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ABSTRACT

REGULARIZED MOTION ESTIMATION TECHNIQUES
AND THEIR APPLICATIONS TO VIDEO CODING

Serkan Kiranyaz
M.S. in Electrical and Electronics Engineering
Supervisor: Prof. Dr. Levent Onural
September 1996

Novel regularized motion estimation techniques and their possible applications
to video coding are presented. A block matching motion estimation algorithm
which extracts better block motion field by forming and minimizing a suitable
energy function is introduced. Based on an adaptive structure onto block
sizes, an advanced block matching algorithmn is presented. The block sizes
are adaptively adjusted according to the motion. Blockwise coarse to fine
segmentation based motion estimation algorithm is introduced for further
reduction on the number of bits that arc spent for the coding of the block
motion vectors. Motion estimation algorithms which can be used for average
motion determination and artificial frame generation by [ractional motion
compensation are also developed. [inally, an alternative motion estimation
and compensation technique which defines feature based motion vectors on the
object boundaries and reconstructs the decoded frame from the interpolation of
the compensated object boundaries is presented. All the algorithms developed
in this thesis are simulated on real or synthetic images and their performance
is demonstrated.

Keywords Video Coding, Regularization, Motion Istimation, Motion
Compensation, Motion Detection, Line I'ield.
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OZET

DUZGUNLESTIRILMIS HAREKET KESTIRIMI
TEKNIKLERI VE VIDEO KODLAMADAKI
UYGULAMALARI

Serkan Kiranyaz
Elektrik ve Elektronik Mithendisligi Bélimii Yiiksek Lisans
Tez Yoneticisi: Prof. Dr. Levent Onural
Eylil 1996

Yeni dizginlegtirilmis hareket kestirimi teknikleri ve olasi video kodlama
uygulamalar1 sunulmugtur. ilk olarak, uygun bir enerji fonksiyonunu
minimize ederek daha iyi bir hareket vektor alani olugturan hareket
kestirimi algoritmas: tamitilmigtir.  Daha sonra blok boylarina adaptif bir
yapt konulmasiyla olugturulan bloklara dayali hareket kestirimi algoritmasi
sunulmugtur. Blok boylari harekete bagh olarak bulunmaktacdir. Blok hareket
vektorlerine harcanan bit sayisinda daha fazla indirim yapabilecek hierargik
yapida boliitlemeye bagh bir blok hareket kestirimi algoritmasy tamtilmigtir.
Ayrica ortalama hareket belirlenmesi ve parcali harckete gore kaydirmayla
sanal gorunti tretiminde kullanilabilecek hareket kestirimi algovitmalar:
geligtirilmigtir. Son olarak oézelliklere dayali hareket vektorlerini nesne smurlar
lizerinde tanimlayan ve kaydirilmig nesne sirlarmm- interpolasyonundan
¢Ozilmiig gortintliyli olugturan hareket kestirimi ve ona gore kaydirma
teknikleri sunulmustur. Tezde geligtirilen algoritmalar gergek ve sentetik

goriintiiler lizerinde denenmis ve performanslar gozlenmigtir.

Anahtar Kelimeler :  Duzgiinlestirme, Hareket Kestirimi, Harekete Gore

Kaydirma, Cizgisel i§levler.
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Chapter 1

Introduction

Starting from the late sixties, much effort has been spent on the development of
videophone or such apparatus which are operating at low transmission bit rates
[1, 2, 3]. In this area, the main objective is the transmission of video frames as
efficiently as possible within an acceptable loss of visual image quality. This
can only be achieved by taking advantage of the interframe correlation. The
key tool for that is motion estimation and compensation. Motion estimation
is a highly ill-posed problem and therefore, should be solved by regularization.
Regularization should be performed in such a way that motion estimation
algorithms can extract a motion field which is suitable for the application
aspects.  Various regularization techniques [4, 5, 6] have been proposed to

provide reliable estimates from ill-posed measurements [7].

Motion estimation, as its name implies, is concerned with the extraction
of motion information from a sequence of video frames. It is used in a
wide range of applications including video coding, computer and robot vision,
traffic monitoring, military defense systems, autonomous navigation of mobile

vehicles, biomedical research.

In various motion estimation applications, the motion is represented by a
2-D field which is the projection of a 3-D object motion onto the image plane.

2-ID) motion estimation is concerned with displacements of 2-1) projections of

2



object points in consecutive frames for various applications of the digital video

frames (i.e. video coding).

In this thesis, we are concerned with 2-D motion estimation algorithms
and their applications to very low bit rate (VLBR) videco coding. Since
2-D motion estimation is an ill-posed problem, we are looking for suitable
regularization techniques. Furthermore, some effective improvements are also
proposed for some classical methods. Especially in very low bit rate video
coding, improvements for the classical block matching motion estimation
algorithm can realize better block motion estimation in terms of bit rate. Also
segmentation based motion estimation algorithms are shown to further improve
the performance in such a way that more reduction in the bit rate can be

achieved.

1.1 Basic Problems in Motion Estimation

The aim in 2-D motion estimation is the computation or extraction ol the
movement of the objects which are in the image plane. There are various
algorithms which have been developed to estimate 2-D or 3-D motion [rom the
video frames [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. However, there are still open

problems and some difficulties in that area.

One of the main problems is the overlapping of moving objects. This
situation is called as “occlusion” [18]. Occlusion effect makes the detection
and estimation of the motion difficult. Also there can exist some self-occlusion
effects of a single moving object. For example, a 3-D rotation of an object
causes some parts of the object to be unseen and some unseen parts of the

object to become visible. This problem is out of the scope of this thesis.

Another important problem in motion estimation is the relative motion
hetween the objects and the camera. Such relative motion-causes difliculties
in the detection of the moving objects as well as estimation of their actual
movements. This implies that the term of motion estimation often indicates a

combined detection-estimation process, such as segmentation of the individual



moving objects and then estimating their motion. Since the detection of
the objects requires that the motion has to be estimated beforehand while
the motion estimation requires the detection of moving objects, detection-
estimation processes are not independent of cach other, and thercfore, any

motion estimation algorithm should be developed, accordingly.

In order to improve the robustness of the motion estimation algorithms,
the presence of camera noise in the observed images is explicitly taken into
account [19]. This is well done by a preprocessing stage for the video frames.
The main idea is to obtain such a motion field which can represent the actual
movement as much as possible and also which can be coded effectively. Such

noise reduction techniques are not adressed in this thesis.

In the coding point of view, there is another problem or even a dilemma.
It is the dilference between well matched and well codable motion field.
That is to say that well matched motion field is obtained by taking “good
matching” into account but on the other hand a well codable motion field
is extracted by regularizing the motion field and therefore, it tends to have
less matching but better coding of the motion field. As a result, the motion
estimation algorithms that are used in video coding should be designed in such
a way that the amount of regularization should be arranged according to the
application aspects (such as channel bandwidth (bit-rate) and minimuwm signal

to noise ratio (SNR) requirement).

1.2 Regularization of Ill Posed Problems

As stated previously, motion estimation is an ill-posed problem [6, 5, 7]. The
reason behind the ill-posedness is that the number of constraints is insuflicient
to find a unique and robust solution. It is because of the fact that there is
only one constraint for each motion vector which consist of two components.
That constraint depends on an assumption which may not be always true: that
assumption is brightness constancy of an object point and yields the following

optical flow equality:



I(z) = I,_y(z — d(z)) (1.1)

where x is any pixel location vector, /; is the intensity (or color) value for
0 .

the pixel z at time ¢ and d(z) is the candidate motion vector. For real world

images, this equality usually does not hold because of noisc. Therefore, it can

be converted to a well-known constraint,

d(z) = arg min[L(I(z), [,_i(z — d(z)))] (1.2)

where L(.) is the absolute difference operator. Equation 1.2 is still insuflicient
to obtain a unique solution for d(z). The main reason of the ill-posedness

is because d(x) consists of two unknown components but there is only one

constraint present.

So in order to obtain a unique and robust solution, this problem is
regularized by adding several constraints to the problem. The choice of
constraints determines the type of the regularization and it varies due to
application requirements. In other words, requirements of any specific
application determine the regularization technique. Especially, bit rate and
signal to noise ratio (SNR) are the most significant requirements that can

determine the choice of the regularization technique.

Usual regularization techniques result in a smooth motion field. In other
words, those techniques put a smoothness constraint in addition to the optical
flow constraint. Hence one can state the total constraint employed on the

motion field as follows:

d(x) = arg min[L(1(x), [i_1(x — d(x))) + AR(d(X))] (1.3)

where X is the regularization parameter and I2(.) is the regularization operator
which imposes smoothness on to the motion field. x can be either a single pixel

or a group of pixels depending on the constraint aspects.

Different algorithms are formulated by different choices of R(.), L{.) and A.
In the BMME algorithms for example, R(.) operator is the assignment of just
one (block) motion vector for the whole block of pixels. This is a smoothness



constraint for regularization. Furthermore, there are various algorithms each
of which is based on stochastic models for regularization. The one which is
based on a stochastic formulation is the “Gibbs Formulation” or equivalently

“Markov Random Field” (MRI') modeling of the motion field.

1.3 Constrained and Stochastic Motion

Models

One common approach to the motion estimation problem is by optic flow
concept [9]. Optic flow refers to the distribution of instantaneous velocities
of moving brightness elements in an image or video frame. Those elements
can be the objects which are in the field of view of the observer and optic flow
actually arises because of the relative motion of these objects and the observer.
Actually optic flow is the main information source of moving objects, their

spatial arrangements and structural features.

Optic flow estimation techniques are based on the assumption that the
intensity of a pixel located at (2, y) on the image plane is constant over time.
Let I(x,y,t) represent the intensity at points on a path that is defined by
(x=x(t), y=y(t), t) in the 2-D image plane. Hence the following equation

relates with optic flow:

ol(z,y,t) Oz Oy
—— = —+[,—=4+1[=0 1.4
ot ot Yot (14)
where I, = M;T“l, I, = ﬂ(;y;ﬂl and v, = 'f)—”;, v, = %% Thus the equation 1.4
becomes:
Loy, + L, + 1, =0 (1.5)

! . 3 . .
Since V = [v,v,] is the motion vector that we are looking for, equation 1.5
relates the 2-D motion with the gradient of the image and is true if the

constancy of image pixel intensity assumption holds.



For regularization we need at least one more constraint to reverse the
problem to a well-posed problem. Horn and Schunk [9] introduces two types of

smoothness constraints. One is the sum of square of the motion field gradient:

2 ; 2 A
Ov,, v, 2 vaz dv._,,2

+ - .6
oz oy Tos oy (1.6)
and the other one is the square of the Laplacian operation:
82'0,2 0%, * O, ° v, *
x K Y + Y ( 1. 7)

Ox? Oy*? 0z? Oy?
Both constraints depend on the assumption that pixels close to each other tend
to have the same velocity. As a result the weighted sum of optic flow terms
in equation 1.5 and one of the constraint terms given in equation 1.6 or 1.7, is
minimized. Thus we obtain regularized optic flow (motion) field. If the discrete
estimates of the derivatives are well-behaved, resultant optic flow achieves a

good estimate of the actual motion field.

Another approach for the regularization of the motion estimation problem
is to model the motion field as a Markov Random I'ield (MRI'). Equivalent
stochastic model namely Gibbs distribution can be used under the positivity
condition (i.e. P(f) > 0). This type of modeling results in a maximum a

posteriori (MAP) estimate of the motion field. Let us [irst define the model:

Definition: Let £ = [f],7 € S be a collection of random variables defined on
a regular lattice S. f is called a MRI" if it satisfies the following condition:

P(filfs i # 5,V5 € 5),Vi= P(fil fj,1 # 5,V € Ni), Vi (1.8)
where P(f) is the probability density function of the random field f and f; is the
value of the distinct element at 7 in the field, S is the entire set of sites and N; is
the neighborhood of the site 7. So this condition which is the basic assumption
of MRF states that given only the elementsin a predefined neighborhood of the
i’th element, the probability distribution for the i’th element is independent

from the rest of the elements.

Besag [20] and also Geman and Geman [21] present the equivalence of the



MRF and Gibbs distribution. They have proven that under the positivity
assumption, random field f is a MRIF with respect to neighborhood N; if
and only if there exist a Gibbs distribution on the same neighborhood.
Gibbs distribution allows to construct a local structure through potentials
and energies that describe the interactions of each element in the ficld. The

probability density function of the Gibbs distribution is given as:

~H(f) ~
) (1.9)

where H(f) is the energy (Hamiltonian) that describes MRIE, 7' is the

temperature of the state and Zis the partition function that can be formulated

, 1
P(f) = Eea:p(

as [ollows:

—H(f:) .
7 ) (1.10)

7= cap

fi€sS

and in order f to be a random field, the equation 1.10 should be always satisfied.

In order to achieve a well-regularized motion field, the hamiltonian H(f)
should be properly determined. A simple choice includes just two basic energy
terms: namely “matching” and “smoothness”. Those terms can be chosen as

follows:

LIM(&) = ZZ (_It(way) - [i—l("l" - d.v:("vvy)7."/ - d!/(,xay)))z (l”)
Yy ox

- -

Ho(@) =% 3 (dlw,y) - dlw—ty—3)) (1.12)

y ivjEN‘n:y

H(d) = BiHp(d) + BoHs(d) (1.13)

where d is motion vector field, I;(z, y) is the intensity (or color) value of a pixel
g . . . .

located at (x,y). Hum(d) is the matching term which forces motion vectors to

represent true displacements. It is a well-known term from the optic flow

equation and sometimes related with posteriori distribution. Hg(d) is the



smoothness term which imposes the basic regularization to the motion field.
That term forces the motion vectors to have similar values with their ncighbor
motion vectors. Minimization of the total energy function H( &') maximize the
probability distribution (Gibbs) so that we obtain MAP estimate of the motion
field [4].

1.4 Motion Compensation and Video Coding

Motion compensation in video coding is the displacement of the previous [rame
by an amount of estimated motion field. This action satisfies a temporal
redundancy reduction and therefore, it is the basic tool which makes temporal

prediction between consecutive video frames.

Motion compensated predictive coding basically depends on the following
observation: a sequence of video frames in general do not change so much
and therefore, have temporal correlation with each other. That is to say that
except for the newly exposed scenery, each pixel in the previous frame moves
along a motion trajectory and hence, if the motion field of the image is known,
a reasonable prediction of the current frame can be obtained by shifting and

interpolating those moving parts of the previous {rame accordingly.

Many motion estimation techniques have been shown to give good
bandwidth reduction and image fidelity. The one which is most common and
used in most of the VLBR video coding applications is the block matching
motion estimation (BMME) algorithm [17, 22, 16, 12]. In BMME algorithms,
current video frame is divided into blocks. The blocks are rectangular in shape
and consist of certain number of pixels each of which is assumed to undergo
the same displacement, and therefore, the pixels inside a block have the same
motion vector. So the algorithmic task is to find a motion vector d,_;:_,' for
cach block such that a suitable matching criteria is maximized. Therefore, the

fundamental approach towards BMME algorithm can be formulated as follows:

d=arg min[y ®(1;, [‘,{'_:fi,d:,j)] ‘v’(l;j €D (1.14)
z€S

9



where ®(L}, 7], d;:]-) is the cost function and D is the search space on the
previous image. x is the position vector inside the image S. Usually, search
space consists of integer translations and the minimum is found by full search
or by some iterative search techniques. Many other search techniques can be
applied such as three step search [23], four step search [24], log(D) algorithm
[25], and so on. Those techniques have beendeveloped in order to reduce the

massive computation required by the full search.

Experimental results show that block motion ficld of a real world image
sequence is usually smooth and varies slowly. So it makes the coding of the

block motion vectors efficient in terms of bit rate.

1.5 Block Motion Estimation Algorithms and

Video Coding Implementations

In this approach video frames are divided into blocks, each of which is assumed
to undergo the same translation and thus block of pixels have a single block
motion vector (BMV). Block motion estimation algorithms are widely used
in video coding applications [16, 22, 17] and the main contribution of those
algorithms is that BMV’s can represent rigid body motion field with the
minimum number of motion vectors.

As shown in [igure 1.1, in order to find a BMV for a block centered at
(z,y), block of image pixels is taken at frame ¢ and an attempt is made to find
the best match for it within a search arca in the frame ¢ — [. If D, 1s the
maximum displacement allowed to occur cither horizontally or vertically, then
the area of the searched region is given by: SA = (M + 2D;0.) (N + 2D,04)
pixels.

The M x N block is moved in the search area till the best match is found.
The distance between the block center and the center of the best match is

considered to be the BMV of that block.

There are several BMME algorithms in the literature: Robbins and

10
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Figure 1.1: Given two frames, block motion estimation is performed within a
search area in the previous frame

Netravali [26] evaluate an algorithm based on the steepest descent approach
and the algorithm attempts to estimate a BMV by minimizing the square value

of the displaced frame difference (DFD) which is defined as follows:

DFD(z,3 ,ci(:v, y)) = Li(z,y) — Li-1(z — de(z,y),y — dy(2,y)) (1.15)

where d(z,y) is the BMV of the block centered at (,y), du(z,y) and d,(x,y)
are the x and y components of the BMV, respectively.

Houkes [27] presents a similar procedure using an iterative least squares
linear estimation procedure. However Houkes includes a rotation and scale
factor in addition to the translational motion vector. Jain and Jain [25] divide
the image into fixed sized blocks whose best match is found by minimizing a

distortion function between the consecutive frames.

An important issue for block matching is the block size. The visual
degradation in block motion compensation is usually proportional with the
block size. Smaller blocks generally reduce the visual degradation since
any rotation (or nonlinear motion) can be better expressed by smaller block

translations. So the performance of the BMME algorithms generally depends
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on three factors: block size, matching criterion and search method. We have
already discussed the first two of them. Search method is also important.
Usually the search space consists of integer translations and the minimum
is found by direct search techniques. The mostly used search technique is
the exhaustive search. The disadvantage of the exhaustive search is that the
computation time is proportional to the search area, but on the other hand,
global minimum is always guaranteed to be found. Many different search
techniques have been adopted such as cross search (28], three-step search [23],
four step search [24] and etc. Those techniques are developed to reduce the
computation time and also to find the global minimum in most of the cases.
However, the main disadvantage for those techniques is that finding the global

minimum is not always guaranteed.

The most [amous video coding standards are MPEG phases. MPEG
is an acronym for Moving Picture Experts Group which is under ISO-
[EC/JTC1/SC29/WGILL and started its activity in 1988. There are two
complete phases of MPEG namely MPEG-1 and MPEG-2. MPEG-1 is
a standardization of coding for storage. MPEG-1 results that video and
its associated audio can be stored and retrieved at about 1.5Mbits/s in a

satisfactory quality.

In MPEG-1, images are in CIF format (Common Intermediate Format:
352x288) and frame rate is 30 frames/s. The draft of MPEG-1 has been
finalized in June 1992. The second standard, MPEG-2, is intended for higher
data rates than MPEG-1 (It is about 2-15 Mbits/s).

The last phase of MPEG, MPEG-4, mainly involves very low bit rate video

coding (about several tens of Kbits/s) and has begun officially in 1993.

Another standardization organization is CCITT which formed a Specialist
Group in 1984 toward a coding standard for visual telephony. In December
1990 the first picture coding standard (H.261) has been resulted [3]. Second
standard is called H.263 and is primarily intended for very low bit rate video
coding (about several tens of Kbits/s). The work of H.263 has been resulted

in 1995.

In Appendix A, we present the motion estimation algorithms used in H.261

12



and H.263.

1.6 Scope and Outline of the Thesis

The scope of this thesis is the investigation of novel regularization techniques
that can be used to remove the ill-posed behavior of the motion estimation
problem for various applications, especially for video coding implementations.
Moreover, the main contribution of this thesis is to obtain various motion field

representations which can be coded efliciently.

We basically cast the motion estimation as a problem in minimization
of an energy function which is formed by combining the motion constraints.
Those constraints are related with the several requirements so that problem
aspects can be realized. As a result, a distribution function (such as Gibbs
distribution) is formed and minimized to obtain the MAP (maximum a
posteriori) estimate of the motion. Therefore, the common feature of different
motion estimation algorithms and related tools is the following idea: all motion
estimation algorithms are modelled as GRFs such that we assign different Gibbs
distributions according to the problem aspects. Therefore, all the algorithms
are lormalized by energy functions which differ by the constraints of the

problem (and application requirements).

In Chapter 2, we focus on the regularization techniques for video coding.
Since the most implemented model of motion estimation for video coding
applications is the block matching algorithms, we are concerned with several
advanced block matching algorithms in that chapter. Those proposed
algorithms are designed to improve the performance of the block matching
motion estimation (BMME) algorithms, as well as to reduce the visual
perception degradation that is caused from the disadvantages of BMME
algorithms. The basic disadvantages of the BMMIU algorithms are blocking
artifacts in visual perception and redundant block motion field representation.
As a result, in chapter 3 those disadvantages are shown to be reduced by using

those proposed techniques.
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In Chapter 3, some alternative motion estimation techniques, which can
be used in a video coding implementation, are introduced. Since motion
estimation is generally used for temporal prediction in a typical video coding
application, we now refine the problem and present a different type of usage for
motion estimation. Essentially, we present average motion determination and
motion compensated interpolation concepts. Average motion determination
can be used for frame rate adjustment. The frames which remain stationary
can be detected by average motion determination algorithm, and those frames
can be skipped. Then in the decoder side by motion compensated interpolation
those stationary frames are generated artificially. So in chapter 4, we
state whether or not the usage of those techniques can increase the coding

performance of a particular video coding application.

In Chapter 4, we propose an alternative motion field representation which is
the sparse field model. In that model, we present a motion field which is defined
on the line field of the image. Since the line field consists of object boundaries
which are the most important field carrying characteristic visual information of
an image, we try to extract the motion compensated (MC) image from the MC
line field. Further, we show that this technique can achieve high compression
rate as a video coding implementation. However the visual quality is not so
high, as expected.

Finally, Chapter 5 gives some interpretations about the results ol the
research presented in this thesis and outlines the further questions that arose
in connection with the investigated algorithms that can be considered to be

the subjects of future research.
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Chapter 2

Regularized Motion Estimation

In this chapter regularized motion estimation algorithms which can be
effectively used in very low bit rate (VLBR) video coding applications, are
presented. In video coding applications, motion estimation is generally used to
remove the temporal redundancy. Especially in VLBR video coding, motion
estimation algorithms should be designed by taking the following three factors

into account:

i) They should be accurate enough to provide an acceptable motion
compensation, ii) they should have non-complex structure so that computation
time would be suitable for real time execution, and iii) they should extract a

motion field which can be coded elfectively.

Block matching motion estimation (BMME) algorithms are the quite
suitable candidates having the features described above. So it is not suprising
that those are the most widely used algorithms in VLBR video coding
implementations, devices and standards. Therefore, BMME algorithms are
simple, fast and can be implemented in hardware very easily. But they also

have serious disadvantages which can be stated as follows:
i) BMME can cause degradations in visual quality such as blocking artifacts.

ii) Since only the “best match” criteria is taking into account while finding



the BMVs, they can have quite arbitrary values which need high bit rate during

coding.

iii) For any kind of motion (simple or complicated) between two video
frames, always the same number of blocks (and BMVs) are used to represent
that motion. In other words, number of blocks and block sizes are constant
(predefined) and independent from the motion. That can cause redundant or

insufficient usage of the blocks.

iv) BMVs are raster-scanned in the coding stage. That type of scanning
breaks the vertical correlation between BMVs and therefore, the overall coding

performance would be reduced as a consequence of this scanning process.

v) Global motion can not be efficiently represented by BMME algorithms.
This problematic insufficiency are examined in detail in the sections 3.1, 3.2
I 8 )

and 3.3.

In order to overcome those disadvantages we develop some novel BMME

algorithms which are presented in this chapter.

2.1 Block Motion Estimation by Energy
Minimization

As discussed previously, classical BMME algorithms are usually designed
by taking only matching criteria into account. Smoothness of the BMVs
are only imposed by the constraint which is the assignment of only one
motion vector per block. However, considering the coding efliciency this may
be insufficient. IEspecially in VLBR video coding implementations further
smoothness constraints may be necessary to achieve suitable BMVs for VLBR

coding implementations.

In this section we introduce an advanced BMMI algorithm which improves
the BMME algorithm in order to overcome the above problem. In this

approach, while searching the optimum BMV for a particular block, not only
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the matching criteria but also the smoothness of the BMVs are taken into
account. In order to do that, an energy function containing hoth matching
and smoothness terms are formed and then minimized. The contribution of
the smoothness term should be adaptive with respect to the block size of the
algorithm. So we saw that a good way to do it is to reduce the smoothness
constraint inversely proportional with the area covered by a particular block
(also stated in [29]).

2.1.1 Energy Based BMME Algorithm

As stated in sections 1.3 and 2.2, we form an energy function like as in Equation

1.3. This energy function is given as:

BS BS
bmg, = EZ (I(z + 2,y + J)— Loz + i+ do(z,y),y + 5 + dy(*'v,'!/)))z
ig
(2.1)
Nd  Nd B ,
Es:vy = Z Z Il (l(%,y) - d(.’l) + lBS7 v+ }BS) ” (22)
i=—Nd j=—Nd

Ly = BiEmyy, + o Fs,, (2.3)

where E,, is the total energy function for the block which is represented by
the offset pair (z,y). Those offset pairs can be the multiples of the block size
BS (i.e., (0,0) (0,BS) (BS,BS) (BS,0) (BS,2BS) etc ...). Em,, and [Fs,, are
the matching and smoothness constraint energy terms as before. I'he variables
dy(2,y), d,(z,y) are the ¢ and y components of the block motion vector d(z, Y)

as shown in Figure 1.1. Nd determines the size of the neighborhood.

All variables and energy terms arc defined as blockwise and associated
block is represented by the offset pairs (2,y). Lz +i,y+j) and
Li_i(x+ i+ do(2,y),y +7 + dy(2,y)), Vi, 5 € [L..BS] are the pixel intensity
(or color) values of the current and previous motion compensated special
frames, respectively.

Minimization of the total energy function in Equation 2.3 for each block in

the current special frame, with the block motion vectors as variables yiclds the
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local optimum BMVs. Minimization method is the Iterated Conditional Mode
(ICM) [30, 31].

In the minimization process, there are still some factors such as boundary
problems which may cause unreasonable results. Although it was not shown
in the previous energy expressions, effects of boundary problems are avoided
by adding some “if” statements to those energy expressions. Those “if”
statements restricts out of border situations. In Equation 2.1, the term
Lo (x4 do(2,y),y + dy(z,y)) represents the shifted pixels by the candidate
motion vector components. For the pixels on the image boundary, if resultant
shift operation cause an “out of border” situation, an “if” statement gives
infinite penalization. Therefore, such a situation is strictly avoided. Also in
Equation 2.2, (Z:U+B5i,y+BSj are the neighbor motion vectors and the neighbor
motion vectors which are out of border of the image are avoided by the same

“if” statement as before by assigning infinite penalization.
Computational Complexity

In proposed algorithm, the only extra work is the computation of
the “smoothness” energy term for each block. Since the calculation of
“smoothness” term requires negligible computations with respect to the
“matching” term of all the pixels in a block, computation time of our algorithm
is slightly more than the classical BMME. Since the minimization process is
carried out by ICM, the matching criteria of the pixels inside a block are once
found and stored. Therefore, though the computation time is same as classical

BMME algorithm, this technique requires much more memory.

2.1.2 Results

We simulate our BMME algorithm with two video sequences and test its
performance with the classical BMMIE algorithm. The PSNR and Bit Rate
graphics are given in Figures 2.1 and 2.2. Those results are obtained by taking
one step compensation from the original frames. The BMVs are then entropy
coded by LZV coding so that Bit-Rate graphic indicates the number of bits
spent for coding of the BMVs. PSNR graphic shows the usual Peak Signal to
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Noise Ratio which has the following formula:

25¢ 2 ,size)/size
552X ) 24

T o (i, g) = MCG, 5)F
where MC} is the motion compensated image from the previous frame (I,_,).
In both simulations, BS is chosen as eight, and ; and B, values are 1 and 150,
respectively. Frames are in QCIF format (X, = 176, Yy, = 144) and they
are gray-scale images (256 intensity levels with integer values form 0 to 255).

PSNR = 10[0g10 (

In Figures 2.3 and 2.4, resultant BMV fields, which are for the two typical
video frames (Mother & Daughter, frames:10-11 and Foreman, frames:29-30),
are shown. Those fields are obtained by using both classical and regularized

BMME techniques.

I BNMME (o) aand Rogularizod BRMME (7))

Figure 2.1: PSNR (top) and Bit-Rate (bottom) graphics of the classical (o) and
regularized (¥) BMME algorithms for the Mother & Daughter sequence.
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Figure 2.2: PSNR (top) and Bit-Rate (bottom) graphics of the classical (o) and
regularized (*) BMME algorithms for the Foreman sequence.

We achieve quite good results: the number of bits spent for coding of
the BMVs are reduced almost twice without any significant visual quality (or
PSNR) reduction. However, we are still far away from our total objectives
that are stated at the beginning of this chapter. Therefore, in the next section
we focus on an adaptive BMME algorithm which can almost achieve the same
visual perception quality (and also PSNR) while further decreasing the bit-rate
for BMVs.

2.2 Adaptive Block Matching Algorithm

In this section, we propose an adaptive block matching algorithm which is
shown to almost solve the problems explained at the beginning of this chapter.
This algorithm, first of all, operates on the variable sized blocks such that the
block size is determined adaptively by the matching criteria, i.e., if a good
matching of a large (parent) block could not be achieved, by sub-dividing

that parent block we try to improve the matching performance. So only the
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HEUBE&BBPBBfInBUUUUBHBBH BBBBBBBBBBBBBUUUUUUBBB
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Figure 2.3: BMVs extracted from classical (left) and regulcirized (right) BMME
cilgorithms for the frames (10-11) that are taken from the Mother & Daughter

sequence.
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BBSMWSgTM5i5aaHiaIEFizlSnlzlﬂglhI BBBBBaaaBaaBBBaaaaaBlili

BBBBBBBaaaaaaaaBaBnnaB BBBBBaaaaaaaaaaaaaBBan

REPRREERRGARPREERBEREN EEREEE0RRARRARERTRRR

Figure 2.4: BMVs extracted from classical (left) and regularized (right) BMME
algorithms for the frames (29-30) that are taken from the Foreman sequence.

least number of blocks, which are required to represent the motion between
frames, are used. If a subdivision occurs, there are two possibilities: Il the
parent BMV has an acceptable matching score, it influences the child BMVs,
otherwise child BMVs are determined independently. By this way, starting
from the root parent block, that is the image itself, producing the child blocks
if needed, we can achieve desired regularization. As a result, without significant
visual degradcition, we can obtain the reduced description of the (true) motion

field in terms of bit consumption.
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2.2.1 Adaptive Block Matching Algorithm (ABMA)

Before explaining the whole algorithm of ABMA, let us first define a lew

parameters as follows:

Malching Frror: It is the indication of mean square error (MSE) for a block.

The matching error of a block is equal to the ratio of sum of intensity difference
squares to block area. So it is the average difference square (per pixel) for a

block.
Depth: 1t is the number of the root parent block (image) sub-division.

Satisfaction Threshold: It is the maximum error for a candidate BMV to
assign it as the BMV of that block. Above the satisfaction threshold, the block

is sub-divided into four child blocks.

Effective Threshold: It indicates whether or not the parent block BMV
affects the BMVs of the child blocks. The matching error which is above
the effective threshold is assumed to give very bad matching performance so

that parent BMV is now totally ignored.

Parent Multiplier: 1t is simply the parent block effect on the child blocks

BMVs. If the matching criteria of a parent block is in between the satisfaction
threshold and the effective threshold, that parent BMV is permitted to be used

in the estimation process of the child BMVs.
Motion Estimation Algorithm

After the general parameters are defined, ABMA starts by taking the root
parent block (image) as the current block and then finds the BMV which
achieves the minimum matching error. The minimum matching error ol the
root parent block (image) is compared with the satisfaction threshold and
effective threshold. If it is under satisfaction threshold, ABMA stops and no
further sub-division is carried out afterwards. That means just one BMV which
is the root parent block motion vector is sufficient to represent the motion
between video frames (i.e., as in the case of global camera motions or a single

object displacement as in Figure 2.5).



Otherwise, if the matching error is above the satisfaction threshold, parent
block is divided into four child blocks. The child BMVs are determined by
the minimization of an energy function that consists of two terms: “matching”
and “parent resemblance”. Those terms and energy function are formulated as

follows:

Xend Yend

Bm)= 32 3 (L) = Leali + du(8), 5 + 4,(3))F)  (25)

i=Xst j=Y st

Es(8) = | (dpur — d(b) || (2.6)
E =" (Em(b) + Py Es(b)) (2.7)
vbel;

where [ is the total energy function which is the sum of matching Em(b)
and parent resemblance Es(b) terms for all blocks in the current frame. The
coeflicient Py is the parent multiplier which has a nonzero value if the matching
error of the parent block is under the efective threshold. The child BMVs are
represented by c_i(b),b =1,2,3 or 4 and their parent BMV is dp_;,.. (Xst, Yst)
and (Xend, Yend) are the corner points of the block . As before [,(7,5) and
L (i + do(b),7 + dy(d)) are the current and previous compensated (by the

BMV: d(b) = [d,(b) d,(b)]') blocks.

As a result the motion estimation is realized in a quad-tree structure such
that each (parent) block inside the current frame is either sub-divided into [our
child blocks or finds itself a BMV by minimizing the energy term in Equation
2.7. Sub-division process is allowed to be continued up to a predelined depth
value (i.e., zeroth depth represents the root-parent block, if process is over
after the fifth consequent sub-division, maz. depth = 5). In a certain depth,
the block which is in that depth can have the size as Ag)f,jp{h X ;;*eip’;",,.) (i.e.,
for a QCIF (176x144) image and depth = 4, a block has the size (11 x 9)). In
practice maximum depth value can not be allowed to exceed five for the QCIF

images.

Simulation results show that we can have better results if for each block
the parent multiplier Py is adaptively determined by using the depth. This
is also an expected result because as depth increases (blocks become smaller)

the relation between the child blocks and their parent block increases. ‘T'his
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1s a consequence of the spatial correlation increase between smaller blocks.
M - =3 1 - N T 1 i *q . s X . .
Since the block size reduction is proportional with the 2% parent multiplier

should be proportional with the same factor, that is:

P]\l — ‘P](d[.zdepth (28)

where P); is a constant real number which determines the amount of
regularization for the BMV field. It is usually chosen according to the bit-
rate for BMVs. For low bit-rate applications the value of PJ; is chosen larger

than 8.
Back Propagation Process

This process is nothing but the grouping of the child blocks which have
the same BMVs to a single parent block. If all the child blocks have the same
BMV, there is no need to use four (same) BMVs for them instead of only one.
Therefore, they are combined to create one parent block. Such a situation can
occur in such a case: sometimes the sub-division of a parent block may not
create the child blocks which achieve better matching than their parent block
and thus all the child blocks can have the same BMV (which is their parent
BMV). In such situations Back Propagation process reduces the number of
blocks so that the number of bits spent for the coding of BMVs, are reduced.

Computational Complexily

We again compare the computation time with the classical BMMI
algorithm. In classical BMMI algorithm the matching scores ol every pixel
in the image are calculated once in order to determine the matching score of
the constant-sized blocks. Therefore, the computation time for our algorithm
would be almost the same with the classical BMME algorithm because of the
following reason: Since in the first depth, all the matching criteria (MSE) of the
pixels are found once and then stored, for the remaining depths, only the parent
resemblance term is to be calculated for each (child) block. That calculation
requires only one subtraction and one multiplication for each block in the
image and therefore, the computation time for it is negligible with respect to
the calculation of the matching scores of the pixels. Thus the abovementioned

result holds.



2.2.2 Results

We compare the performance of the ABMA with the classiccil block matching
algorithm. First, consider the simple motion of a rectangle shown in Figure 2.5
(top). In this example, the frame size is (176x144) and blocks are (16x16) pixels
tor the classical block matching algorithm. So, there are 99 blocks to represent
that simple motion where the BMVs are shown in Figure 2.5 (bottom-left).
When the ABMA is applied to this excvmiile, with only one block which is the
friirne itself, the motion is represented as shown in Figure 2.5 (bottom-right).

m E H

Figure 25: (top) Previous and current frames, (bottom.) BMVs by (left)
classical block matching algorithm, (right) proposed algorithm

The ABMA is also applied to “head and shoulders” type video frames as
shown in Figures 2.6 and 2.7. The previous and current irruiges are shown at the
top. In the middle row, the motion compensated frames by using ABMA and
classical block matching algorithm are shown. At the bottom, the BMVs and
their associated blocks are illustrated. Also, in order to emphasize the ellect
of ABMA on the blocking artifacts compared to the classical block matching
cilgorithm, some zoomed parts of the original video frames cire shown in Figure
2.8. The parameters used in those simulations are given in Table 2.1.

. Table 2.1, values are chosen according to the amount ol regularization
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PARAMETERS | WhiteRectangleJ Mother& Daughter ' Foreman I

Depth 1 5 !

Satisfaction Rate 25 25 25

Effective Rate 100 100 100

Parent Multiplier Const. (Pyy) 0.5 3 3
Search Range -10,+10 -7,47 -7,4+7

Table 2.1: Simulation parameters for ABMA

required. Normally we can choose Pg; value between 0 (for no regularization)
and 20 (sufficiently high regularization factor even for depth 6). Thercfore,
according to the smoothness required, parent multiplier factor Py can be

chosen as any real number in this range.

Now for the comparison between AMBA and the classical BMME, we sketch
PSNR and Bit-Rate graphics of ABMA as shown in Figures 2.9 and 2.10. As
shown in those graphs, ABMA is much better than the classical BMME, and

even better than the regularized BMME which is discussed in the section 3.1.

Simulation results show that ABMA can reduce the number of bits spent
for coding the BMMs approximately six times almost with the same PSNR
values. The BMVs are entropy coded (same as before) so that Bit-Rate graphic
indicates the number of bits spent for coding of the BMVs. PSNR graphic

shows the usual Peak Signal to Noise Ratio.

2.3 Blockwise Coarse to Fine Segmentation

of Motion Fields

In this section, we develop a hierarchical segmentation algorithm and a
BMME algorithm which extracts a BMV field that is suitable lor hierarchical
segmentation. Segmentation is an efficient tool for VLBR video coding motion
estimation algorithms. We believe that the number of bits which are spent for

coding of motion vectors can be further decreased by means of segmentation.
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Figure 2.6: (top) Previous and current frames {Mother & Daughter frames 78 &
81" (middle) compensated frames by (left) classical block matching idgorithrn,
(right) proposed algorithm, (bottom) BMVs extracted by (left) classical block
matching algorithm, (right) proposed algorithm (depth=5).
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Figure 2.7; (top) Previous and current frames (Foreman frames 66 & 69),
(middle) compensated frames by (left) classical block matching cilgorithm,
(right) proposed algorithm, (bottom) BMVs extracted by (left) chissical block
matching algorithm, (right) proposed algorithm (depth=4).
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Figure 2.8: (top) Mother & Daughter, (bottom) Foreman, zoomed parts of
the compensated frames by (left) classical block matching algorithm, (right)
proposed algorithm.
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Figure 2.9: PSNR (top) and Bit-Rate {bottom) graphics of the classical BMME
(o) and ABMA (*) algorithms for the Mother & Daughter sequence.
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Figure 2.10: PSNR (top) and Bit-Rate (bottom) graphics of the classical BMME
(o) and ABMA (*) algorithms for the Foreman sequence.
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Segmentation of the block motion field is to combine the similar (or same)
BMVs into groups so that the objects moving in a certain motion can be
detected, extracted and then coded efficiently. In order to achieve this objective

block motion field should have the following properties:

i) Block matching motion estimation (BMME) algorithm should extract a
block motion vector field such that blocking artifacts in visual perception are

minimal.

ii) Block motion field should be sufficiently smooth and correlated so that

segmentation results in minimum number of segments.

iii) Block motion vector field should represent the global motion. That is
to say that the motion between two video frames should be represented by the
possible smallest number of BMVs so that segmentation can be performed by

using minimum number of segments.

In the light of the abovementioned features, we propose a well-regularized
BMME algorithm. This algorithm has a similar structure (quad-tree) as
described in the previous section. However, there are certain differences at
the other parts of the algorithm. For instance motion estimation criteria,
parent regularization effects to the child blocks, division determination rule
and the other basic structural features which are mentioned later in detail, are
the basic different parts. Therefore, proposed BMMLE is an iterative algorithm
which is repeated for every depth so that segmentation and block motion vector

extraction are realised hierarchically (coarse to fine levels).

2.3.1 Hierarchical Block Matching Algorithm

This algorithm is executed in two main steps. In the first step block motion
vectors are obtained and in the second step blockwise segmentation is applied.
The execution is repeated for every depth (sub-division stage). Sub-division
process is shown in Figure 2.11. At the first depth there is only one block which
is the video frame itself, so there can be only one segment and its block motion

vector. Then in the second depth parent block (frame) is subdivided into four
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child blocks each of which is the quarter size of the frame. Block motion vectors
are determined and segmentation is applied to those four blocks. The same

algorithm is repeated for the remaining depths.

Video Frame —_

st nd 1
1.” Depth 2. Depth 3. Depth

Figure 2.11: Sub-division process in Quad-Tree structure for the depths =
1,2,3,...

In any depth regularization is achieved by parent-child relation for the block
motion vectors. So, in order to obtain a well-regularized block motion vector
field, the parent block motion vector influences its child blocks in such a way
that if the best matching rate for the child block is not greater than the parent
matching rate multiplied with a coeficient, then, child block motion vector will
be assigned as the block motion vector of its parent. By this way, from first
depth to the last one, block motion vectors tend to have the same values as
their parent block motion vector. Since all of the child blocks are generated
from one root parent block, block motion vectors are forced to be similar with
cach other by the effects of parent blocks to their childs, and therefore, the

final block motion vector becomes suitable for segmentation.

In this algorithm, the matching rate that is used in the determination of
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the block motion vectors is the ratio of matched pixels to the total number of
pixels in the block. Therefore, the matching rate is a real number between zero
and one. In order to assign a displaced pixel as a “matched” pixel to a pixel
in the current frame, the difference between the intensities (or colors) must be
below a certain threshold value. Otherwise that pixel in that block is assigned

to be “unmatched”.

After finding all block motion vectors for a certain depth, segmentation is
achieved in the following way: first, stationary blocks (BMV = 0) are put in
a segment which is called background segment. For the rest of the (moving)
blocks, following algorithm is realized: each new block can join into a preformed
segment if its BMV is in the neighborhood of that segment motion vector.
Otherwise it forms a new segment and the motion vector of the segment is
assigned as the BMV of that block. Thus all segments with their motion

vectors are obtained for every depth by repeating this process.

2.3.2 Results

We test our algorithm by using some frames from the MPEG-4 test sequences
as shown in Figure 2.12, 2.13, 2.14 and 2.15. In those Figures, top images
are previous and current frames. At the bottom-left side, the resultant block
motion vectors and their segmentations are illustrated. IFinally, at the bottom-
right side, motion compensated frame for the hierarchical block matching

algorithm is shown.

The parameters used in the simulations are given in Table 2.2.

[ PARAMETERS | F4g.2.5| Fig2.12.| Fig2.13 [ Iig2.14.] Fig2.15.]

Depth 1 3 3 4 4

Matching Threshold 20 7 7 7 7
Search Range | -10,+10 -T1,+7 -T7,47 -1,+7 -7,47
PSNR | (infinity) 29.0212 | 24.0913 29.0598 31.3692

Table 2.2: Simulation parameters for Hierarchical Block Matching Algorithm
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Figure 2.12; (top) Previous and current frames {Foreman, frames: 0 & f),
(bottom) (left) block motion vectors and segments (each gray-level shows
different segmentation), (right) motion compensated image (PSNR=29.0212

dB, depth=3).



X XX

Figure 2.13: (top) Previous and current frames (Forem.an, frames: 77 &
78), (bottom) (left) block motion vectors and segments (each gray-level shows
different segmentation), (right) motion compensated image (PSNR=24.0913

clB,depth=3).
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Figure 2.14: (top) Previous and current frames [Container Ship, frames: 61 &
81), (bottom) (left) block motion vectors and segments (each gray-level shows
different segmentation), (right) motion compensated image (PSNR=29.0598

clB, depth=4).
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Figure 2.15: (top) Previous and current frames {Mother & Daughter,
frames: fl & 52), (bottom.) (left) block motion vectors and segments (each
gray-level shows different segmentation), (right) motion compensated image
(PSNR=31.3692 dB,depth=4).
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Chapter 3

Frame Rate Regulation and

Frame Interpolation

Motion estimation (ME) and compensation are the basic tools which are
used for temporal prediction in video coding applications. Therefore, motion
compensation can realize high compressing rates and for this reason MIS is
usually supposed to be used only for the motion compensation (temporal
estimation) of the frames. Nevertheless there are further applications of ME
for video coding such as average motion determination (AMD) and motion
compensated (MC) interpolation. We believe that if those tools can be used
properly in a coding scheme they can improve the coding performance and also
achieve higher compression rates.

In this chapter we introduce AMD and MC interpolation concepts and then
we present novel ME techniques which can be used in these tools. We also
discuss how they can improve the coding performance in a particular coding

application.
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3.1 Average Motion Determination and Frame

Rate Regulation

In a video sequence there can exist a group of stationary frames. Those group
of frames are very similar to cach other since the amount of change is low. So
especially in VLBR coding applications, those frames can be skipped if they
can be estimated in the decoder (receiver) side. As a result instead of coding
all the frames in the stationary group, just one of them is coded and the rest
are assumed to be somehow reconstructed at the decoder side. The way of
reconstruction is by “MC Interpolation” which is discussed in the next section.
Then cither the number of skipped frames or equivalently the “special frames”

which are honored for coding are determined by AMD.

AMD, as its name implies, is an algorithm which finds the average motion
between two video frames and thus finds the amount of change within two
frames. In order to have accurate estimate ol change between two [rames,
AMD algorithm should contain a well regularized ME algorithm so that it
really determines the average object motion and it does not take the false
transitions into account. The following section is about the ME algorithm

used for AMD.

3.1.1 Motion Estimation Algorithm for AMD

[n order to find the motion vectors between two video frames, an energy
function (such as given in Equation 2.3) in terms of motion constraints, is
formulated and then minimized [4, 6]. Energy terms are written in terms of
one or more variables. That energy function is a local energy function which is
defined in a predefined neighborhood in the image. Minimization is performed

through a well known algorithm called ICM [30, 31].

In the applied motion estimation algorithm for AMD [8], the variables are
vertical and horizontal components of the motion vector of a pixel located at

(,y) coordinates, and the binary line field [32, 5, 33]. The line field is used
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to indicate the discontinuities of the motion vector field on the image. It is
defined on the dual lattice as shown in Figure 3.1. The line field has two types
of elements defined along vertical and horizontal directions such that vertical
line field elements indicate the continuity or discontinuity of the motion vectors
of the pixels which are neighbors to each other horizontally, and the horizontal
line field elements indicate the continuity or discontinuity of the motion vectors
of the pixels which are neighbor to each other vertically. Those line fields get
the value 1 if a large amount of discontinuity between neighbor motion vectors

exists. Otherwise, they get the value 0.

After defining line fields and motion vectors as such, in order to obtain
local-optimum values for the motion vectors an energy function is formulated

as follows:
Emgy = [I(z,y) — L—y(x + do(2,y),y + dy (2, )] (3.1)

Zu dy(3) = doy(0)) || s (3) (3.2)

Ela:y = Z (Lh,c'f'ossings + Lh,inclusion + L/L,parallel) (33)
NI
+ Z (L'u,m'ossings + Lv,inclusion + Lv,parallel)
Nuv
a:y ﬂIETI”ny + ﬂzE.SM/ + ﬁJE zy- (;/1)

Here, [, is the total local energy function associated with the pixel located
at (z,y) coordinates. It consists of three different energy terms: matching
term (Emg,), smoothness term (Esy) and line field term (EL,) . [(x,y)
and I_;(z + di(z,y),y + dy(2,y)) are the current and previous motion
compensated image pixel color values at location (z,y). In Equation 3.1,
d. (2 J) and d,(z,y) are the vertical and horizontal components of the motion
vector dw, at the location (z,y), respectively. In Equation 3.2, dw( ) is the
motion vector and its location with the variation of i is shown in Figure 3.2.
Also in Equation 3.2, 7y, is the uniformity field extracted from the line field as

follows (see Figure 3.2):

rey(1) = (1 la: 1,y-1 D=1 (1= lf u—1 D=45_,) (3.5)
rey(2) = (1= l,my) (3.6)
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Toy(3) = (1 - 1:+1 ) (=0, )1 — lly D=1 (3.7)

ray(4) = (1= 12_,,) (3.8)
roy(2) = (1= 12,) (3.9)
roy(6) = (1= oy ) = L&y ) (L= L)1 =12, ) (3.10)
ray(T) = (L =12 (3.11)
ray(8) = (L =Ly YA =& )=y NL=12,,,). (3.12)

Here, in Equations 3.5 to 3.12, [ and l:’y are the binary values
of the horizontal and vertical line field elements which are defined
on the dual lattice as shown in Figure 3.1. In Equation 3.3,
Lh,crossings; Lh,inclusion, L/L,]J(LT{L”EI; Lu,crossings> Lu,inclusion, L-v,pamllel are the real values
which penalizes several line field positions shown in Figure 3.3. N, and N, are
the neighborhood regions of the vertical and horizontal line elements (/{”y and
[},), and is taken to be one pixel back and forth from the location (z,y) as
shown in Iligure 3.3. Finally, total local energy expression is given by Equation

3.4.

Minimization of the total energy term in Equation 3.4 yields the local
optimum solution of the correct motion between last previous frame and current
candidate frame. Hence the average motion is calculated using the optimal

motion vectors as follows :

\/Z:L/Ysizc )st"c d (T7J)

sumy = (3.13)
Xsize Y;'ize ‘
Ksize Ysize - 2
sum, = \/Zm Ty (2,y) (3.14)
Yy = Ve .14
)‘size)/size
Average Motion = \/suml.'z + sum,?. (3.15)

So, once the motion vectors of each pixel of the current image are found, b

the formulas given in Equations 3.13, 3.14 and 3.15, the average motion is
computed. As a result, if the average motion between those frames is over a
predefined threshold value, then the current candidate frame is taken to be next
special frame and it is honored for coding. Otherwise all the frames which have
insufficient motion between the last special frame are assumed to be estimated

by the decoder. Thus, those frames are skipped by the coder.
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Computational Complexity of the Motion Estimalion Algorithm

Since this is a dense motion field estimation, we have three factors
which directly effects the computation time and determines the computational
complexity: i) image size, ii) iteration number and iii) search range of motion
vectors. Since the line elements take binary values for each pixel computation
time for determination of the line elements can be ignored with respect to the

computation time for the motion vectors.

The skipped frames are reconstructed at the receiver side from the special
frames that are honored for coding. In the next section we show MC

interpolation techniques for the reconstruction of the skipped frames.

3.2 Motion Compensated Interpolation

In a very low bit rate (VLBR) video codec (coder-decoder) temporal and
spatial redundancies are removed from the video sequence in order to achieve
high compression rates. In addition to that compression performance can
be further improved by reducing the frame rate to be coded. By this way,
the number of coded frames are decreased and this can realize significant bit
savings. One way to do that is to skip certain (predefined) number of frames
from the video sequence. Alternatively, a better approach for it is to skip
certain number of frames which can be artificially generated at the decoder
side within a acceptable loss of visual quality. The basic technique for the

artificial generation is what is called “interpolation”.

(Jiven two frames, interpolation generates certain number of skipped frames
that are not honored for coding at the encoder side. The simplest interpolation
is linear interpolation. In this technique the pixel color values are obtained
by linear interpolation from the pixel color values of the given [rames. The
disadvantage of the interpolation by linear interpolation is that it causes visual
artifacts such as blurring effects at the edges of the moving objects. Because
this is visually unacceptable most of the time, more powerful techniques were

developed such as motion compensated (MC) interpolation.



x-1,y-1 X,y-1
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Figure 3.1: Line fields (horizontal and vertical) representation in dual-lattice.
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[Figure 3.2: Uniformity field extracted from line field.
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In MC interpolation schemes [34], motion estimation is performed between
two frames and the interval frames are generated by fractional motion
compensation. There are some serious problems that can cause visual
degradations. First of all, there can exist some problems if the motion vectors
are chosen as they indicate where all of the pixels in the previous [rame tend
to go in the current frame. One of them is what will happen to the unpointed
pixels in the current frame. This is possible because motion vectors could not
cover all of the pixels at the compensated frames. Another problem can occur if
the motion vectors do not follow the object motion trajectory. In that case false
transitions may occur and therefore, motion compensation in the interpolation

will cause visual artifacts.

A simple interpolation method is “linear interpolation”. The basic idea
behind it is to interpolate pixel intensities of the interval frames by using
previous image pixels. For instance, suppose we are given two video frames such
as [, and I, v where INis an integer which shows the number of images which
t

are generated artificially by interpolation. Let Imy; be the i k interpolated

image which is generated by the following formula:

[Tnt+i:It+([;:+IN*—It)L. (3.16)

IN
So lor i=1 to IN-1, all interval frames are generated artificially by linear
interpolation according to Equation 3.16. This method is extremely easy to
implement but however it can have serious visual problems such as blurring

artifacts that will be demonstrated later in this section .

Motion compensated interpolation techniques are developed in order to
remove those blurring artifacts as well as to obtain motion tracked images. In
these methods the interval frames are generated according to the simplest (and

shortest) motion trajectory that can be found between those [rames.

Because of the reasons explained previously, motion estimation is performed
such that motion vectors indicate where all of the pixels in the current frame
come from the previous frame. Therefore, every pixel of the current [rame
has a motion vector and by using those motion vectors, every pixel of the
interpolated images can have a motion vector which is the fraction of the

motion vector of the given current frame. Thus neither of the pixel remain
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without motion vector. Also the motion estimation algorithm should be well
regularized so that false transitions can be avoided. We use a regularized block
motion estimation algorithm with sufliciently small block sizes so that blocking
artifacts can be reduced. In that algorithm an energy expression containing
matching and smoothness constraints for the block motion vectors, is first
formed and then motion vectors are extracted by minimizing it. According to
the regularized block motion estimation stated in section 3.1, we now present

motion compensated (MC) interpolation techniques:

In this section, we present a motion compensated interpolation method
which solves the problems mentioned previously. The basic ideas behind it are
as follows: first of all, motion estimation is performed such that motion vectors
indicate where all of the pixels in the current frame come from the previous
frame. So, this solves the first problem mentioned before. Because it is now
guaranteed that every pixel in the current frame is covered since they all have
motion vectors. Secondly, the motion estimation technique is a well-regularized
block matching algorithm which is a quite successful technique that can track

the object motion and it was presented in detail in section 3.1.

3.2.1 Single MC Interpolation

Single MC interpolation as its name implies, is the interpolation of the interval
frames only from one source which is the given previous [rame. After the
block motion estimation is performed between two given [rames, the interval
frames are obtained by fractional motion compensation [rom the given previous
frame. Fractional block motion vectors are the uniform fractions of the block
motion vectors that are obtained from the given frames and therefore, they are

obtained by the following equation:

7 _ vz .
frac — .[Nd (3].7)
~—
where IN is the number of interpolated interval images, d is the block motion
=3 . > .
vector between given frames and d},, is the block motion vector of the it

(interpolated) interval image and of course it is not necessarily an integer pair.
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Therefore, in single interpolation method the previous [rame is first expanded
by IN times in order to realize fractional motion compensation with integer
block motion vectors and then % interval frame is generated by compensating
the interpolated previous frame by the motion vectors i .d and then decimating
the final image that is the cxpanded-motion compensated form of previous

[rame, by the factor IN. Single MC interpolation is illustrated in Figure 3.4.

One of the major disadvantage of this method is the loss of information in
the generation of the interval (interpolated) frames. It is because given current
frame is never used in the generation process of the interval frames. So in
order to avoid from this problem we now present an advanced version of this

technique which is discussed in the next section.

3.2.2 Double MC Interpolation

The main difference between double and single interpolation is that some of the
interval frames are generated from the previous frame and some are generated
from the current frame. Instead of calling previous and current frame, we
now call frame 1 and 2 to the given frames. In double interpolation block
motion estimation is performed twice such that one is between frame 1 and 2,
one is between frame 2 and 1. So the nearest interval frames to [rame 1 are
generated by fractional motion compensation from the frame 1 with the block
motion vectors on frame 1 (obtained at the first block motion estimation).
Similarly, the nearest interval frames to frame 2 are generated by fractional
motion compensation of the frame 2 with the block motion vectors on [rame
2 (obtained at the second block motion estimation). Double MC interpolation

is illustrated in Figure 3.5.

As stated before, the loss of information in the generation process of the
interpolated images is avoided by this type of interpolation. However there can
still be some visual artifacts in the interpolated frames because of the expansion
of the frames 1 and 2 for the fractional motion compensation. Especially for
the cases where IN is high, expansion by IN times of given frames will cause
hlurring effects especially at the object boundaries of the interpolated frames.

So in order to solve this problem we now present another MC interpolation
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Figure 3.4: Single MC interpolation of the interval frames M1,M2 M3 and M1

from the given previous and current frames. (IN=5).

MC Interpolation

frame 1.

Ml

M2

M3

MC Interpolation

M4

frame 2.

IYigure 3.5: Double MC' interpolation of the interval frames M1,M2,M3 and M4

from the given frame 1 & 2. (IN=5).
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technique which is discussed in the next section.

3.2.3 Binary Tree Structured MC Interpolation

The main contribution of binary tree structured (BTS) interpolation is that
the visual artifacts such as blurring can be reduced. The basic intuition behind
BTS interpolation is that interval frames are generated one hy one (at a
time) by double MC interpolation between two frames. In other words we
do not follow the general procedure of the other interpolation techniques (i.e.,
expansion by IN times, motion compensation and decimation by IN times).
Instead, we generate every interval frame one by one by the following procedure:
I'irst block motion estimation is performed between two given frames and then
one frame which is the [%] “ frame of the interpolated frame sequence, is
generated by MC interpolation (twice expansion + motion compensation +
twice decimation). Therefore, the blurring effect is caused by twice expansion
(not IN times expansion). Then the same procedure is performed between
frame 1 and that interpolated frame and also between frame 2 and that
interpolated frame. By this way, [%]“" [3’%]"’" frames of the interpolated
[rame sequence is generated from given frames by just twice expansion. So this
procedure is continued as generating always half-way frames at a time, until
all the interpolated frames are generated. BTS interpolation is illustrated in

IFigure 3.6.

As already discussed, this interpolation method like the double MC
interpolation generates the interval frames by using both frame 1 and frame 2.
When the number of interpolated images is high it reduces the blurring effects

as compared to other MC interpolation methods.

3.2.4 Results

We have tested the interpolation algorithms using frames from Akiyo and
Container Ship sequences shown in Figure 3.7. We artificially generate eight

(IN=8) interval frames but for illustration only 2"¢, 4** and 6" frames are



frame 2.

{rame 1.

M4 frame 2.

frame 1. ! L

frame 1. ‘—I—‘@ J j @i(— frame 2.

frame 1. [ Mi { M7 ] frame 2.

Figure 3.6: Binary tree structured MC' inlerpolation of the interval frames
M1...M7. MI1,M2,M4 is generated from frame 1, M7,M6 is generated from
frame 2 and M3,M5 is generated from M4 by MC interpolation. Note that
except M3,M5, other interval frames are compensated from the original frames.

(IN=8).



shown in Figures 3.8 and 3.9. The tested interpolation methods are (as in
the order top-bottom for the Figures 3.8 and 3.9), linear interpolation, single
MC interpolation, double MC interpolation and binary tree structured MC
interpolation. For the Akiyo frames, forward block motion estimation (between
frame 1 & 2) results in a PSNR value about 31.083618 dB and backward
block motion estimation (between frame 2 & 1) results in a PSNR value about
31.798702. Those PSNR values for Container Ship frames are about 28.466227
dB and 28.560457 dB respectively. Block motion estimation is performed

between (-8,+8) pixels and block size is 8.

According to simulation results we can claim that MC interpolation
techniques can achieve better visual quality than the linear interpolation.
Moreover, among the already presented MC interpolation techniques BTS
interpolation is the best but on the other hand for small values of IN
performance of the BTS interpolation will be approximately equivalent to the

performance of the double interpolation.
Computational Complexity in MC' Interpolation Algorithms

There are two factors which determine the computation time of the
algorithms: 1) motion estimation and ii) fractional motion compensation.
Since motion estimation process is the regularized BMME algorithm which

is presented in section 3.1, computation complexity is also given in section 3.1.

Fractional motion compensation requires expansion of the previous and
current images by the number of interval frames. In single MC interpolation
only the previous frame is expanded. In double MC interpolation previous and
current frames are both expanded. So this requires twice (expansion) time
compared to the single MC interpolation. Finally in binary tree structured
MC interpolation all frames are expanded by two and this is repeated by the
number of frames. So this requires significantly less amount of computation
time for the expansion. On the other hand, the computation time for motion
estimations (between interval frames) is increased by the number of interval
frames. According to the simulation results, for small number of interval frames
the computation time of the MC interpolation algorithms are almost equal to

each other.



Expansion of the images requires so much memory to hold the expanded
images. Instead of expansion of the whole images, one can calculate the
fractional motion compensation result for each pixel by just expanding one
pixel neighborhood of that pixel and then finding the fractional MC pixel color
(or intensity) value. However, since this calculation must be processed for each
pixel in the image, it requires eight times more calculation with respect to the
expansion of the whole images. This is because there are eight neighbor pixels
of a single pixel and the expansion is repeated for every pixel in the image.
This means that we have eight times more calculation. So this local expansion

method requires less memory but is slower than the previous method.

Simulation results show that the most important disadvantages of MC
interpolation algorithms are false transitions and visual artifacts (i.e., blurring
and blocking artifacts). It would be better to use linear interpolation
with the MC interpolation whenever those artifacts cause significant visual

degradations.

MC interpolation algorithms differ in the fractional block motion
compensation process. It is obvious that double MC interpolation algorithm
gives better results than the single MC interpolation algorithm. This is due to
the fact that the double MC interpolation technique is realized by using much
more information with respect to the single one. According to the simulation
results we also observe that BTS interpolation and double MC interpolation
achieve similar performances while the number of frames are less than six.
Otherwise the most powerful one is the BTS interpolation because the frames
are only expanded twice and thus the blurring caused from the expansion is

minimized.



Figure 3.7: Given previous and current frames are 120** and 150™ frames of the
Akiyo sequence (top) and 60* and 90*" frames of the Container Ship sequence

(bottom).



rrigure 3.8: Linear interpolation (top), .single MC interpolation, double MC
interpolation, binary tree structured MC interpolation (bottom).  Given
previous and current frames are 120™ and frames of the Akiyo sequence.
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Figure 3.9: Linear interpolation (top), single MC interpolation, double MC
inteiifolation, binary tree structured MC interpolation (bottom).  Given
previous and current frames are 60" and frames of the Container Ship

sequence.

56



Chapter 4

Motion Estimation and

Compensation on Line Field

Ispecially in VLBR video coding applications dense motion field has to be
decimated because of the bit-rate requirements. The aim in decimation is to
represent the dense motion field by the decimated field as good as possible.
In other words, the goal is to find the decimation scheme which gives the
minimum distortion. The mostly used technique is the BMMIE algorithm.
In this technique, the dense field is down-sampled uniformly into blocks and
the motion field is represented by BMYV field with the reduced information
approximately by the block area. But the important question is why this kind
of (uniform) decimation has to be optimum? So in this section we present an
alternative sparse field representation for the motion field. Firstly we introduce
the sparse field scheme which is called “line field” [32, 33, 5] . Then we show how
the motion vectors can be defined on the line field and finally we describe the
reconstruction of the motion compensated image from the motion compensated

line field.



4.1 Line Field Definition and Extraction

Line field in a typical image is first proposed by Geman and Geman [21] for
image restoration. As discussed in [8], forming an energy function including the
line field elements leads to a non-convex optimization problem. Both stochastic
and deterministic optimization methods using local iterative optimization have
been applied and compared in [11, 4]. As discussed in section 4.1, line field
of an image involves such a sparse region that shows basic properties such as
intensity (or color) discontinuity and spatial continuity [32, 33, 5]. According
to this definition one can claim that line field implies the object boundaries.
Therefore, it is visually important field in an image. Recently the line field
detection and reconstruction has been shown to be a good technique to image
compression [35]. Additionally it is well known that human visual system for
pattern recognition and motion estimation works based on the detection of the

line field [36, 37].

In the work of image compression by line field, it has been shown that
line field can reproduce a degraded version of its original image [38, 35]. So
in lossy image coding applications, instead of coding the original image (the
dense data), coding the line field and then reconstruction of the original image

can be an alternative approach.

Extraction of the line field from the image is an important work and should
be realized in such a way that spatially discontinuous intensity discontinuouties
should not be included into the line field. Those points are what we
called “details” and are not object boundaries. So a line field involves the
spatially continuous intensity discontinuouties, and therefore, details should

be excluded.

As a result line field differs from the discontinuous (intensity) points of an
image. So we choose a similar formation of line field in [8] rather than any
discontinuity detection algorithm. Figure 4.1 indicates the difference between

. . . . o 0 . A E} i §
line field and discontinuities that are obtained by V = % + 5, operation.



Figure 4.1: The discontinuities (obtained by V operation) (left) cind line field
{right) of the 40" frame in Mother & Daughter sequence.

4.1.1 Line Field Extraction

Line field is extracted by forming an energy function (see section 5.1) and
minimizing it. That energy function is formed in such a way that line field can
represent the object boundaries. Accordingly the energy function is formulated

as follows:

Hg{U) =" Y *{1{xdj)- U{x\y)y (4.1)

y

Hs{U,D=Y, Y Y,Y {U{x,y)~ UX- r,y- t)j*h(irt) 4-2)

X vy r t

11U 1) = Y ,{Lh"crossings “(* Lji*iYiclusion -~i,parallel) (43)
Nh
+ E (i Verossings T hjytinclusion T Ly,parallel)
Nv
H{u, ) = /SHg{U) + hHs{U, )+ ("M I) (4-4)

where U and / are the image and line field variables, h(f,.p) is the uniformity
field which is shown in figure 3.2 and 2/ is the integer number which takes

values between 1 and 8, ciccording to the (r,t) pair.
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Line field 1 is defined on dual lattice and has two types: vertical

and horizontal /™  Those fields are illustrated in hgure 3.1 In
L/CJUatlOn 4.4, J*hfCrossings )~ hfinclusion® ~h,parallel crossings **v2inclusion » parallel
are the real values which penalizes several line field positions that are shown
in figure 3.3. Nk and Ny are the vertical and horizontal line elements
neighborhood regions, and are taken to be one pixel back and forth from the
location (x,y) as shown in the figure 3.3. Line field is again a binary field, that
is, it indiccites discontinuity for (1=1) and otherwise continuity for (1=0).

Equation 4.1 presents similarity between image field variable Uand original
image /, Equation 4.2 is for extracting all intensity discontinuities of an image
and Equation 4.4 is the necessary term in order to discontinuities be the line
field by forcing spatial continuity of the edges. Finally, Equation 4.4, as the
total energy function, is minimized to get the line field of the inicige.

4.1.2 Results

We test the line field extraction program by using real world friirnes shown in
figure 4.2. The extracted line fields are shown in figure 4.3. Horizontal and
verticcil line fields are represented in the left and middle columns. At the right,
part those fields are combined by an OR operation in order to illustrate the

total line field of each image.

Figure 4.2: Original frames: 20** frame in Container Ship sequence and 407
frame in Mother & Daughter sequence.

According to the simulation results we saw that line field of the irmige covers
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Figure 4.3: Line fields (horizontal, vertical and both) of the original frames.

the object boundaries. In addition to that this technique can be used as cin
Image compression technique since line field is a sparse field cind it involves
most of the characteristic information of an image.

In the next section, we try to assign specific motion vectors on line field in
order use this technique for video coding applications.

4.2 Motion Vectors on Line Fields

As mentioned in the previous section line field of an image can be used for still-
image compression [38, 35]. However simulation results show that compression
rate by those methods is not as high as expected. The main reason is that
spatial location information has to be coded in addition to the intensity at

that location.

In this section we show how line field coding scheme ccin be applied to video
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compression in a more effective way than the still-image compression. It is well
known that motion estimation and compensation are used to remove interframe
temporal redundancies. By taking this into account, one can reconstruct
the current frame line field from the line field of previous frame by motion
estimation and compensation. Therefore, we can define two types line motion
vectors: horizontal and vertical. As we define the line field on dual lattice in

an image, line motion vectors have to be defined on dual lattice, too.

4.2.1 Extraction of Line Motion Vectors
Line motion vectors (LMVs) are obtained by energy minimization. The energy

function is formulated in terms of motion constraints such as matching and

smoothness. So we write the energy function for vertical LMVs as follows:

ED = 3 (Loi(z—Ly) = L(z = 1+ d%(z,y),y + d(z,9)))*  (4.5)

zyely_,

E® = S (Ia(z,y) - Lz + &(2,9),y + &(z,9)))  (46)

e yeli_y
Eiw= Y (-Lz+d(z,y),y+dz,y))) (4.7)
@ yely_y
Y X |d(ey) - diig)] (4.8)
e y€l’_, i,jeENd(z,y)
By = BLED 4 BLED, 4 BIE;s, + BiE,, (4.9)

where [, and I,_; are the current and previous images, I/ and [/, are the
current and previous vertical line fields and d, is the vertical LMV defined
on the previous line field. In Equations 4.5 and 4.6, E{!) and E{?) are the
penalizations of the intensity matching difference of the pixels which are located

on the both sides of the vertical line field element. The second term FE , in
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Equation 4.7 penalizes the non-occurance of the compensated line field in the
current frame. The third term F; , is the smoothness term of the LMV within
a neighborhood Nd(z,y). Finally by minimizing the total energy function in
Equation 4.9 results with the smooth LMVs. As a result, those LMVs points
where the vertical line field elements in previous frame tend to go in the current

frame.

Similarly for the horizontal LMVs the energy function can be formulated

as follows:

E(I) = Z (It—l(w,y - l) - 1,5(112 + di(l‘,’l )7y -1+ d;Jz.("L',z )))2 (410)

z,y€ll |

’,T(:,)h = Y. (L-ilz,y) — Li(z + df (2, y),y + & (z,y)))? (4.11)
z,y€ell_,
Eg= Y, (1=l +di(z,y)y+di(z,9)) (4.12)
”13/61?—1

En= Y 3 l|di(z,y)—du(i,))] (4.13)

zyell_, ©iENd(z,y)

Ey = BLED, + BLED, + BEE ;) + BLEs . (4.14)

m,h
As a result, given vertical and horizontal line fields, we minimize E, and [,
to obtain vertical and horizontal LMVs. Those obtained LMVs are used to
estimate the current image line field by motion compensation. So original
current frame can be reconstructed from the compensated line field of the
previous frame. Hence we can reconstruct the original frame by using line
field of the previous frame and their LMVs. Reconstruction process will be

presented in the next section.
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4.2.2 Results

We test line field motion vectors by using two video frames in Container Ship
sequence. In figure 4.4 original line fields of those frames as well as the MC

line field are shown.

Ehgure 4.4: Line fields (horizontcd, vertical and both) of the previous (ton
current {middle) and MC {bottom) frames.

According to the simulation results, most of the line field of the current
frame can be roughly estimated by motion compensation from the previous
frame line field. But of course the compenscition Cdn not perfectly cover
the origiiicil line field of the current frame. Also the pixels around the MC
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line field can have different intensity levels with respect to the ones in the
current frame. Since the line field is the most important field for an image,
such abovementioned losses (caused from motion compensation mismatches)
degrade the final MC frame visually. We show the results about it in the next

section.

4.3 Reconstruction on Motion Compensated

Image from Motion Compensated Line

Fields

In the previous sections we demonstrated how to assign motion vectors on line
field and also how to extract those by energy minimization. Those LMVs are
used to reconstruct the MC line field from the previous image line field. So
in this section we will demonstrate how to obtain MC image from the MC

line field and also briefly discuss the effects of that type of reconstruction onto

visual quality.

The reconstruction algorithm is as follows: given the line field position in
dual lattice and intensity values of the neighbor pixels, we form an interpolation

[unction composed of the following terms:

Hs(U,D) =Y 33> (U(e,y) = Uz —r,y — t))" h(irs) (4.15)

x Yy T i

-HL(l) = Z (Lh,crossings + Lh,inclusion + Lh,parallel) (416)
Nh

+ Z (Lv,crossings + Lv,inclusion + Lv,parallel)
Nu

H(U,1) = arHs(U, 1) + o Hy (1) (4.17)



Those terms are the last two terms of the extraction energy function given
in Equation 4.4. Therefore, if the image field is known, then by minimizing
Equation 4.4, we obtain the line field of the image. Similarly if the line field is
known by minimizing the similar (cross) terms in Equation 4.17 we extract the
image field. Since the line field - image field pair have sufficient correspondence
with each other one of them is to be almost sufficient in order to reconstruct
the other.

4.3.1 Results

The reconstruction process is tested by the motion compensated line field of
the 20" frame of the Container Ship sequence. The reconstructed MC frame
is shown in figure 4.5 at the right part.

Eigure 4.5: Previous, current and MC frames.

Reconstruction process is started with the initial frame which has the
arbitrary values everywhere except at the neighborhood pixels of the line field.
Minimization process is Stochastic Simulated Annealing (SSA) [39, 21]. The
one important point is that at the neighborhood pixels of the line field, intensity
Vcdues are not changed at the iterations so that they are allowed to take the
original intensity values.

Firstly, we recognize from the simulation results is that most of the image
field (especially located around the MC line field) can be reconstructed from the
MC line field. However that reconstruction is degraded in visual qucility and
that degradation depends on the compensation error of the line field. Since the
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line field is the only source for compensation and has the major characteristic
information, few losses in this field can cause considerably large amount of

visual degradations.

Secondly, for reconstruction we only need the line field which is the motion
compensated line field of the previous frame and therefore, the next frame
is reconstructed by using only the LMVs. Neither the intensity nor the
spatial (position) information of the line field is necessary for this type of
video coding technique. So the compression rate would be very high and the
overall performance directly depends on the motion compensation success of

the previous line field.

As a result we represent a dense (image) field by a sparse (line) field and
use this technique in a video coding scheme. In most of the coding applications
motion vectors are defined on a regular grid. Those grids are uniformly located
in the image. An alternative approach is to define motion vector representatives
on a more logical sparse field. In this way we can claim that line field motion

vectors can be a good choice as an alternative motion field representation.
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Chapter 5

Conclusions and Future Work

[n this thesis, we propose new methods for regularized motion estimation and
their applications to motion estimation for VLBR video coding. The main idea
behind our approach is that the regularization type should be determined with

respect to the application aspects.

We first introduce an improved BMME technique which casts motion
estimation as a problem in energy minimization. This is achieved by modeling
the motion estimation as a Markov Random Field (MRF) or equivalently
one can write the Gibbs Distribution of the field in terms of Hamiltonians
(energy terms) which indicate motion constraints and then find the MAP
cstimate of it. When we compare it with the classical BMME algorithm,
our simulation results show that energy minimization based motion estimation
techniques can give good performance in terms of Bit-Rate in such a way that
developed algorithm can reduce the Bit-Rate twice almost with the same PSNR
value. We then present hierarchically structured adaptive BMME algorithms.
The main contribution of those algorithms is that they can achieve “global
representation” of any motion without significant loss of image quality. In
addition to that not only the estimation performance, but also the overall

coding performance is improved.

We introduce alternative usage of ME in video coding applications such as
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average motion determination and motion compensated (MC) interpolation.
Average motion determination is the determination of the average movement
or change between two frames. In order to find that average movement we use
a well-regularized ME algorithm so that it detects the object motion -not the
false transitions- in a dense motion field representation. So by means of average
motion determination algorithms, frame rate is adaptively determined in a
video coding implementation. The frames which show stationary behavior in
time are not honored for coding -just skipped-. Those skipped frames are then
artificially reconstructed in the decoder (receiver) side by MC interpolation
techniques. Those techniques developed are based on the fractional motion
compensation principle and simulated on real images that are taken from a
video sequence. From the results we conclude that MC interpolation techniques
achieves high performances compared with the other interpolating techniques
such as linear interpolation. In addition to that the proposed MC interpolating
techniques are developed in such a way that they reduce the interpolation

artifacts (such as blurring and false transitions).

In video coding applications dense motion field should be somehow
decimated because of the “very” low bit-rate requirement. One important
factor in decimation is to represent the true motion field as much as possible.
Another factor is to find the suitable decimation scheme which gives the
minimum distortion. BMME algorithms are the mostly used techniques in
VILBR video codecs, standards and devices. Those techniques are nothing but
uniform decimation of the dense motion field. However such a sparse field
representation may not be suitable in some certain cases. As an alternative
representation we propose line field motion estimation. That technique achieve
high compression ratio but the visual quality is not so high as expected. The
reason for that the line field which is in fact the object boundaries of an image,
can be affected by the rigid body motion. That is to say that the intensity
levels at the line field of an image (object boundaries), do not remain constant
over time. Even it is the most changing field in the image. For this reason
the reconstructed image from the MC line field is degrdded visually. In order
to overcome this problem, a more advanced model which does not assume
intensity constancy for line fields, should be developed. So by some refinements

on the line field definition the visual quality of the MC frames can be improved.
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We have quite satisfactory results from the developed BMME algorithms.
According to the simulation results we can claim that those improved BMME
algorithms increase the performance of an VLBR video coding algorithms.
Especially the amount of bits spent for coding the BMVs is efficiently reduced
without any significant visual degradation. This can allow to spend much
more bits to the intra coding part of the video coding algorithms and thus
visual quality is to be increased. Therefore, those BMME algorithms developed
would be good candidates for the motion estimation parts of the well-known
standards such as H.261 and H.263. As well as the BMME algorithms, the
developed techniques in chapter four can be used to determine the frame rate
at the encoder side and also to reconstruct the skipped frames artificially at
the decoder side. Simulation results show that they can further increase the

overall performance of any video codec (coder/decoder).

As a future research, we will deal with some advanced motion estimation
techniques which can extract the object motion adaptively. So those algorithms
are going to set their parameters adaptively and also object motion can be
represented in a global and minimum descriptive way. In addition to that,
motion estimation algorithms will be based on other characteristic features
of the image such as texture information. Thus we wish to develop superior
motion estimation techniques which are more suitable for human vision and

motion tracking system.

70



A

Motion Estimation Algorithms
in H.261 and H.263

In this appendix, we present the existing standard motion estimation

algorithms which are currently used in practical video coding applications.

It is the standard which is finalized by CCIT'T in December 1990 and is
primarily intended in image coding for low and medium bit rates (p x 64 kbps,
p=1,2, ..., 30) [3]. Motion estimation is performed only at the INTER
mode and motion compensation is an optional tool for the decoder. In INTER
mode prediction is realized by motion estimation and the error signal is coded
by DCT. Since DCT imposes a block structure on the image, the motion is
estimated blockwise. This is realized as follows: for each block in the current
frame we try to find the closest match in the previous reconstructed frame using
some suitable distortion criteria such as SAD (sum of absolute differences)

which has the formula:
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BS BS
SAD(z,y,d(z,y)) =YY [la+i,y+7) —Ly(z+i—du(2,y), y+j—d,(x,y))|
DR
(A.1)
where BS is the block size, d(z,y) is the BMV of the block centered at (),

dy(x,y) and dy(z,y) where z and y components of the BMV, respectively.

Therefore, motion estimation is the same (classical) BMME algorithm

which is discussed in section 2.3.

H.263:

Starting from 1993, efforts of Specialist Group in CCITT result in a VLBR
video coding standard called H.263 [40]. In order to achieve VLBR objective,
motion estimation algorithm is improved compared to the one in H.261. It has
some prediction modes such as Normal, Restricted/Unrestricted and Advanced.
Those modes make the algorithm more efficient and can reduce the area of

temporally unpredictable (TU) regions.

In Normal mode, motion estimation algorithm is the same as the
one in H.261. It is the classical BMME algorithm with blocks size 16.
Restricted/Unrestricted modes indicate the permission of a block motion vector
to point towards the out of the image. In Unrestricted mode hlock motion
vectors can point towards the out of the image but in Restricled mode they

can not.
Motion Compensation

In H.263, one motion vector per macroblock (16x16) is used except in
Advanced mode. In advanced mode, one or four block motion vectors can
be used for a macroblock. If four block motion vectors are decided to be
used, those vectors belong to the eight by eight sub-blocks and each of which is

obtained by exhaustive search in a range [-16,15.5] within a half pixel accuracy.

In advanced mode one alternative usage is the Owverlapped Motion
Compensation. In this mode each sub-block has three block motion vectors
-one for the current block and two out of four (any) neighbor blocks-. So

weighted sum of those block motion vectors yields the motion vector for any
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pixel in the eight by eight sub-block. The choice of two neighbor blocks are
determined by the distance of that pixel to the blocks. So the nearest two
blocks (one in left or right and one in up or down blocks) are chosen for the

motion vector. The weights for sub-block pixels are shown in Figure A.1.
Block Motion Vector Coding

Coding of BMVs is differential vector coding. The differential coding with
four vectors per macroblock is realised as follows: the vectors are obtained by
adding predictors to the vector differences indicated by BMV, » 3 as shown in
Figure A.2. The prediction value of the current BMV is the median of three
BMVs (BMV;3). So the difference from prediction value is coded.

4(515(5(515|5|4 2 2 (2 (2022 AR INEE IR ERE
515]5]5(5(5(5(5 12 ]2]2 2|21 ] 2 (] |12
515]6|6[6]6]5]s NN ENINENInE 22t 11122
505066 [6]6]5]s NININININENInE 2201 (1] ]2 ]2
515]6]66|6|s]5 RINENERIRENINE 2 (2 (1 f1]1]1|2]2
5(5]|6|6|6]6]5]5 NN INEnInE 2201 [ )i fi]2]2
505|5|5|5]5]5]s P2 (22| 2|1 |1 2 (]2
4(5|5(5]5(5]|5 |4 2 |2 2|22 ]2 AR INIRERE
Current Luminance Top/Bottom Luminance Left/Right Luminance
BLOCK BLOCK BLOCK
Figure A.1: Weights for current and two neighbor blocks
BMV, BMV, BMY, | BMV;
BMYV, | BMV BMV, | BMV BMY, | BMV; BMY, | BMV,
BMV, | BMV BMYV, | BMV

Figure A.2: Candidate neighbors for predictors for each of the luminance block.
In case of one BMV per macroblock, the candidate predictors for the

differential coding are taken from three surrounding macroblocks as shown

in Figure A.3. As in the case of four vectors per macroblock, the predictor is
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the median value of the three candidate predictors for current BMV. In I'igure
A.3, GOB stands for Group of Blocks.

BMV; BMV, BMY, | BMV; BMV, | BMV, BMV, | (0,0)
BMV 0,0) (BMV | BMV, | BMV BMV, | BMV
| |
------------ : Image or GOB border

I'igure A.3: Candidate neighbors for predictors for a macroblock BMV

The coding of the difference BMV values is processed by a VLC (variable
length coding) table. So for each possible difference value there exist a code
from the VLC table and the bit stream for the BMVs is constructed by the
variable length codes of the VLC table given in Table A.1.

Motion Estimation

As it is mentioned previously, H.263 standard has mainly two modes:
the intra and inter modes. The intra mode is similar to JPEG still-image
compression and the details about it are out of the scope of this section. In
the inter mode, first a temporal prediction is employed with or without motion
compensation. That is to say that motion estimation may be processed in this
stage and therefore, motion estimation is an optional process for the encoder
side. The standard does not specify the motion estimation method but we
can indicate some basic features about the mostly used motion estimation
algorithm. SAD (as given in Equation A.l) is the usual matching criteria.
Block matching based on 16 x 16 blocks is generally used. In the modes of the
standard, there are several search techniques. For example in the advanced
mode, first BMV of a macroblock is found and then the BMVs of the lour
luminance blocks are searched around that macroblock BMV. In some encoders

the search technique for luminance blocks is also full (exhaustive) search.
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However first method is rather faster and generally gives more convenient
results compared with the full search. BMVs are determined in half pixel

accuracy in a range [-16,15.5].



l Index ” Vector

Diflerences [ Bit Number rCOdes

0 -16 16 13 0000 0000 0010 1
1 -15.5 16.5 13 0000 0000 0011 1
2 -15 17 12 0000 0000 0101
3 -14.5 17.5 12 0000 0000 0111
4 -14 18 12 0000 0000 1001
5 -13.5 18.5 12 0000 0000 1011
6 -13 19 12 0000 0000 1101
7 -12.5 19.5 12 0000 0000 1111
8 -12 20 11 0000 0001 001
9 -11.5 20.5 11 0000 0001 011
10 -11 21 11 0000 0001 101
11 -10.5 21.5 11 0000 0001 111
12 -10 22 11 0000 0010 001
13 -9.5 22.5 11 0000 0010 011
14 -9 23 11 0000 0010 101
15 -8.5 23.5 11 0000 0010 111
16 -8 24 11 0000 0011 001
17 -7.5 24.5 11 0000 0011 011
18 -7 25 11 0000 0011 101
19 -6.5 25.5 11 0000 0011 111
20 -6 26 11 0000 0100 001
21 -5.5 26.5 11 0000 0100 011
22 -5 27 10 0000 0100 11
23 -4.5 27.5 10 0000 0101 01
24 -4 28 10 0000 0101 11
25 -3.5 28.5 8 0000 0111
26 -3 29 8 0000 1001
27 -2.5 29.5 8 0000 1011
28 -2 30 7 0000 111
29 -1.5 30.5 5 0001 1
30 -1 31 4 0011
31 -0.5 31.5 3 011
32 0 0 1 1
33 0.5 -31.5 3 010
34 1 -31 4 0010
35 1.5 -30.5 5 0001 0
36 2 -30 7 0000 110
37 2.5 -29.5 8 Q000 1010
38 3 -29 8 0000 1000
39 3.5 -28.5 8 0000 0110
40 4 -28 10 0000 0101 10
41 4.5 -27.5 10 0000 0101 00
42 5 -27 10 0000 0100 10
143 5.5 -26.5 11 0000 0100 010
14 6 -26 11 0000 0100 000
45 6.5 -25.5 11 0000 0011 110
46 7 -25 11 0000 0011 100
47 7.5 -24.5 11 0000 0011 010
418 8 -24 11 0000 0011 000
49 8.5 -23.5 11 0000 0010 110
50 9 -23 11 0000 0010 100
51 9.5 -22.5 11 0000 0010 010
52 10 -22 11 0000 0010 000
53 10.5 -21.5 11 00006 0001 110
54 11 -21 11 0000 000t 100
55 11.5 -20.5 11 0000 0001 010
56 12 -20 11 0000 0001 000
57 12.5 -19.5 12 0000 0000 1110
58 13 -19 12 0000 0000 1100
59 13.5 -18.5 12 0000 0000 1010
60 14 -18 12 0000 0000 1000
61 14.5 -17.5 12 0000 0000 0110
62 15 -17 12 0000 0000 0100
63 15.5 -16.5 13 0000 0000 0011 O
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