
ASSEM BLY LINE BALANCING USING
G E N E TIC ALG O R ITH M S

A THESIS
SU B M ITTED TO TH E DEPARTM ENT OF INDUSTRIAL

ENGINEERING
AND TH E IN S TITU TE OF ENGINEERING AND SCIENCE

OF BILKEN T UN IVER SITY
IN PARTIAL FULFILLM ENT OF TH E REQUIREM ENTS

FOR TH E DEGREE OF
MASTER OF SCIENCE

By
Muzaffer Tanyer
September, 1997

(¡ i f)

. T 3 6

ASSEMBLY LINE BALANCING USING GENETIC
ALGORITHMS

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL

ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
—-Miizaffei--TaRyei'.

September, 1997

m
Ц 0 2 .^

(339-

δ ' -I к 4t/ Π Cj

11

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degiee of Master of Science.

-r?

â

Assoc. Prof. İhsan Sabuncuoğlu (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Erdal Erel

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degiee of Master of Science.

Assoc. Prof. Osman 0 :

Approved for the Institute of Engineering and Sciences:

Prof. Mehmet Ba^
Director of Institute of Enginemng and Science

let B a r ^

ABSTRACT

ASSEM BLY LINE BALANCING USING GENETIC
ALGORITHM S

Muzaffer Tanyer
M.S. in Industrial Engineering

Supervisor: Assoc. Prof. İhsan Sabuncuoğlu
September, 1997

For the last few decades, the genetic algorithms (GAs) have been used as a
kind of heuristic in many areas of manufacturing. Facility layout, scheduling,
process planning, and assembly line balancing are some of the areas where GAs
are already popular. GAs are more efficient than traditional heuristics and also
more flexible as they allow substantial changes in the problem’s constraints and
in the solution approach with small changes in the program. For this reason,
GAs attract the attention of both the researchers and practitioners.

Chromosome structure is one of the key components of a GA. Therefore,
in this thesis, we focus on the special structure of the assembly line balanc­
ing px'oblem and design a chromosome structure that operates dynamically.
We propose a new mechanism to work in parallel with GAs, namely dynamic
partitioning. Different from many other GA researchers, we particularly com­
pare different population re\asion mechanisms and the effect of elitism on these
mechanisms. Elitism is revised by the simulated annealing idea and various
levels of elitism are created and their effects are observed. The proposed GA
is £ilso compared with the traditional heuristics.

Key words: Genetic Algorithms, Assembly Line Balancing, Simulated An­
nealing.

Ill

ÖZET

GENETİK ALG O R İTM ALAR İLE HAT DENGELEM E

Muzaffer Tanyer
Endüstri Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Doç. İhsan Sabuncuoğlu
Eylül, 1997

Son yıllarda genetik algoritmalar üretimin pek çok alanında bir çeşit sezgisel
yöntem olarak kullanılmaya başlanmıştır. Yerleşim planlama, sıralama,
süreç planlama ve hat dengeleme, genetik algoritmaların şimdiden popüler
olduğu alanlardandır. Genetik algoritmalar geleneksel sezgisel yöntemlerden
daha etkili ve problemin zorlamalarında ve çözüm yaklaşımında yapılacak
önemli değişiklikleri programda yapılacak küçük değişikliklerle halledebildik-
lerinden dolayı da daha esnektirler. Bu sebeple, genetik algoritmalar hem
araştırmacıların hem de pratisyenlerin ilgisini çekmektedir.

Kromozom yapısı genetik algoritmaların en önemli yapı taşlarından biri­
sidir. Bu sebeple, bu tezde hat dengeleme probleminin özel yapısını inceliyoruz
ve dinamik olarak değişen bir kromozom yapısı tasarlıyoruz. Dinamik
bölmeleme adını verdiğimiz, genetik algoritmalarla paralel olarak çalışan yeni
bir mekanizma öneriyoruz. Diğer birçok genetik algoritma araştırmacısından
farklı olarak, özellikle değişik nüfus yenileme mekanizmalarını karşılaştırıyoruz
ve seçkinlik kuralının bu mekanizmalar üzerindeki etkisini araştırıyoruz.
Seçkinlik kuralı, yumuşatma benzetimi fikri ile yenilenmiş ve çeşitli seçkinlik
düzeyleri yaratılıp etkileri gözlenmiştir. Önerilen genetik algoritma geleneksel
sezgisel yöntemlerle de karşılaştırılmıştır.

Anahtar sözcükler:
Benzetimi.

Genetik Algoritmalar, Hat Dengeleme, Yumuşatma

IV

ACKNOWLEDGEMENT

I am indebted to Assoc. Prof. İhsan Sabuncuoğlu for his invaluable
guidance, encouragement and understanding for bringing this thesis to an end.

I am also indebted to Assoc. Prof. Erdal Erel due to his kind concern,
supervision, and suggestions during this study.

I would like to express my gratitude to Assoc. Prof. Osman Oğuz for
accepting to read and review this thesis.

I would like to state my most sincere greetings to my dear advisor in
Bosphorus Univeisity, Assoc. Prof. Kadri Ozçaldıran. I must have bewildered
him by accomplishing my gi'aduate study successfully.

I would like to express my special thanks to my dearest friends Kemal Kılıç,
Özgür Tüfekçi, Alev Kaya, and Savaş Dayanık for their great help and morale
support throughout my studies.

And I would like to thank to Bilkent University for having taught me that
one should consistently work hard to succeed in life instead of always taking

short-cuts.

Finally, I would like to thank to my parents and my brother Alper for their
love 8ind support throughout my life.

Contents

1 INTRODUCTION 1

2 LITERATURE REVIEW 3

2.1 Assembly Line Balancing... 3

2.2 Genetic Algorithm s.. 6

2.2.1 Basic Structure of a GA Process... 8

2.2.2 C oding.. 8

2.2.3 Fitness Function 9

2.2.4 R eproduction ... 9

2.2.5 Genetic Algorithm Applications.. 11

2.3 ALB and G A .. 11

2.4 Motivation and Organization... 18

3 THE PROPOSED GENETIC ALGORITHMS 20

3.1 The Characteristics of the Proposed G A s .. 21

3.2 Classical GA vs Modern G A ... 24

vi

3.3 Dynamic Partitioning... 24

3.4 Elitism With Simulated Annealing 26

4 DYNAMIC PARTITIONING 27

4.1 Motivation.. 27

4.2 Implementation... 28

4.3 Experimentation 30

4.3.1 ANOVA Results.. 33

4.4 Major F ind ings... 38

5 ELITISM WITH SIMULATED ANNEALING 41

5.1 Introduction and M otivation.. 41

5.2 Integration of SA to E lit ism .. 42

5.3 Experimentation 45

6 CLASSICAL GA vs MODERN GA 48

6.1 Motivation.. 49

6.2 Experimentation 51

7 COMPARISON WITH TRADITIONAL HEURISTICS 54

7.1 Genetic Algorithms versus Traditional Heuristics.......................... 54

7.2 Comparison with Leu et al.’s GA (1 9 9 4) 57

7.3 Comparison with Baybars’ LBHA-1 (1986)..................................... 62

CONTENTS vii

CONTENTS vin

8 CONCLUSION 66

8.1 Contributions 66

8.2 Future Research Directions 68

List of Figures

2.1 Classification of Assembly Line Balancing Literature (Taken from
Ghosh and Gagnon (1989))... 4

2.2 Uniform Crossover Mechanism... 10

2.3 Crossover Operator of Leu et al. (1994)... 14

2.4 Stochastic Universal Sampling... 15

3.1 Coding the Chromosome Representation of an Assembly Line 22

4.1 Illustration of Dynamic Partitioning... 30

7.1 The Msix-Task Time Heuristic Solution to the Kilbridge-Wester
45-Task P r o b le m ... 59

7.2 Modern GA Solution for the Kilbridge-Wester 45-Task Problem 61

7.3 The 70-Task Problem of Tonge (1961).. 62

IX

List of Tables

4.1 A NOVA results for fitness scores 34

4.2 Bonferroni and Duncan grouping of fitness scores due to DPC. . 35

4.3 ANOVA results for CPU tim es... 36

4.4 Bonferroni and Duncan grouping of CPU times due to DPC . . 37

4.5 Bonferroni and Duncan grouping of fitness scores due to F-Ratio 38

5.1 ANOVA results for fitness scores 46

5.2 Bonferroni and Duncan grouping of fitness scores due to a, F-
Ratio, population s iz e ... 47

6.1 Optimum, parameters for Classical GA a7id Modern G A52

6.2 ANOVA results for the com.parison of two algorithm s................ 53

6.3 Bonferroni and Duncan grouping of fitness scores due to algorithm. 53

7.1 The heuristic methods to solve the Kilbridge-Westerproblem . . 58

7.2 Comparison of non-GA heuristics, Leu et al. 's GA and the pro­

posed GA .. 60

7.3 Factor levels at which the optimum solution is found 60

X

LIST OF TABLES
XI

7.4 Comparison of eight methods on the 70-task problem of Tonge
(1961) in terms of number of stations.. 54

Chapter 1

INTRODUCTION

An assembly line consists of a sequence of work stations which are connected
by a conveyor belt. Each station has to perform repeatedly a specified set of
tasks on consecutive product units moving along the line at constant speed.
Because of the uniform movement of the line, each product unit spends the
same fixed time interval, called the cycle time, in every work station. As a
consequence, the cycle time determines the production rate which is equal to
the reciprocal of the cycle time. Tasks or operations are indivisible elements
of work which have to be performed to assemble a product. The execution of
each task is assumed to require a fixed amount of time. Due to technological
restrictions, precedence constraints partially specifying the sequence of tasks
have to be considered. These constraints can be represented by a precedence
graph containing nodes for all tasks and arcs {i , j) if task i has to be completed
before task j can be started. The Assembly Line Balancing (ALB) problem is
to allocate the tasks equally to a minimum possible number of stations such
that each task is assigned to exactly one station and no precedence constraint
is violated.

The ALB problem has been first introduced by Helgeson et al. in 1954

[3], and has become an important research area since then. However, Artifi­

cial Intelligence (AI) techniques such as Genetic Algorithms (GAs) have been
introduced to the ALB problem very recently (i.e.. Leu et al, 1994).

CHAPTER 1. INTRODUCTION

Assuming that no precedence relationship exists, a modest assembly line
consisting of 30 tasks has 30! (2.6 x 10̂)̂ possible schedules. If one can develop
a system using heuristic rules which can limit this explosion, the search space
can be reduced to a reasonable size. The main idea of AI is based on the concept
of this intelligent search. The search methods used to find the optimum solution
to the ALB problem require unreasonable computational effort that increases
exponentially as the problem size gets larger. This necessitates the adoption of
different strategies which apply heuristic information to the search technique.

The basic notion in eill the heuristic search methodologies is to use the
problem specific knowledge intelligently to reduce the search efforts. GAs are
intelligent random search mechanisms that can easily be applied to optimiza­
tion problems. Provided that standard GA operators are modified to work
effectively in the specific problem domain, GA can be a very powerful search
mechanism. This has already been proved by Leu et al. [29], Suresh et al. [37],
and Anderson and Ferris [l] in the ALB problem domain. In this study, we take
a further step and make use of a specific characteristic of the ALB problem to
adopt the GA structure as well as its operators to work more effectively than

the above mentioned GA attempts to the ALB problem.

The rest of the thesis is organized as follows. After a comprehensive litera­
ture review that reveals our motivation for this study in Chapter 2, we explain
our algorithms in Chapter 3. The proposed approach that exploits the spe­
cial characteristics of the ALB problem is presented in Chapter 4. We also
integrate two AI tools, GA and simulated annealing (SA), working together
to achieve a better performing search in Chapter 5. Then we compare the
performance of two major types of basic GA structures on the ALB problem
in Chapter 6. We then demonstrate the performance of our algorithm on ALB
problems reported in the literature and compare it with the best performing
heuristics. Finally, we summarize our study and discuss our major findings in
the conclusion chapter.

Chapter 2

LITERATURE R EVIEW

2.1 Assembly Line Balancing

An assembly line consists of a finite set of work elements or tasks, each having
an operation processing time and a set of precedence relations, which specify
the permissible orderings of the tasks. The line balancing problem is assigning
the tasks to an ordered sequence of stations, such that the precedence relations
are satisfied and some measure of effectiveness is optimized (e.g. minimize the
balance delay or minimize the number of work stations) [14].

Since the assembly line balancing (ALB) problem was first formulated by
Helgeson et al. in 1954 [3], many solution approaches have been devised, start­
ing with Salveson (1955) [33]. Salveson is the first to publish it in mathematical
form and propose a linear progiamming (LP) solution. Since the ALB prob­
lem falls into the NP hard class of combinatorial optimization problems, it has
not been possible to develop efficient algorithms for obtaining optimal solu­
tions [14]. Hence, numerous research efforts have been directed towards the
development of computer efficient approximation algorithms or heuristics.

CHAPTER 2. LITERATURE REVIEW

Ghosh and Gagnon (1989) classify the ALB problem and the accompany­
ing research and literature into four categories, as shown in Figure 2.1: Sin­
gle Model Deterministic (SMD), Single Model Stochastic (SMS), Multi/Mixed
Model Deterministic (MMD), and Multi/Mixed Model Stochastic (MMS).

ALB Literature

Single Model Multi/Mixed Model

Deterministic
(SMD)

Stochastic
(SMS)

Deterministic
(MMD)

Stochastic
(MMS)

Simple General Simple General Simple General Simple General
Case Case Case Case Case Case Case Case

(SALB) (GALB) (SALB) (GALB) (SALB) (GALB) (SALB) (GALB)

Figure 2.1: Claissification of Assembly Line Balancing Literature (Taken from
Ghosh and Gagnon (1989))

The SMD version of the ALB problem assumes dedicated, single-model

assembly lines where the task times are known deterministically and an ef­
ficiency criterion is optimized. This is the original and simplest form of the
assembly line balancing problem (SALB). If other restrictions or factors (e.g.
parallel stations, zoning restrictions) ai'e introduced into the model, it becomes
the General ALB problem (GALB). Our research area is the SMD category’s
SALB subcategory. It is also known as type-1 assembly line balancing problem

since the cycle time is fixed and we aim to minimize the number of stations.

The variation in which the number of stations is fixed to minimize the cycle

CHAPTER 2. LITERATURE REVIEW

time is referred to as the tj'pe-2 assembly line balancing problem. The SMD-
SALB category has been the most researched, as evidenced by the number of
articles pubUshed in the literature, i.e. 64 articles since 1983 [14]. A summary
of the previous research in this category is £is follows:

Salveson (1955) formulated the SALB version of the SMD problem as an LP
problem. Bowman (1960) (later modified by White 1961) came up with an inte­
ger programming (IP) solution, describing task assignments to stations with bi­
nary variables. IP formulations were contributed by Klein (1963), Thangavelu
and Shetty (1971), Patterson and Albracht (1975), and Talbot and Patterson
(1984). The formulation provided by Patterson and Albracht (1975), a gen­
eral integer program without binary variables, significantly reduced the size
of the problem formulation. Dynamic programming (DP) formulations were
contributed by Jackson (1956), Held et al. (1963), Kao and Queyranne (1982),
Held and Karp (1962), and Schräge and Baker (1978). Specialized branch and
bound approaches (those not based on general IP theory) were contributed by
Jackson (1956), Hu (1961). Van Assche and Herroelen (1979), Johnson (1981),
and Wee and Magazine (1981).

Besides the reasonable progress in the development of optimal seeking ap­
proaches, considerable ad*ancement has been achieved in the development of
heuristic approaches to soh’e the SMD problem as well. According to a study
by Talbot et al. (1986), Hoffman’s Precedence Matrix approach (1963), Dar-
El’s MALB (1973), and Dar-El and Rubinovitch’s MUST (1979) are the most
promising of the heuristic techniques for the SALB problem. Baybars’ LBHA,
devised more recently than the heuristics mentioned before, is an efficient
heuristic, as well [4]. It consists of several reduction phases, i.e. reduction via
node elimination, determining the sets of tasks that are likely to be in the same

station, decomposing the network, and determining feasible sub-sequences of

tasks. After pre-processing the problem by the reduction phases the heuris­
tic solution phase starts, which is a backward procedure that starts with the
last tasks in the precedence diagram and bases the assignment decisions on
the principle that last tasks are likely to be assigned to the last stations along
the line. Baybars presents a comparison of his heuristic with Tonge’s (1965),

Moodie and Young’s (1965), and Nevins’ (1972) heuristics on Tonge’s prob­
lems. We will also present our results on the same problem set, and compare
with the other heuristics in the later chapters.

The SMS problem formulation introduces the task time variability. The
MMD problem category assumes deterministic task times, but introduces the
concept of an assembly line producing multiple products. Multi-model lines
assemble two or more products separately in batches. In mixed-model lines,
single units of different models can be introduced in any order or mix to the
line. Since multi-model lines are equivalent to mixed-model lines for batch size
equals to one, they are classified in one category. MMS differs from MMD in
that stochastic task times are allowed.

CHAPTER 2. LITERATURE REVIEW 6

2.2 Genetic Algorithms

In this section, we give a brief review of genetic algorithms (GAs) together
with their recent applications to manufacturing problems.

GAs are adaptive methods which may be used to solve search and optimiza­
tion problems. They are based on genetic processes of biological organisms.
Over many generations, natural populations evolve according to the principles
of natural selection and survival of the fittest. By mimicking this process, GAs
are able to evolve solutions to real life problems, if they have been suitably
encoded.

In nature, individuals who are most successful in surviving will have rel­
atively a large number of offsprings. Poorly performing individuals, on the
other hand, will produce less number of offsprings, or even none after some

point in time. This means that the genes from the highly adapted, or fit in­
dividuals will spread to an increasing number of individuals in each successive
generation. The strong characteristics from different ancestors can sometimes
produce super-fit offspring, whose fitness is gi'eater than that of either par­
ent. In this way, species evolve to become more and more well suited to their

CHAPTER 2. LITERATURE REVIEW

environment.

GAs use a direct analogy to natural behavior. They work with a popula­
tion of individuals, each representing a possible solution to the given problem.
Actually, individuals are represented by their "chromosomes” that carry their
characteristic specifications on the "genes” which are ordered on chromosomes.
Each chromosome is assigned a "fitness score” according to the quality of the
solution it provides to the problem. The highly fit chromosomes are given op­
portunity to reproduce by cross breeding or "recombining” with other individ­
uals in the population. This produces new individuals as offspring, which share
some features taken from each parent. The least fit members are less likely to
get selected for reproduction, so they die out. The new generation contains
a higher proportion of the characteristics possessed by the superior members
of the previous generation. In this way, over many generations, superior char­
acteristics are preserved and individuals of the population are enhanced on
the average due to their fitness score. Hence, if the GA is well designed, the
population will converge to an optimal or near-optimal solution at the end.
Holland (1975) showed that a computer simulation of this process of natural
adaptation could be employed for solving optimization problems. Goldberg
(1989) provides a comprehensive introduction to the theory, operation, and
application of GAs in search, optimization and machine learning [15].

The power of GAs comes fi'om the fact that the technique is robust, and can
deal with a wide range of problem areas. GAs are not guaranteed to find the

optimal solution but they are generally successful at finding acceptable good
solutions to problems acceptable quickly. If specialized techniques exist for
solving particular problems, they are likely to outperform GAs in both speed
and the accuracy of the final result. The main ground for GAs is then, is in
difficult areas where no such techniques exist. On the contrary, even where
existing techniques work well, impro\’ements have been made by hybridizing

them with GAs.

CHAPTER 2. LITERATURE REVIEW

2.2.1 Basic Structure of a GA Process

The standard (or classical) GA algorithm can be represented as follows.

The following notations are used in the algorithm:

Rx denotes the crossover rate,

Rm denotes the mutation rate, and

Np denotes the population size.

A lgorithm 2.1 : Classical GA

begin

Generate initial population

Compute fitness of each individual

while Termination-Criteria not reached do

Select 0.5 x Rx x Np pairs of parents from old generation

for mating

Recombine the selected pairs to give offsprings

Mutate Rm x Rx x Np offsprings chosen at random

Compute the fitness of the offsprings

Insert, offsprings in the new generation

end

Choose the best-fit chromosome and the corresponding solution

end.

2.2.2 Coding

Before a GA can be run. a suitable coding for the problem must be devised.

It is assumed that a potential solution to the problem may be represented as

a set of parameters. These parameters (genes) are joined together to form a
string of values (chromosomes). The ideal is to use a binary alphabet for the
string but there are other possibihties, too.

In genetic terms, the set of parameters represented by a particular chromo­
some is referred as a genotype. The genotype contains the information required
to construct an organism which is referred to as the phenotype. The same terms
are used in GAs. The fitness of an individual depends on the performance of
the phenotype. This can be inferred from genotype.

2.2.3 Fitness Function

GAs require a fitness function, which assigns a figure of merit to each coded
solution. Given a particular chromosome, the fitness function returns a single
numerical fitness which is supposed to be proportional to the utility or ability
of the individual represented by that chromosome.

2.2.4 Reproduction

Parents are selected randomly from the population using a scheme which favors
the more fit individuals. Having selected two parents, their genes are recom­
bined on a new chromosome, typically by using the mechanisms of crossover
and mutation.

Crossover

CHAPTER 2. LITERATURE REVIEW 9

We will explain the crossover operator by means of an example: One popular
crossover mechanism is the uniform crossover technique. In this technique, each
gene in the offspring is created by copying the corresponding gene from one or
the other parent, chosen according to a randomly generated crossover mask.
The crossover mask consists of ones and zeros. If the number on the mask

CHAPTER 2. LITERATURE REVIEW 10

corresponding to a gene is zero, then that gene is transported from the first
parent, otherwise the corresponding gene from the second parent is transported
to the offspring chromosome. This process is presented in Figure 2.3. The
process is repeated with the parents exchanged to produce another offspring.
A new crossover mask is randomly generated every time the crossover process
is repeated.

Crossover Mask

Parent 1

Offspring 1

Parent 2

Figure 2.2: Uniform Crossover Mechanism

M utation

Mutation is applied to each individual after crossover. It randomly alters each
chromosome with a small probability, referred to as the mutation rate. Despite
its generally low probability of use, mutation is a very important operator. Its
optimum probability is much more critical than that of crossover. Mutation
provides a small amount of random search, and helps ensme that no point
inside the search space has zero probability of being examined. An example

to mutation is exchanging the places of two randomly selected genes on a par­

ticular chromosome. For instance, if this mutation operator W£is applied to

CHAPTER 2. LITERATURE REVIEW 11

Parent 1 in Figure 2.3, assuming that the fourth and eighth genes are ran­
domly selected for exchanging their places, the mutated chromosome would be
1011001010.

2.2.5 Genetic Algorithm Applications

Genetic algorithms are applied to various kinds of manufacturing problems.
Some very recent examples from different fields of manufacturing are as fol­
lows: Suresh et al. (1995) devised a GA for facility layout, and showed that
the population maintained by the GA for facility layout should consist of fea­
sible solutions only [36]. Bullock et al. (1995) underlined the potential of the
genetic algorithms both as a high-level decision support technique during the
preliminary stages of the design process and as a detail design of complex com­
ponents [7]. Chen and Tseng (1996) presented the planning of a near-optimum
path and location of a workpiece (i.e. robot arm) by genetic algorithms [9].
Kamhawi et al. (1996) addressed the feature sequencing problem in the Rapid
Design System, that is a feature-design system that integrates product design
and process planning [25]. Gupta et al. (1996) proposed a GA based solution
approach to address the machine cell-part grouping problem [16]. Gupta et
al. (1995) used a GA approach to solve a problem formulated which mini­
mizes the intercell and intracell part movements in cellular manufacturing [17].
Wellman and GemmiU (1995) applied GAs to the performance optimization
of asynchronous automatic assembly systems [46]. Starkweather et al. (1991)
devised a genetic recombination operator for the traveling salesman problem,
which is proved to be superior to previous genetic operators for this problem
[35]. Davis (1985), devised a GA for job shop scheduling [13].

2.3 ALB and G A

There are only three articles in literature which deals with ALB using GAs.
While one of them deals with the deterministic (SMD) SALB problem, the

CHAPTER 2. LITERATURE REVIEW 12

other two are concerned about the stochaistic (SMS) case. We present a com­
prehensive review of these articles in chronological order.

Leu et al. (1994) has introduced the concept of GAs to the SALE problem
[29]. In this study, the authors used heuristic solutions in the initial population
to obtain better results than the heuristics. They also demonstrated the pos­
sibility of balancing assembly lines with multiple criteria and side constraints.
According to the authors, the GA approach has the following advantages: i)
GAs search a population rather than a single point and this increases the odds
that the algorithm will not be trapped in a local optimum since many solutions
are considered concurrently, and ii) GA fitness functions may be of any form
(i.e., unlike gradient methods that have differentiable evaluation functions) and
several fitness functions can be utilized simultaneously.

The coding of the solution to the ALB problem is done by representing
the number of the tasks on a chromosome in the order that they take place
in the assembly line. For example, ” 1 3 6 5 2 7 4” can be a chromosome for
a 7 task ALB problem. Then, stations are formed such that the first station
is filled vnth the tasks on the chromosome, starting with the first task and
proceeding with the next ones until the station time reaches the cycle time.
This procedure is repeated in the same way for the other stations imtil every
task on the chromosome is placed in a station, e.g. ” 13 6” (station time = 25)
and ” 5 2 7 4” (station time = 19) are the two stations for a cycle time of 25,
for the above example. The fitness functions used by Leu et al. (1994) are: i)

Zi = smoothness index = [C — Sk) /n, where n is the niunber of stations,
fc=l n

Sk is the A:th station time, and C is the cycle time, ii) = Y{ C- Sk) /n ,
k = \

iii) z == 2y/z{ -f 22 to demonstrate balancing with multiple criteria, and iv)
Y(c-s^)

efficiency = 1 - fc=l
n x C

The population revision mechanism used by the authors is similar to Whit­

ley and Kauth’s (1988) GENITOR [48]. The steps of the algorithm of Leu et

al. (1994) are as follows:

CHAPTER 2. LITERATURE REVIEW 13

A lgorithm 2.2 ; Modem GA

Generate initial population

repeat

Choose two parents by roulette wheel selection

Decide whether to recombine or mutate

Form two offsprings by recombination or one by mutation

Replace parents with offsprings if they are outperformed by offsprings

until Stopping-Criterion is reached

The initial population is generated randomly by assuring feasibility of prece­
dence relations. Roulette wheel selection is a procedure that selects a chromo­
some from a population with a probability directly proportional to its fitness
(i.e., the best-fit chromosome has the greatest probability of being selected
amongst a population). The decision between recombining or mutating de­
pends on a certain probability, i.e., if the probability of recombining is 98%
then the probability of mutating is 2%. Replacing a parent with ein offspring
only if the offspring is better than the parent is called elitism. Elitism rule will
be discussed in detail in Chapter 4. The crossover (recombination) operator is
a variant of Davis’ (1985) order crossover opevatox [12]. The two parents that
are selected for crosso\'er are cut from two random cut-points. The offspring
takes the same genes outside the cut-points at the same location as its parent
and the genes in between the cut-points are scrambled according to the order
that they have in the other parent. This procedure is demonstrated in Figure
2.3. The major reason that makes this crossover operator a very suitable one
for ALB is that it assures feasibility of the offspring. Since both parents are fea­
sible and both offsprings are formed without violating the feasibility sequence
of either parent, both children must also be feasible. Keeping a feasible popu­
lation is a key to ALB problem since preserving feasibility drasticedly reduces

computational effort.

The mutation operator of Leu et al. (1994) is scramble mutation, that is,
a random cut-point is selected and the genes after the cut-point are randomly

CHAPTER 2. LITERATURE REVIEW 14

Parent 1

cut-point 1 cut-point 2

© 0 :0 0 © ; © ©

Parent 2 0 © © © (D ® ©

Offspring 1 0 ® : © © © : ® ©

Offspring 2 ®®®©®0 ®

Figure 2.3: Crossover Operator of Leu et al. (1994)

replaced (scrambled), assuring feasibility. For example, if parent 1 in Figure
2.3 is mutated with the same cutpoint as cut-point 1 then tasks 1 and 2 stay
in their current places but tasks 3, 4, 5, 6, and 7 are randomly replaced by
assuring feasibility of precedence constraints. Elitism is applied to the mutation
procedure as well, i.e., a chromosome is mutated only if mutation improves its
fitness value.

Anderson and Ferris (1994) demonstrated that GAs can be effective in the
solution of combinatorial optimization problems, working specifically on the
ALB (SALE) problem [1]. In the first part of the paper, they describe a fairly
standard implementation for the ALB problem. Experiments are reported to
indicate the relative importance of crossover and mutation mechanisms and the
scaling of fitness values. In the second part, an alternative parallel version of the
algorithm for use on a message passing system is introduced. The authors note
that they did not expect a GA to be as effective as some of the special purpose

heuristic methods for the ALB problem. Their aim is not to demonstrate the
superiority of a GA for ALB problem, but rather to give some indication for
the potential use of this technique for combinatorial optimization problems.

They coded the problem in a different way than Leu et al. (1994). The

CHAPTER 2. LITERATURE REVIEW 15

P(1) P(2) P(3) P(4) P(5)P(6) P(7) P(8)
: ·>*

^5 C4 : ' '
Cs C7 C2C3 Ce

X+1 x+2 x+3 x+4 x+5 x+6 x+7

P(i) = Probability of selectirtg ith chromosome [[]] Not seiected
X = Uniform random number on [0,1] QJ Selected

C , = Chromosome i

Figure 2.4: Stochastic Universal Sampling

solution is represented by a string of numbers such that the number in the
ith place of the string is the station to which the ith operation is to be as­
signed. Stochastic universal sampling is used as the selection procedure. That
is, assigning each chromosome an interval proportional to its fitness (i.e., as in
roulette wheel selection procedure) such that the total length of the intervals
is N, and connecting all the intervals side by side in random order such that
they form an imaginary line. Then a random number x is chosen uniformly on
[0,1] and the line of internals is marked at points x ,x + 1, ...x + N. Finally, the
chromosomes corresponding to the marked intervals are put in the mating pool.
This procedure guarantees that the more-than-average-fit chromosomes are se­
lected for recombination, whereas roulette wheel selection does not. Stochastic
random sampHng is demonstrated by means of an example in Figure 2.4. The
eight tasks of the assembly line are shuffled and arranged in random order as

3, 5, 4, 1, 8, 7, 2, 6. They correspond to an interval proportional to their prob­
ability of selection, P(l) , P(2), ..., P(8), respectively. If the total length of the
intervals is 8 then the average length of the intervals is 1, that is equal to the
sampling inter\^l. Hence, the tasks that have selection probabilities above the

CHAPTER 2. LITERATURE REVIEW 16

average selection probability, i.e., tasks 1, 2, 3, are guaranteed to be selected.
On the other hand, some of the tasks that have selection probabilities below
the average are not selected, i.e., tasks 4 and 8. The tasks that are selected
by stochastic reindom sampling are placed in the mating pool in the order that
they appear in Figure 2.4 (i.e., 3, 5, 1, 7, 2, 6). For instance, if four chromo­
somes are required to be placed in the mating pool, then the tasks 3, 5, 1, 7 are
placed. The authors compared it with another commonly used method called
"remainder stochastic sampling without replacement” and found that this pro­
cedure is similar in performance to stochastic universal sampling. However, a
comparison with roulette wheel selection or any other selection procedure is
not included in this paper.

Infeasible solutions (chromosomes) are allowed in the population but the
population is forced to feasibility by assigning high penalty costs to the infea­
sible chromosomes. The standard single point crossover operator is used, that
is, two offsprings are obtained from two parents by choosing a random point
along the chromosome, both chromosomes are splited at that point, and then
the front part of one parent is joined to the back part of the other parent and
vice versa. The mutation operator randomly increases or decreases the value
of one gene of a chromosome by one unit (i.e., the task that is represented by
that gene is transferred to a neighbor station). Elitism is used in this study,
but in two different ways: i) the best fit chromosome is transferred to the next
population so that the final generation is guaranteed to contain the best solu­
tion ever found, and ii) if any of the offsprings perform worse than the worst
individual in the previous generation then that offspring is not retained and,
instead, one of the parents is allowed to continue in the next generation. While
the first type of elitism is desirable from the point of view of assessing the rel­
ative performance of different versions of the GA, the second type is effective
in speeding up the convergence of the algorithm. The algorithm stops after a
certain number of iterations (i.e., 350).

Suresh et al. (1996) used GAs to soh^ the SMS type ALB problem [37].

The ability of GAs to consider a variety of objective functions is imposed as
the major feature of GAs. A modified GA working with two populations, one

CHAPTER 2. LITERATURE REVIEW 17

of which allows infeasible solutions, and exchange of specimens at regular in­
tervals is proposed for handling irregular search spaces, i.e., the infeasibility
problem due to precedence relations. The authors claim that a population of
only feasible solutions would lead to a fragmented search space, thus increasing
probability o f getting trapped in a local minima. They eilso state that infeasible
solutions can be allowed in the population only if genetic operators can lead
to feasible solutions from an infeasible population. Since a purely infeasible
population may not lead to a feasible solution in this particular problem, two
alternative populations, one purely feasible and one eiUowing a fixed percent­
age of infeasible chromosomes, is combined in a controlled pool to facilitate
the advantages of both of them. Certain chromosomes are exchanged at reg­
ular intervals between the two populations. The two chromosomes that are
exchanged have the same rank of fitness value in its own population. Experi­
mental results on large sized problems showed that the GA working with two
populations gives better results than the GA with one feasible population.

The coding scheme used by Siu'esh et al. (1996) is the same as Leu et al.’s
(1994). The SMS type problem is converted into SMD by assuming determin­
istic station times calculated as follows: ST = Smean + crVSvar > where ST is the
station time for each station, Smean is the sum of the means of tasks assigned to
that station, a is the confidence coefficient for normally distributed task times,
and Ŝ ar is the sum of the variances of tasks assigned to that station. Moodie

and Young’s (1965) smoothness index {SI = JZ {Smax — Sk) /n, where n is
fc=l

the number of stations, S^ax is the maximum station time, and Sk is the fcth
station time), and Reeve’s (1971) objective to minimize the probability of line
stopping are used as the objective functions. The probability of a station not
exceeding the cycle time is denoted by Pg. It is the area under the normal
curve corresponding to the value of z given by z = probability

n
of line stopping is given by P = (1 — f l Ps)·

5=1

Single point conventional crossover mechanism is used. Then a correction
algorithm is applied to the infeasible offsprings in the purely feasible population
to meike them feasible. Two kinds of mutation is used: i) swapping two tasks
in different stations, and ii) interchanging all the tasks of two different stations.

CHAPTER 2. LITERATURE REVIEW 18

Feasibility is assured in the mutation operation by checking if the cycle time
or the precedence constraints are violated.

2.4 Motivation and Organization

As stated above, there are many heuristics and exact methods proposed for
the ALB problem. Because of the NP hard characteristic of the ALB problem,
it has not been possible to develop efficient algorithms for obtaining optimal
solutions [14]. Hence, numerous research efforts have been directed towards the
development of computer efficient heuristics. Intelligent heuristic approaches
(i.e., different than the traditional heuristics that work basically with priority
rules) such as GAs, started to emerge recently, i.e., since 1994. The limited
number of GA studies on the ALB problem have been helpful in demonstrat­
ing that GA is a promising heuristic for the ALB problem and that GAs are
superior to traditional heuristics in certain respects such as multi objective
optimization and flexibility due to change in problem’s constraints. These
properties of GAs are not limited to only the ALB problem. In this study, we
direct our research towards exploiting the characteristics of the ALB problem
to improve the GA structiue specially designed for the ALB problem. After
providing comprehensive information about our initial GA structure in Chapter
3, we explain the proposed GA approach in Chapter 4.

We make use of another characteristic of the ALB problem in Chapter
5. The ratio of the number of precedence relationships are compared to the
maximum possible number of precedence relationships, i.e., flexibility ratio (F-
Ratio). We observe that the use of elitism rule contributes to the GA, but in
some problems with high ratios, strict elitism causes early convergence. Hence,
we redirect our study towards relaxing the elitism rule with the simulated
annealing idea.

There are tw'o major ŵ ays of moving from one population to its neighbor

population in literature, that can be classified as the classical GA and the

CHAPTER 2. LITERATURE REVIEW 19

modem GA structures. We initially use the modem GA structure, but we code
the classical structure as well, and test which structure is more appropriate for
the ALB problem in Chapter 6. This comparison has not been done before in
GA literature either for the ALB problem or for any other problems.

Finally, we solve two well known ALB problems (i.e., Kilbridge and Wester
(1961) and Tonge (1961)) and compare our results to the best performing
heuristics in literature in Chapter 7.

Chapter 3

THE PROPOSED GENETIC
ALGORITHMS

As it has been mentioned in Chapter 2, there are two kinds of GA structures
in the literature: i) classical GA (i.e., Algorithm 1.1), and GENITOR type
or modern GA (i.e., Algorithm 1.2). In this study, we first use a modern
GA structure which forms the skeleton of our GA. While the classic structure
performs many crossovers to generate the consecutive population, our GA per­
forms only one recombination operation between two iterations. Because of the
reason that our first algorithm resembles GENITOR’s structure, we will refer
to it as GENITOR type (or modern GA) from now on. Hence, the GA that is
mentioned in Chapter 4 and Chapter 5 has the GENITOR type structure.

Although both structures have been used before in many studies, they have
not been compared. We make this comparison and discuss the advantages
and drawbacks of both structures in Chapter 6. We present the algorithms as
follows:

Algorithm 3.1 ; Classical GA

Generate initial population

repeat

20

CHAPTER 3. THE PROPOSED GENETIC ALGORITHMS 21

TYansfer the best (1 — R^) x 100 chromosomes to the next population

repeat

Choose two parents from the current population for crossover

Include the offsprings in the next population

until Next population is full

Apply mutation to one of the chromosomes with Rm probability

until Stopping-condition is reached

Take the best-fit chromosome of the final population as the solution

Algorithm 3.2 ; Modem GA

Generate initial population

repeat

Choose two parents for recombination

Apply mutation with R^ probability or crossover with 1 — probability

Replace parents with offsprings

until Stopping-condition is reached

Take the best-fit chromosome of the final population as the solution

3.1 The Characteristics of the Proposed GAs

The specific characteristics of the two algorithms like the crossover operator,
mutation operator, fitness function, etc. are the same. Some of these character­
istics are devised with the inspiration taken from current examples in literature
that are proved to be successful. We describe these characteristics as follows:

1. Coding: Each task is represented by a number that is placed on a string

of numbers (i.e., chromosome), such that the string size is the number of
tasks. The tasks are ordered on the chromosome relative to their order
of processing. Then the tasks are divided into stations such that the

CHAPTER 3. THE PROPOSED GENETIC ALGORITHMS 22

total of the task times in each station does not exceed the cycle time.
For example, the first task on the chromosome is assigned to the first
station, and if the total of the first and the second task’s times does
not exceed the cycle time then the second task is assigned to the first
station, otherwise it is assigned to the second station. The task to station
assignment procedure goes on like this until the last task is assigned to
the final station. The coding scheme is demonstrated in Figure 3.1.

Assembly Line

Chromosome Representation
2 1--------------

! 1 5 3 7 4 6

Figure 3.1; Coding the Chromosome Representation of an Assembly Line

2 Fitness function: The objective in a type-1 ALB problem is clearly to

minimize the number of stations, but given two different solutions with

the same number of stations, one may be "better balanced” than the
other. For example, a line with three stations may have stations times as
30-50-40 or 50-50-20. We consider the 30-50-40 solution to be superior
(better balanced) to the 50-50-20 solution. Hence, we used a fitness

CHAPTER 3. THE PROPOSED GENETIC ALGORITHMS 23

function that combines the two objectives (i.e., minimizing the number
of stations and obtaining the best balanced station):

Fitness Function = 2i iELl (-̂ max - S„Y , E L i - Sk)+V n n
where n is the number of stations, 5max is the maximum station time, and
Sk is the A:th station time. The first part of our fitness function aims to
find the best balance among the solutions that have the same number of
stations while the second part only aims to minimize number of stations
in the solution.

3 Crossover & Mutation: We use a variant of ’’ order crossover operator” ,
and scramble mutation operator. Both of these operators create feasi­
ble offsprings and they are the same as Leu et al.’s [29] crossover and
mutation operators. (Refer to Chapter 2 for detailed explanation.)

4 Scaling: The fitness scores need to be scaled such that the total of the
scaled fitness scores are equal to 1, in order to activate the selection pro­
cedure (i.e., roulette wheel selection). Since our objective is to minimize
the fitness scores, we need to assign the highest scaled fitness score to
the lowest fitness score and vice versa, to assign a probability of selec­
tion that is proportional to the fitness of chromosomes. We achieve this
by subtracting each fitness value from the double of the highest (worst)
fitness value in the population and assigning the subtrahend as the new
fitness value of that chromosome. Then, by dividing each new fitness
score by the total of new fitness scores, we scale the fitness scores such
that their total equals to 1.

5 Selection Procedure: We use a well known selection procedure called
’’ roulette wheel selection” . Fitness scores are scaled as described above,
eind each chromosome is assumed to consist of an interval proportional to
its scaled fitness score, all intervals placed next to each other on the [0,1]
interval. Then, a uniform random number in the [0,1] interval is gener­

ated, and the chromosome which is assigned to the interval corresponding
to the random number is selected. This procedure selects chromosomes

proportional to their fitness scores.

CHAPTER 3. THE PROPOSED GENETIC ALGORITHMS 24

6 Stopping Condition: The algorithm stops after a certain number of iter­
ations. We used 500, 1000, and 2000 values for the number of iterations
parameter, but we only use the 500 value in Chapters 5 and 6.

3.2 Classical G A vs Modern G A

The basic difference between the classical and modern GA structures is the
number of crossovers at each iteration. While the classical GA performs a
number of crossovers between a fixed proportion of the members of its popula­
tion, the modem GA performs only one crossover between two of its members.
Additionally, a group of best performing chromosomes of the current pop­
ulation is transferred to the next population in classical GA. Although the
classical approach seems to provide a more comprehensive search by definition,
we observed that the modern approach is able to compete with the classical
approach, besides it requires much less CPU time. The details of a comparison
between the classical and modern GA structures is given in detail in Chapter
6.

3.3 Dynamic Partitioning

Although there are many attempts to improve the performance of GAs for
ALB (i.e., working ■with two populations [37], including heuristic solutions
in the initial population [29], working with multiple evaluation criteria [29,
37], controlling the convergence speed by adjusting the scaling parameter and
parallel implementation of the algorithm [1]) in the literature, no attempts have
been taken to reduce the problem size prior to or during the solution procedure.
Reduction of the problem size prior to the solution procedure have been done in
some heuristics (i.e.. [4]). but reduction during the solution procedure has not
been implemented in any of the heuristics or random search algorithms before.

Therefore, we introduce the idea of dynamic partitioning, that is, reducing

CHAPTER 3. THE PROPOSED GENETIC ALGORITHMS 25

the problem size while the algorithm is running, which is a new development
in both the ALB and the GA literature. We applied dynamic reduction by
partitioning the chromosomes of the GA population, and freezing some parts
of the chromosomes due to some freezing criteria (i.e., see Chapter 4) and
continuing the remaining iterations with the unfrozen part. Hence, we call this
reduction process as ’’ Dynamic PArtitioning (DPA)” . We applied DPA on the
modem GA structure and we achieved improved results. DPA process and its
experimentation are described in detail in Chapter 4. DPA has been applied
to the modern GA in Chapter 4, but its implementation on the classical GA
is discussed as well in Chapter 6. The modern GA is modified due to the
integration with DPA as follows:

A lgorithm 3.3 ; Modem GA with DPA

Generate initial population

repeat

Choose two parents for recombination

Apply mutation with R̂ n probability or crossover with 1 — /2^ probability

Replace parents with offsprings

if the DPA criteria is satisfied then

Freeze a set o f tasks (genes)

Duduce the frozen tasks from all the chromosomes in the population

until Stopping-condition is reached

Take the best-fit chromosome of the final population as the solution

The classical GA is modified in a similar manner, so we do not include the

modified algorithm here.

CHAPTER 3. THE PROPOSED GENETIC ALGORITHMS 26

3.4 Elitism W ith Simulated Annealing

The elitism rule has been applied in many GAs before, but its effect on the
performance of the ailgorithm has not been discussed. We do a comprehensive
study of the elitism rule in Chapter 5, and we also introduce the concept of
relaxing the elitism rule by using the Simulated Annealing (SA) idea. Just like
the fitness score scaling factor, elitism is a factor that affects the convergence
of the GA population. If elitism is applied without any control parameter, the
algorithm may be induced by the negative effects of early or late convergence.
Hence, we start with no elitism and then increase the elitism level iteration
by iteration, controlling its level by SA. The concept of SA and its application
to elitism is discussed in detail in Chapter 5. Thus, we only present the basic
modifications on the modern GA structure in this chapter as follows:

A lgorithm 3.4 ; Modem GA with SA controlled elitism

Generate initial population

Set Pg equals to 1

repeat

Choose two parents for recombination

Apply mutation with Rm probability or crossover with 1 — Rm probability

Obtain two offsprings by crossover or one by mutation

Apply following to each offspring

if the offspring is better than its parent then

Replace parent with its offspring

else Replace parent with its offspring with Re probability

Reduce Pe

until Stopping-Condition is reached

Take the best-fit chromosome of the final population as the solution

Chapter 4

D YN AM IC PARTITIONING

Dynamic PArtitioning (DPA) is a method that modifies chromosome struc­
tures of Genetic Algorithms (GAs) in order to save from GPU time and to
achieve improved results, if possible. DPA modifies the chromosome structure
by freezing the tasks that are allocated in certain stations that satisfy some
criteria, and continues with the remaining iterations without the frozen tasks.
Hence, DPA allows the GA to focus on the allocation of the remaining tasks
during the search, and saves a considerable amount of computation time. In
what follows, we use ’’without DPA” to refer to the traditioneJ GA.

4.1 Motivation

Although a typical GA developed for assembly line balancing (ALB) problem

is a fast problem solver (our GA solves a 50 task problem after 500 iterations
in approximately 1.5 seconds on a pentium 133 PC), it needs an experimental

design of several factors in order to tune the parameters for each type of ALB
problem. Hence, it has to be run a lot of times, in the order of ten thousands,
for parameter timing, and this requires a significant amount of CPU time in the
order of days. Therefore, our motivation for devising the DPA methodology is

to save a considerable amount of CPU time even if we have to sacrifice some

27

CHAPTER 4. DYNAMIC PARTITIONING 28

from the GA’s performance, i.e. the final fitness score. In fact, we found out
that the performeince improves significantly as well, while a significant amount
of CPU time saving is achieved. We claim that the underlying reason for the
performance improvement is that DPA activates the GA to work out more
effectively with the remaining ” a fewer number of tasks” after each freezing or
partitioning.

4.2 Implementation

For the sake of continuity between the remaining tasks, we consider freezing
the tasks that are allocated at the first and the last stations, (i.e., the genes at
the beginning and at the end of the chromosome are considered as potentially
freezable). The second criteria for freezing is to achieve an optimal station time
at the potentially freezable stations. This optimality condition depends on the
fitness function. The freezing criteria that best fits to our fitness function.

=4E L l (^ r n a x Sk)^ ^
N N

IS < DPC, i = l,n ; D PC = 0.01,0.02,0.03,...

where

n = number of stations

Si
S* = where n* is the minimum available number of stations, i.e.

n = C T

The DPC {Dynamic-Partitioning-Constant) parameter enables us to fine-

tune our algorithm. In other words, DPC adjusts the accuracy of the station
freezing criteria. When it increases, the average number of partitionings per
run also increases. Hence, we save more in computation time but we may end
up with a poorer solution (i.e. worse final fitness scores) due to the freezing

criteria.

CHAPTER 4. DYNAMIC PARTITIONING 29

As described above, the two criteria for DPA are checked at the end of each
iteration. If the first or the last station satisfies the criteria, then that (those)
station(s) is (are) frozen and the GA goes on to the next iteration with the
unfrozen tasks only. Since the length of the chromosome decreases after each
freezing (partitioning), the GA program spends less time per iteration for the
remaining iterations.

The population size, i.e. the number of chromosomes in the GA population,
stay fixed at the starting population size throughout each run, until the last
iteration. At each iteration, one of the chromosomes in the population gives
the best solution, thus the best fitness score. This chromosome is called the
best-fit chromosome. After each iteration, the best-fit chromosome is checked if
it satisfies the DPA criteria. If it does, DPA is applied to the best-fit chromo­
some and the frozen genes (tasks) are deduced from all the other chromosomes
of the population. This does not create any infeasibility for the precedence
constraints because the frozen tasks are either at the beginning or at the end
of the partitioned chromosome. DPA mechanism is illustrated by means of an
example in Figure 4.1. In this example, DPA criteria are satisfied for both the
first and the last stations at the 45th iteration. Hence, tasks 1, 2, 13, 15, and
16 are frozen. Then, the GA balances the remaining eleven tasks, disregarding
the frozen five. At the 136th iteration, only the first station satisfies the DPA
criteria, and hence the tasks belonging to this station (i.e., tasks 7, 11) are
frozen. The frozen tasks are then added on to the best-fit chromosome of the
final iteration in the order that they were frozen.

During the early stage of the research, it is presumed that if we apply DPA
starting with the first iteration then we might do some early freezing which
would bind us to a local optima which is not the optimal solution. Therefore,
we use a warm-up period that allows the initial random population to achieve

a considerable fitness score before partitioning starts.

CHAPTER 4. DYNAMIC PARTITIONING 30

First Station Last Station

Iteration: 136

Iteration: 203

Iteration: 500

Solution

Figure 4.1: Dlustration of Dynamic Partitioning

4.3 Experimentation

To investigate the utility of DPA, we solve 30 different ALB problems that
are generated the same way as in previous studies in literature (i.e., Leu et
al. (1994)). In addition, we measure the effects of different DPA and GA
parameters.

Thirty problems which consist of 50 tasks are randomly generated in three
sets, each set generated around a different F-Ratio. The first set is generated
at approximately 10% F-Ratio, the second one at approximately 50%, and the

third at approximately 90%. F-Ratio is a measure of the precedence relations
among the tasks, that may take a value between 0 and 1, indicating how com­
plicated the ALB problem is, according to the number of existing precedence
relations compared to the total of available precedence relations in a problem.

CHAPTER 4. DYNAMIC PARTITIONING 31

The formula to calculate F-Ratio for an n-task problem is as follows:

F — Ratio =
2 X {number o f I's in the precedence matrix)

n{n — 1)

where the precedence matrix is an upper triangular binary matrix with {i,j)th
entry equals to one if task j is a follower of task i on the precedence diagram,
zero otherwise.

The teisk times of all thirty problems are generated from the binomial dis­
tribution (n=30, p=0.25). Zero duration task times are increased to one time
unit. This choice has a foimdation from the fact that this particular distri­
bution models the task times of the actual ALB problems. These parameters
are also the choices of Leu et al. [29] and Talbot et al. [40]. In fact, Talbot
et al. [[40], pp 438-439] states that ” an investigation of actual line balancing
problems appearing in the open literature suggests [the above] parameters for
generating task times.” Note that this particular distribution is not symmet­
ric; this is not surprising considering that the binomial is skewed in such a way
as to give a few ’’ long” task times, relative to other task times. Leu et al’s
(1994) comment on this choice is as follows: ’’ Any choice may affect problem
difficulty considerably. Although we do not claim generalizability of our re­
sults beyond the problems studied, we think that the effect of distribution and
parameters would be more pronounced with conventional heuristics than with
the GA approach developed here.” Finally, we choose the cycle time as 56,
which is approximately twice the average of the maximum task times of the
thirty problems.

We examine four DPA and GA parameter settings, namely DPG, warm up
period (WU), number of iterations (ITER), and population size (POPSIZE).
DPG and warm up period are the two DPA parameters. Number of iterations
and population size are the two GA parameters that are included in the analysis

to see if they affect the results. ” GA with DPA” and ” GA without DPA” are
the two abbreviations we use to refer to the GA program which does not use the
dynamic partitioning function and the GA program which uses the dynamic

partitioning function, respectively.

CHAPTER 4. DYNAAHC PARTITIONING 32

The first factor, DPC, has four levels: 0, 0.01, 0.02, and 0.03. When
the DPC is at 0 level, the GA works as if without DPA. As we change the
value of DPC from 0 to any other number (between 0 and 1) we turn on the
DPA fimction, but as we switch between any two numbers other than zero,
this affects the fine tuning of the DPA criteria, or the trade off between the
computation time savings and the performance of the GA with DPA.

The second factor is the warm up period. This factor has four levels: 0, 25,
50, 75, and 500. DPA is applied with no warm up period at the 0 level. We
use 500 as the DPA level to observe the effects of a very long warm-up period.
Obviously, when the number of iterations factor is also at the 500 level, we
observe no DPA, that is. this factor has no effect when DPC is at 0 level.

The third factor is the number of iterations. The following three levels are
used: 500, 1000, and 2000. Finally, the fourth factor is the population size
with four levels at 20, 30. 40, and 50. These two factors were initially expected
to affect both the GA with DPA and the GA without DPA performances.
Although mutation rate could also be selected as a parameter, we prefer to
keep it fixed at a reasonable level (0.05) to save from additional computation
time. According to our previous experiment, 0.05 level is the best mutation
level among 0, 0.025, 0.05, 0.075, and 0.1 levels, for GA without DPA. Hence,
we assume that it is a reasonable level for all levels of the DPC factor, and we
do not observe the effect of mutation factor on DPA.

As we stated eeirlier. the 30 problems are generated at three F-Ratio levels
(i.e., 10%, 50%, and 90%). We were planning to include F-Ratio as a fifth
factor in this experimental design, but since the average fitness scores observed
at different F-Ratio levels differ a lot, we do not include it as a factor in this
design. Hence, we observe the effects of the other four factors at three F-
Ratio levels separately from each other. However, we also perform another
experiment afterwards, to observe the effect of F-Ratio factor on the fitness
scores.

In the experiments, we take ten replications of each problem at each com­
bination of factor levels, by using the same set of ten random seeds. Therefore,

CHAPTER 4. DYNAMIC PARTITIONING 33

we solve 30 (problems) x 10 (replications) x 4 (DPC levels) x 5 (warm-up
levels) X 3 (iteration levels) x 4 (population size levels) = 72000 problems.
The Anova test results in terms of the fitness score and the computation time
are as follows:

4.3.1 ANOVA Results

As it can be observed in Table 4.1, all four factors, and some of their two
and three way interactions are significant at the 5% level in 10% F-Ratio case.
The warm-up period factor is not significant in 50% F-Ratio case. DPC and
warm-up period factors are both insignificant in 90% F-Ratio case.

The Bonferroni and Duncan grouping of the fitness scores due to DPC is also
reported in Table 4.2. We used Dvmcan as an alternative to Bonferroni which is
a rather conservative method, but both methods gave the same groupings in all
the experiments in this chapter. In general, DPA performs significantly better
than the GA without DPA, (DPC at 0), at two levels of the DPC, 0.01 and
0.02, in 10% F-Ratio case. In 50% F-Ratio ceise, DPA is significantly better
only for 0.01 level of the DPC. Additionally, the improvement of the average
fitness score when DPC is at the optimum level compared to GA without DPA
is 7.69%, which is lower than the improvement in 10% F-Ratio case, that is
16.43%. In 90% F-Ratio case, DPA is not significantly better than GA without
DPA, but it is slightly better at all levels of the DPC. Other observations are

as follows:

We observe that the performance improves significantly as the number of
iterations increases, at all levels of DPC. This observation was expected since
we used elitism, i.e. the fitness score is not allowed to get worse than the value
obtained at a prior iteration. Exceptionally, there is no significant difference
between the 500 and 1000 levels in the 90% F-Ratio case. This finding is not
surprising because it is harder to improve the solution quality when the feasible

set is small as in 90% F-Ratio case.

CHAPTER 4. DYNAMIC PARTITIONING 34

Fitness Scores
Source DF Sum o f Sq F Value Pr > F Sig. at 0.05?
F-Ratio = 10%
Model
Error

167
23832

14378.71
59159.74

34.68 0.0001 yes

DPC 3
ITER 2
W U 4
POPSIZE 3
ITER*DPC 6
DPC*W U 12
DPC*POPSIZE 9
ITER*W U 8
ITER*POPSIZE 6
W U*POPSIZE 12
DPC^W U^POPSIZE 36
ITER *D PC*W U 24
ITER *DPC*PO PSIZE 18
ITER *W U ’̂ POPSIZE 24

1966.58
9772.55

74.48
793.68
663.74
305.00
88.10

229.55
283.70

18.37
31.24

113.32
30.41

7.99

264.07
1968.39

7.50
106.58
44.56
10.24
3.94

11.56
19.05
0.62
0.35
1.90
0.68
0.13

0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.8302
0.9999
0.0049
0.8340
1.0000

yes
yes
yes
yes
yes
yes
yes
yes
yes
no
no

yes
no
no

F-Ratio — 50%
Model
Error

167
23832

2809.20
61721.60

6.50 0.0001 yes

DPC 3
ITER 2
WU 4
POPSIZE 3
ITER*DPC 6
DPC^W U 12
DPC*POPSIZE 9
ITER*W U 8
ITER*PO PSIZE 6
W U*POPSIZE 12
D PC*W U *PO PSIZE 36
ITER *D PC*W U 24
ITER ’̂ DPC*POPSIZE 18
ITER *W U *PO PSIZE 24

761.25
1128.53

7.02
165.46
130.21
167.56
65.94
40.64

183.56
42.11
28.66
22.70
45.92
19.63

97.98
217.87

0.68
21.30

8.38
5.39
2.83
1.96

11.81
1.35
0.31
0.37
0.99
0.32

0.0001
0.0001
0.6074
0.0001
0.0001
0.0001
0.0025
0.0471
0.0001
0.1797
1.0000
0.9981
0.4735
0.9994

yes
yes
no

yes
yes
yes
yes
yes
yes
no
no
no
no
no

F-Ratio - 90%
Model
Error

167
23832

4940.09
520551.62

1.35 0.0001 yes

DPC 3
ITER 2
WU 4
POPSIZE 3
ITER* DPC 6
D PC*W U 12
D PC*POPSIZE 9
ITER*W U 8
ITER*PO PSIZE 6
W U*POPSIZE 12
D PC*W U *PO PSIZE 36
ITE R *D P C *W U 24
ITER *D P C *PO PSIZE 18
ITER *W U *PO PSIZE ______ 24

0.27
1250.52

0.36
3379.81

0.06
0.84
0.75
0.01

305.90
0.50
0.64
0.02
0.36
0.06

0.00
28.63
0.00

51.58
0.00
0.00
0.00
0.00
2.33
0.00
0.00
0.00
0.00
0.00

0.9996
0.0001
1.0000
0.0001
1.0000
1.0000
1.0000
1.0000
0.0296
1.0000
1.0000
1.0000
1.0000
1.0000

no
yes
no

yes
no
no
no
no

yes
no
no
no
no
no

Table 4.1: ANOVA results for fitness scores

CHAPTER 4. DYNAMIC PARTITIONING 35

Bonferroni
Grouping

Duncan
Grouping

Mean N DPC

10% F-Ratio
A A 3.733 6000 0.03
B B 3.548 6000 0
C C 3.323 6000 0.02
D D 2.965 6000 0.01
50% F-Ratio
A A 3.743 6000 0.03
B B 3.510 6000 0
B B 3.480 6000 0.01
C c 3.240 6000 0.02
90% F-Ratio
A A 10.623 6000 0
A A 10.620 6000 0.03
A A 10.618 6000 0.01
A A 10.614 6000 0.02

Table 4.2: Bonferroni and Duncan grouping of fitness scores due to DPC.

There is not a significant performance difference between the levels of the
warm-up period. Hence, we omit this factor in the further analysis.

In 10% F-Ratio case. 20 and 30 levels of the population size factor per­
form significantly better than 40 level, while there is no significant difference
between 40 and 50 levels. Roughly, performance improves as the population
size increases in 10% F-Ratio case, but the opposite relation is observed in
50% and 90% F-Ratio cases. In 50% F-Ratio case, 40 and 50 levels perform
significantly better than the 20 and 30 levels. Similarly, in 90% F-Ratio case,
50 level performs significantly better than the 30 and 40 levels, while the worst
performance is sho\vn by the 20 level. Hence, we conclude that the optimum
population size is inversely proportional with the number of all feasible solu­
tions, in our problem.

Table 4.4 confirms our expectations that the CPU time savings would in­
crease as the level of DPC is increased. But, as we note in Table 4.2, the

performance of the algorithm decreases if we slacken our DPA criteria (i.e.,
increase DPC). The CPU time saving for DPC at 0.01 (i.e., at the optimum

CHAPTER 4. DYNAMIC PARTITIONING 36

CPU Time
Source DF Sum o f Sq F Value Pr > F Sig. at 0.05?
F-Ratio = 10%
Model 167 317886844.56 423.09 0.0001 yes
Error 23832 107222212.91
DPC 3 39965797.158 2961.03 0.0001 yes
ITER 2 221475236.12 24613.36 0.0001 yes
WU 4 12618309.58 701.16 0.0001 yes
POPSIZE 3 14709022.85 1089.78 0.0001 yes
ITER*DPC 6 19417914.67 719.33 0.0001 yes
DPC^W U 12 4735933.37 87.72 0.0001 yes
DPC^POPSIZE 9 89602.23 2.21 0.0185 yes
ITER*W U 8 3341638.94 92.84 0.0001 yes
ITER^POPSIZE 6 172506.21 6.39 0.0001 yes
W U *PO PSIZE 12 93323.25 1.73 0.0544 no
D PC*W U *PO PSIZE 36 49551.79 0.31 1.0000 no
ITER*DPC*W U 24 1165622.78 10.79 0.0001 yes
ITER *D PC*PO PSIZE 18 26556.49 0.33 0.9966 no
ITER*W U *PO PSIZE 24 25829.11 0.24 1.0000 no
F-Ratk> = 50%
Model 167 338013613.13 883.86 0.0001 yes
Error 23832 54575204.98
DPC 3 47259999.22 47974.24 0.0001 yes
ITER 2 219721716.08 47974.24 0.0001 yes
WU 4 22186867.76 2422.15 0.0001 yes
POPSIZE 3 10170984.90 1480.49 0.0001 yes
ITER *D PC 6 20175884.62 1468.41 0.0001 yes
D PC*W U 12 8385227.70 305.14 0.0001 yes
D PC ’ POPSIZE 9 37068.83 1.80 0.0631 no
ITER*W U 8 7002495.84 382.23 0.0001 yes
ITER*PO PSIZE 6 57952.60 4.22 0.0003 yes
W U *PO PSIZE 12 205032.25 7.46 0.0001 yes
D PC*W U *PO PSIZE 36 106336.83 1.29 0.1144 no
ITER* DPC* W U 24 2554821.89 46.49 0.0001 yes
ITER *D PC*PO PSIZE 18 45259.33 1.10 0.3464 no
ITER*W U *PO PSIZE 24 103965.27 1.89 0.0053 yes
F-Ratio = 90%
Model 167 472137987.51 3671.42 0.0001 yes
Error 23832 18351793.51
DPC 3 1894134.57 819.92 0.0001 yes
ITER 2 459903043.76 99999.99 0.0001 yes
WU 4 654259.41 212.41 0.0001 yes
POPSIZE 3 7903184.28 3421.08 0.0001 yes
ITER *D PC 6 845397.93 182.98 0.0001 yes
D PC*W U 12 467938.31 50.64 0.0001 yes
D PC*PO PSIZE 9 27598.34 3.98 0.0001 no
ITER*W U 8 229897.42 37.32 0.0001 yes
ITER *PO PSlZE 6 6303.33 1.36 0.2246 yes
W U ’ POPSIZE 12 17151.22 1.86 0.0346 yes
D PC*W U *PO PSIZE 36 12427.69 0.45 0.9982 no
ITER *D PC*W U 24 159493.27 8.63 0.0001 yes
ITER *D PC*PO PSIZE 18 11582.80 0.84 0.6591 no
ITER *W U *PO PSIZE 24 5572.18 0.30 0.9936 yes

Table 4.3: ANOVA results for CPU times

CHAPTER 4. DYNAMIC PARTITIONING 37

Bonferroni
Grouping

Duncan
Grouping

Mean N DPC

10% F-Ratio
A A 3.289 6000 0
B B 2.605 6000 0.01
C C 2.340 6000 0.02
D D 2.241 6000 0.03
50% F-Ratio
A A 3.246 6000 0
B B 2.510 6000 0.01
C C 2.235 6000 0.02
D D 2.096 6000 0.03
90% F-Ratio
A A 3.237 6000 0
B B 3.167 6000 0.01
C C 3.103 6000 0.02
D D 2.996 6000 0.03

Table 4.4; Bonferroni and Duncan grouping of CPU times due to DPC

level) is 22.67% in 10% F-Ratio case, 20.80% in 50% F-Ratio case, and 2.16%
in 90% F-Ratio case. The effects of other factors on CPU time are as fol­
lows: CPU time increases as the number of iterations or the population size or
the warm-up period increases. The effect of each level of these factors differs
significantly from each other (see Table 4.3).

After performing Ano\'a tests for the three sets of problems having different
F-Ratios, we combined the three sets of data and observed F-Ratio’s effect on
the overall. We observed that F-Ratio is a significant factor at the 0.05 level.
The Bonferroni and Duncan grouping of the fitness scores due to F-Ratio is
presented in Table 6.1. Although the task times of each set of problems are
generated by the same generator, as the F-Ratio increases (i.e., the number of
precedence relationships between the tasks increases), the fitness scores increase
exponentially.

CHAPTER 4. DYNAMIC PARTITIONING 38

Bonferroni
Grouping

Duncan
Grouping

Mean N F-Ratio

A A 10.619 24000 90%
B B 3.493 24000 50%
C C 3.392 24000 10%

Table 4.5: Bonferroni and Duncan grouping of fitness scores due to F-Ratio

4.4 M ajor Findings

The major motivation that led us to devise the DPA procedure was to achieve
a significant amount of CPU time reduction. As presented above, we have
achieved that objective. Even though we were expecting some deterioration in
the performance of fitness scores due to DPA, fortimately we had an improve­
ment. In other words, we have achieved a better performance with dynamic
partitioning than the traditional application of GA without dynamic partition­
ing, while also saving from the CPU time. This counter-intuitive result can
be explained as follows: The stations that we fieeze by DPA already have sta­
tion times that are very close to the optimal station time in order to minimize
the fitness function, as explained earlier. Hence, by freezing some of the tasks
without straying too much from optimal balancing, the GA concentrates more
on the remaining tasks. If we did not freeze the stations that satisfy the DP
criteria, the mutation and crossover mechanisms would waste time on working
on these already balanced stations as well, instead of focusing on the poorly
balanced tasks. Therefore, given the same number of iterations, a GA with
DPA is able to work (try alternative combinations) on balancing the poorly
balanced stations more than a GA without DPA. Consequently, we achieved a
significantly better performance with DPA than the GA without DPA. Since
the GA without DPA has many structural and operational similarities between
Leu et al.’s (1994) GA (i.e., as stated in Chapter 3) and that our problem gen­
eration schemes are also very similar, we claim that the proposed GA (i.e., GA
with DPA) is better than Leu et al.’s (1994) GA. We prove this by achieving
a better solution on the Kilbridge-Wester [27] problem than Leu et al’s (1994)
solution on the same problem in Chapter 7.

CHAPTER 4. DYNAMIC PARTITIONING 39

Another interesting observation is that the improvement effect of DPA de­
creases as the F-Ratio increases, i.e. as the search space gets narrower. The
reiison is that the possibility of partitioning at the same level of DPC decreases
due to the fact that the number of feasible solutions decreases because of the
large number of precedence relationships. Besides, even if the GA is allowed to
focus on the poorly balanced stations by DPA, it is less likely that this focus
will lead to a better result since GA without DPA is already able to perform a
sufficient search in a narrow search space.

Like every other random search algorithm, DPA has several tuning factors
as well. A brief summary of our observations on these factors are as follows:

DPC seems to be the major factor affecting the performance of the proposed
algorithm. DPC performs usually better at its nearest to 0 level (i.e., 0.01),
but we observed in the problem set with 90% F-Ratio that DPC at 0.02 level
gives better results on the average than DPC at 0.01 level. This suggests that
DPC requires fine-tuning to achieve the best performance of DPA, however
we shall note that the optimum value of this factor is likely to be a positive
number that is very close to zero.

It can be noted in Table 4.2 and Table 4.4 that there is a payoff between
the score and the CPU time as we change the value of DPC. In case (a), the
improvement of the average fitness score is about 16% (8% in case (b)) while
the CPU time saving is about 21% (23% in case (b)) when DPC is at 0.01.
When DPC is at 0.02 level, the improvement of the fitness score in case (a)
decreases to 6% (1% in case (b)) and the CPU time saving increases to 29%
(31% in case (b)). However, we cannot observe this behavior in case (c). But
90% F-Ratio is a very high value and the possible number of solutions in an
ALB problem with such a high F-Ratio is very small. Hence, it is not surprising
that we do not observe a significant difference between the levels of the DPC

(in Table 4.2).

Warm-up period is also effecti^’e but it is not possible to observe a linear
effect of this factor on the score. Therefore, this factor should also be fine
tuned to achieve a better performance. We also note that this factor needs a

CHAPTER 4. DYNAMIC PARTITIONING 40

different tuning at each level of the DPC. The number of iterations factor shows
a linear effect, GA performing better at all levels of the DPC when this factor
level increases. But the increase in performance of the algorithm is exponential,
i.e. the increase in performance gets less as the number of iterations increases.

The population size factor can be timed for obtaining the optimum per­
formance of the algorithm as well. From the three sets of problems that have
10%, 50%, and 90% F-ratios, we observed that a larger population size yields
to a better score on problems with higher F-Ratio (i.e. 50% and 90%). On the
other hand, it may be found counter-intuitive, at the first sight, that smaller
population sizes performed better than the larger ones on problems with 10%
F-Ratio. Our reasoning for this observation stems from the fact that the search
space is wider at low F-Ratios. Therefore, a large population cannot concen­
trate on local minimum search. The special recombination mechanism that is
used in our GA is responsible for this finding, i.e. only one pair of chromosomes
are selected for recombination at each iteration. Assuming that the selection
of the best-fit chromosome as one of the parents is potentially more advan­
tageous for local minimum search than recombining two other chromosomes,
the performance is expected to decrease as the population size increases, in a
wide search space, since the probability of selecting the best-fit chromosome
for recombination in a large population is less than in a small population.

Finally, we observe that F-Ratio is a significant factor. This factor’s in­
crease causes an exponential increase in the fitness score. This observation was
expected since the increase in the number of precedence relations reduces the
allocation alternatives of the tasks, hence may increase the number of stations.

Chapter 5

ELITISM W IT H SIMULATED
ANNEALING

5.1 Introduction and Motivation

Simulated Annealing (SA) is a well known global search algorithm. In local
search algorithms, we start with an initial solution, and a neighbor to the initial
solution is selected from the set of feasible solutions. The difference between
SA and the other local search algorithms is that in local search algorithms,
we move to the neighbor point (or solution) only if the solution is improved.
However, in SA, we can move to the neighbor solution even if it is not better.
The probability of accepting such a transition is calculated by a function usually
called as the acceptance function. We can calculate this probability as P{x) =
min(l , exp(— where Vc^· is the change of cost between the solution on

hand and the neighbor, and T is a control parsimeter that corresponds to

temperature.

We note here that the "elitism rule” used in our algorithm basically resem­
bles the ’’ other local search algorithms” mentioned above. Hence, by using the
characteristic of SA that differs from the other local search algorithms, we in­

tend to widen the myopic view of elitism. In other words, strict elitism may be

41

CHAPTER 5. ELITISM WITH SIMULATED ANNEALING 42

a reason to be trapped in a local minimum, hence, our motivation to apply SA
to elitism is to decrease the possibility of getting trapped in a local minimum
in our search for the global minimum.

The SA algorithm usually starts with a relatively high value of T, to have
a better chance to avoid being prematurely trapped in a local minimum. Then
T is lowered in steps until it approaches zero. After termination, the final con­
figuration is used as the solution of the problem. There are two different ways
of decreasing the control parameter, T : i) inhomogeneous algorithm where T
is decreased after each transition, and ii) homogeneous algorithm where T is
decreased after a number of transitions, L. We use the first approach in our
algorithm, because it provides a smooth trajectory for P{x). (SA resembles
the annealing process of metals, where the temperature decreases gradually, as
in the first approach.) The following parameters and strategies are the parts
of decision in the SA algorithm: initial temperature. To; number of transitions
required for decreasing T, L*; temperature function, T*; and the stopping
criteria. The problem specific decision elements are the initial solution, neigh­
borhood generation, and evaluation of Vcjj.

5.2 Integration of SA to Elitism

Obviously, Vcij is the difference between the fitness scores of the offspring and
its parent. We accept the offspring if its fitness score is smaller than its parent’s,
since our objective is to minimize the fitness function. In case the offspring’s
fitness score is larger than its parent’s, we calculate Vcij, and then evaluate
the probability function, P{x). We decrease the temperature at each iteration
whether we evaluate P{x) or not. T is decreased exponentially with respect
to Tk+i =Tk X Q, where k is the iteration number, and a is the scaling factor
that is a positive number smaller than 1 and usually very close to 1, i.e. 0.98.
Hence, T = To X a*’ , at the kth iteration. We decrease T until 0.01, at which
P{x) takes a value smaller than 0.0001 at the 500th iteration, when takes

a value greater than 0.1. We do not explicitly define a stopping criteria other

CHAPTER 5. ELITISM WITH SIMULATED ANNEALING 43

than the 0.01 limit for T, and that limit is to prevent exponential overflows
that cause run-time errors in computers. We keep the iteration number flxed
at 500 but P{x) starts to take values that are almost to zero after T reaches
the 0.01 limit, hence this Umit can be thought of as the stopping criteria of SA
where strict elitism takes over again. According to this stopping criteria, P{x)
reaches approximately zero at different iteration numbers due to different a
levels. For example, P{x) is approximately zero after the 50th iteration at 0.80
a level; and after the 220th iteration at 0.95 a level. In our experimental setup,
we used 7 different levels of alpha, 0, 0.8, 0.95, 0.96, 0.97, 0.98, and 1. The level
0 means ’’strict elitism” , i.e. no SA, and the level 1 means ”no elitism” where
our crossover mechanism (neighborhood generation mechanism) turns out to
be a random search mechanism instead of a local search mechanism. The
problem specific decision elements of SA are replaced by GA decision elements
in our application. Whereas the initial solution is the best-fit chromosome of
the initial population, neighborhood generation is simply the crossover and
mutation mechanisms, and evaluation of Vc^ is the difference between the
fitness scores of the offspring and its parent.

Other decision to be made in SA is the movement policy. There are three
policies, i.e. first wins, best wins, and random wins. We use the first policy.
Specifically, we generate a neighbor by crossover and mutation mechanisms and
decide whether to replace the current solution with that neighbor. The best
wins policy is rather more time consuming, because all possible permutations of
a simple neighbor generator are tried, and the ones that are randomly selected
with the probability generated by the probability function are considered as
neighbors. If the number of all possible permutations is too large, then a
number of these can be tried instead of all. Among these neighbors, the best
neighbor replaces the existing solution. Random wins is quite similar to best
wins, but among the neighbors, one of them is chosen randomly instead of the
best one. First wins policy is rather considered as a myopic mechanism but it
saves time compared to best wins or random wins. Best wins policy is actually

very similar to the strict elitism policy, used previously, because as long as there

is a better solution among the neighbors at a certain iteration, the solution will

CHAPTER 5. ELITISM WITH SIMULATED ANNEALING 44

always be replaced by a better neighbor. The random wins policy prevents
this continuous improvement policy, that has the risk of getting trapped in a
local minimum, by choosing randomly among the neighbors. But this random
choice may also be similar to the roulette wheel selection that favors better
neighbors. Since our neighborhood generator is a random generator, the first
wins policy is not a myopic policy at all in our algorithm. If our neighbor
generator was deterministic then we would try the best wins or the random
wins policies as well. Suresh et al. (1996) also use the first wins policy and
their neighbor generator is also a random generator, i.e. randomly shifting a
job from one workstation to another or interchanging the positions of the two
jobs. A summary of the steps of our algorithm, that are adapted from Vidal
[44], is as follows:

Step 1. Select the best-fit chromosome of the initial population as the
initial solution, <po, and the starting temperature. To, as 1000. Set ip mm = ifo-

Step 2. Evaluate the cost function, C{ipann) '■ S R, where S is the
search space.

Step 3. Select a neighbor by crossover/mutation, £ S.

Step 4. If V = C(^) — C{ip) < 0 then ipr+i = otherwise ipr+i = 'ip with
_ _ V _

probability p = e . If C(v?r+i) < C'(Tmin) then

Step 5. Set r=r-f 1 and evaluate, if Tr > 0.01 then Tr+i =TrXoc, otherwise

T.+i = Tr.

Step 6. If Tr < Tmem then Tmem = Tr. (The best solution is kept in the
memory since the solution at the last iteration may not be the best.)

Step 7. If A: < maximum iteration number then stop, the solution is Tmemi

otherwise go to Step 2.

CHAPTER 5. ELITISM WITH SIMULATED ANNEALING 45

5.3 Experimentation

Our experimental setup consists of the same 30 problems that were also used
in the previous chapter, i.e., dynamic partitioning, and the same 10 random
number generator seeds and 4 population size factors, i.e. 20, 30, 40, 50. In
addition, 7 alpha levels are used, i.e. 0, 0.80, 0.95, 0.96, 0.97, 0.98, 1. This
makes a total of 30x10x4x7=8400 problems.

The Anova results of this experimental design is given in Table 5.1. We
observe that alpha levels are significantly different at 0.05 level. We grouped
the factors by Bonferroni and Duncan methods and the results are presented
in Table 5.2. According to Bonferroni, that is a conservative test, the alpha
levels are not significantly different from each other, but Duncan test groups 1
and 0.98 levels separately from the other levels. Thus, we conclude that elitism
is better than no elitism eiccording to Duncan grouping. We then increase the
number of iterations factor to 1000 to see if we could observe a significant
difference in the Bonferroni grouping as well. We observed again that the
Bonferroni grouping of the alpha levels do not show any significant difference,
but the Duncan test groups 0 and 0.8 levels together as the best, 0.95, 0.96,
and 0.97 levels as the second best, 0.98 level as the third best, and 1 level as the
worst performing group. Since the performance increases as the level of elitism
is increased, our previous conclusion that elitism is better than no elitism is
confirmed. The Anova results and the Bonferroni and Duncan grouping of the
factors at 1000 number of iterations level are also presented in Tables 5.1 and
5.2. Even though we change the initial temperature from 1000 to 10,000,000
in order to avoid early cooling, the combined effect of alpha on population size
is insignificant.

Later, we enlarged our experimental design by including three different

DPC levels, i.e. 0.01, 0.02, and 0.03, in addition to the other factors. In this
case, we observe that the combined effect of alpha and DPC is significant at
0.05 level, but overlapping of the levels of alpha is observed in the Bonferroni

groupings.

CHAPTER 5. ELITISM WITH SIMULATED ANNEALING 46

Fitness Scores
Source D F Sum o f

Squares
F Value Pr > F Significant

at 0.05?
Number o f Iterations = 500
Model 41 64954.54 171.63 0.0001 yes
Error 8358 77151.19
ALPHA 6 801.64 14.47 0.0001 yes
F-R A TIO 2 63714.08 3421.91 0.0001 yes
PO PSIZE 3 90.48 3.27 0.0204 yes
F-R A TIO * ALPH A 12 801.65 7.24 0.0001 yes
PO PSIZE* A LPH A 18 86.68 0.52 0.9499 no
Number o f Iterations = 1000
Model 41 72736.44 220.21 0.0001 yes
Error 8358 67334.30
ALPHA 6 1108.85 22.94 0.0001 yes
F-RATIO 2 70000.85 4344.50 0.0001 yes
PO PSIZE 3 273.72 11.33 0.0001 yes
F-R A TIO *A L PH A 12 1292.04 13.36 0.0001 yes
PO PSIZE* ALPH A 18 60.97 0.42 0.9844 no

Table 5.1: ANOVA results for fitness scores

Although we could not achieve any significant improvement by relaxing the
ehtism rule, we observe that strict elitism (a = 0) is significantly better than no
elitism (a = 1). Considering that our reproduction mechanism is a special one
which is different from the classical approach, i.e. only one or two chromosomes
are replaced by new offsprings, we claim that elitism should be used in order to
obtain a better performance with this kind of a reproduction mechanism. Leu
et al. (1995) used elitism without testing if it’s better than no elitism or not, but
our research makes it clear that elitism is significantly better than no elitism.
Our further research will reveal if elitism yields a better performance in classical
reproduction mechanisms, as well as if SA in elitism is able to contribute to
the performance. We will also evaluate the performance difference between the
classical reproduction mechanism compared to our reproduction mechanism in
the next chapter.

CHAPTER 5. ELITISM WITH SIMULATED ANNEALING 47

Bonferroni Duncan Mean N Bonferroni Duncan Mean N
Grouping Grouping a Grouping Grouping a
Iter = 500 Iter = 1000

A A 7.368 1200 1 A A 6.925 1200 1
B A B 7.018 1200 0.98 B A B 6.608 1200 0.98
B C C 6.712 1200 0.97 B C C 6.315 1200 0.97

C C 6.596 1200 0.95 D C C 6.209 1200 0.96
C C 6.585 1200 0.96 D C E C 6.123 1200 0.95
C C 6.494 1200 0.8 D E D 5.876 1200 0
C C 6.440 1200 0 E D 5.825 1200 0.8

F-Ratio F-Ratio
A A 10.609 2800 90% A A 10.351 2800 90%
B B 5.091 2800 10% B B 4.271 2800 50%
C C 4.534 2800 50% B B 4.184 2800 10%

Pop. size Pop. size
A A 6.900 2100 20 A A 6.554 2100 20

B A B A 6.762 2100 30 B B 6.287 2100 30
B A B 6.700 2100 50 B C B 6.153 2100 50
B B 6.616 2100 40 B C 6.080 2100 40

Table 5.2: Bonferroni and Duncan grouping of fitness scores due to a, F-Ratio,
population size

Chapter 6

CLASSICAL G A vs M ODERN
GA

In this chapter we propose a new classical algorithm, as an alternative to the
modern or GENITOR type structure that was used in the previous chapters.
The basic structure of both the classical and modern approaches to GAs have
been already explained in Chapter 3. We will provide a more extensive review
and comparison of these two approaches in this chapter.

All the genetic characteristics, such as coding, crossover operator, muta­
tion operator, and selection policy are the same for both algorithms. These
characteristics are explained in Chapter 3, hence it will not be repeated here.
The difference between these two algorithms is due to the sequence in which
the genetic operators are activated. In the classical GA, a proportion of the
population which is the best group of chromosomes in the current population is
transferred to the next population. The remaining individuals of the next pop­
ulation are formed by the offsprings that are generated by necessary number

of crossover operations between the chromosomes of the current population.

48

CHAPTER 6. CLASSICAL GA VS MODERN GA 49

6.1 Motivation

While the modern approach performs only one recombination operation at
any iteration, the classical approach involves a large part of the population
in the recombination process, performing multiple recombinations. Hence, the
difference between the two consecutive populations of classical GA is expected
to be more than in modern GA. Even though the modern GA seems to perform
a rather myopic search than the classical GA at the first sight, it is an issue to be
resolved whether the time spent on performing many recombinations could be
used more effectively by increasing the number of iterations while performing
only one recombination at each iteration. However, the performance of the
algorithm is more important than the time it takes for the ALB problem unless
this time can be kept in reasonable limits. Thus, we focus on the performance
of the algorithms while comparing them.

We let both algorithms perform the same number of iterations, hence, the
classical GA performs more recombination operations than the modern GA.
Does performing more recombination operations make a GA more advanta­
geous? The answer to this question lies beneath the selection policy and the
convergence of the population issues. The fundamental theorem of genetic
algorithms state that the qualities (genes) of the superior individuals (chromo­
somes) are preserved over generations while the qualities of the weak individuals
evade. A corollary to this theorem is that if the more-than-average-fit chromo­
somes of a population gets involved in as many crossovers as possible, then its
superior qualities are more likely to be distributed over the population. In the
classical GA, the offspring that is generated by the first crossover operation in
an iteration is likely to be better than the average of the current population,
since its parents are likely to be over the average because of roulette wheel
selection and it cannot be worse fit than its parents because of elitism. But
it has to wait until all crossover operations are completed to be able to get
selected. On the other hand, a superior offspring that results from a crossover

operation is eligible to be selected for the next crossover operation in modern
GA. Since every crossover operation considers the offspring that resulted fi'om

CHAPTER 6. CLASSICAL GA VS MODERN GA 50

the previous crossover operation a more efficient selection policy is applied in
modern GA. This is an advantage of the modern GA compared to the classical
approach. The advantage of the classical GA is that it allows more diversity
and sharing of the good qualities of chromosomes at each iteration.

Elitism is a very important factor which may affect the diversity and hence
the rate of convergence of the algorithm. We expected that this factor would
be even more effective on classical GA since a greater number of crossover op­
erations takes place in classical GA than in the modern GA. We have presented
explicitly how the elitism rule is integrated to the structure of modern GA in
Algorithm 3.4, and now we present the structure of the classical GA with DPA
and with SA controlled elitism as follows:

A lgorithm 6.1 ; Classical GA with DPA and SA controlled elitism

Generate initial population

Set Pe equals to 1

repeat

Tran.sfer the best (1 — Rx) x Np x 100 chromosomes to the next population

repeat

Choose two parents from the current population for crossover

Apply the follovnng to each offspring

if the offspring is better than its parent then

Include the offspring in the next population

else Include the parent in the next population with 1 — Pg probability

or Include the offspring in the next population with Pg probability

until Next population is full

if the DPA criteria are satisfied then

Freeze a set o f tasks (genes)

Deduce the frozen rasks from all the chromosom.es in the population

Apply mutation to one of the chromosomes with Rm probability

Decrease the value of Pg

CHAPTER 6. CLASSICAL GA VS MODERN GA 51

until Stopping-condition is reached

Take the best-fit chromosorne of the final population as the solution

6.2 Experimentation

We choose the same set of 30 problems that was used in Chapter 4 to compare
the performance of the algorithms. We first optimize the parameters of each
algorithm. The key parameters of the modern GA are the cooling rate, DPC,
mutation rate, and population size. Each of these parameters are explained in
Chapter 4 but we remind them as follows: The cooling rate parameter belongs
to the simulated annealing terminology and it is used for controlling the level
of elitism. DPC is the dynamic partitioning constant which adjusts the level
of accuracy of freezing stations due to dynamic partitioning criteria. Mutation
rate determines the level of probability of activating the mutation operator.
Finally, population size is the number of chromosomes in the population. The
warm-up period factor which was introduced in Chapter 4 is not taken into
consideration because it was observed in Chapter 4 that it is not significant at
the 0.05 level. Hence, the level of warm-up period factor is taken as 0, i.e., no
warm-up period is used in any experiments in this chapter.

All the parameters that are used for the modern GA apply to the classical
GA as well, additionally another factor is used for classical GA: crossover
rate. In the modern GA, the mutation rate parameter subtracted from 1
gives the crossover rate, hence we did not need to define another parameter
to set the crossover rate. Since the mutation and crossover operations occur
independently in classical GA, we use the crossover rate parameter as well as
the mutation rate parameter.

The levels experimented for the cooling rate parameter are 0, 0.95, 0.97,
0.99, and 1. The initial temperature associated with 500 iterations is 1000.
The levels of DPC are 0, 0.01, 0.02, 0.03. The levels used for the mutation
rate parameter are 0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2. We

CHAPTER 6. CLASSICAL GA VS MODERN GA 52

Cooling rate
DPC
Population size
Mutation rate
Crossover rate 0.9

Classical GA Modern GA

50
0.175

0.03
50
0.05
N/A

Table 6.1: Optimum parameters for Classical GA and Modem GA

used 0.1, 0.25, 0.5, 0.75, 0.9 levels for the crossover rate parameter of classical
GA, and 20, 30, 40, and 50 levels for the population size factor. The optimum
parameters for both algorithms are as in Table 6.1.

The sign in Table 6.1 indicates that there is no significant difference
between the levels of the corresponding parameter. Cooling rate is one such
parameter and it is not significant in both the classical GA and modern GA. An
interesting observation is that DPC is not effective with classical GA. We took
0 levels of the marked factors when comparing the two algorithms. We use
the same 10 seeds that was used in Chapter 4. Hence, our experimental design
is consisted of 30 problems, 10 seeds, and 2 different solution approaches.

The Anova results of the comparison experiment is given in Table 6.2, and
the Bonferroni and Duncan groupings in Table 6.3. Results show that the
classic GA is clearly superior to the modern GA, if we disregard the CPU
times spent by each algorithm. However, there’s a large difference between
the CPU time of the algorithms. The classical GA takes approximately 22
times as much time as the modern GA. This difference in time is because of
the large number of crossovers at each iteration in classical GA. On the other
hand, as we said at the beginning of this chapter, we are concerned about
improving the performance of the algorithm although we may have to spend
more time because of two reasons: i) while the average CPU time for classical

GA is about 44 seconds which is still not a very long time, and ii) ALB is

a problem to be solved only once before the assembly line is being designed,
hence time is not a measure which is as important as the performance of the
solution to this problem. We improve the average solution of 30 problems
solved with 10 different seeds from 6.372 to 5.444, as presented in Table 6.2,

CHAPTER 6. CLASSICAL GA VS MODERN GA 53

Fitness Scores
Source DF Sum of F Value

Squares
Pr > F Significant

at 0.05?
Number o f Iterations = 500
Model 1 129.99 9.46 0.0022 yes
Error 598 8213.20
ALGORITHM 1 129.99 9.46 0.0022 yes

Table 6.2; ANOVA results for the comparison of two algorithms

Table 6.3: Bonferroni and Duncan grouping of fitness scores due to algorithm.

Bonferroni Duncan Mean N Algorithm
Grouping Grouping
A A 6.372 300 MODERN
B B 5.441 300 CLASSIC

which is a significant improvement. Hence, we recommend the classical GA
for the solution of ALB problems unless it will not be used in a very flexible
manufacturing system that needs to be balanced frequently.

Chapter 7

COM PARISON W IT H
TRADITIONAL HEURISTICS

First, we compare genetic algorithms with traditional heuristics in general.
Then we compare the proposed GAs’ performance with Leu et al.’s (1994) GA
on the Kilbridge-Wester’s (1961, [27]) 45-task ALB problem and with Baybars’
(1986) heuristic and other heuristics on Tonge’s (1961, [42]) 70-task problem
in this chapter.

7.1 Genetic Algorithms versus Traditional Heuris­

tics

The central theme of research on genetic algorithms has been robustness, the
balance between efficiency and efficacy necessary for survival in many different
environments [15]. The implications of robustness for search schemes are man­
ifold. If search schemes can be more robust, costly redesigns can be reduced
or eliminated. Genetic algorithms are theoretically and empirically proven to
provide robust search in complex spaces. The primary monograph on the topic

is Holland’s (1975) Adaptation in Natural and Artificial Systems [21]. We will

54

CHAPTER 7. COMPARISON WITH TRADITIONAL HEURISTICS 55

discuss the robustness of traditional optimization and search methods, then list
the properties of genetic algorithms that enable them to surpass the traditional
heuristics in the quest for robustness in the rest of this section.

The current literature identifies three main types of search methods: calcu­
lus based, enumerative, and random. We will examine each type to see what
conclusions may be drawn without formal testing.

Calculus-based methods have been studied heavily. These subdivide into
two main classes: indirect and direct. Indirect methods seek local optima
by solving the usually nonlinear set of equations resulting from setting the
gradient of the objective function equal to zero. Given a smooth, unconstrained
function, finding a possible peak starts by restricting search to those points with
slopes of zero in all directions. On the other hand, direct (search) methods seek
local optima by hopping on the function and moving in a direction related to
the local gradient. While both of these calculus-based methods have been
improved and extended, some simple reasoning shows their lack of robustness.
First, both methods are local in scope; the optima they seek are the best in a
neighborhood of the current point. Clearly, starting the search in the neighbor
of a low peak will cause us to miss the highest peak. Furthermore, once the
lower peak is reached, further improvement must be sought through random
restart or other trickery. Second, calculus-based methods depend upon the
existence of derivatives (well-defined slope values). Hence, these methods that
depend upon the restrictive requirements of continuity and derivative existence
are unsuitable for all but a very limited problem domain. For this reason and
because their inherently local scope of search, we must reject calculus-based

methods.

Enumerated schemes have been considered in many shapes and sizes. The
idea is fairly straightforward. Within a finite search space, or a discretized

infinite search space, the algorithm starts looking at objective function values
at every point in the space, one at a time. Although the simplicity of this type

of algorithm is attractive, and enumeration is a very human kind of search
(when the number of possibilities is small), such schemes must ultimately be

CHAPTER 7. COMPARISON WITH TRADITIONAL HEURISTICS 56

discounted in the robustness race for one simple reason: lack of efficiency.
Many practical spaces are simply too large to search one at a time and still
have a chance of using the information to some practical end. Even the highly
praised enumerative scheme dynamic programming breaks down on problems
of moderate size and complexity, suffering from a malady labeled as ’’ the curse
of dimensionality” by its creator (Bellman, 1961, [5]).

Random search algorithms have achieved increasing popularity as researchers
have recognized the shortcomings of calculus-based and enumerative schemes.
Yet, random walks and random schemes that search and save the best must
also be discounted because of the efficiency requirement. Random searches, in
the long run, can be expected to do no better than enumerative schemes. Hav­
ing said that we should discount strictly random search methods, we must be
careful to separate them from randomized techniques. The genetic algorithm
is an example of a search procedure that uses random choice as a tool to guide
a highly exploitative search through a coding of a parameter space. Another
popular search technique, simulated annealing, uses random processes to help
guide its form of search for minimal energy states. The important thing to
recognize at this juncture is that randomized search does not necessarily imply
directionless search.

While we conclude that conventional search methods are not robust, this
does not imply that they are not useful. The schemes mentioned and countless
hybrid combinations and permutations have been used successfully in many
applications, however, as more complex problems are attacked, other methods
will be necessary. And it would be worthwhile sacrificing peak performance on
a particular problem. proNided by a conventional search method, to achieve a
relatively high level of performance across a spectrum of problems, that can be
provided by a robust scheme like genetic algorithms.

In order for genetic algorithms to surpass the traditional optimization and
search methods in the quest for robustness, GAs must differ in some very
fundamental ways. Genetic algorithms are different from normal optimization
and search procedures in four ways;

1. GAs work with a coding of the parameter set, not the parameters them­
selves. Hence, they are largely unconstrained by the limitations of other
methods (continuity, derivative existence, unimodality, and so on).

2. GAs search from a population of points, not a single point. Since they
work from a rich database of points simultaneously, climbing many peaks
in parallel, the probability of finding a false peak is reduced over methods
that move from a single point in the decision space to the next by using
some transition rule to determine the next point.

3. GAs use payoff (objective function) information, not derivatives or other
auxiliary knowledge. Many search techniques require much auxiliary in­
formation in order to work properly. For example, gradient techniques
need derivatives and other search procedures like the greedy techniques
of combinatorial optimization require access to most if not all tabular
parameters. By contrast, GAs have no need for all this auxiliary in­
formation, i.e., GAs are blind. To perform an effective search for better
structures, they only require payoff (objective function) values associated
with individual strings. This characteristic makes a GA a more canonical
method than many search schemes.

4. GAs use probabilistic transition rules, not deterministic rules. The use
of probability does not suggest that the method is some simple random
search like decision making at the toss of a coin. Genetic algorithms use
random choice as a tool to guide a search towards regions of the search
space with likely improvement.

Taken together, these four differences contribute to a GA’s robustness and
resulting advantage over other techniques.

CHAPTER 7. COMPARISON WITH TRADITIONAL HEURISTICS 57

7.2 Comparison with Leu et al.’s G A (1994)

Leu at al. solved Kilbridge-Wester’s (1961) problem by their GA and compared
it with five other heuristics that are also available in the QS software package

CHAPTER 7. COMPARISON WITH TRADITIONAL HEURISTICS 58

Heuristic No
1

Primary Heuristic
Maximum task time

Maximum total number
o f follower tasks
Minimum number o f
immediate-follower tasks
Maximum number o f
immediate-follower tasks
Maximum task time

Heuristic Used to Break Ties
Maximum total number
o f follower tasks
Maximum task time

Minimum total number
o f follower tasks
Random task assignment

Minimum total number
o f follower tasks

Table 7.1: The heuristic methods to solve the Kilbridge-Westerproblem

[8]. These five non.-GA heuristics use a single pass heuristic that is accompanied
by another heuristic to break ties, as shown in Table 7.1. The heuristics that
are used as primary or as tie-breaking are selected eis the best performing
heuristics due to Leu et al.’s (1994) literature survey [29]. Figure 7.1 presents
the Kilbridge-Wester (1961) problem and also shows the solution of Leu et al.
(1994), which is superior to the solutions of the other five heuristics.

The cycle time of the original problem is 55, but Leu et al. (1994) slightly
changes this value to 56 to observe the sensitivity of non-GA heuristics to
changes in problem’s constraints. Leu et al. (1994) compare the heuristics
with their GA by means of four different measures: i) mean-squared idle time,
ii) square root of mean squared idle time, iii) efficiency (utilization), and iv)
maximum station time. If the maximum station time is less than the given cycle
time then it becomes the new cycle time, i.e., the cycle time is reduced. Hence,
it is desirable to minimize the maximum task time in a type-1 ALB problem
if the number of stations is already minimized (i.e., utilization is maximized).
The other three measures are already explained in Chapter 2. We evaluated
the performance of our GAs in terms of these measures as well. We present
our results in comparison with Leu et al.’s (1994) and other heuristics’ in Table

7.2.

We solved the Kilbridge-Wester problem by both the modern GA and the
classical GA. We solved the problem using 1200 different factor level combi­
nations. The factors used and their levels are: DPC (0, 0.01, 0.03, 0.05),

CHAPTER 7. COMPARISON WITH TRADITIONAL HEURISTICS 59

Figure 7.1: The Max-Teisk Time Heuristic Solution to the Kilbridge-Wester
45-Task Problem

population size (20, 50). cooling rate (0, 0.95, 0.97, 0.99, 1), mutation rate
(0.02, 0.05, 0.1), and 10 random seeds. The same experimental design is ap­
plied for both the classical GA and the modern GA. The other factors that
we used only at one level are as follows: number of iterations = 500, warm-up
period = 0, crossover rate = 0.90.

As shown in Table 7.2, our modern GA found the optimum number of sta­
tions, leaving Leu et al.’s GA (1994) and other heuristics behind. The solution
that provides the optimum number of stations was found at 13 different factor
level combinations. These factor levels are presented in Table 7.3 to demon­
strate the significantly positive effect of dynamic partitioning and our modifi­
cation of the elitism rule by applying SA methodology to the performance of

GAs. It can also be observed in Table 7.3 that the optimum number of stations
(i.e., 10) could be found by modern GA only when dynamic partitioning was

CHAPTER 7. COMPARISON WITH TRADITIONAL HEURISTICS 60

S o lu t io n
M e t h o d

M ea n -S q u a re d
Id le T im e

S q r. R o o t (M e a n -
S q rd Id le T im e) E ffic ie n cy

M a x im u m
W o rk lo a d

Heuristic 1 239.64 15.48 0.8961 56
Heuristic 2 239.27 15.47 0.8961 56
Heuristic 3 67.45 8.21 0.8961 56
Heuristic 4 124.91 11.17 0.8961 56
Heuristic 5 239.64 15.48 0.8961 56

Leu et a l.’s G A 51.81 7.20 0.8961 55
M odern G A 1.20 1.10 0.9855 56
Classical GA 38.73 6.22 0.8961 55

Table 7.2: Comparison of non-GA heuristics, Leu et al. ’s GA and the proposed
GA

N o D P C
P o p u la t io n

S ize
R a n d o m

S eed
C o o lin g

R a te
M u ta t io n

R a te
C P U
T im e

M e a n S q rd
Id le T im e

1 0.03 20 14567 0.97 0.05 0.76 1.40
2 0.03 20 97665 0.99 0.02 0.76 1.40
3 0.03 20 97665 0.99 0.05 0.82 1.20
4 0.03 20 77943 0.99 0.10 1.04 1.40
5 0.03 20 47729 0.99 0.10 0.93 1.40
6 0.03 20 77943 1.00 0.10 1.04 1.40
7 0.03 50 84521 0.97 0.10 1.37 1.20
8 0.03 50 76421 0.97 0.10 1.59 1.20
9 0.03 50 60013 0.99 0.10 1.70 1.40
10 0.03 50 14567 1.00 0.02 1.53 1.40
11 0.05 20 14567 0.97 0.05 0.76 1.40
12 0.05 20 77943 0.99 0.10 1.04 1.40
13 0.05 20 47729 0.99 0.10 0.93 1.40

Table 7.3: Factor levels at which the optimum solution is found

activated (i.e., DPCf^O) together with SA in elitism (i.e., cooling rate^O). The
two different mean squared idle time measures in Table 7.3 indicate that there
are two alternative solutions with 10 stations. The CPU times in seconds is
also presented in Table 7.3. The difference in CPU times are because of the
difference in the iteration number when the algorithm starts dynamic parti­
tioning. For example, if it starts partitioning early then the CPU time will be
reduced due to the reduced chromosome size. We present the solution with

the lowest mean squared idle time (i.e., 1.20) , which gives the best balanced

assembly line, in Figure 7.2.

Although the classical GA does not find the optimum number of stations
at the given factor levels, it performs better than Leu et al.’s GA (1994) and

CHAPTER 7. COMPARISON WITH TRADITIONAL HEURISTICS 61

Figure 7.2: Modern GA Solution for the Kilbridge-Wester 45-Task Problem

the other five non-GA heuristics due to mean squared idle time measure, as
can be seen in Table 7.2.

The classical GA performs worse than the modern GA in the Kilbridge-
Wester problem. Contrarily, we observe that the classical GA performs better
than the modem GA on the average in Chapter 6. This contradiction can
be explained by the following facts: (i) the modern GA is better than the
classical GA in 35 of the 300 problems solved hence, the classical GA is not
always better than the modern GA, (ii) 26 of these 35 problems are generated
between 10% and 50% F-Ratio levels, whereas the Kilbridge-Wester problem
is also between these le\'els with its 39.70% F-Ratio, (iii) if we used only the
optimum level of the cooling rate factor (i.e., zero) as in Chapter 6, we would

not be able to find the optimum solution of this problem by the modern GA

because all the optimum solutions are found at cooling rate levels that are not

zero.

7.3 Comparison with Baybars’ LBHA-1 (1986)

Baybars solved Tonge’s (1961) 70-task problem with a heuristic called LBHA-
1. We present Tonge's (1961) problem in Figure 7.3. This problem is a real
life application that comes from the electronics industry. Since 1965, numerous
attempts have been made to solve the Tonge (1961) problem for 13 different
cycle times. The cycle time ranges from 83 to 364 in these versions, hence some
versions contain tasks that have larger task times than the cycle time. For
those versions, parallel stations are needed. For example, 15 parallel stations
are needed for the first version where the cycle time is 83. In this version, task
13, that has a task time of 134 units, needs one parallel station and its task
time is revised as 134 — 83 = 51, after the parallel station has been used. The
cycle times of the other versions are given in Table 7.4.

CHAPTER 7. COMPARISON WITH TRADITIONAL HEURISTICS 62

Figure 7.3: The 70-Task Problem of Tonge (1961)

We solve the 13 ·̂ersions of Tonge’s (1961) problem with both the modern

GA and the classical GA. Our algorithms have five parameters, i.e., DPC,
number of iterations, cooling rate, mutation rate, and population size, that
need to be optimized for each problem. First, we experimented the effect
of each parameter on the performance for the first version of Tonge’s (1961)
problem. Because of the similarity of the versions (i.e., all precedence relations
are the same but some of the task times change due to parallel stations), we
eliminated some levels of some of the factors due to our experimental results
on the first version. We fixed the number of iterations factor to the 500 level
because we did not observ’̂ e any significant improvement in higher levels. We
observed that the best performing level of DPC is 0.05, hence we eliminated
all other levels except the 0 level, which we kept to observe without DPA
performance. The mutation parameter’s levels are 0.01, 0.03, 0.05, 0.10, 0.20,
and the cooling rate parameter takes 0, 0.95, 0.97, 0.99, 1 values for all versions.
Additionally, we use the same 10 seeds that we used in the previous chapters.
Hence, we solved each version of the problem 500 times, i.e. 5 (mutation) x
5 (cooling rate) x 2 (DPC) x 2 (modern/classical) x 10 (seeds) = 500, with
both the modern GA and the cleissical GA. We took the best solution, i.e., the
minimum number of stations, among these 500 solutions as our solution to the
problem in Table 7.4. The optimal solutions to these problems as well as the
results of previous studies that have targeted this problem are also given in
Table 7.4.

CHAPTER 7. COMPARISON WITH TRADITIONAL HEURISTICS 63

It can be observed from Table 7.4 that the modern GA performs better than
all heuristics except Nevins’ (1972) and Baybars’ (1986). However, there is no
significant difference between the performance of Nevins’ (1972) or Baybars’
(1986) heuristics and the modern GA. The modern GA solutions match those of
Baybars except for four cases in which we exceed the optimum solution by one
and for one case in which we find the optimum solution while Baybars’ LBHA-1
does not. Considering that the modern GA found five of the thirteen optimal
solutions and found solutions to the other cases with only one more station than

the optimiun, it performs quite well on the versions of Tonge’s (1961) problem.

The classical GA also performs well, but the modern GA performs better than

the classical GA in three cases. This result contradicts with the experiment

CHAPTER 7. COMPARISON WITH TRADITIONAL HEURISTICS 64

Cycle Optim al M oodie and
time solution Young (1965)

Tonge (1965) Nevins Baybars M odern Classical
M IF R C B P C (1972) (1986) G A G A

83
86
89
92
95

170
173
176
179
182
346
349
364

47
46
43
?

40
22
22
22
21
21
11
11
11

48
47
44
43
42
24
24
22
22
22
11
11
11

50
47
45
43
43
24
24
24
23
23
11
11
11

50
48
46
44
43
24
24
23
23
22
12
11
11

49
47
44
43
41
23
23
22
21
21
11
11
11

47
46
43
42
40
23
22
22
21
21
11
11
11

47
46
43
42
40
23
23
23
22
22
11
11
11

48
46
44
43
41
23
23
22
22
22
11
11
11

48
47
44
43
42
23
23
23
22
22
11
11
11

Table 7.4: Comparison of eight methods on the 70-task problem o f Tonge (1961)
in terms of number of stations

in Chapter 6, in which we observe that the classical GA performs better than
the modern GA on the average. First of all, the performance measure is ’’ the
number of stations” in Tonge’s (1965) problem. Therefore, even if the classical
GA provides a better balanced solution with the same number of stations,
this improvement is not noticeable since it is not reflected on the performance
measure. Additionally, we observe that the modern GA performed better than
the classical GA in 35 of the 300 problems in Chapter 6, hence it is not very
unlikely that it exceptionally performs better than the classical GA in three
versions of Tonge’s (1965) problem.

Although GAs are applicable to ainy kind of ALB problem regardless of
the F-Ratio, we observe that they perform worse in problems with high F-
Ratio, as in Tonge’s (1961) problem with 59.42% F-Ratio. If the number of
precedence relations increases, the possibility of generating offsprings that are
better than their parents decreases. In such a case, another crossover operator
that provides more substantial changes on the parents’ genes may be used
instead of a moderate crossover operator like the one we used. Our crossover
operator is the two point crossover operator, as explained in Chapter 3. The

purpose of the two point crossover is to conduct a neighborhood search that

is done by keeping the head and the tail of each offspring the same as its

parent. The offspring should be close in fitness to its parent because only its

middle genes have changed. Conversely, a one point crossover would change
on the average the half of the entire chromosome of each offspring, and such
a change could be too drastic and might move the offspring out of the local
search neighborhood. Similarly, more-than-two-point crossover could result in
changes in fitness functions that are either too small or too large depending on
how the swapping is done. Hence, if we used a one point crossover we might
have achieved better results compared to our two point crossover operator, for
Tonge’s problem that has a high F-Ratio.

On the other hand, Baybars’ LBHA-1 consists of reduction phases that
reduces the problem size by eliminating tasks, determining mutually exclusive
task sets, and decomposing the network, while no reduction phases are applied
to the problem before our GAs. Hence, if the same reduction phases were
implemented before our GA, we might have achieved better results on Tonge’s
(1961) problem. It has been shown by Leu et al. (1994) that starting the GA
with a better initial population significantly improves the solution quality.

CHAPTER 7. COMPARISON WITH TRADITIONAL HEURISTICS 65

Chapter 8

CONCLUSION

This chapter provides a brief summary of the contributions of this thesis and
addresses some possible extensions of this study for future research. In this
study, we have studied genetic algorithms (GAs) and their application to the
assembly line balancing problem (ALB) for the deterministic and single model
case (SALE). We proposed new solution methodologies to find near-optimal
balances by making use of the authentic characteristics of the ALB problem in
the GA structure. In the next section, we wiU make a short summary of our
contributions.

8.1 Contributions

We showed that the chromosome structure of GAs can be changed dynamically
to provide an effective search in the ALB problem domain. We have reduced
the chromosome size during the search procedure, when certain conditions are
satisfied, by freezing the stations at the beginning or the end of the assembly
line and the tasks that are assigned to these stations. We improved both the

solution quality and the computational time by this reduction technique, i.e.,

dynamic partitioning (DPA), compared to the GA without DPA. Over a set

of 30 randomly generated problems, we tested our GA with DPA and have

66

CHAPTERS. CONCLUSION 67

seen that the objective value is improved by 16.43% for the problems with 10%
F-Ratio and 7.69% for the problems with 50% F-Ratio. However, we did not
observe a significant improvement even in the extreme case of problems with
90% F-Ratio, because these problems have a small number of possible solutions
due to the large number of precedence relations that they consist of.

We also studied elitism, which is a rule that accepts the offspring only if it is
better than its parent. We expanded the elitism rule to create levels of elitism
by using the simulated annealing (SA) idea. Our contribution to revise the
elitism rule extends to showing how any binary decision rule can be expanded
to have a continuous range. We observed that elitism contributes significantly
to the performance of the GA. This observation was not made in any other
study, although elitism was used before in literature. We have seen that the
levels of elitism does not significantly differ from each other on the average in
our experiment with 30 randomly generated problems. We also observed that
the optimum solution can be found in some problems at some of the other
levels while it is not possible to find it at the strict elitism or no elitism levels.
Thus, elitism with SA contributes to the search by providing multiple levels of
elitism rather than restricting it with only strict elitism.

We compared the two kinds of GAs that can be classified according to
their organizational structure as the classical GA and the modern GA. The
difference between the two classes is basically the number of crossovers at each
iteration, i.e., only two offsprings can replace their parents after one crossover

operation at each iteration in the modern GA while a big proportion of the
next population is regenerated by multiple crossover operations in the classical
GA. We compared the two kinds of GAs and observed that the classical GA
requires significantly more amount of computational time than the modern

GA, but the classical GA performed significantly better on the average over

a set of 30 randomly generated problems. Thus, we recommend the classical

GA for solving ALB problems unless it will not be used in a very flexible

manufacturing system that needs to be balanced frequently.

CHAPTERS. CONCLUSION 68

8.2 Future Resecu*ch Directions

There are several future research directions originating from this research study
as such:

• Prior to dynamic partitioning, a static partitioning procedure that divides
the ALB problem into smaller subproblems can be applied to problems
that consist of a very large number of tasks. If the problem is divided
into sub-problems wnth this technique, then the chromosome size of the
GA for each subproblem can be reduced to a reasonable size in order
to prevent intolerable computational time requirements and to provide a
more extensive search.

• Dynamic partitioning can be revised such as it freezes not only the sta­
tions at the beginning or at the end of the chromosome but also the other
stations. We expect that such a revision would improve the performance
of the GA with DPA especially in problems that consist of a large number
of tasks.

• In this study, we considered only the single model and deterministic case
of ALB problems (SALB), however the scope of the study can be extended
to multi/mixed model and/or stochastic cases as well.

• Effects of DPA and elitism with SA may be observed in G As with different

crossover and mutation operators and with different coding representa­
tions.

Bibliography

[1] E. J. Anderson and M. C. Ferris. Genetic algorithms for combinatorial
optimization: the assembly line balancing problem. ORSA Journal on
Computing, pages 161-173, 1994.

[2] F. V. Assche and W. S. Herroelen. An optimal procedure for the sin­
gle model deterministic assembly line balancing problem. International
Journal o f Operational Research, 3, 2, 1979.

[3] H. W. B, S. M. E, and S. W. W. How to balance an assembly line.

Technical report, New Caraan, Conn.: Carr Press, Division for Advanced
Management, 1954.

[4] I. Baybars. An efficient heuristic method for the simple assembly line
balancing problem. International Journal of Production Research, pages
149-166, 1986.

[5] R. Bellman. Adaptive control processes: a guided tour. Princeton, NJ:
Princeton University Press, 1961.

[6] E. H. Bowman. Assembly line balancing by linear programming. Opera­

tions Research, pages 8, 3, 1960.

[7] G. N. Bullock, M. J. Denham, I. C. Parmee, and J. G. Wade. Develop­

ments in the use of the genetic algorithm in engineering design. Design

Studies, pages 507-524, 1995.

[8] Y.-L. Chang and R. S. Sullivan. QS: Quant Systems, version 2. Englewood

Cliffs, NJ: Prentice Hall, 1991.

69

BIBLIOGRAPHY 70

[9] C.-J. Chen and C.-S. Tseng. The path and location planning of workpieces
by genetic algorithms. Journal of Intelligent Manufacturing, pages 69-76,
1996.

[10] E. M. Dar-El. Malb - a heuristic technique for balancing large scale single­
model assembly lines. AIIE Transactions, 5, 4, December 1973.

[11] E. M. Dar-El and Y. Rubinovitch. Must - a multiple solutions technique
for balancing single model assembly lines. Management Science, 25, 11,
1979.

[12] L. Davis. Applying adaptive algorithms to epistatic domains. In Proc.
International Joint Conference on Artificial Intelligence, 1985.

[13] L. Davis. Job shop scheduling with genetic algorithms. In Proc. Interna­

tional Joint Conference on Artificial Intelligence, 1985.

[14] S. Ghosh and R. J. Gagnon. A comprehensive literature review and anal­
ysis of the design, balancing and scheduling of assembly systems. Inter­

national Journal of Production Research, pages 637-670, 1989.

[15] D. E. Goldberg. Genetic algorithms in search, optimization and machine
learning. Addison-Wesley, 1989.

i

[16] Y. Gupta, M. Gupta. A. Kumar, and C. Sundaram. A genetic algorithm-
based approach to cell composition and layout design problems. Interna­

tional Journal o f Production Research, pages 447-482, 1996.

[17] Y. R Gupta, M. C. Gupta. A. Kumar, and C. Sundram. Minimizing total
intercell and intraceU moves in cellular manufacturing: a genetic algorithm
approach. International Journal of Computer Integrated Manufacturing,

pages 92-101, 1995.

[18] M. Held and R. M. Karp. A dynamic programming approach to sequencing

problem. Journal of the Society of Industrial and Applied Mathematics,

10, 1, 1962.

BIBLIOGRAPHY 71

[19] M. Held, R. M. Karp, and R. Shareshian. Assembly line balancing -
dynamic programming with precedence constraints. Operations Research,
11, 3, 1963.

[20] T. R. Hoffman. Assembly line balancing with a precedence matrix. Man­
agement Science, 9, 4, 1963.

[21] J. H. Holland. Adaptation in natural and artificial systems. The University
of Michigan Press, Ann Arbor, MI, 1975.

[22] T. C. Hu. Parallel sequencing and assembly line problems. Operations
Research, 9, Nov.-Dee. 1961.

[23] J. R. Jackson. A computing procedure for a line balancing problem. Man­

agement Science, 2, 3, 1956.

[24] R. V. Johnson. Assembly line balancing algorithms: coputational com­
parisons. International Journal o f Production Research, 19, 3, 1981.

[25] H. N. Kamhawi, S. R. Leclair, and C. L. P. Chen. Feature sequencing in
the rapid design system using a genetic algorithm. Journal of Intelligent
Manufacturing, pages 55-67, 1996.

I
/ [26] E. P. C. Kao and M. Queyranne. On dynamic programming methods for
j

assembly line balancing. Operations Research, 30, 2, 1982.

[27] M. D. Kilbridge and L. Wester. A heuristic method of assembly line
balancing. The Journal of Industrial Engineering, pages 292-298, 1961.

[28] M. Klein. On assembly line balancing. Operations Research, 11, 2, 1963.

[29] Y. Y. Leu, L. A. Matheson, and L. P. Rees. Assembly line balancing
using genetic algorithms with heuristic-generated initial populations and

multiple evaluation criteria. Decision Sciences, pages 581-606, 1995.

[30] C. L. Moodie and H. H. Young. A heuristic method of assembly line
balancing for assumptions of constant or variable work element times.
Joum.al of Industrial Engineering, 16, 1, 1965.

BIBLIOGRAPHY 72

! [31] / A. J. Nevins. Assembly line balancing using best bud search. Management
Science, 18, 9, 1972.

[32] J. H. Patterson and J. J. Albracht. Assembly-line balancing: zero-one pro­
gramming with fibonacci search. Operations Research, 23:166-172, 1975.

[33] M. E. Salveson. The 3issembly line balancing problem. The Journal of
Industrial Engineering, 8, 3, 1955.

[34] L. Schräge and K. R. Baker. Dynamic programming solution of sequencing
problems w th precedence constraints. Operations Research, 26, May-June
1978.

[35] T. Starkweather, D. Whitley, K. Mathias, and S. McDaniel. Sequence
scheduling with genetic algorithms. Technical report, Colorado State Uni­
versity, 1991.

[36] G. Suresh, V. V. Vinod, and S. Sahu. A genetic algorithm for facility
layout. International Journal of Production Research, pages 3411-3423,

1995.

[37] G. Suresh, V. V. Vinod, and S. Sahu. A genetic algorithm for assembly
line balancing. Production Planning and Control, pages 38-46, 1996.

[38] F. B. Talbot and J. H. Patterson. An integer progieimming algorithm with
network cuts for solving the assembly line balancing problem. Management
Science, 30, 1, 1984.

[39] F. B. Talbot, J. H. Patterson, and W. V. Gehrlein. A comperative evalu­
ation of heuristic line balancing techniques. Management Science, 32, 4,

1986.

[40] F. B. Talbot, J. H. Patterson, and W. V. Gehrlein. A comperative evo­
lution of heuristic line balancing techniques. Management Science, pages

430-454, 1986.

[41] S. R. Thangavelu and C. M. Shetty. Assembly line balancing by zero-one

programming. A HE Transactions, 3, 1, 1971.

BIBLIOGRAPHY 73

[42] F. M. Tonge. A heuristic program of assembly line balancing. Englewood
Cliffs, NJ: Prentice-Hall, 1961.

[43] T. M. Tonge. Assembly line balancing using probabilistic combinations of
heuristics. Management Science, 11, 7, 1965.

[44] R. V. V. Vidal. Applied simulated annealing. Springer-Verlag, 1993.

[45] T. S. Wee and M. J. Magazine. An efficient branch and bound algorithm
for an assembly line balancing problem - part I: minimize the number of
work stations. University of Waterloo, Ontario, Canada, June 1981.

[46] M. A. Wellman and D. D. Gemmill. A genetic algorithm approach to opti­
mization of asynchronous automatic assembly systems. The International
Journal of Flexible Manufacturing Systems, pages 27-46, 1995.

[47] W. W. White. Comments on a paper by bo%vman. Operations Research,
9, March-April 1961.

[48] D. Whitley and J. Kauth. Genitor: A different genetic algorithm. In
Rocky Mountain Conference on Artificial Intelligence, 1988.

Vitae

Muzaffer Tanyer was born on August 24, 1973 in Samsun, Turkey. He stud­
ied secondary and high school at Tarsus Amerikan College. He attended to the
Department of Electical and Electronics Engineering, Boğaziçi University, in
1991 and graduated from the same department in July 1995. In October 1995,
he joined to the Department of Industrial Engineering at Bilkent University as
a research assistant. Until September 1997, he worked with Assoc. Prof. İhsan
Sabuncuoğlu for his gi'aduate study at the same department.

