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Abstract
Language proficiency testing serves an important function of classifying examinees into 
different categories of ability. However, misclassification is to some extent inevitable and may 
have important consequences for stakeholders. Recent research suggests that classification 
efficacy may be enhanced substantially using computerized adaptive testing (CAT). Using real 
data simulations, the current study investigated the classification performance of CAT on the 
reading section of an English language proficiency test and made comparisons with the paper-
based version of the same test. Classification analysis was carried out to estimate classification 
accuracy (CA) and classification consistency (CC) by applying different locations and numbers 
of cutoff points. The results showed that classification was suitable when a single cutoff score 
was used, particularly for high- and low-ability test takers. Classification performance declined 
significantly when multiple cutoff points were simultaneously employed. Content analysis also 
raised important questions about construct coverage in CAT. The results highlight the potential 
for CAT to serve classification purposes and outline avenues for further research.
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An important role of educational measurement is to inform the classification of individu-
als for various purposes related to decisions on, for example, professional licensure, 
admissions, or placement into educational courses of study. Classification decisions are 
often high stakes as “errors in classification may lead individuals to be deprived of 
opportunities such as well-deserved educational or career development” (Zhang, 2010, 
p. 120). Despite these high stakes, misclassification of individuals is common and may 
result from measurement errors associated with sampling, equating, the assignment of 
cut scores, standard setting methods, and standard setting committees (Arce-Ferrer et al., 
2002; Linn, 2003; Stone et al., 2005). Classification of individuals who obtained assess-
ment scores close to decision cutoff points is particularly critical because misclassifica-
tion of such individuals is highly likely (Eckes, 2017). Given the significant impact 
classification decisions may have on individuals’ lives, it is incumbent upon test devel-
opers to provide evidence of classification accuracy (CA) and classification consistency 
(CC; AERA et al., 2014; Lathrop, 2015).

In second language assessment, language proficiency testing is probably the area in 
which classification has the largest impact. Increasingly, language proficiency tests are 
used to determine prospective students’ ability to follow English medium instruction 
(EMI) at the undergraduate level. Turkish higher education is no exception, and the 
growing number of EMI universities in this context has led to increased scrutiny of the 
development of institutional English language proficiency tests (Selvi et al., 2021). In 
this context, proficiency testing is conducted using locally developed, high-stakes, paper-
based tests (PBTs). Dimova et al. (2020) have argued that locally developed language 
proficiency tests reflect institutional learning objectives, and may therefore be particu-
larly well suited to fulfill important ancillary placement and diagnostic functions in lan-
guage programs. However, researchers have commented on the high probability of 
misclassification involved in traditional PBTs and suggested that computer adaptive test-
ing (CAT) may reduce misclassification by identifying the most informative items in an 
item bank to increase discrimination around cutoff points, and hence enhance the validity 
of test-based classification decisions (Curi & Silva, 2019; Mizumoto et al., 2019; Rudner 
& Guo, 2011; Zhang, 2010). The purpose of the current study is to investigate the poten-
tial application of CAT in this context by comparing the classification performance of 
CAT and paper-based testing (PBT) versions of an English language proficiency reading 
subtest developed and administered at a Turkish university. This analysis was undertaken 
using a data set containing real item responses to conduct a series of post-hoc simula-
tions, which reflect authentic test taker behavior (Wang et al., 1999).

Literature review

PBTs and CATs

Measurement of language proficiency for university admissions is commonly based on 
linear, fixed-form, PBTs. PBTs are characterized by a fixed set of items that are adminis-
tered to every examinee and are traditionally developed using Classical Test Theory to 
maximize internal consistency (Cronbach, 1990; Gulliksen, 1950; Weiss, 2004). A major 
limitation of PBTs is that it is designed to measure a range of ability around the mean of 
the “anticipated trait distribution” and may measure inadequately when applied to 
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examinees whose ability levels deviate substantially from that range (Weiss, 2004, p. 71). 
High reliability of ability estimates around the mean ability range may come at the expense 
of reduced measurement precision at the distribution tails. This represents a limitation in 
the current context because the ability range in the test taking population is often wide, 
and test results are intended to be used for multiple-level placement decisions.

CAT resolves PBT limitations through the use of item selection algorithms (Dunkel, 
1999). Measurement imprecision at the distribution tails may also be observed in CAT, 
though computer adaptive tests (CATs) often have the advantage of being based on large 
item pools covering a large ability continuum and are designed to identify the most appro-
priate items for each examinee, which increases precision across the ability continuum. 
CATs are typically based on item response theory (IRT) models which relate examinee 
ability to different item parameters as a probabilistic function. A typical CAT continues 
until the algorithm is able to make an estimate of examinee proficiency based on a prede-
termined test termination rule (Wainer et al., 2000). Each test is individually adapted to 
the examinee’s level of ability with the effect that CATs are commonly shorter than PBTs 
and involve a higher degree of measurement precision (Davey & Pitoniak, 2006; Wainer 
et al., 2000; Way et al., 2006). On average, CATs may require about 60% of the number 
of items needed in a conventional PBT (Wainer et al., 2000). CATs that draw upon well-
developed item banks assess test taker populations that contain large ability differences in 
a way that may be hard to achieve using PBTs. However, CAT also presents distinct chal-
lenges to test developers, such as the requirement for a large IRT-based calibration sample 
and the expectation of invariance of item and ability parameters (Hambleton et al., 1991). 
In addition, CAT may introduce obstacles related to test security, staff training, computer 
availability, computer literacy, and logistics (Larson, 1987; Liu et al., 2019; Wainer et al., 
2000; Wise & Kingsbury, 2000). In contrast, PBT is a familiar test format that is simple to 
implement and score. Both CAT and PBT are widely used testing formats that may be 
considered based on the test taking population, the educational setting, and resources.

Research into CAT in language assessment has typically focused on the development 
of the measurement instrument and comparison with a conventional version of the same 
test. Mizumoto et al. (2019) reported on the development of the CAT version of the Word 
Part Levels test and concluded that CAT decreased the time required to complete the 
assessment, and led to higher measurement accuracy. Increased measurement accuracy 
has also been reported for CATs of vocabulary size (Tseng, 2016), and reading and listen-
ing proficiency (He & Min, 2017). The potential for CAT to increase measurement accu-
racy in situations where the test is designed to assess reliably at different levels of 
ability—for example, for purposes of placement testing—is clear, but relatively unex-
plored in actual language testing programs.

Classification

CA and CC are two important concepts that define the precision of classifications. CA refers 
to “the extent to which the true classifications of examinees agree with the observed classi-
fications” (Diao & Sireci, 2018, p. 20). CC is “the rate at which the classification decision 
will be the same on two identical and independent administrations of the test” (Lathrop, 
2015, p. 1). Both CA and CC indices evaluate the classification performance of test takers 
by calculating the measurement error associated with ability estimates (Lathrop, 2015).
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To estimate CA and CC, there are several well-established methods rooted in IRT (for 
a review of these methods, see Diao & Sireci, 2018). The approach pioneered by Rudner 
(2001, 2005) is particularly appropriate for current purposes. In CAT, Rudner’s classifi-
cation method is recommended because different examinees are administered different 
versions of the same test and are assigned places on the ability continuum instead of total 
scores (Lathrop, 2015). For each examinee, a normal probability density as a function of 
ability is estimated using the item parameters (difficulty, item discrimination, and 
pseudo-guessing). Figure 1 (Lathrop, 2015, p. 3) illustrates this for a single examinee: 
the area above the cutoff scores (area not in red, or not shaded when viewing the figure 
in black and white) in the distribution represents the probability of being correctly clas-
sified as pass. The examinee’s ability value exceeds the 0.0245 cut-score, and the exami-
nee passes the test. The proportion of the unshaded (right) area squared (both pass) plus 
the proportion of the shaded or red (left) area squared (both fail) is the CC for this exami-
nee. For two independent tests, the proportion of the area above the cutoff point squared 
(pass decision in both administrations) plus the proportion of the area below the cutoff 
point squared (pass decision in both administrations) gives the value of CC. Ability 
measures are calculated to estimate CA and CC values for each examinee. The individual 
CA and CC estimates are summed to obtain the CA and CC estimates for one test admin-
istration (Diao & Sireci, 2018).

CAT classification research has typically focused on the computerized adaptive clas-
sification test, which are CATs specifically designed for classifying individuals into dif-
ferent ability groups (Eggen & Straetmans, 2000; Gnambs & Batinic, 2011; Rudner & 
Guo, 2011). The effect of using multiple classification cutoff points in computerized 
adaptive classification tests has been investigated in several studies (Eggen, 2009; Spray, 
1993). Cheng and Morgan (2012) examined classification performance using two to five 
cutoff points and found that classification performance was higher when fewer cutoff 
points were included. This result is expected because in the simplest scenario, classifying 
examinees into one of two decision categories (pass or fail) involves one cutoff point and 

Figure 1. Illustration of CA and CC under Rudner’s method.
Conditional probability distribution for a single examinee with ability estimate of 0.37 and total score of 28 
from the Rudner approach. θ  denotes the examinee’s latent ability estimate.
Reprinted from Q. N. Lathrop (2015, p. 3). Copyright 2020 by Quinn N. Lathrop.
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individuals may only be misclassified as either failing or passing. However, fine-grained 
categorization involves more cutoff points, which increases the potential sources of 
error. For example, with five cutoff points, misclassification may involve placing indi-
viduals into one of five categories. The literature suggests that complex classification is 
less accurate but a clearer picture of the relationship between the number of cutoff points 
and classification performance is needed.

There is a need for research to examine classification with multiple cutoff points on 
typical IRT-based CATs, because to date the main focus of the CAT literature has been 
estimating examinee ability as quickly and as precisely as possible rather than classifying 
examinees into different categories (Eggen, 2009; Wainer et al., 2000). For CATs to serve 
placement purposes, multiple classification categories must be available and the number 
of cutoff points should correspond to the number of ability levels targeted by the test.

The location of cutoff points on the ability continuum has an important impact on the 
classification performance of CAT. Classification performance is dependent on the cutoff 
location and increases when the cutoff point is located at the extremes of the ability con-
tinuum (Lee et al., 2002). Empirical research findings have demonstrated the important 
effect of the location of cutoff points on classification (Cheng & Morgan, 2012; Lathrop 
& Cheng, 2013), but these findings are based on generated data sets and have not been 
replicated with real data.

Whereas classification issues for linear PBTs have been extensively examined (Kim 
et al., 2006; Lee et al., 2002), examination of classification performance of CATs based 
on real data sets through post-hoc simulations is less common. This is an important focus 
because Monte Carlo studies, based on generated data sets, may not reflect test-taker 
guessing, speededness, and fatigue (Thompson & Weiss, 2011; Wang et al., 1999). By 
using real data involving examinee responses, CAT design can be enhanced to ensure 
high classification performance prior to the live CAT stage (Weiss, 2005).

The role of test termination in classification decisions

CATs finish once responses to a predetermined number of items have been provided or 
when a conventionally acceptable level of measurement precision (e.g., α = .70 in Classical 
Test Theory) has been attained (Wainer et al., 2000). In the literature, fixed-length termi-
nation and standard error termination rules are commonly applied (Gushta, 2003). Fixed-
length CATs terminate once a prespecified number of items has been administered. This 
termination rule has gained popularity in applied settings due to its simplicity and similar-
ity to PBTs. However, a downside of implementing fixed-length termination, relating spe-
cifically to early stages of development when the item pool is limited, is variation in 
measurement precision between individuals. In addition, fixed-length termination may 
reduce efficiency by redundantly administering items that provide little new information 
about examinee ability. Alternatively, the test may be terminated before an estimate with 
the minimally acceptable degree of precision is obtained.

Standard error (SE)-based termination is another common termination rule, which 
stops the CAT once a predetermined standard error has been obtained (Boyd et al., 2010). 
An advantage of this rule is that examinees are tested with similar levels of measurement 
precision (Choi et al., 2010). Babcock and Weiss (2009) conducted a simulation study 
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and concluded that CATs terminated with an SE termination rule, as a variable-length 
method, discriminated highly between examinees and, contrary to claims made in the 
literature, did not perform any worse than fixed-length CATs (see also Chang & Ansley, 
2003; Yi et al., 2001). The findings of the study suggested that CATs terminated with the 
SE termination rule resulted in equal measurement performance as the fixed-length ver-
sions given comparable average test lengths. However, it was argued that compared with 
fixed-length CATs, variable-length CATs operated with a standard error termination rule 
are more biased in estimates, suggesting a larger mean difference between the exami-
nees’ true ability scores and the estimated ability scores obtained by the CAT (Chang & 
Ansley, 2003; Yi et al., 2001). In the literature, many researchers use generated data to 
examine the classification performance of varying-length CATs and a probabilistic 
approach to make classifications (Spray & Reckase, 1994). However, in practice not 
every CAT is designed in a varying-length format. Examples of fixed-length approaches 
to classification include the Graduate Management Admission Test and ACCUPLACER 
(College Board, 2007). Overall, test termination represents a key consideration in CAT 
design that may influence the classification of examinees.

The present study

Despite the increasingly prevalent use of CATs to classify examinees, CA and CC have 
predominantly been discussed with reference to linear tests (Lee, 2010; Lee et al., 2002), 
and these indices are relatively unexplored in the CAT literature. In addition, CAT-based 
classification has not been investigated with data obtained from real examinees (Cheng 
& Morgan, 2012) and the effect of systematic manipulation to cutoff points on CA and 
CC in CAT is currently unclear.

CAT has potential to improve classification decisions in placement testing in the con-
text of English medium university admissions. However, if CAT is to be considered a 
realistic alternative, it is important to compare the classification performance of different 
CAT formats with PBT because the findings of this comparison may provide guidance in 
terms of CAT design. Language programs face a decision about whether to use varying-
length CATs or fixed-length CATs, and classification performance may differ substan-
tially between the two approaches (Cheng & Morgan, 2012). Another decision language 
programs must make is whether to include single or multiple cut off points in the CAT. 
Binary decisions like mastery or nonmastery are common in testing (Eggen, 2009). 
However, classifying individuals into more than two groups for placement purposes is a 
commonly expected function of locally developed language tests (Dimova et al., 2020). 
The present study explores these gaps in the literature by investigating the classification 
performance of CAT using real data obtained from a locally developed and administered 
language test.

Research questions

It is clear that there is potential for the accuracy of university admissions and level place-
ment decisions to be improved with the introduction of a CAT version of the English 
language proficiency test. However, at present questions remain regarding the optimal 
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test termination rule to apply in the CAT and the number of cutoff points the test can be 
expected to reliably support. In order to address these gaps, the following research ques-
tions were formulated:

1. To what extent do CA and CC values differ between PBT and CAT versions of an 
English reading subtest simulated with different test termination rules?

2. What is the effect of the location of the cutoff point on CA and CC values when 
a binary pass–fail decision is required?

3. How do CA and CC values vary when multiple cutoff points are used with respect 
to single cutoff scenarios?

Method

To answer Research Question 1, we calculated CA and CC values for different CAT sce-
narios (please see “Post-hoc Simulations” section) from the test data to compare classi-
fication performance between the CAT and PBT versions of the reading subtest. To 
answer Research Question 2, we identified relevant pass–fail cutoff points on the ability 
continuum, and we calculated CA and CC values to determine classification performance 
at these points. We conducted an analysis involving multiple cutoff points simultane-
ously to investigate the effect of adding more than one cutoff point on CA and CC to 
answer Research Question 3.

Participants

The study was conducted at a non-profit university in Ankara, Turkey, a research univer-
sity with 12,000 students enrolled in different undergraduate and graduate programs. The 
study data were drawn from the students at the English language preparatory school 
within the university, in which 3000 students were enrolled. The English preparatory 
program provides courses at five different levels of ability: elementary, pre-intermediate, 
intermediate, upper-intermediate, and pre-faculty.

The number of examinees that took part in the current study was 1182, and their ages 
ranged from 17 to 21. The majority of the participants (n = 984) were receiving English 
instruction in the program for 1 or 2 academic years and had finished the highest level 
of English language instruction offered in the university’s English language preparatory 
program. The remaining participants had external preparation status or amnesty student 
status, which indicates that they were not attending classes in the program but were 
eligible to sit the proficiency exam. Upon successful completion of the university 
English language proficiency test, students are able to start their graduate or under-
graduate programs.

Instrument

The university English proficiency test is produced and administered in the English lan-
guage preparatory school of the university. The test is designed to assess English profi-
ciency at the B2 level on the Common European Framework of Reference for Languages 
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(Council of Europe, 2001). The B2 level is considered sufficient to follow EMI at the 
undergraduate level at the university (Kantarcıoğlu, 2012). Administered three times an 
academic year, the institution’s proficiency test is taken by around 3000 students annu-
ally, in September, January, and June.

The data used in the study come from the PBT version of the university English pro-
ficiency reading subtest because examinee item responses were only made available for 
this particular subtest by the university. The reading subtest has three parts consisting of 
a total of six reading texts with 35 multiple-choice items that assess the students’ ability 
to read for supporting details and specific information, follow textual coherence, make 
propositional and pragmatic inferences, and guess the meaning of vocabulary from con-
text. An item bank of 35 items may be criticized as insufficient for CAT because the 
computer algorithm may be unable to identify appropriate items, resulting in lower CAT 
performance. However, this is an empirical study employing post-hoc simulations and 
was hence constrained by the research context; only items that were completed by real 
examinees were included. The results are expected to provide an insight into the poten-
tial administration of this test using CAT. Furthermore, CATs with a relatively smaller 
number of items in their item banks have been shown to function suitably. Sahin and 
Weiss (2015) have demonstrated that small item banks can still lead to accurate item 
parameter and ability estimates in CAT using simulated data with items having sufficient 
information. In another study conducted on a language test using real data, CATs with as 
few as 20 items were shown to produce promising results with SE values of 0.35 (Kaya 
& Kalender, 2018). These research findings indicate that CAT can certainly be adminis-
tered with a very limited number of items. However, the corollary impact on construct 
coverage of this reduction is unclear and requires investigation.

Data set

We scored responses dichotomously (as correct or incorrect) using the answer key 
provided by the school’s test development unit. The mean number of correct responses 
was 19.19 (SD = 6.51, total available score was 35). The reliability of scores on the 
original paper-based reading subtest as shown by Cronbach’s alpha was .84. Figure 2 
shows the test information function and SE distribution of the PBT. As the figure 
shows, the reading subtest is more reliable between −1 and 0 on the ability continuum 
(this is the area associated with the lowest SE values). As an external validity criterion, 
we utilized students’ scores on the listening subtest of the same exam (the examinees’ 
listening data was calibrated by the university to estimate ability and item parameters). 
We calculated a Pearson’s correlation coefficient between scores from the reading and 
listening subtests.

Study design

CAT is expected to use fewer items and estimate ability scores with higher reliability if it 
is to replace its PBT version. Thus, before examining classification performance, typical 
premises of the CAT (i.e., a reduction in the number of items administered and individual 
reliability estimates) were examined with different test termination rules. The first phase 
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included post-hoc (real data) simulations, which is a common research strategy to inves-
tigate the feasibility of CAT in a given situation (Thompson & Weiss, 2011). In the litera-
ture, simulation studies are recommended to examine CAT design prior to a live CAT 
stage by investigating the optimum test termination rule and the extent to which test length 
can be reduced by readministering items adaptively (Weiss, 2005). Post-hoc simulations 
use real examinees’ responses to a PBT to simulate testing behavior on a computer as if 
examinees were given a CAT; real responses reflect the psychometric characteristics of 
examinees better than generated data. In post-hoc simulations, items used in the PBT ver-
sion constitute the item bank of the CAT. Prior to conducting simulations, the response 
data is used to estimate IRT parameters for the items in the test using software. In this 
study, BILOG-MG was used for IRT-based calibration (Zimowski et al., 1996). During 
the simulations, examinees’ PBT responses were used to simulate a CAT. For this study, 
all CAT simulations were conducted using software developed by Kalender (2015).

The second stage involved classification analysis of simulation results. At this stage, 
different conditions based on two termination rules were tested (i.e., fixed-length termi-
nation and standard error termination; Gushta, 2003). For each examinee, final ability 
estimates and associated standard errors were calculated. To obtain a comparative analy-
sis, the same quantities were also obtained for the real PBT.

Bayesian Expected A Posteriori (EAP) estimation was applied to generate ability esti-
mations and item difficulty (Bock & Mislevy, 1982). An advantage of EAP is that EAP 
estimates ability with lower posterior standard deviation (Wang & Wang, 2001) and 
higher efficiency than the maximum likelihood estimation (MLE) method (Bock & 
Mislevy, 1982). Another advantage of EAP is that estimation of the latent trait proceeds 
when an examinee has only correct or incorrect responses (Desjardins & Bulut, 2018). 
An initial check of the data indicated the presence of all-incorrect response patterns 
(n = 45, 3.8% of the data), and the MLE method fails to handle such response strings 
(Han, 2016). Because EAP can produce ability estimates with such response patterns, 
they were not removed from the data set.

Figure 2. Item information and posterior standard error curves for PBT.
Straight line shows item information and dotted line shows posterior standard deviation.



550 Language Testing 39(4)

Post-hoc simulations

Simulations were set to be terminated based on fixed-length and standard error termina-
tion rules. In this study, CATs terminated after 10, 15, 20, 25, and 30 items were simu-
lated. Terminating a CAT after 10 or 15 items may raise questions about the construct 
coverage or the content validity of the test (Suvorov & Hegelheimer, 2013). However, 
these two test termination scenarios were also used in the study because it may prove 
informative for future research. Five SE rates were selected (i.e., below 0.5, 0.4, 0.3, 0.2, 
and 0.1) corresponding to different alpha values from .75 to .99 and labeled as SE05, 
SE04, SE03, SE02, and SE01 (Weiss, 2011). Thus, 10 different instances of CAT were 
simulated. Each simulation was replicated 100 times and the results were averaged. 
Fisher’s maximum information was used to select items to minimize the SE associated 
with examinee ability estimation and maximize test information (Thissen & Mislevy, 
2000; Veldkamp & Matteucci, 2013).

Classification

In this study, CA and CC values were estimated by the method proposed by Rudner 
(2001, 2005). The R package cacIRT developed by Lathrop (2015) was used to calculate 
CA and CC, both of which range from 0 to 1, with higher values indicating higher clas-
sification performance (e.g., a CA value of .76 indicates that there is a 76% chance that 
the individual has been appropriately classified and the same value for CC represents the 
probability of being classified into the same group across two administrations). For each 
examinee, a CAT was created using the responses they provided during the test, resulting 
in different combinations of items. To systematically examine the effect of different cut-
off points on the ability continuum, nine cutoff values were set from the 10th to the 90th 
percentiles, increasing in increments of 10 and using percentile ranks both for CATs and 
PBT, which created 10 ability groups following a normal distribution. The cutoff points 
on the ability continuum corresponding to percentile scores of each decile were −1.35, 
−0.73, −0.51, −0.42, −0.17, 0.25, 0.51, 0.81, and 1.42. For classification analysis, the 
corresponding ability values at the same percentiles were used. An additional classifica-
tion analysis was made using five cutoff points to investigate the potential for the CAT to 
classify individuals according to the six levels of the English preparatory program (see 
“Participants” section). Five cutoff points were set using 16.6, 33.3, 50, 66.6, and 83.3 as 
percentile ranks. These cutoff points were −0.92, −0.46, −0.12, 0.40, and 0.91. CA and 
CC values were calculated both for one cutoff score at a time as well as a simultaneous 
analysis of all cutoff scores. After classification analysis, the researchers completed a 
content analysis to examine the construct coverage of the CATs in the simulations.

Results

Preliminary analysis: Fit of model-data

Before answering the research questions, we present results of the IRT model-data-fit. A 
canonical factor analysis was carried out based on tetra-choric correlations using 
TESTFACT (Bock et al., 2003) to examine the factorial structure of the 35 items and 
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establish the factorial structure of the trait measured. The results indicated that items 
measured a unidimensional latent trait as evidenced by a ratio of larger than 4 between 
the second eigenvalue to the first (5.6 and 1.3; Lord, 1980; Slocum-Gori, & Zumbo, 
2011). The invariance of item parameters and ability estimates was also confirmed. 
Analysis of χ2 values and plot of data fit suggested that the 2PL model showed the best 
fit for the data in hand. With data to model fit, ability estimates are more reliable and the 
accuracy and consistency of classifications are high (Lathrop & Cheng, 2013).

The mean (standard deviation) of item discrimination parameters was 0.90 (0.32), 
whereas item difficulty parameters had a mean of −0.25 (0.93). Minimum and maximum 
ability estimates were −2.57 and 2.81 (M = 0, SD = 1). SE of PBT had a mean (SD) of 0.34 
(0.25) and 48.0% of the individuals had an SE of 0.4 or lower, whereas 90.4% had 0.5 or 
lower. Figure 2 presents the PBT item information curve.

Ability estimates by PBT and CAT

To establish the extent to which ability estimates vary according to the PBT, we calcu-
lated descriptive statistics. Table 1 shows averaged means and standard deviations of 
estimated ability values in the various CAT scenarios (PBT averaged means were set to 
0.00) over 100 replications. The mean and standard deviation of PBT-based ability esti-
mates were set to 0 and 1, respectively, for reference. The table denotes smaller standard 
deviations and negative means for all CATs, indicating that ability distributions with 
CATs are narrower than with the PBT, though not considerably. As Table 1 shows, the 
paired-sample t-test results indicated statistically significant mean differences after 
Bonferroni correction for 10 comparisons (p (.05/10) = .005) between all simulations and 
the PBT version. However, effect sizes of these differences were small with a minimum 
of 0.06 and a maximum of 0.30, as estimated by Cohen’s (1988) d, indicating that ability 
levels estimated by CATs and PBT are similar.

Table 1. Means (SDs) of the ability estimates by CATs averaged over 100 replications.

CAT M (SD) t df p d

FL10 −0.02 (0.88) 1.51 1181 .13 –
FL15 −0.02 (0.92) 2.44 1181 .01 0.06
FL20 −0.02 (0.94) 2.55 1181 .01 0.07
FL25 −0.02 (0.95) 3.20 1181 <.001 0.09
FL30 −0.02 (0.95) 5.08 1181 <.001 0.14
SE05 −0.02 (0.92) 1.95 1181 .05 –
SE04 −0.01 (0.94) 2.73 1181 <.001 0.07
SE03 −0.02 (0.95) 9.19 1181 <.001 0.22
SE02 −0.02 (0.95) 9.96 1181 <.001 0.30
SE01 −0.02 (0.95) 9.96 1181 <.001 0.30

CAT: computerized adaptive testing; SD: standard deviation; FL: fixed length; SE: standard error.
For each paired-samples t-test the mean and standard deviation of PBT was set to 0 and 1, respectively. 
Alpha-level was set to .005 after Bonferroni correction.
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Test termination

Table 2 demonstrates that there was no reduction in the number of items using 0.2 and 
0.1 SE thresholds. However, a relatively large reduction was achieved with 0.5 and 0.4 
SE thresholds, which correspond to α ⩾ 0.75 and 0.84, respectively (Cronbach, 1990). 
Only a small number of examinees were given all 35 items, 62 (5.25%), and 427 (36.13%) 
for CATs terminated with 0.5 and 0.4 SE thresholds, respectively. The number of exami-
nees given the full item bank varies significantly across the two CAT scenarios terminat-
ing at different SE levels. Since the 0.4 SE level indicates a stricter reliability level 
associated with less error, more items were used to meet this level of precision.

Table 3 demonstrates that the mean SE values were around 0.40 for the CATs termi-
nating with 20, 25 and 30 items. Increasing the number of test items caused SE estima-
tions to decrease. Around 72%, 81%, and 92% of ability estimations were at or below 
0.50 SE for the fixed-length CATs terminating with 15, 20, and 25 items, respectively. 
For the same fixed-length CATs, the percentages of ability estimations at or below 0.40 
SE were around 12%, 27%, and 38%, respectively. Given that PBT produced a mean SE 
of 0.34, reliability of estimates by CAT were comparable.

As Table 4 demonstrates, with every termination criterion employed, CAT produced 
highly correlated and statistically significant Pearson correlations (r = .93–1.00, p < . 
001) with ability estimates obtained in the PBT. The table also shows the correlations 
between ability estimates from CAT and scores from the listening section (the external 

Table 2. Descriptives of the number of items used in CATs with different SE thresholds.

CAT M (SD) Reduction in test length (%) Minimum Median Maximuma

SE05 14.64 (7.27) 58.17 7 13.00 35 (5.25%)
SE04 26.63 (7.77) 23.91 14 27.00 35 (36.13%)
SE03 34.10 (2.30) 2.57 34 35.00 35 (85.44%)
SE02 35.00 (0.00) 0.00 35 35.00 35 (100.00%)
SE01 35.00 (0.00) 0.00 35 35.00 35 (100.00%)

CAT: computerized adaptive testing; SE: standard error.
aThe values in parentheses show the percentage of examinees who were given all of the 35 items in the 
simulations.

Table 3. Descriptives of SEs in fixed-length (FL) CATs.

CAT M (SD) % of examinees with 
SEs below SE04

% of examinees with 
SEs below SE05

FL10 0.53 (0.06) 0 41.29
FL15 0.48 (0.06) 12.1 72.59
FL20 0.44 (0.06) 26.99 81.2
FL25 0.42 (0.07) 38.32 92.47
FL30 0.40 (0.07) 46.28 94.6

CAT: computerized adaptive testing; SE: standard error; FL: fixed length.
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criterion) were higher than .70. In PBT, the correlation between reading and listening 
sections was .77 (p < . 001).

Classification

To compare PBT and CAT classification and to explore the impact of adjusting cutoff 
points on CA and CC values in PBT and CAT, Figure 3(a)–(d) presents the CA and CC 
estimates with 9 cutoff points. Figure 3(a)–(d) shows CA and CC values for CATs with 
fixed-length and SE-thresholds. PBT values provide a reference point for comparison. 
The CA and CC values were obtained using only one cutoff score at a specific percentile. 
In other words, each dot in each line indicates a CA or CC value assuming there is only 
a specific cutoff score.

Figure 3(a)–(d) shows that both CA and CC estimates for all CATs with different 
termination rules were higher than 75%. In all CATs, CA estimates were slightly higher 
than CC estimates. CA and CC estimates showed an upward trend at the higher and lower 
tails of ability estimates. It seems that the higher the ability estimate, the higher the CA 
and CC estimates were for all CATs regardless of the test termination rule applied. The 
same trend can be observed for the lower ability groups. The high levels of classification 
at the tails was due to an absence of disproportionately difficult or easy items. CATs with 
fixed-items produced differing CA and CC values around the middle ability range (espe-
cially at the 50th and 60th percentiles), whereas SE-based CATs produced relatively 
more similar CA and CC estimates. At lower and higher ability levels, CAT CA and CC 
values were similar to the values in PBT; however, around the middle ability levels, the 
PBT recorded higher CA and CC values. CAT scenarios with lower numbers of items or 
higher SE values (FL10 and SE05) were associated with relatively lower CA and CC 
values around the middle ability ranges. The performance of CATs with 25 and 30 items 
at the average ability range were above 85% and the high-ability estimates were around 
95%, which was very similar to the classification performance of the PBT version of the 
subtest. Similarly, CATs with SE04 had CA and CC values around 85% at the middle 
ability range and around 95% at, the tails of the ability range.

With five cutoff points, a similar pattern in CA and CC values was observed around 
the middle ability range (see Figure 4(a)–(d)). To be specific, excluding FL10 and SE05, 
CATs produced CA estimates greater than 85% and CC values higher than 80% in the 

Table 4. Pearson correlations between ability estimates by CAT and PBT.

CAT rPBT df rexternal df CAT rPBT df rexternal df

FL10 .93 1180 .72 1180 SE05 1.00 1180 .72 1180
FL15 .96 1180 .74 1180 SE04 1.00 1180 .74 1180
FL20 .97 1180 .75 1180 SE03 .99 1180 .76 1180
FL25 .99 1180 .76 1180 SE02 .99 1180 .76 1180
FL30 .99 1180 .77 1180 SE01 .96 1180 .77 1180

CAT: computerized adaptive testing; FL: fixed length; SE: standard error.
All correlations were statistically significant at .001.
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middle ability range. For fixed-length CATs, FL30 seemed to produce slightly higher CA 
and CC values and for CATs terminated after a prespecified SE threshold, CA and CC 
values slightly increased in SE01, SE02, and SE03 across all ability ranges. Another 
trend observed in Figure 4(a)–(d) is that like classification with nine cutoff points, CATs 
with fewer items or higher SE values showed relatively lower classification performance. 
This was expected because fewer items were available at the cutoff points, thus increas-
ing misclassification rates. Similarly, applying high SE values resulted in CAT termina-
tion with fewer items, which may reduce the precision of classification. CATs with the 
highest CA and CC values were FL30 and SE01. The mean CA and CC values were 
around 90%. In contrast, FL10 and SE05 had a mean of 85% for CC and CA. However, 
unlike classification analysis with nine cutoff points, CA and CC values were different 
around the high and the low-ability levels. Generally, classification performance showed 
more variation in the tails. In all the CAT scenarios involving five cutoff points, CA val-
ues in the lower and upper percentiles fell within 85% and 95%. CC values, however, 
were slightly lower. CATs with 10 and 15 items or CATs with SE of 0.50 and 0.40 showed 
lower performance both in CA and CC. Both for nine and five cutoff points, CAT clas-
sification performed was equal to or slightly lower than the PBT version of the test.

Figure 3. CA and CC values with 9 cutoff points: (a) CA at different percentiles for fixed-
length CATs; (b) CC at different percentiles for fixed-length CATs; (c) CA at different 
percentiles for SE threshold CATs; and (d) CC at different percentiles for SE threshold CATs.
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Figure 5 shows CA and CC values for each CAT scenario when nine and five cutoff 
points were applied simultaneously. CA and CC values significantly decreased com-
pared with classifications with a single cutoff score. This is expected because increasing 
classification categories simultaneously increased the possibility of classification error. 
Classifications with a single cutoff score recorded CA and CC values ranging from 75% 
to 95%, whereas simultaneous classification produced CA and CC values between 25% 
and 60%. The results also showed that for all CAT scenarios, CA and CC values tended 
to rise significantly when the number of cutoff points decreased. As stated above, there 
was an inverse relationship between the number of decision categories and classifica-
tion performance. Fewer items produced higher errors in ability, resulting in more mis-
classification. The classification with nine cutoff scores produced lower CA and CC 
values than with five cutoff scores. In general, different CAT scenarios produced similar 
CA and CC values for a given number of cutoff points. The figure also shows that with 
fixed-item CATs, higher numbers of items led to higher CA and CC values. This is due 
to the decreasing error rates in ability estimates associated with a greater number of 
items. With stricter ability estimates, more fine-grained classification became possible. 
With sufficient match between item difficulty and individual ability, this was true for 

Figure 4. CA and CC values with 5 cutoff points: (a) CA at different percentiles for fixed-
length CATs; (b) CC at different percentiles for fixed-length CATs; (c) CA at different 
percentiles for SE threshold CATs; and (d) CC at different percentiles for SE threshold CATs.
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both CAT and PBT. In all cutoff point arrangements, PBT CA and CC values were 
higher than all CAT values although differences were minor. With the CATs terminating 
at SE01 and SE02, CA and CC values increased and were equal to the PBT.

Construct coverage

We investigated item distributions across the simulations, and the 25 most frequently 
used items were recorded (see Appendix 1). Items were placed into five categories 
(Chikalanga, 1992): propositional inference (14 items), paraphrase of supporting detail 
(14 items), pragmatic inference (4 items), meaning of unknown lexis in context (2 items), 
and textual cohesion (1 item) independently by two teachers in the English preparatory 
program with 100% agreement. As can be seen in Table 3, five of the simulations were 
involved in this analysis because there was no reduction in SE01, SE02, and the error of 
ability estimates were higher in FL10 (0.53), FL15 (0.48), and FL20 (0.44). The results 
show that the item categories were unequally represented across the simulations. For 
instance, the item assessing textual cohesion only featured in SE03. Although this find-
ing may seem to indicate a significant reduction in construct coverage, it results from the 
disproportionate number of items associated with each category. That is, rather than evi-
dence of systematic bias in item selection between the reading subdomains by the item 
selection algorithm, the unequal distribution was a result of the limited items identified 
as testing categories D and E.

To summarize the results in brief, with a single cutoff score, CAT-based classification 
performed very well but not for every ability level. As shown in Figures 3(a)–(d) and 
4(a)–(d), PBT performs slightly better than CAT particularly around the middle ability 
group and a probable reason for this is that the PBT did not have the same termination 
restrictions as CAT. Classification performance dropped significantly when a simultane-
ous classification analysis was carried out with multiple cutoff points. Overall, CATs 
terminated with a fixed-length rule under 25 and 30 items (FL25 and FL30) and those 

Figure 5. CA and CC values for simultaneous classifications with 5 and 9 cutoff points.
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reaching a lower SE level (SE01 and SE02) showed better CA and CC performance. 
Finally, no significant pattern emerged in terms of the item focus distributed across vari-
ous simulations.

Discussion

Results demonstrated that the PBT and CAT ability estimates were not substantially dif-
ferent. Correlations between the PBT and all CAT ability estimates were high (Pearson’s 
r = .93–1.00). Overall, the simulation results clearly showed that a significantly lower 
number of items can be administered if the CAT version of the test is terminated at 0.50 
and 0.40 SE threshold values or with 15, 20, and 25 items. Thus, premises of CATs (i.e., 
a reduction in the number of items administered, individual reliability estimates, and 
comparable results with PBT) were observed prior to classification analyses.

The first research question asked about the difference between CA and CC values on 
the PBT and CAT versions of the test with different test termination rules when one cut-
off point was used at a time. As Figures 3(a)–(d) and 4(a)–(d) show, CA and CC values 
were lower than what would be expected in CAT regardless of the test termination 
method (i.e., CAT is expected to increase measurement precision over PBT; see Mizumoto 
et al., 2019 and Gyllstad et al., 2021 for a discussion of CAT expectations in language 
testing). CA values were around 80% while CC values decreased to 75% for the simula-
tions. PBT-based CA and CC values were either higher or equal to the CA and CC values 
for both termination methods. Cheng and Morgan (2012) and Lathrop and Cheng (2013) 
reported higher levels of CA and CC values in CAT in their studies. However, these stud-
ies involved larger item banks and content balancing methods. Considering that no such 
method was employed in this study, these findings are still promising. The results indi-
cate that there is potential to introduce CAT in this context with a larger item pool. As the 
analyses showed, not all scenarios provided equal CA and CC values. Classification was 
better for CAT scenarios with FL30 and SE01 around the middle ability range, whereas 
CATs with FL10 and SE05 provided lower classification performance by almost 10% at 
the same range. To answer Research Question 1, the PBT and CAT versions of this par-
ticular test proved similar in terms of classification performance.

Research Question 2 asked about the effect of the location of the cutoff point on CA 
and CC values. To answer this question, when only one cut-score was used for a binary 
decision such as pass or fail, classification performance of the test was 77% for all the 
ability groups using both test termination rules. For classifications with a single cutoff 
point, the graphs consisted of lines with a U-shape curve, suggesting that the classification 
performance for low and high-ability groups was higher than for mid-ability groups 
owing to a lack of disproportionately difficult or easy items. As stated earlier, at the tails, 
in every fixed-item and SE-based CAT, CA and CC estimations were above 75%, and 
reached around 90%. A U-shaped trend was observed in each analysis, meaning that CAT 
achieved better CA and CC for low and high-ability groups than for the middle-ability 
groups. In this sense, the results of this study are in parallel with those reported in the 
literature. Lathrop and Cheng (2013) found a similar U-shaped trend for different condi-
tions (i.e., different test lengths, IRT models, and cut score locations) and CA perfor-
mance significantly dropped around the center of the ability distribution.
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In answer to Research Question 3, which asked about the effect of operating multiple 
cutoff points at the same time in all CAT scenarios, CATs with five cutoff points were 
better able to classify examinees than those with nine cutoff points. After reducing the 
number of cutoff points from nine to five, CA and CC values increased even at the tails 
of the ability range. The reason for this may be the location of cutoff points along the 
ability continuum. When the number of points decreased from nine to five, the locations 
and the distances between them also changed, which created more heterogeneous groups. 
This indicates that a lower number of cutoff points created groups with less homogeneity 
in the latent trait. Increasing the cutoff points and decision categories naturally yields a 
higher amount of classification error as there are multiple categorizations and compari-
sons made (Cheng & Morgan, 2012). The CATs with five cutoff points consistently per-
formed almost 10% better than all the other CATs (see Figure 4(a)–(d)). CA estimations 
with five cutoff and nine cutoff points were around 40% and 60%, respectively. Cheng 
and Morgan (2012) reported similar findings. In their study, the number of decision cat-
egories was one of the factors that significantly affected classification performance of 
CAT using simulated item responses. The present study confirms their findings using 
real responses to an authentic test.

These findings indicate that caution should be taken when multiple cutoff points are 
used simultaneously because CA and CC decrease when more decision categories are 
used. Considering that the number of examinees in high and low-ability groups is gener-
ally much lower than the number falling into the middle ability group, as in a typical 
normal distribution, classification performance at the middle level actually carries more 
importance because it affects more examinees. Even when a binary decision (pass or fail) 
is going to be made about the examinees and the cutoff point is located around the middle 
ability group, the sensitivity of the score becomes more of an issue for all the stakehold-
ers. Therefore, classifying individuals around the middle-ability range requires careful 
attention. Mismatch between the mean difficulty level of items and the ability levels of 
examinees should be considered while designing CATs for classification purposes. If 
item difficulty and ability levels are not aligned, examinees may exhibit aberrant response 
behavior such as blind guessing. This may, in turn, create problems with estimating abil-
ity levels with sufficient precision and classifying individuals correctly. This problem 
can be addressed by including items that provide more information around the cutoff 
points at the middle ability range in the item bank and ensuring a better match between 
item parameters and examinee ability (Berger et al., 2019).

The results of this study have important implications in the field of educational meas-
urement. While most research concerning classification in computerized tests aims to 
classify examinees as “pass” or “fail,” the method and the findings of this study are rel-
evant to situations where more than one cutoff score is used (Eggen & Straetmans, 2000; 
Spray, 1993; Weissman, 2004). The key finding of the study is that CAT classification 
functions differently relative to the number of decision categories and cutoff locations. 
The results clearly illustrate that CA and CC are higher when the number of decisions to 
be made on the basis of test results is limited, which supports the conclusions drawn by 
Cheng and Morgan (2012) that CA and CC drop if classification decisions are made 
based on more complex categorization. For this reason, it is advised that the only place-
ment function this test is used for involves decisions located around the population tails 
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(i.e., to place at-risk test takers into elementary support levels and proficient test takers 
into advanced levels).

This study has implications specific to language testing. The absence of any substan-
tial difference between test termination rules gives more freedom to language test devel-
opers while designing CATs. Instead of relying on fixed-length CATs, SE-based CATs 
may also be used for language assessment. This is critical information if CAT is intro-
duced into the current context. There are social and even legal ramifications of test ter-
mination decisions, especially in Turkey where the public demand transparency in 
matters of educational assessment and decisions based on language tests are commonly 
contested in courtrooms. The finding that, statistically at least, the CAT termination 
method has little bearing on the classification of individuals has important implications 
for public debates surrounding assessment and is information that should be communi-
cated to various stakeholder groups (Chalhoub-Deville & O’Sullivan, 2020). Considering 
the high-stakes involved in language proficiency exams at university preparatory schools 
and criticism that may come from students and families of CAT implementation (differ-
ent items, different number of items, etc.), the results provide an opportunity for test 
developers to be flexible in their approach toward test termination.

The content analysis revealed that a variety of reading abilities was measured regard-
less of the test termination rule, although certain abilities were better represented than 
others. This implies that CAT would benefit from content balancing mechanisms to ensure 
the items from the different reading subdomains are administered. Using CAT in a lan-
guage comprehension test featuring items that target different reading processes may 
result in a situation whereby the various item types are unevenly represented between the 
test takers. This level of variation is important; if two statistically equivalent tests vary 
substantially in terms of content, will stakeholders accept that the test assesses the same 
reading construct? As the literature review makes clear, CAT classification research pri-
marily focuses on the potential to increase measurement precision. The impact of apply-
ing different termination rules on construct coverage has been neglected. Reading 
assessments include a range of items designed to test different cognitive operations 
(Khalifa & Weir, 2009). In tests of academic reading, the construct involves lower level 
processes such as scan and skim mechanisms and more complicated cognitive operations 
such as inference (Bax, 2013). Adequate construct coverage is crucial for test results to 
inform valid decisions about test candidates’ academic reading ability (Weir et al., 2009). 
However, algorithmic item selection mechanisms maximize measurement precision 
potentially to the detriment of the test construct because certain cognitive operations may 
be underrepresented in the CAT version of the reading test. This represents a major draw-
back of CAT classification that should be underscored for language testers.

Future research may explore construct coverage in CAT to investigate bias in item 
selection algorithms. It may be the case that items representing particular subdomains, 
such as textual cohesion in reading, are not selected as frequently as others and this 
would have important ramifications for construct representation. In addition, a testlet 
format in which items based on a common stimulus are administered collectively to cre-
ate a single partial credit item per reading passage may have been appropriate for this 
CAT. This multistage testing approach was considered but not administered due to con-
straints relating to the amount of obtainable data that would have decreased the number 
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of reading passages and items available in the simulation and hence restricted the analy-
sis. For this reason, each item was considered independent rather than a member of a 
fixed set of items based on a common reading passage. Statistical evidence indicated that 
the 35 items were independent, however, items that share a common stimulus (e.g., the 
same reading passage) often exhibit local dependence because miscomprehension of the 
common stimulus is likely to impact upon responses to the interrelated items (Eckes, 
2014). The testlet approach presents a solution to this problem but only if the number of 
items available to create the CAT is sufficient. Further studies are therefore recom-
mended to examine the classification performance of CAT featuring multiple reading 
passages using the testlet approach.

It is important to acknowledge the limitations of the study. The first limitation relates 
to the size of the item bank. Using a limited number of items yields less test information 
and consequently, decreases classification performance. In addition, when interpreting 
the results of the study, it is important to recall that the item bank was not designed for 
typical CAT or computer adaptive classification tests and hence does not cater for a large 
range of ability. The study focused only on the B2 level of Common European Level of 
Reference for Languages, and this may limit the generalizability of the study. The test 
would be unable to make detailed distinctions between students that have substantially 
higher or lower levels of English.

Conclusion

We developed this study to determine the impact of introducing a non-classification CAT 
on the CA and CC of decisions relating to students’ English language ability. To this end, 
the accuracy and consistency of classification decisions were investigated with single 
and multiple cutoff points in different CAT simulations. Overall, given that the test and 
item bank were designed for PBT with full fixed item administration, CAT yielded prom-
ising levels of CA and CC when a binary pass–fail decision was required. This was the 
case regardless of the test termination rule. CAT also performed well with simultaneous 
use of multiple cutoff points. The results of this preliminary study demonstrate that non-
classification CAT has high potential for classification purposes in pre-sessional English 
language programs. It is hoped that the current study contributes to debates surrounding 
CAT in language testing and outlines a method of investigating the introduction of CAT 
in local contexts.

The findings obtained from the present study demonstrate the potentialities of using 
regular CATs to classify students in an educational program. This preliminary study 
shows that a regular CAT has the potential to give a similar level of classification perfor-
mance to PBT with fewer items. We believe this is an important finding considering the 
limitations of administering PBT relating to time and the resources spent on such tests. 
With an initial investment into the item bank and the necessary facilities, using a regular 
CAT to classify learners can yield a similar classification performance to PBT. It also 
opens the door for more frequent assessment and early detection of misclassification, 
which will have a positive washback effect on teaching and learning practices in a lan-
guage program.
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