sub-block pixels are shown in Figure A.l.

Block Motion Vector Coding

Coding of BMVs is differential vector coding. The differential coding with 
four vectors per macroblock is realised cis follows: the vectors are obtained by 
adding predictors to the vector differences indicated by BMVi^2,3 as shown in 
Figure A.2. The prediction value of the current BMV is the median of three 
BMVs {BMVi^2,3)· So the difference from prediction value is coded.

4 5 5 5 5 5 5 4

5 5 5 5 5 5 5 5

5 5 6 6 6 6 5 5

5 5 6 6 6 6 5 5

5 5 6 6 6 6 5 5

5 5 6 6 6 6 5 5

5 5 5 5 5 5 5 5

4 5 5 5 5 5 5 4

2 2 2 2 2 2 2 2

1 2 2 2 2 2 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 2 2 2 2 1 1

2 2 2 2 2 2 2 2

2 1 1 1 1 1 1 2

2 1 1 1 1 1 1 2

2 2 I 1 1 1 2 2

2 2 1 1 1 1 2 2

2 2 1 1 1 1 2 2

2 2 1 1 1 1 2 2

2 1 1 I 1 1 1 2

2 1 1 1 1 1 1 2

Current Luminance 
BLOCK

Top/Bottom Luminance 
BLOCK

Left/Right Luminance 
BLOCK

Figure A.f: Weights for current and two neighbor blocks
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Figure A.2: Candidate neighbors for predictors for each of the luminance block.

In case of one BMV per macroblock, the candidate predictors for the 
differential coding are taken from three surrounding rnacroblocks as shown 
in Figure A.3. As in the case of four vectors per nicicroblock, the predictor is
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the median value of the three candidate predictors for current BMV. In Figure 
A.3, GOB stands for Group of Blocks.

BMV,

BMV.

BMV

BMV, BMV2 BMV3

(0.0) BMV

BMVj BMVj

. BMVj BMV

BMV2 (0,0)

BMVj BMV

----------------------------- : Image or GOB border

Figure A.3: Candidate neighbors for predictors for a rnacroblock BMV

The coding of the difference BMV values is processed by a VLC (variable 
length coding) table. So for each possible difference value there exist a code 
from the VLC tcible and the bit stream for the BMVs is constructed by the 
variable length codes of the VLC table given in Table A.f.

Motion Estimation

As it is mentioned previously, H.263 standard has mainly two modes: 
the intra and inter modes. The intra mode is similar to .fPEG still-image 
compression and the details about it are out of the scope of this section. In 
the inter mode, first a temporal prediction is employed with or without motion 
compensation. That is to say that motion estimation may be processed in this 
stcige and therefore, motion estimation is an optional process for the encoder 
side. The standard does not specify the motion estimation method but we 
can indicate some basic features about the mostly used motion estimation 
algorithm. SAD (as given in Equation A.l) is the usual matching criteria. 
Block matching based on 16 x 16 blocks is generally used. In the modes of the 
standard, there are severed search techniques. For example in the culvanced 
mode, first BMV of a macroblock is found and then the BMVs of the lour 
lumiimnce blocks cire searched around that macroblock BMV. In some encoders 
the search technique for luminance blocks is also full (exhaustive) search.
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However first method is rather faster and generally gives more convenient 
results compared with the full search. BMVs are determined in half pixel 
accuracy in a range [-16,15.5].
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Index II Vector Differences 1 B it N um ber 1 Codes

0 -16 16 13 0000 0000 0010 1
1 -15.5 16.5 13 0000 0000 0011 1
2 -15 17 12 0000 0000 0101
3 -14.5 17.5 12 0000 0000 0111
4 -14 18 12 0000 0000 1001
5 -13.5 18.5 12 0000 0000 1011
6 -13 19 12 0000 0000 1101
7 -12.5 19.5 12 0000 0000 1111
8 -12 20 11 0000 0001 001
9 -11.5 20.5 11 0000 0001 oil
10 -11 21 11 0000 0001 101
11 -10.5 21.5 11 0000 0001 111
12 -10 22 11 0000 0010 001
13 -9.5 22.5 11 0000 0010 o n
14 -9 23 11 0000 0010 101
15 -8.5 23.5 11 0000 0010 111
16 -8 24 11 0000 0011 001
17 -7.5 24.5 11 0000 0011 o n
18 -7 25 11 0000 0011 101
19 -6.5 25.5 11 0000 0011 111
20 -6 26 11 0000 0100 001
21 -5.5 26.5 11 0000 0100 o n
22 -5 27 10 0000 0100 11
23 -4.5 27.5 10 0000 0101 01
24 -4 28 10 0000 0101 11
25 -3.5 28.5 8 0000 0111
26 -3 29 8 0000 1001
27 -2.5 29.5 8 0000 1011
28 -2 30 7 0000 111
29 -1.5 30.5 5 0001 1
30 -1 31 4 0011
31 -0.5 31.5 3 o n
32 0 0 1 1
33 0.5 -31.5 3 010
34 1 -31 4 0010
35 1.5 -30.5 5 0001 0
36 2 -30 7 0000 n o
37 2.5 -29.5 8 0000 1010
38 3 -29 8 0000 1000
39 3.5 -28.5 8 0000 0110
40 4 -28 10 0000 0101 10
41 4.5 -27.5 10 0000 0101 00
42 5 -27 10 0000 0100 10
43 5.5 -26.5 11 0000 0100 010
44 6 -26 11 0000 0100 000
45 6.5 -25.5 11 0000 0011 n o
46 7 -25 11 0000 0011 100
47 7.5 -24.5 11 0000 0011 010
48 8 -24 11 0000 0011 000
49 8.5 -23.5 11 0000 0010 n o
50 9 -23 11 0000 0010 100
51 9.5 -22.5 11 0000 0010 010
52 10 -22 11 0000 0010 000
53 10.5 -21.5 11 0000 0001 n o
54 11 -21 11 0000 0001 100
55 11.5 -20.5 11 0000 0001 010
56 12 -20 11 0000 0001 000
57 12.5 -19.5 12 0000 0000 1110
58 13 -19 12 0000 0000 1100
59 13.5 -18.5 12 0000 0000 1010
60 14 -18 12 0000 0000 1000
61 14.5 -17.5 12 0000 0000 0110
62 15 -17 12 0000 0000 0100
63 15.5 -16.5 13 0000 0000 0011 0
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