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ABSTRACT

ASSEM BLY LINE BALANCING USING GENETIC
ALGORITHM S

Muzaffer Tanyer 
M.S. in Industrial Engineering 

Supervisor: Assoc. Prof. İhsan Sabuncuoğlu 
September, 1997

For the last few decades, the genetic algorithms (GAs) have been used as a 
kind of heuristic in many areas of manufacturing. Facility layout, scheduling, 
process planning, and assembly line balancing are some of the areas where GAs 
are already popular. GAs are more efficient than traditional heuristics and also 
more flexible as they allow substantial changes in the problem’s constraints and 
in the solution approach with small changes in the program. For this reason, 
GAs attract the attention of both the researchers and practitioners.

Chromosome structure is one of the key components of a GA. Therefore, 
in this thesis, we focus on the special structure of the assembly line balanc­
ing px'oblem and design a chromosome structure that operates dynamically. 
We propose a new mechanism to work in parallel with GAs, namely dynamic 
partitioning. Different from many other GA researchers, we particularly com­
pare different population re\asion mechanisms and the effect of elitism on these 
mechanisms. Elitism is revised by the simulated annealing idea and various 
levels of elitism are created and their effects are observed. The proposed GA 
is £ilso compared with the traditional heuristics.

Key words: Genetic Algorithms, Assembly Line Balancing, Simulated An­
nealing.
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ÖZET

GENETİK ALG O R İTM ALAR  İLE HAT DENGELEM E

Muzaffer Tanyer
Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. İhsan Sabuncuoğlu 
Eylül, 1997

Son yıllarda genetik algoritmalar üretimin pek çok alanında bir çeşit sezgisel 
yöntem olarak kullanılmaya başlanmıştır. Yerleşim planlama, sıralama, 
süreç planlama ve hat dengeleme, genetik algoritmaların şimdiden popüler 
olduğu alanlardandır. Genetik algoritmalar geleneksel sezgisel yöntemlerden 
daha etkili ve problemin zorlamalarında ve çözüm yaklaşımında yapılacak 
önemli değişiklikleri programda yapılacak küçük değişikliklerle halledebildik- 
lerinden dolayı da daha esnektirler. Bu sebeple, genetik algoritmalar hem 
araştırmacıların hem de pratisyenlerin ilgisini çekmektedir.

Kromozom yapısı genetik algoritmaların en önemli yapı taşlarından biri­
sidir. Bu sebeple, bu tezde hat dengeleme probleminin özel yapısını inceliyoruz 
ve dinamik olarak değişen bir kromozom yapısı tasarlıyoruz. Dinamik 
bölmeleme adını verdiğimiz, genetik algoritmalarla paralel olarak çalışan yeni 
bir mekanizma öneriyoruz. Diğer birçok genetik algoritma araştırmacısından 
farklı olarak, özellikle değişik nüfus yenileme mekanizmalarını karşılaştırıyoruz 
ve seçkinlik kuralının bu mekanizmalar üzerindeki etkisini araştırıyoruz. 
Seçkinlik kuralı, yumuşatma benzetimi fikri ile yenilenmiş ve çeşitli seçkinlik 
düzeyleri yaratılıp etkileri gözlenmiştir. Önerilen genetik algoritma geleneksel 
sezgisel yöntemlerle de karşılaştırılmıştır.

Anahtar sözcükler: 
Benzetimi.

Genetik Algoritmalar, Hat Dengeleme, Yumuşatma

IV
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Chapter 1

INTRODUCTION

An assembly line consists of a sequence of work stations which are connected 
by a conveyor belt. Each station has to perform repeatedly a specified set of 
tasks on consecutive product units moving along the line at constant speed. 
Because of the uniform movement of the line, each product unit spends the 
same fixed time interval, called the cycle time, in every work station. As a 
consequence, the cycle time determines the production rate which is equal to 
the reciprocal of the cycle time. Tasks or operations are indivisible elements 
of work which have to be performed to assemble a product. The execution of 
each task is assumed to require a fixed amount of time. Due to technological 
restrictions, precedence constraints partially specifying the sequence of tasks 
have to be considered. These constraints can be represented by a precedence 
graph containing nodes for all tasks and arcs {i , j )  if task i has to be completed 
before task j  can be started. The Assembly Line Balancing (ALB) problem is 
to allocate the tasks equally to a minimum possible number of stations such 
that each task is assigned to exactly one station and no precedence constraint 
is violated.

The ALB problem has been first introduced by Helgeson et al. in 1954 

[3], and has become an important research area since then. However, Artifi­

cial Intelligence (AI) techniques such as Genetic Algorithms (GAs) have been 
introduced to the ALB problem very recently (i.e.. Leu et al, 1994).



CHAPTER 1. INTRODUCTION

Assuming that no precedence relationship exists, a modest assembly line 
consisting of 30 tasks has 30! (2.6 x 10̂ )̂ possible schedules. If one can develop 
a system using heuristic rules which can limit this explosion, the search space 
can be reduced to a reasonable size. The main idea of AI is based on the concept 
of this intelligent search. The search methods used to find the optimum solution 
to the ALB problem require unreasonable computational effort that increases 
exponentially as the problem size gets larger. This necessitates the adoption of 
different strategies which apply heuristic information to the search technique.

The basic notion in eill the heuristic search methodologies is to use the 
problem specific knowledge intelligently to reduce the search efforts. GAs are 
intelligent random search mechanisms that can easily be applied to optimiza­
tion problems. Provided that standard GA operators are modified to work 
effectively in the specific problem domain, GA can be a very powerful search 
mechanism. This has already been proved by Leu et al. [29], Suresh et al. [37], 
and Anderson and Ferris [l] in the ALB problem domain. In this study, we take 
a further step and make use of a specific characteristic of the ALB problem to 
adopt the GA structure as well as its operators to work more effectively than 

the above mentioned GA attempts to the ALB problem.

The rest of the thesis is organized as follows. After a comprehensive litera­
ture review that reveals our motivation for this study in Chapter 2, we explain 
our algorithms in Chapter 3. The proposed approach that exploits the spe­
cial characteristics of the ALB problem is presented in Chapter 4. We also 
integrate two AI tools, GA and simulated annealing (SA), working together 
to achieve a better performing search in Chapter 5. Then we compare the 
performance of two major types of basic GA structures on the ALB problem 
in Chapter 6. We then demonstrate the performance of our algorithm on ALB 
problems reported in the literature and compare it with the best performing 
heuristics. Finally, we summarize our study and discuss our major findings in 
the conclusion chapter.



Chapter 2

LITERATURE R EVIEW

2.1 Assembly Line Balancing

An assembly line consists of a finite set of work elements or tasks, each having 
an operation processing time and a set of precedence relations, which specify 
the permissible orderings of the tasks. The line balancing problem is assigning 
the tasks to an ordered sequence of stations, such that the precedence relations 
are satisfied and some measure of effectiveness is optimized (e.g. minimize the 
balance delay or minimize the number of work stations) [14].

Since the assembly line balancing (ALB) problem was first formulated by 
Helgeson et al. in 1954 [3], many solution approaches have been devised, start­
ing with Salveson (1955) [33]. Salveson is the first to publish it in mathematical 
form and propose a linear progiamming (LP) solution. Since the ALB prob­
lem falls into the NP hard class of combinatorial optimization problems, it has 
not been possible to develop efficient algorithms for obtaining optimal solu­
tions [14]. Hence, numerous research efforts have been directed towards the 
development of computer efficient approximation algorithms or heuristics.
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Ghosh and Gagnon (1989) classify the ALB problem and the accompany­
ing research and literature into four categories, as shown in Figure 2.1: Sin­
gle Model Deterministic (SMD), Single Model Stochastic (SMS), Multi/Mixed 
Model Deterministic (MMD), and Multi/Mixed Model Stochastic (MMS).

ALB Literature

Single Model Multi/Mixed Model

Deterministic
(SMD)

Stochastic
(SMS)

Deterministic
(MMD)

Stochastic
(MMS)

Simple General Simple General Simple General Simple General
Case Case Case Case Case Case Case Case

(SALB) (GALB) (SALB) (GALB) (SALB) (GALB) (SALB) (GALB)

Figure 2.1: Claissification of Assembly Line Balancing Literature (Taken from 
Ghosh and Gagnon (1989))

The SMD version of the ALB problem assumes dedicated, single-model 

assembly lines where the task times are known deterministically and an ef­
ficiency criterion is optimized. This is the original and simplest form of the 
assembly line balancing problem (SALB). If other restrictions or factors (e.g. 
parallel stations, zoning restrictions) ai'e introduced into the model, it becomes 
the General ALB problem (GALB). Our research area is the SMD category’s 
SALB subcategory. It is also known as type-1 assembly line balancing problem 

since the cycle time is fixed and we aim to minimize the number of stations. 

The variation in which the number of stations is fixed to minimize the cycle
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time is referred to as the tj'pe-2 assembly line balancing problem. The SMD- 
SALB category has been the most researched, as evidenced by the number of 
articles pubUshed in the literature, i.e. 64 articles since 1983 [14]. A summary 
of the previous research in this category is £is follows:

Salveson (1955) formulated the SALB version of the SMD problem as an LP 
problem. Bowman (1960) (later modified by White 1961) came up with an inte­
ger programming (IP) solution, describing task assignments to stations with bi­
nary variables. IP formulations were contributed by Klein (1963), Thangavelu 
and Shetty (1971), Patterson and Albracht (1975), and Talbot and Patterson 
(1984). The formulation provided by Patterson and Albracht (1975), a gen­
eral integer program without binary variables, significantly reduced the size 
of the problem formulation. Dynamic programming (DP) formulations were 
contributed by Jackson (1956), Held et al. (1963), Kao and Queyranne (1982), 
Held and Karp (1962), and Schräge and Baker (1978). Specialized branch and 
bound approaches (those not based on general IP theory) were contributed by 
Jackson (1956), Hu (1961). Van Assche and Herroelen (1979), Johnson (1981), 
and Wee and Magazine (1981).

Besides the reasonable progress in the development of optimal seeking ap­
proaches, considerable ad\*ancement has been achieved in the development of 
heuristic approaches to soh’e the SMD problem as well. According to a study 
by Talbot et al. (1986), Hoffman’s Precedence Matrix approach (1963), Dar- 
El’s MALB (1973), and Dar-El and Rubinovitch’s MUST (1979) are the most 
promising of the heuristic techniques for the SALB problem. Baybars’ LBHA, 
devised more recently than the heuristics mentioned before, is an efficient 
heuristic, as well [4]. It consists of several reduction phases, i.e. reduction via 
node elimination, determining the sets of tasks that are likely to be in the same 

station, decomposing the network, and determining feasible sub-sequences of 

tasks. After pre-processing the problem by the reduction phases the heuris­
tic solution phase starts, which is a backward procedure that starts with the 
last tasks in the precedence diagram and bases the assignment decisions on 
the principle that last tasks are likely to be assigned to the last stations along 
the line. Baybars presents a comparison of his heuristic with Tonge’s (1965),



Moodie and Young’s (1965), and Nevins’ (1972) heuristics on Tonge’s prob­
lems. We will also present our results on the same problem set, and compare 
with the other heuristics in the later chapters.

The SMS problem formulation introduces the task time variability. The 
MMD problem category assumes deterministic task times, but introduces the 
concept of an assembly line producing multiple products. Multi-model lines 
assemble two or more products separately in batches. In mixed-model lines, 
single units of different models can be introduced in any order or mix to the 
line. Since multi-model lines are equivalent to mixed-model lines for batch size 
equals to one, they are classified in one category. MMS differs from MMD in 
that stochastic task times are allowed.

CHAPTER 2. LITERATURE REVIEW 6

2.2 Genetic Algorithms

In this section, we give a brief review of genetic algorithms (GAs) together 
with their recent applications to manufacturing problems.

GAs are adaptive methods which may be used to solve search and optimiza­
tion problems. They are based on genetic processes of biological organisms. 
Over many generations, natural populations evolve according to the principles 
of natural selection and survival of the fittest. By mimicking this process, GAs 
are able to evolve solutions to real life problems, if they have been suitably 
encoded.

In nature, individuals who are most successful in surviving will have rel­
atively a large number of offsprings. Poorly performing individuals, on the 
other hand, will produce less number of offsprings, or even none after some 

point in time. This means that the genes from the highly adapted, or fit in­
dividuals will spread to an increasing number of individuals in each successive 
generation. The strong characteristics from different ancestors can sometimes 
produce super-fit offspring, whose fitness is gi'eater than that of either par­
ent. In this way, species evolve to become more and more well suited to their
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environment.

GAs use a direct analogy to natural behavior. They work with a popula­
tion of individuals, each representing a possible solution to the given problem. 
Actually, individuals are represented by their "chromosomes” that carry their 
characteristic specifications on the "genes” which are ordered on chromosomes. 
Each chromosome is assigned a "fitness score” according to the quality of the 
solution it provides to the problem. The highly fit chromosomes are given op­
portunity to reproduce by cross breeding or "recombining” with other individ­
uals in the population. This produces new individuals as offspring, which share 
some features taken from each parent. The least fit members are less likely to 
get selected for reproduction, so they die out. The new generation contains 
a higher proportion of the characteristics possessed by the superior members 
of the previous generation. In this way, over many generations, superior char­
acteristics are preserved and individuals of the population are enhanced on 
the average due to their fitness score. Hence, if the GA is well designed, the 
population will converge to an optimal or near-optimal solution at the end. 
Holland (1975) showed that a computer simulation of this process of natural 
adaptation could be employed for solving optimization problems. Goldberg 
(1989) provides a comprehensive introduction to the theory, operation, and 
application of GAs in search, optimization and machine learning [15].

The power of GAs comes fi'om the fact that the technique is robust, and can 
deal with a wide range of problem areas. GAs are not guaranteed to find the 

optimal solution but they are generally successful at finding acceptable good 
solutions to problems acceptable quickly. If specialized techniques exist for 
solving particular problems, they are likely to outperform GAs in both speed 
and the accuracy of the final result. The main ground for GAs is then, is in 
difficult areas where no such techniques exist. On the contrary, even where 
existing techniques work well, impro\’ements have been made by hybridizing 

them with GAs.
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2.2.1 Basic Structure of a GA Process

The standard (or classical) GA algorithm can be represented as follows. 

The following notations are used in the algorithm:

Rx denotes the crossover rate,

Rm denotes the mutation rate, and 

Np denotes the population size.

A lgorithm  2.1 : Classical GA 

begin

Generate initial population

Compute fitness of each individual

while Termination-Criteria not reached do

Select 0.5 x Rx x Np pairs of parents from old generation 

for mating

Recombine the selected pairs to give offsprings 

Mutate Rm x Rx x Np offsprings chosen at random 

Compute the fitness of the offsprings 

Insert, offsprings in the new generation

end

Choose the best-fit chromosome and the corresponding solution

end.

2.2.2 Coding

Before a GA can be run. a suitable coding for the problem must be devised. 

It is assumed that a potential solution to the problem may be represented as



a set of parameters. These parameters (genes) are joined together to form a 
string of values (chromosomes). The ideal is to use a binary alphabet for the 
string but there are other possibihties, too.

In genetic terms, the set of parameters represented by a particular chromo­
some is referred as a genotype. The genotype contains the information required 
to construct an organism which is referred to as the phenotype. The same terms 
are used in GAs. The fitness of an individual depends on the performance of 
the phenotype. This can be inferred from genotype.

2.2.3 Fitness Function

GAs require a fitness function, which assigns a figure of merit to each coded 
solution. Given a particular chromosome, the fitness function returns a single 
numerical fitness which is supposed to be proportional to the utility or ability 
of the individual represented by that chromosome.

2.2.4 Reproduction

Parents are selected randomly from the population using a scheme which favors 
the more fit individuals. Having selected two parents, their genes are recom­
bined on a new chromosome, typically by using the mechanisms of crossover 
and mutation.

Crossover

CHAPTER 2. LITERATURE REVIEW  9

We will explain the crossover operator by means of an example: One popular 
crossover mechanism is the uniform crossover technique. In this technique, each 
gene in the offspring is created by copying the corresponding gene from one or 
the other parent, chosen according to a randomly generated crossover mask. 
The crossover mask consists of ones and zeros. If the number on the mask
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corresponding to a gene is zero, then that gene is transported from the first 
parent, otherwise the corresponding gene from the second parent is transported 
to the offspring chromosome. This process is presented in Figure 2.3. The 
process is repeated with the parents exchanged to produce another offspring. 
A new crossover mask is randomly generated every time the crossover process 
is repeated.

Crossover Mask

Parent 1

Offspring 1

Parent 2

Figure 2.2: Uniform Crossover Mechanism

M utation

Mutation is applied to each individual after crossover. It randomly alters each 
chromosome with a small probability, referred to as the mutation rate. Despite 
its generally low probability of use, mutation is a very important operator. Its 
optimum probability is much more critical than that of crossover. Mutation 
provides a small amount of random search, and helps ensme that no point 
inside the search space has zero probability of being examined. An example 

to mutation is exchanging the places of two randomly selected genes on a par­

ticular chromosome. For instance, if this mutation operator W£is applied to
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Parent 1 in Figure 2.3, assuming that the fourth and eighth genes are ran­
domly selected for exchanging their places, the mutated chromosome would be 
1011001010.

2.2.5 Genetic Algorithm Applications

Genetic algorithms are applied to various kinds of manufacturing problems. 
Some very recent examples from different fields of manufacturing are as fol­
lows: Suresh et al. (1995) devised a GA for facility layout, and showed that 
the population maintained by the GA for facility layout should consist of fea­
sible solutions only [36]. Bullock et al. (1995) underlined the potential of the 
genetic algorithms both as a high-level decision support technique during the 
preliminary stages of the design process and as a detail design of complex com­
ponents [7]. Chen and Tseng (1996) presented the planning of a near-optimum 
path and location of a workpiece (i.e. robot arm) by genetic algorithms [9]. 
Kamhawi et al. (1996) addressed the feature sequencing problem in the Rapid 
Design System, that is a feature-design system that integrates product design 
and process planning [25]. Gupta et al. (1996) proposed a GA based solution 
approach to address the machine cell-part grouping problem [16]. Gupta et 
al. (1995) used a GA approach to solve a problem formulated which mini­
mizes the intercell and intracell part movements in cellular manufacturing [17]. 
Wellman and GemmiU (1995) applied GAs to the performance optimization 
of asynchronous automatic assembly systems [46]. Starkweather et al. (1991) 
devised a genetic recombination operator for the traveling salesman problem, 
which is proved to be superior to previous genetic operators for this problem 
[35]. Davis (1985), devised a GA for job shop scheduling [13].

2.3 ALB and G A

There are only three articles in literature which deals with ALB using GAs. 
While one of them deals with the deterministic (SMD) SALB problem, the
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other two are concerned about the stochaistic (SMS) case. We present a com­
prehensive review of these articles in chronological order.

Leu et al. (1994) has introduced the concept of GAs to the SALE problem 
[29]. In this study, the authors used heuristic solutions in the initial population 
to obtain better results than the heuristics. They also demonstrated the pos­
sibility of balancing assembly lines with multiple criteria and side constraints. 
According to the authors, the GA approach has the following advantages: i) 
GAs search a population rather than a single point and this increases the odds 
that the algorithm will not be trapped in a local optimum since many solutions 
are considered concurrently, and ii) GA fitness functions may be of any form 
(i.e., unlike gradient methods that have differentiable evaluation functions) and 
several fitness functions can be utilized simultaneously.

The coding of the solution to the ALB problem is done by representing 
the number of the tasks on a chromosome in the order that they take place 
in the assembly line. For example, ” 1 3 6 5 2 7 4” can be a chromosome for 
a 7 task ALB problem. Then, stations are formed such that the first station 
is filled vnth the tasks on the chromosome, starting with the first task and 
proceeding with the next ones until the station time reaches the cycle time. 
This procedure is repeated in the same way for the other stations imtil every 
task on the chromosome is placed in a station, e.g. ” 13 6” (station time =  25) 
and ” 5 2 7 4” (station time =  19) are the two stations for a cycle time of 25, 
for the above example. The fitness functions used by Leu et al. (1994) are: i) 

Zi =  smoothness index =  [C — Sk) /n, where n is the niunber of stations,
fc=l n

Sk is the A:th station time, and C is the cycle time, ii ) =  Y{ C- Sk) /n ,
k = \

iii) z == 2y/z{ -f 22 to demonstrate balancing with multiple criteria, and iv) 
Y(c-s^)

efficiency =  1 - fc=l
n x C

The population revision mechanism used by the authors is similar to Whit­

ley and Kauth’s (1988) GENITOR [48]. The steps of the algorithm of Leu et 

al. (1994) are as follows:
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A lgorithm  2.2 ; Modem GA

Generate initial population 

repeat

Choose two parents by roulette wheel selection 

Decide whether to recombine or mutate 

Form two offsprings by recombination or one by mutation 

Replace parents with offsprings if they are outperformed by offsprings 

until Stopping-Criterion is reached

The initial population is generated randomly by assuring feasibility of prece­
dence relations. Roulette wheel selection is a procedure that selects a chromo­
some from a population with a probability directly proportional to its fitness 
(i.e., the best-fit chromosome has the greatest probability of being selected 
amongst a population). The decision between recombining or mutating de­
pends on a certain probability, i.e., if the probability of recombining is 98% 
then the probability of mutating is 2%. Replacing a parent with ein offspring 
only if the offspring is better than the parent is called elitism. Elitism rule will 
be discussed in detail in Chapter 4. The crossover (recombination) operator is 
a variant of Davis’ (1985) order crossover opevatox [12]. The two parents that 
are selected for crosso\'er are cut from two random cut-points. The offspring 
takes the same genes outside the cut-points at the same location as its parent 
and the genes in between the cut-points are scrambled according to the order 
that they have in the other parent. This procedure is demonstrated in Figure 
2.3. The major reason that makes this crossover operator a very suitable one 
for ALB is that it assures feasibility of the offspring. Since both parents are fea­
sible and both offsprings are formed without violating the feasibility sequence 
of either parent, both children must also be feasible. Keeping a feasible popu­
lation is a key to ALB problem since preserving feasibility drasticedly reduces 

computational effort.

The mutation operator of Leu et al. (1994) is scramble mutation, that is, 
a random cut-point is selected and the genes after the cut-point are randomly
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Parent 1

cut-point 1 cut-point 2
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Parent 2 0 © © © ( D ® ©

Offspring 1 0 ® : © © © : ® ©

Offspring 2 ®®®©®0 ®

Figure 2.3: Crossover Operator of Leu et al. (1994)

replaced (scrambled), assuring feasibility. For example, if parent 1 in Figure 
2.3 is mutated with the same cutpoint as cut-point 1 then tasks 1 and 2 stay 
in their current places but tasks 3, 4, 5, 6, and 7 are randomly replaced by 
assuring feasibility of precedence constraints. Elitism is applied to the mutation 
procedure as well, i.e., a chromosome is mutated only if mutation improves its 
fitness value.

Anderson and Ferris (1994) demonstrated that GAs can be effective in the 
solution of combinatorial optimization problems, working specifically on the 
ALB (SALE) problem [1]. In the first part of the paper, they describe a fairly 
standard implementation for the ALB problem. Experiments are reported to 
indicate the relative importance of crossover and mutation mechanisms and the 
scaling of fitness values. In the second part, an alternative parallel version of the 
algorithm for use on a message passing system is introduced. The authors note 
that they did not expect a GA to be as effective as some of the special purpose 

heuristic methods for the ALB problem. Their aim is not to demonstrate the 
superiority of a GA for ALB problem, but rather to give some indication for 
the potential use of this technique for combinatorial optimization problems.

They coded the problem in a different way than Leu et al. (1994). The
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Figure 2.4: Stochastic Universal Sampling

solution is represented by a string of numbers such that the number in the 
ith place of the string is the station to which the ith operation is to be as­
signed. Stochastic universal sampling is used as the selection procedure. That 
is, assigning each chromosome an interval proportional to its fitness (i.e., as in 
roulette wheel selection procedure) such that the total length of the intervals 
is N, and connecting all the intervals side by side in random order such that 
they form an imaginary line. Then a random number x  is chosen uniformly on 
[0,1] and the line of internals is marked at points x ,x  +  1, ...x +  N. Finally, the 
chromosomes corresponding to the marked intervals are put in the mating pool. 
This procedure guarantees that the more-than-average-fit chromosomes are se­
lected for recombination, whereas roulette wheel selection does not. Stochastic 
random sampHng is demonstrated by means of an example in Figure 2.4. The 
eight tasks of the assembly line are shuffled and arranged in random order as 

3, 5, 4, 1, 8, 7, 2, 6. They correspond to an interval proportional to their prob­
ability of selection, P(l ) ,  P(2), ..., P(8), respectively. If the total length of the 
intervals is 8 then the average length of the intervals is 1, that is equal to the 
sampling inter\^l. Hence, the tasks that have selection probabilities above the
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average selection probability, i.e., tasks 1, 2, 3, are guaranteed to be selected. 
On the other hand, some of the tasks that have selection probabilities below 
the average are not selected, i.e., tasks 4 and 8. The tasks that are selected 
by stochastic reindom sampling are placed in the mating pool in the order that 
they appear in Figure 2.4 (i.e., 3, 5, 1, 7, 2, 6). For instance, if four chromo­
somes are required to be placed in the mating pool, then the tasks 3, 5, 1, 7 are 
placed. The authors compared it with another commonly used method called 
"remainder stochastic sampling without replacement” and found that this pro­
cedure is similar in performance to stochastic universal sampling. However, a 
comparison with roulette wheel selection or any other selection procedure is 
not included in this paper.

Infeasible solutions (chromosomes) are allowed in the population but the 
population is forced to feasibility by assigning high penalty costs to the infea­
sible chromosomes. The standard single point crossover operator is used, that 
is, two offsprings are obtained from two parents by choosing a random point 
along the chromosome, both chromosomes are splited at that point, and then 
the front part of one parent is joined to the back part of the other parent and 
vice versa. The mutation operator randomly increases or decreases the value 
of one gene of a chromosome by one unit (i.e., the task that is represented by 
that gene is transferred to a neighbor station). Elitism is used in this study, 
but in two different ways: i) the best fit chromosome is transferred to the next 
population so that the final generation is guaranteed to contain the best solu­
tion ever found, and ii) if any of the offsprings perform worse than the worst 
individual in the previous generation then that offspring is not retained and, 
instead, one of the parents is allowed to continue in the next generation. While 
the first type of elitism is desirable from the point of view of assessing the rel­
ative performance of different versions of the GA, the second type is effective 
in speeding up the convergence of the algorithm. The algorithm stops after a 
certain number of iterations (i.e., 350).

Suresh et al. (1996) used GAs to soh^ the SMS type ALB problem [37]. 

The ability of GAs to consider a variety of objective functions is imposed as 
the major feature of GAs. A modified GA working with two populations, one
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of which allows infeasible solutions, and exchange of specimens at regular in­
tervals is proposed for handling irregular search spaces, i.e., the infeasibility 
problem due to precedence relations. The authors claim that a population of 
only feasible solutions would lead to a fragmented search space, thus increasing 
probability o f getting trapped in a local minima. They eilso state that infeasible 
solutions can be allowed in the population only if genetic operators can lead 
to feasible solutions from an infeasible population. Since a purely infeasible 
population may not lead to a feasible solution in this particular problem, two 
alternative populations, one purely feasible and one eiUowing a fixed percent­
age of infeasible chromosomes, is combined in a controlled pool to facilitate 
the advantages of both of them. Certain chromosomes are exchanged at reg­
ular intervals between the two populations. The two chromosomes that are 
exchanged have the same rank of fitness value in its own population. Experi­
mental results on large sized problems showed that the GA working with two 
populations gives better results than the GA with one feasible population.

The coding scheme used by Siu'esh et al. (1996) is the same as Leu et al.’s 
(1994). The SMS type problem is converted into SMD by assuming determin­
istic station times calculated as follows: ST  =  Smean +  crVSvar > where ST is the 
station time for each station, Smean is the sum of the means of tasks assigned to 
that station, a is the confidence coefficient for normally distributed task times, 
and Ŝ ar is the sum of the variances of tasks assigned to that station. Moodie 

and Young’s (1965) smoothness index {SI =  JZ {Smax — Sk) /n, where n is
fc=l

the number of stations, S^ax is the maximum station time, and Sk is the fcth 
station time), and Reeve’s (1971) objective to minimize the probability of line 
stopping are used as the objective functions. The probability of a station not 
exceeding the cycle time is denoted by Pg. It is the area under the normal 
curve corresponding to the value of z given by z =  probability

n
of line stopping is given by P  =  (1 — f l  Ps)·

5=1

Single point conventional crossover mechanism is used. Then a correction 
algorithm is applied to the infeasible offsprings in the purely feasible population 
to meike them feasible. Two kinds of mutation is used: i) swapping two tasks 
in different stations, and ii) interchanging all the tasks of two different stations.
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Feasibility is assured in the mutation operation by checking if the cycle time 
or the precedence constraints are violated.

2.4 Motivation and Organization

As stated above, there are many heuristics and exact methods proposed for 
the ALB problem. Because of the NP hard characteristic of the ALB problem, 
it has not been possible to develop efficient algorithms for obtaining optimal 
solutions [14]. Hence, numerous research efforts have been directed towards the 
development of computer efficient heuristics. Intelligent heuristic approaches 
(i.e., different than the traditional heuristics that work basically with priority 
rules) such as GAs, started to emerge recently, i.e., since 1994. The limited 
number of GA studies on the ALB problem have been helpful in demonstrat­
ing that GA is a promising heuristic for the ALB problem and that GAs are 
superior to traditional heuristics in certain respects such as multi objective 
optimization and flexibility due to change in problem’s constraints. These 
properties of GAs are not limited to only the ALB problem. In this study, we 
direct our research towards exploiting the characteristics of the ALB problem 
to improve the GA structiue specially designed for the ALB problem. After 
providing comprehensive information about our initial GA structure in Chapter 
3, we explain the proposed GA approach in Chapter 4.

We make use of another characteristic of the ALB problem in Chapter 
5. The ratio of the number of precedence relationships are compared to the 
maximum possible number of precedence relationships, i.e., flexibility ratio (F- 
Ratio). We observe that the use of elitism rule contributes to the GA, but in 
some problems with high ratios, strict elitism causes early convergence. Hence, 
we redirect our study towards relaxing the elitism rule with the simulated 
annealing idea.

There are tw'o major ŵ ays of moving from one population to its neighbor 

population in literature, that can be classified as the classical GA and the
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modem GA structures. We initially use the modem GA structure, but we code 
the classical structure as well, and test which structure is more appropriate for 
the ALB problem in Chapter 6. This comparison has not been done before in 
GA literature either for the ALB problem or for any other problems.

Finally, we solve two well known ALB problems (i.e., Kilbridge and Wester 
(1961) and Tonge (1961)) and compare our results to the best performing 
heuristics in literature in Chapter 7.



Chapter 3

THE PROPOSED GENETIC  
ALGORITHMS

As it has been mentioned in Chapter 2, there are two kinds of GA structures 
in the literature: i) classical GA (i.e., Algorithm 1.1), and GENITOR type 
or modern GA (i.e., Algorithm 1.2). In this study, we first use a modern 
GA structure which forms the skeleton of our GA. While the classic structure 
performs many crossovers to generate the consecutive population, our GA per­
forms only one recombination operation between two iterations. Because of the 
reason that our first algorithm resembles GENITOR’s structure, we will refer 
to it as GENITOR type (or modern GA) from now on. Hence, the GA that is 
mentioned in Chapter 4 and Chapter 5 has the GENITOR type structure.

Although both structures have been used before in many studies, they have 
not been compared. We make this comparison and discuss the advantages 
and drawbacks of both structures in Chapter 6. We present the algorithms as 
follows:

Algorithm  3.1 ; Classical GA

Generate initial population 

repeat

20
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TYansfer the best (1 — R^) x 100 chromosomes to the next population 

repeat

Choose two parents from the current population for crossover 

Include the offsprings in the next population 

until Next population is full

Apply mutation to one of the chromosomes with Rm probability 

until Stopping-condition is reached

Take the best-fit chromosome of the final population as the solution

Algorithm  3.2 ; Modem GA

Generate initial population 

repeat

Choose two parents for recombination

Apply mutation with R^ probability or crossover with 1 — probability 

Replace parents with offsprings 

until Stopping-condition is reached

Take the best-fit chromosome of the final population as the solution

3.1 The Characteristics of the Proposed GAs

The specific characteristics of the two algorithms like the crossover operator, 
mutation operator, fitness function, etc. are the same. Some of these character­
istics are devised with the inspiration taken from current examples in literature 
that are proved to be successful. We describe these characteristics as follows:

1. Coding: Each task is represented by a number that is placed on a string 

of numbers (i.e., chromosome), such that the string size is the number of 
tasks. The tasks are ordered on the chromosome relative to their order 
of processing. Then the tasks are divided into stations such that the
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total of the task times in each station does not exceed the cycle time. 
For example, the first task on the chromosome is assigned to the first 
station, and if the total of the first and the second task’s times does 
not exceed the cycle time then the second task is assigned to the first 
station, otherwise it is assigned to the second station. The task to station 
assignment procedure goes on like this until the last task is assigned to 
the final station. The coding scheme is demonstrated in Figure 3.1.

Assembly Line

Chromosome Representation
2 1--------------

! 1 5 3 7 4 6

Figure 3.1; Coding the Chromosome Representation of an Assembly Line

2 Fitness function: The objective in a type-1 ALB problem is clearly to 

minimize the number of stations, but given two different solutions with 

the same number of stations, one may be "better balanced” than the 
other. For example, a line with three stations may have stations times as 
30-50-40 or 50-50-20. We consider the 30-50-40 solution to be superior 
(better balanced) to the 50-50-20 solution. Hence, we used a fitness
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function that combines the two objectives (i.e., minimizing the number 
of stations and obtaining the best balanced station):

Fitness Function =  2i iELl (-̂ max -  S„Y , E L i -  Sk)+V n n
where n is the number of stations, 5max is the maximum station time, and 
Sk is the A:th station time. The first part of our fitness function aims to 
find the best balance among the solutions that have the same number of 
stations while the second part only aims to minimize number of stations 
in the solution.

3 Crossover & Mutation: We use a variant of ’’ order crossover operator” , 
and scramble mutation operator. Both of these operators create feasi­
ble offsprings and they are the same as Leu et al.’s [29] crossover and 
mutation operators. (Refer to Chapter 2 for detailed explanation.)

4 Scaling: The fitness scores need to be scaled such that the total of the 
scaled fitness scores are equal to 1, in order to activate the selection pro­
cedure (i.e., roulette wheel selection). Since our objective is to minimize 
the fitness scores, we need to assign the highest scaled fitness score to 
the lowest fitness score and vice versa, to assign a probability of selec­
tion that is proportional to the fitness of chromosomes. We achieve this 
by subtracting each fitness value from the double of the highest (worst) 
fitness value in the population and assigning the subtrahend as the new 
fitness value of that chromosome. Then, by dividing each new fitness 
score by the total of new fitness scores, we scale the fitness scores such 
that their total equals to 1.

5 Selection Procedure: We use a well known selection procedure called 
’’ roulette wheel selection” . Fitness scores are scaled as described above, 
eind each chromosome is assumed to consist of an interval proportional to 
its scaled fitness score, all intervals placed next to each other on the [0,1] 
interval. Then, a uniform random number in the [0,1] interval is gener­

ated, and the chromosome which is assigned to the interval corresponding 
to the random number is selected. This procedure selects chromosomes 

proportional to their fitness scores.



CHAPTER 3. THE PROPOSED GENETIC ALGORITHMS 24

6 Stopping Condition: The algorithm stops after a certain number of iter­
ations. We used 500, 1000, and 2000 values for the number of iterations 
parameter, but we only use the 500 value in Chapters 5 and 6.

3.2 Classical G A  vs Modern G A

The basic difference between the classical and modern GA structures is the 
number of crossovers at each iteration. While the classical GA performs a 
number of crossovers between a fixed proportion of the members of its popula­
tion, the modem GA performs only one crossover between two of its members. 
Additionally, a group of best performing chromosomes of the current pop­
ulation is transferred to the next population in classical GA. Although the 
classical approach seems to provide a more comprehensive search by definition, 
we observed that the modern approach is able to compete with the classical 
approach, besides it requires much less CPU time. The details of a comparison 
between the classical and modern GA structures is given in detail in Chapter 
6.

3.3 Dynamic Partitioning

Although there are many attempts to improve the performance of GAs for 
ALB (i.e., working ■with two populations [37], including heuristic solutions 
in the initial population [29], working with multiple evaluation criteria [29, 
37], controlling the convergence speed by adjusting the scaling parameter and 
parallel implementation of the algorithm [1]) in the literature, no attempts have 
been taken to reduce the problem size prior to or during the solution procedure. 
Reduction of the problem size prior to the solution procedure have been done in 
some heuristics (i.e.. [4]). but reduction during the solution procedure has not 
been implemented in any of the heuristics or random search algorithms before. 

Therefore, we introduce the idea of dynamic partitioning, that is, reducing
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the problem size while the algorithm is running, which is a new development 
in both the ALB and the GA literature. We applied dynamic reduction by 
partitioning the chromosomes of the GA population, and freezing some parts 
of the chromosomes due to some freezing criteria (i.e., see Chapter 4) and 
continuing the remaining iterations with the unfrozen part. Hence, we call this 
reduction process as ’’ Dynamic PArtitioning (DPA)” . We applied DPA on the 
modem GA structure and we achieved improved results. DPA process and its 
experimentation are described in detail in Chapter 4. DPA has been applied 
to the modern GA in Chapter 4, but its implementation on the classical GA 
is discussed as well in Chapter 6. The modern GA is modified due to the 
integration with DPA as follows:

A lgorithm  3.3 ; Modem GA with DPA

Generate initial population 

repeat

Choose two parents for recombination

Apply mutation with R̂ n probability or crossover with 1 — /2^ probability

Replace parents with offsprings 

if  the DPA criteria is satisfied then 

Freeze a set o f tasks (genes)

Duduce the frozen tasks from all the chromosomes in the population 

until Stopping-condition is reached

Take the best-fit chromosome of the final population as the solution

The classical GA is modified in a similar manner, so we do not include the 

modified algorithm here.
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3.4 Elitism W ith Simulated Annealing

The elitism rule has been applied in many GAs before, but its effect on the 
performance of the ailgorithm has not been discussed. We do a comprehensive 
study of the elitism rule in Chapter 5, and we also introduce the concept of 
relaxing the elitism rule by using the Simulated Annealing (SA) idea. Just like 
the fitness score scaling factor, elitism is a factor that affects the convergence 
of the GA population. If elitism is applied without any control parameter, the 
algorithm may be induced by the negative effects of early or late convergence. 
Hence, we start with no elitism and then increase the elitism level iteration 
by iteration, controlling its level by SA. The concept of SA and its application 
to elitism is discussed in detail in Chapter 5. Thus, we only present the basic 
modifications on the modern GA structure in this chapter as follows:

A lgorithm  3.4 ; Modem GA with SA controlled elitism

Generate initial population 

Set Pg equals to 1 

repeat

Choose two parents for recombination

Apply mutation with Rm probability or crossover with 1 — Rm probability 

Obtain two offsprings by crossover or one by mutation 

Apply following to each offspring

if  the offspring is better than its parent then 

Replace parent with its offspring 

else Replace parent with its offspring with Re probability 

Reduce Pe

until Stopping-Condition is reached

Take the best-fit chromosome of the final population as the solution



Chapter 4

D YN AM IC PARTITIONING

Dynamic PArtitioning (DPA) is a method that modifies chromosome struc­
tures of Genetic Algorithms (GAs) in order to save from GPU time and to 
achieve improved results, if possible. DPA modifies the chromosome structure 
by freezing the tasks that are allocated in certain stations that satisfy some 
criteria, and continues with the remaining iterations without the frozen tasks. 
Hence, DPA allows the GA to focus on the allocation of the remaining tasks 
during the search, and saves a considerable amount of computation time. In 
what follows, we use ’’without DPA” to refer to the traditioneJ GA.

4.1 Motivation

Although a typical GA developed for assembly line balancing (ALB) problem 

is a fast problem solver (our GA solves a 50 task problem after 500 iterations 
in approximately 1.5 seconds on a pentium 133 PC), it needs an experimental 

design of several factors in order to tune the parameters for each type of ALB 
problem. Hence, it has to be run a lot of times, in the order of ten thousands, 
for parameter timing, and this requires a significant amount of CPU time in the 
order of days. Therefore, our motivation for devising the DPA methodology is 

to save a considerable amount of CPU time even if we have to sacrifice some

27
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from the GA’s performance, i.e. the final fitness score. In fact, we found out 
that the performeince improves significantly as well, while a significant amount 
of CPU time saving is achieved. We claim that the underlying reason for the 
performance improvement is that DPA activates the GA to work out more 
effectively with the remaining ” a fewer number of tasks” after each freezing or 
partitioning.

4.2 Implementation

For the sake of continuity between the remaining tasks, we consider freezing 
the tasks that are allocated at the first and the last stations, (i.e., the genes at 
the beginning and at the end of the chromosome are considered as potentially 
freezable). The second criteria for freezing is to achieve an optimal station time 
at the potentially freezable stations. This optimality condition depends on the 
fitness function. The freezing criteria that best fits to our fitness function.

=4E L l ( ^ r n a x  Sk)^ ^
N N

IS < DPC, i =  l,n ; D PC  =  0.01,0.02,0.03,...

where

n =  number of stations

Si
S* =  where n* is the minimum available number of stations, i.e.

n = C T

The DPC {Dynamic-Partitioning-Constant) parameter enables us to fine- 

tune our algorithm. In other words, DPC adjusts the accuracy of the station 
freezing criteria. When it increases, the average number of partitionings per 
run also increases. Hence, we save more in computation time but we may end 
up with a poorer solution (i.e. worse final fitness scores) due to the freezing 

criteria.
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As described above, the two criteria for DPA are checked at the end of each 
iteration. If the first or the last station satisfies the criteria, then that (those) 
station(s) is (are) frozen and the GA goes on to the next iteration with the 
unfrozen tasks only. Since the length of the chromosome decreases after each 
freezing (partitioning), the GA program spends less time per iteration for the 
remaining iterations.

The population size, i.e. the number of chromosomes in the GA population, 
stay fixed at the starting population size throughout each run, until the last 
iteration. At each iteration, one of the chromosomes in the population gives 
the best solution, thus the best fitness score. This chromosome is called the 
best-fit chromosome. After each iteration, the best-fit chromosome is checked if 
it satisfies the DPA criteria. If it does, DPA is applied to the best-fit chromo­
some and the frozen genes (tasks) are deduced from all the other chromosomes 
of the population. This does not create any infeasibility for the precedence 
constraints because the frozen tasks are either at the beginning or at the end 
of the partitioned chromosome. DPA mechanism is illustrated by means of an 
example in Figure 4.1. In this example, DPA criteria are satisfied for both the 
first and the last stations at the 45th iteration. Hence, tasks 1, 2, 13, 15, and 
16 are frozen. Then, the GA balances the remaining eleven tasks, disregarding 
the frozen five. At the 136th iteration, only the first station satisfies the DPA 
criteria, and hence the tasks belonging to this station (i.e., tasks 7, 11) are 
frozen. The frozen tasks are then added on to the best-fit chromosome of the 
final iteration in the order that they were frozen.

During the early stage of the research, it is presumed that if we apply DPA 
starting with the first iteration then we might do some early freezing which 
would bind us to a local optima which is not the optimal solution. Therefore, 
we use a warm-up period that allows the initial random population to achieve 

a considerable fitness score before partitioning starts.
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First Station Last Station

Iteration: 136

Iteration: 203

Iteration: 500

Solution

Figure 4.1: Dlustration of Dynamic Partitioning

4.3 Experimentation

To investigate the utility of DPA, we solve 30 different ALB problems that 
are generated the same way as in previous studies in literature (i.e., Leu et 
al. (1994)). In addition, we measure the effects of different DPA and GA 
parameters.

Thirty problems which consist of 50 tasks are randomly generated in three 
sets, each set generated around a different F-Ratio. The first set is generated 
at approximately 10% F-Ratio, the second one at approximately 50%, and the 

third at approximately 90%. F-Ratio is a measure of the precedence relations 
among the tasks, that may take a value between 0 and 1, indicating how com­
plicated the ALB problem is, according to the number of existing precedence 
relations compared to the total of available precedence relations in a problem.
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The formula to calculate F-Ratio for an n-task problem is as follows:

F  — Ratio =
2 X  {number o f  I's in the precedence matrix)

n{n — 1)

where the precedence matrix is an upper triangular binary matrix with {i,j)th  
entry equals to one if task j  is a follower of task i on the precedence diagram, 
zero otherwise.

The teisk times of all thirty problems are generated from the binomial dis­
tribution (n=30, p=0.25). Zero duration task times are increased to one time 
unit. This choice has a foimdation from the fact that this particular distri­
bution models the task times of the actual ALB problems. These parameters 
are also the choices of Leu et al. [29] and Talbot et al. [40]. In fact, Talbot 
et al. [[40], pp 438-439] states that ” an investigation of actual line balancing 
problems appearing in the open literature suggests [the above] parameters for 
generating task times.” Note that this particular distribution is not symmet­
ric; this is not surprising considering that the binomial is skewed in such a way 
as to give a few ’’ long” task times, relative to other task times. Leu et al’s 
(1994) comment on this choice is as follows: ’’ Any choice may affect problem 
difficulty considerably. Although we do not claim generalizability of our re­
sults beyond the problems studied, we think that the effect of distribution and 
parameters would be more pronounced with conventional heuristics than with 
the GA approach developed here.” Finally, we choose the cycle time as 56, 
which is approximately twice the average of the maximum task times of the 
thirty problems.

We examine four DPA and GA parameter settings, namely DPG, warm up 
period (WU), number of iterations (ITER), and population size (POPSIZE). 
DPG and warm up period are the two DPA parameters. Number of iterations 
and population size are the two GA parameters that are included in the analysis 

to see if they affect the results. ” GA with DPA” and ” GA without DPA” are 
the two abbreviations we use to refer to the GA program which does not use the 
dynamic partitioning function and the GA program which uses the dynamic 

partitioning function, respectively.
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The first factor, DPC, has four levels: 0, 0.01, 0.02, and 0.03. When 
the DPC is at 0 level, the GA works as if without DPA. As we change the 
value of DPC from 0 to any other number (between 0 and 1) we turn on the 
DPA fimction, but as we switch between any two numbers other than zero, 
this affects the fine tuning of the DPA criteria, or the trade off between the 
computation time savings and the performance of the GA with DPA.

The second factor is the warm up period. This factor has four levels: 0, 25, 
50, 75, and 500. DPA is applied with no warm up period at the 0 level. We 
use 500 as the DPA level to observe the effects of a very long warm-up period. 
Obviously, when the number of iterations factor is also at the 500 level, we 
observe no DPA, that is. this factor has no effect when DPC is at 0 level.

The third factor is the number of iterations. The following three levels are 
used: 500, 1000, and 2000. Finally, the fourth factor is the population size 
with four levels at 20, 30. 40, and 50. These two factors were initially expected 
to affect both the GA with DPA and the GA without DPA performances. 
Although mutation rate could also be selected as a parameter, we prefer to 
keep it fixed at a reasonable level (0.05) to save from additional computation 
time. According to our previous experiment, 0.05 level is the best mutation 
level among 0, 0.025, 0.05, 0.075, and 0.1 levels, for GA without DPA. Hence, 
we assume that it is a reasonable level for all levels of the DPC factor, and we 
do not observe the effect of mutation factor on DPA.

As we stated eeirlier. the 30 problems are generated at three F-Ratio levels 
(i.e., 10%, 50%, and 90%). We were planning to include F-Ratio as a fifth 
factor in this experimental design, but since the average fitness scores observed 
at different F-Ratio levels differ a lot, we do not include it as a factor in this 
design. Hence, we observe the effects of the other four factors at three F- 
Ratio levels separately from each other. However, we also perform another 
experiment afterwards, to observe the effect of F-Ratio factor on the fitness 
scores.

In the experiments, we take ten replications of each problem at each com­
bination of factor levels, by using the same set of ten random seeds. Therefore,
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we solve 30 (problems) x 10 (replications) x 4 (DPC levels) x 5 (warm-up 
levels) X  3 (iteration levels) x 4 (population size levels) =  72000 problems. 
The Anova test results in terms of the fitness score and the computation time 
are as follows:

4.3.1 ANOVA Results

As it can be observed in Table 4.1, all four factors, and some of their two 
and three way interactions are significant at the 5% level in 10% F-Ratio case. 
The warm-up period factor is not significant in 50% F-Ratio case. DPC and 
warm-up period factors are both insignificant in 90% F-Ratio case.

The Bonferroni and Duncan grouping of the fitness scores due to DPC is also 
reported in Table 4.2. We used Dvmcan as an alternative to Bonferroni which is 
a rather conservative method, but both methods gave the same groupings in all 
the experiments in this chapter. In general, DPA performs significantly better 
than the GA without DPA, (DPC at 0), at two levels of the DPC, 0.01 and 
0.02, in 10% F-Ratio case. In 50% F-Ratio ceise, DPA is significantly better 
only for 0.01 level of the DPC. Additionally, the improvement of the average 
fitness score when DPC is at the optimum level compared to GA without DPA 
is 7.69%, which is lower than the improvement in 10% F-Ratio case, that is 
16.43%. In 90% F-Ratio case, DPA is not significantly better than GA without 
DPA, but it is slightly better at all levels of the DPC. Other observations are 

as follows:

We observe that the performance improves significantly as the number of 
iterations increases, at all levels of DPC. This observation was expected since 
we used elitism, i.e. the fitness score is not allowed to get worse than the value 
obtained at a prior iteration. Exceptionally, there is no significant difference 
between the 500 and 1000 levels in the 90% F-Ratio case. This finding is not 
surprising because it is harder to improve the solution quality when the feasible 

set is small as in 90% F-Ratio case.
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Fitness Scores
Source DF Sum o f Sq F Value Pr >  F Sig. at 0.05?
F-Ratio =  10%
Model
Error

167
23832

14378.71
59159.74

34.68 0.0001 yes

DPC 3
ITER 2
W U 4
POPSIZE 3
ITER*DPC 6
DPC*W U 12
DPC*POPSIZE 9
ITER*W U 8
ITER*POPSIZE 6
W U*POPSIZE 12
DPC^W U^POPSIZE 36
ITER *D PC*W U  24
ITER *DPC*PO PSIZE 18
ITER *W U ’̂ POPSIZE 24

1966.58
9772.55

74.48
793.68
663.74
305.00
88.10

229.55
283.70

18.37
31.24

113.32
30.41

7.99

264.07
1968.39

7.50
106.58
44.56 
10.24
3.94

11.56 
19.05
0.62
0.35
1.90
0.68
0.13

0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.8302
0.9999
0.0049
0.8340
1.0000

yes
yes
yes
yes
yes
yes
yes
yes
yes
no
no

yes
no
no

F-Ratio — 50%
Model
Error

167
23832

2809.20
61721.60

6.50 0.0001 yes

DPC 3
ITER 2
WU 4
POPSIZE 3
ITER*DPC 6
DPC^W U 12
DPC*POPSIZE 9
ITER*W U 8
ITER*PO PSIZE 6
W U*POPSIZE 12
D PC*W U *PO PSIZE 36
ITER *D PC*W U  24
ITER ’̂ DPC*POPSIZE 18
ITER *W U *PO PSIZE 24

761.25
1128.53

7.02
165.46
130.21
167.56 
65.94 
40.64

183.56 
42.11 
28.66 
22.70 
45.92 
19.63

97.98
217.87

0.68
21.30

8.38
5.39 
2.83 
1.96

11.81
1.35
0.31
0.37
0.99
0.32

0.0001
0.0001
0.6074
0.0001
0.0001
0.0001
0.0025
0.0471
0.0001
0.1797
1.0000
0.9981
0.4735
0.9994

yes
yes
no

yes
yes
yes
yes
yes
yes
no
no
no
no
no

F-Ratio -  90%
Model
Error

167
23832

4940.09
520551.62

1.35 0.0001 yes

DPC 3
ITER 2
WU 4
POPSIZE 3
ITER* DPC 6
D PC*W U 12
D PC*POPSIZE 9
ITER*W U 8
ITER*PO PSIZE 6
W U*POPSIZE 12
D PC*W U *PO PSIZE 36
ITE R *D P C *W U  24
ITER *D P C *PO PSIZE  18
ITER *W U *PO PSIZE ______ 24

0.27
1250.52

0.36
3379.81

0.06
0.84
0.75
0.01

305.90
0.50
0.64
0.02
0.36
0.06

0.00
28.63
0.00

51.58
0.00
0.00
0.00
0.00
2.33
0.00
0.00
0.00
0.00
0.00

0.9996
0.0001
1.0000
0.0001
1.0000
1.0000
1.0000
1.0000
0.0296
1.0000
1.0000
1.0000
1.0000
1.0000

no
yes
no

yes
no
no
no
no

yes
no
no
no
no
no

Table 4.1: ANOVA results for fitness scores
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Bonferroni
Grouping

Duncan
Grouping

Mean N DPC

10% F-Ratio
A A 3.733 6000 0.03
B B 3.548 6000 0
C C 3.323 6000 0.02
D D 2.965 6000 0.01
50% F-Ratio
A A 3.743 6000 0.03
B B 3.510 6000 0
B B 3.480 6000 0.01
C c 3.240 6000 0.02
90% F-Ratio
A A 10.623 6000 0
A A 10.620 6000 0.03
A A 10.618 6000 0.01
A A 10.614 6000 0.02

Table 4.2: Bonferroni and Duncan grouping of fitness scores due to DPC.

There is not a significant performance difference between the levels of the 
warm-up period. Hence, we omit this factor in the further analysis.

In 10% F-Ratio case. 20 and 30 levels of the population size factor per­
form significantly better than 40 level, while there is no significant difference 
between 40 and 50 levels. Roughly, performance improves as the population 
size increases in 10% F-Ratio case, but the opposite relation is observed in 
50% and 90% F-Ratio cases. In 50% F-Ratio case, 40 and 50 levels perform 
significantly better than the 20 and 30 levels. Similarly, in 90% F-Ratio case, 
50 level performs significantly better than the 30 and 40 levels, while the worst 
performance is sho\vn by the 20 level. Hence, we conclude that the optimum 
population size is inversely proportional with the number of all feasible solu­
tions, in our problem.

Table 4.4 confirms our expectations that the CPU time savings would in­
crease as the level of DPC is increased. But, as we note in Table 4.2, the 

performance of the algorithm decreases if we slacken our DPA criteria (i.e., 
increase DPC). The CPU time saving for DPC at 0.01 (i.e., at the optimum
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CPU Time
Source DF Sum o f  Sq F Value Pr > F Sig. at 0.05?
F-Ratio =  10%
Model 167 317886844.56 423.09 0.0001 yes
Error 23832 107222212.91
DPC 3 39965797.158 2961.03 0.0001 yes
ITER 2 221475236.12 24613.36 0.0001 yes
WU 4 12618309.58 701.16 0.0001 yes
POPSIZE 3 14709022.85 1089.78 0.0001 yes
ITER*DPC 6 19417914.67 719.33 0.0001 yes
DPC^W U 12 4735933.37 87.72 0.0001 yes
DPC^POPSIZE 9 89602.23 2.21 0.0185 yes
ITER*W U 8 3341638.94 92.84 0.0001 yes
ITER^POPSIZE 6 172506.21 6.39 0.0001 yes
W U *PO PSIZE 12 93323.25 1.73 0.0544 no
D PC*W U *PO PSIZE 36 49551.79 0.31 1.0000 no
ITER*DPC*W U 24 1165622.78 10.79 0.0001 yes
ITER *D PC*PO PSIZE 18 26556.49 0.33 0.9966 no
ITER*W U *PO PSIZE 24 25829.11 0.24 1.0000 no
F-Ratk> =  50%
Model 167 338013613.13 883.86 0.0001 yes
Error 23832 54575204.98
DPC 3 47259999.22 47974.24 0.0001 yes
ITER 2 219721716.08 47974.24 0.0001 yes
WU 4 22186867.76 2422.15 0.0001 yes
POPSIZE 3 10170984.90 1480.49 0.0001 yes
ITER *D PC 6 20175884.62 1468.41 0.0001 yes
D PC*W U 12 8385227.70 305.14 0.0001 yes
D PC ’ POPSIZE 9 37068.83 1.80 0.0631 no
ITER*W U 8 7002495.84 382.23 0.0001 yes
ITER*PO PSIZE 6 57952.60 4.22 0.0003 yes
W U *PO PSIZE 12 205032.25 7.46 0.0001 yes
D PC*W U *PO PSIZE 36 106336.83 1.29 0.1144 no
ITER* DPC* W U 24 2554821.89 46.49 0.0001 yes
ITER *D PC*PO PSIZE 18 45259.33 1.10 0.3464 no
ITER*W U *PO PSIZE 24 103965.27 1.89 0.0053 yes
F-Ratio =  90%
Model 167 472137987.51 3671.42 0.0001 yes
Error 23832 18351793.51
DPC 3 1894134.57 819.92 0.0001 yes
ITER 2 459903043.76 99999.99 0.0001 yes
WU 4 654259.41 212.41 0.0001 yes
POPSIZE 3 7903184.28 3421.08 0.0001 yes
ITER *D PC 6 845397.93 182.98 0.0001 yes
D PC*W U 12 467938.31 50.64 0.0001 yes
D PC*PO PSIZE 9 27598.34 3.98 0.0001 no
ITER*W U 8 229897.42 37.32 0.0001 yes
ITER *PO PSlZE 6 6303.33 1.36 0.2246 yes
W U ’ POPSIZE 12 17151.22 1.86 0.0346 yes
D PC*W U *PO PSIZE 36 12427.69 0.45 0.9982 no
ITER *D PC*W U 24 159493.27 8.63 0.0001 yes
ITER *D PC*PO PSIZE 18 11582.80 0.84 0.6591 no
ITER *W U *PO PSIZE 24 5572.18 0.30 0.9936 yes

Table 4.3: ANOVA results for CPU times
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Bonferroni
Grouping

Duncan
Grouping

Mean N DPC

10% F-Ratio
A A 3.289 6000 0
B B 2.605 6000 0.01
C C 2.340 6000 0.02
D D 2.241 6000 0.03
50% F-Ratio
A A 3.246 6000 0
B B 2.510 6000 0.01
C C 2.235 6000 0.02
D D 2.096 6000 0.03
90% F-Ratio
A A 3.237 6000 0
B B 3.167 6000 0.01
C C 3.103 6000 0.02
D D 2.996 6000 0.03

Table 4.4; Bonferroni and Duncan grouping of CPU times due to DPC

level) is 22.67% in 10% F-Ratio case, 20.80% in 50% F-Ratio case, and 2.16% 
in 90% F-Ratio case. The effects of other factors on CPU time are as fol­
lows: CPU time increases as the number of iterations or the population size or 
the warm-up period increases. The effect of each level of these factors differs 
significantly from each other (see Table 4.3).

After performing Ano\'a tests for the three sets of problems having different 
F-Ratios, we combined the three sets of data and observed F-Ratio’s effect on 
the overall. We observed that F-Ratio is a significant factor at the 0.05 level. 
The Bonferroni and Duncan grouping of the fitness scores due to F-Ratio is 
presented in Table 6.1. Although the task times of each set of problems are 
generated by the same generator, as the F-Ratio increases (i.e., the number of 
precedence relationships between the tasks increases), the fitness scores increase 
exponentially.
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Bonferroni
Grouping

Duncan
Grouping

Mean N F-Ratio

A A 10.619 24000 90%
B B 3.493 24000 50%
C C 3.392 24000 10%

Table 4.5: Bonferroni and Duncan grouping of fitness scores due to F-Ratio

4.4 M ajor Findings

The major motivation that led us to devise the DPA procedure was to achieve 
a significant amount of CPU time reduction. As presented above, we have 
achieved that objective. Even though we were expecting some deterioration in 
the performance of fitness scores due to DPA, fortimately we had an improve­
ment. In other words, we have achieved a better performance with dynamic 
partitioning than the traditional application of GA without dynamic partition­
ing, while also saving from the CPU time. This counter-intuitive result can 
be explained as follows: The stations that we fieeze by DPA already have sta­
tion times that are very close to the optimal station time in order to minimize 
the fitness function, as explained earlier. Hence, by freezing some of the tasks 
without straying too much from optimal balancing, the GA concentrates more 
on the remaining tasks. If we did not freeze the stations that satisfy the DP 
criteria, the mutation and crossover mechanisms would waste time on working 
on these already balanced stations as well, instead of focusing on the poorly 
balanced tasks. Therefore, given the same number of iterations, a GA with 
DPA is able to work (try alternative combinations) on balancing the poorly 
balanced stations more than a GA without DPA. Consequently, we achieved a 
significantly better performance with DPA than the GA without DPA. Since 
the GA without DPA has many structural and operational similarities between 
Leu et al.’s (1994) GA (i.e., as stated in Chapter 3) and that our problem gen­
eration schemes are also very similar, we claim that the proposed GA (i.e., GA 
with DPA) is better than Leu et al.’s (1994) GA. We prove this by achieving 
a better solution on the Kilbridge-Wester [27] problem than Leu et al’s (1994) 
solution on the same problem in Chapter 7.
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Another interesting observation is that the improvement effect of DPA de­
creases as the F-Ratio increases, i.e. as the search space gets narrower. The 
reiison is that the possibility of partitioning at the same level of DPC decreases 
due to the fact that the number of feasible solutions decreases because of the 
large number of precedence relationships. Besides, even if the GA is allowed to 
focus on the poorly balanced stations by DPA, it is less likely that this focus 
will lead to a better result since GA without DPA is already able to perform a 
sufficient search in a narrow search space.

Like every other random search algorithm, DPA has several tuning factors 
as well. A brief summary of our observations on these factors are as follows:

DPC seems to be the major factor affecting the performance of the proposed 
algorithm. DPC performs usually better at its nearest to 0 level (i.e., 0.01), 
but we observed in the problem set with 90% F-Ratio that DPC at 0.02 level 
gives better results on the average than DPC at 0.01 level. This suggests that 
DPC requires fine-tuning to achieve the best performance of DPA, however 
we shall note that the optimum value of this factor is likely to be a positive 
number that is very close to zero.

It can be noted in Table 4.2 and Table 4.4 that there is a payoff between 
the score and the CPU time as we change the value of DPC. In case (a), the 
improvement of the average fitness score is about 16% (8% in case (b)) while 
the CPU time saving is about 21% (23% in case (b)) when DPC is at 0.01. 
When DPC is at 0.02 level, the improvement of the fitness score in case (a) 
decreases to 6% (1% in case (b)) and the CPU time saving increases to 29% 
(31% in case (b)). However, we cannot observe this behavior in case (c). But 
90% F-Ratio is a very high value and the possible number of solutions in an 
ALB problem with such a high F-Ratio is very small. Hence, it is not surprising 
that we do not observe a significant difference between the levels of the DPC 

(in Table 4.2).

Warm-up period is also effecti^’e but it is not possible to observe a linear 
effect of this factor on the score. Therefore, this factor should also be fine 
tuned to achieve a better performance. We also note that this factor needs a
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different tuning at each level of the DPC. The number of iterations factor shows 
a linear effect, GA performing better at all levels of the DPC when this factor 
level increases. But the increase in performance of the algorithm is exponential, 
i.e. the increase in performance gets less as the number of iterations increases.

The population size factor can be timed for obtaining the optimum per­
formance of the algorithm as well. From the three sets of problems that have 
10%, 50%, and 90% F-ratios, we observed that a larger population size yields 
to a better score on problems with higher F-Ratio (i.e. 50% and 90%). On the 
other hand, it may be found counter-intuitive, at the first sight, that smaller 
population sizes performed better than the larger ones on problems with 10% 
F-Ratio. Our reasoning for this observation stems from the fact that the search 
space is wider at low F-Ratios. Therefore, a large population cannot concen­
trate on local minimum search. The special recombination mechanism that is 
used in our GA is responsible for this finding, i.e. only one pair of chromosomes 
are selected for recombination at each iteration. Assuming that the selection 
of the best-fit chromosome as one of the parents is potentially more advan­
tageous for local minimum search than recombining two other chromosomes, 
the performance is expected to decrease as the population size increases, in a 
wide search space, since the probability of selecting the best-fit chromosome 
for recombination in a large population is less than in a small population.

Finally, we observe that F-Ratio is a significant factor. This factor’s in­
crease causes an exponential increase in the fitness score. This observation was 
expected since the increase in the number of precedence relations reduces the 
allocation alternatives of the tasks, hence may increase the number of stations.



Chapter 5

ELITISM W IT H  SIMULATED  
ANNEALING

5.1 Introduction and Motivation

Simulated Annealing (SA) is a well known global search algorithm. In local 
search algorithms, we start with an initial solution, and a neighbor to the initial 
solution is selected from the set of feasible solutions. The difference between 
SA and the other local search algorithms is that in local search algorithms, 
we move to the neighbor point (or solution) only if the solution is improved. 
However, in SA, we can move to the neighbor solution even if it is not better. 
The probability of accepting such a transition is calculated by a function usually 
called as the acceptance function. We can calculate this probability as P{x)  =  
min(l , exp(— where Vc^· is the change of cost between the solution on 

hand and the neighbor, and T  is a control parsimeter that corresponds to 

temperature.

We note here that the "elitism rule” used in our algorithm basically resem­
bles the ’’ other local search algorithms” mentioned above. Hence, by using the 
characteristic of SA that differs from the other local search algorithms, we in­

tend to widen the myopic view of elitism. In other words, strict elitism may be

41
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a reason to be trapped in a local minimum, hence, our motivation to apply SA 
to elitism is to decrease the possibility of getting trapped in a local minimum 
in our search for the global minimum.

The SA algorithm usually starts with a relatively high value of T, to have 
a better chance to avoid being prematurely trapped in a local minimum. Then 
T is lowered in steps until it approaches zero. After termination, the final con­
figuration is used as the solution of the problem. There are two different ways 
of decreasing the control parameter, T : i) inhomogeneous algorithm where T 
is decreased after each transition, and ii) homogeneous algorithm where T is 
decreased after a number of transitions, L. We use the first approach in our 
algorithm, because it provides a smooth trajectory for P{x). (SA resembles 
the annealing process of metals, where the temperature decreases gradually, as 
in the first approach.) The following parameters and strategies are the parts 
of decision in the SA algorithm: initial temperature. To; number of transitions 
required for decreasing T, L*; temperature function, T*; and the stopping 
criteria. The problem specific decision elements are the initial solution, neigh­
borhood generation, and evaluation of Vcjj.

5.2 Integration of SA to Elitism

Obviously, Vcij is the difference between the fitness scores of the offspring and 
its parent. We accept the offspring if its fitness score is smaller than its parent’s, 
since our objective is to minimize the fitness function. In case the offspring’s 
fitness score is larger than its parent’s, we calculate Vcij, and then evaluate 
the probability function, P{x). We decrease the temperature at each iteration 
whether we evaluate P{x) or not. T  is decreased exponentially with respect 
to Tk+i =Tk X Q, where k is the iteration number, and a is the scaling factor 
that is a positive number smaller than 1 and usually very close to 1, i.e. 0.98. 
Hence, T  =  To X a*’ , at the kth iteration. We decrease T until 0.01, at which 
P{x) takes a value smaller than 0.0001 at the 500th iteration, when takes 

a value greater than 0.1. We do not explicitly define a stopping criteria other
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than the 0.01 limit for T, and that limit is to prevent exponential overflows 
that cause run-time errors in computers. We keep the iteration number flxed 
at 500 but P{x)  starts to take values that are almost to zero after T  reaches 
the 0.01 limit, hence this Umit can be thought of as the stopping criteria of SA 
where strict elitism takes over again. According to this stopping criteria, P{x)  
reaches approximately zero at different iteration numbers due to different a 
levels. For example, P{x)  is approximately zero after the 50th iteration at 0.80 
a  level; and after the 220th iteration at 0.95 a  level. In our experimental setup, 
we used 7 different levels of alpha, 0, 0.8, 0.95, 0.96, 0.97, 0.98, and 1. The level 
0 means ’’strict elitism” , i.e. no SA, and the level 1 means ”no elitism” where 
our crossover mechanism (neighborhood generation mechanism) turns out to 
be a random search mechanism instead of a local search mechanism. The 
problem specific decision elements of SA are replaced by GA decision elements 
in our application. Whereas the initial solution is the best-fit chromosome of 
the initial population, neighborhood generation is simply the crossover and 
mutation mechanisms, and evaluation of Vc^ is the difference between the 
fitness scores of the offspring and its parent.

Other decision to be made in SA is the movement policy. There are three 
policies, i.e. first wins, best wins, and random wins. We use the first policy. 
Specifically, we generate a neighbor by crossover and mutation mechanisms and 
decide whether to replace the current solution with that neighbor. The best 
wins policy is rather more time consuming, because all possible permutations of 
a simple neighbor generator are tried, and the ones that are randomly selected 
with the probability generated by the probability function are considered as 
neighbors. If the number of all possible permutations is too large, then a 
number of these can be tried instead of all. Among these neighbors, the best 
neighbor replaces the existing solution. Random wins is quite similar to best 
wins, but among the neighbors, one of them is chosen randomly instead of the 
best one. First wins policy is rather considered as a myopic mechanism but it 
saves time compared to best wins or random wins. Best wins policy is actually 

very similar to the strict elitism policy, used previously, because as long as there 

is a better solution among the neighbors at a certain iteration, the solution will
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always be replaced by a better neighbor. The random wins policy prevents 
this continuous improvement policy, that has the risk of getting trapped in a 
local minimum, by choosing randomly among the neighbors. But this random 
choice may also be similar to the roulette wheel selection that favors better 
neighbors. Since our neighborhood generator is a random generator, the first 
wins policy is not a myopic policy at all in our algorithm. If our neighbor 
generator was deterministic then we would try the best wins or the random 
wins policies as well. Suresh et al. (1996) also use the first wins policy and 
their neighbor generator is also a random generator, i.e. randomly shifting a 
job from one workstation to another or interchanging the positions of the two 
jobs. A summary of the steps of our algorithm, that are adapted from Vidal 
[44], is as follows:

Step 1. Select the best-fit chromosome of the initial population as the 
initial solution, <po, and the starting temperature. To, as 1000. Set ip mm =  ifo-

Step 2. Evaluate the cost function, C{ipann) '■ S R, where S is the 
search space.

Step 3. Select a neighbor by crossover/mutation, £ S.

Step 4. If V  =  C(^) — C{ip) < 0 then ipr+i =  otherwise ipr+i =  'ip with
_  _ V _

probability p =  e . If C(v?r+i) < C'(Tmin) then

Step 5. Set r=r-f 1 and evaluate, if Tr >  0.01 then Tr+i =TrXoc, otherwise

T.+i = Tr.

Step 6. If Tr < Tmem then Tmem =  Tr. (The best solution is kept in the 
memory since the solution at the last iteration may not be the best.)

Step 7. If A: < maximum iteration number then stop, the solution is Tmemi 

otherwise go to Step 2.
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5.3 Experimentation

Our experimental setup consists of the same 30 problems that were also used 
in the previous chapter, i.e., dynamic partitioning, and the same 10 random 
number generator seeds and 4 population size factors, i.e. 20, 30, 40, 50. In 
addition, 7 alpha levels are used, i.e. 0, 0.80, 0.95, 0.96, 0.97, 0.98, 1. This 
makes a total of 30x10x4x7=8400 problems.

The Anova results of this experimental design is given in Table 5.1. We 
observe that alpha levels are significantly different at 0.05 level. We grouped 
the factors by Bonferroni and Duncan methods and the results are presented 
in Table 5.2. According to Bonferroni, that is a conservative test, the alpha 
levels are not significantly different from each other, but Duncan test groups 1 
and 0.98 levels separately from the other levels. Thus, we conclude that elitism 
is better than no elitism eiccording to Duncan grouping. We then increase the 
number of iterations factor to 1000 to see if we could observe a significant 
difference in the Bonferroni grouping as well. We observed again that the 
Bonferroni grouping of the alpha levels do not show any significant difference, 
but the Duncan test groups 0 and 0.8 levels together as the best, 0.95, 0.96, 
and 0.97 levels as the second best, 0.98 level as the third best, and 1 level as the 
worst performing group. Since the performance increases as the level of elitism 
is increased, our previous conclusion that elitism is better than no elitism is 
confirmed. The Anova results and the Bonferroni and Duncan grouping of the 
factors at 1000 number of iterations level are also presented in Tables 5.1 and 
5.2. Even though we change the initial temperature from 1000 to 10,000,000 
in order to avoid early cooling, the combined effect of alpha on population size 
is insignificant.

Later, we enlarged our experimental design by including three different 

DPC levels, i.e. 0.01, 0.02, and 0.03, in addition to the other factors. In this 
case, we observe that the combined effect of alpha and DPC is significant at 
0.05 level, but overlapping of the levels of alpha is observed in the Bonferroni 

groupings.
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Fitness Scores
Source D F Sum o f 

Squares
F Value Pr >  F Significant 

at 0.05?
Number o f  Iterations =  500
Model 41 64954.54 171.63 0.0001 yes
Error 8358 77151.19
ALPHA 6 801.64 14.47 0.0001 yes
F-R A TIO 2 63714.08 3421.91 0.0001 yes
PO PSIZE 3 90.48 3.27 0.0204 yes
F-R A TIO * ALPH A 12 801.65 7.24 0.0001 yes
PO PSIZE* A LPH A 18 86.68 0.52 0.9499 no
Number o f  Iterations =  1000
Model 41 72736.44 220.21 0.0001 yes
Error 8358 67334.30
ALPHA 6 1108.85 22.94 0.0001 yes
F-RATIO 2 70000.85 4344.50 0.0001 yes
PO PSIZE 3 273.72 11.33 0.0001 yes
F-R A TIO *A L PH A 12 1292.04 13.36 0.0001 yes
PO PSIZE* ALPH A 18 60.97 0.42 0.9844 no

Table 5.1: ANOVA results for fitness scores

Although we could not achieve any significant improvement by relaxing the 
ehtism rule, we observe that strict elitism (a =  0) is significantly better than no 
elitism (a =  1). Considering that our reproduction mechanism is a special one 
which is different from the classical approach, i.e. only one or two chromosomes 
are replaced by new offsprings, we claim that elitism should be used in order to 
obtain a better performance with this kind of a reproduction mechanism. Leu 
et al. (1995) used elitism without testing if it’s better than no elitism or not, but 
our research makes it clear that elitism is significantly better than no elitism. 
Our further research will reveal if elitism yields a better performance in classical 
reproduction mechanisms, as well as if SA in elitism is able to contribute to 
the performance. We will also evaluate the performance difference between the 
classical reproduction mechanism compared to our reproduction mechanism in 
the next chapter.
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Bonferroni Duncan Mean N Bonferroni Duncan Mean N
Grouping Grouping a Grouping Grouping a
Iter =  500 Iter =  1000

A A 7.368 1200 1 A A 6.925 1200 1
B A B 7.018 1200 0.98 B A B 6.608 1200 0.98
B C C 6.712 1200 0.97 B C C 6.315 1200 0.97

C C 6.596 1200 0.95 D C C 6.209 1200 0.96
C C 6.585 1200 0.96 D C E C 6.123 1200 0.95
C C 6.494 1200 0.8 D E D 5.876 1200 0
C C 6.440 1200 0 E D 5.825 1200 0.8

F-Ratio F-Ratio
A A 10.609 2800 90% A A 10.351 2800 90%
B B 5.091 2800 10% B B 4.271 2800 50%
C C 4.534 2800 50% B B 4.184 2800 10%

Pop. size Pop. size
A A 6.900 2100 20 A A 6.554 2100 20

B A B A 6.762 2100 30 B B 6.287 2100 30
B A B 6.700 2100 50 B C B 6.153 2100 50
B B 6.616 2100 40 B C 6.080 2100 40

Table 5.2: Bonferroni and Duncan grouping of fitness scores due to a, F-Ratio, 
population size



Chapter 6

CLASSICAL G A  vs M ODERN  
GA

In this chapter we propose a new classical algorithm, as an alternative to the 
modern or GENITOR type structure that was used in the previous chapters. 
The basic structure of both the classical and modern approaches to GAs have 
been already explained in Chapter 3. We will provide a more extensive review 
and comparison of these two approaches in this chapter.

All the genetic characteristics, such as coding, crossover operator, muta­
tion operator, and selection policy are the same for both algorithms. These 
characteristics are explained in Chapter 3, hence it will not be repeated here. 
The difference between these two algorithms is due to the sequence in which 
the genetic operators are activated. In the classical GA, a proportion of the 
population which is the best group of chromosomes in the current population is 
transferred to the next population. The remaining individuals of the next pop­
ulation are formed by the offsprings that are generated by necessary number 

of crossover operations between the chromosomes of the current population.
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6.1 Motivation

While the modern approach performs only one recombination operation at 
any iteration, the classical approach involves a large part of the population 
in the recombination process, performing multiple recombinations. Hence, the 
difference between the two consecutive populations of classical GA is expected 
to be more than in modern GA. Even though the modern GA seems to perform 
a rather myopic search than the classical GA at the first sight, it is an issue to be 
resolved whether the time spent on performing many recombinations could be 
used more effectively by increasing the number of iterations while performing 
only one recombination at each iteration. However, the performance of the 
algorithm is more important than the time it takes for the ALB problem unless 
this time can be kept in reasonable limits. Thus, we focus on the performance 
of the algorithms while comparing them.

We let both algorithms perform the same number of iterations, hence, the 
classical GA performs more recombination operations than the modern GA. 
Does performing more recombination operations make a GA more advanta­
geous? The answer to this question lies beneath the selection policy and the 
convergence of the population issues. The fundamental theorem of genetic 
algorithms state that the qualities (genes) of the superior individuals (chromo­
somes) are preserved over generations while the qualities of the weak individuals 
evade. A corollary to this theorem is that if the more-than-average-fit chromo­
somes of a population gets involved in as many crossovers as possible, then its 
superior qualities are more likely to be distributed over the population. In the 
classical GA, the offspring that is generated by the first crossover operation in 
an iteration is likely to be better than the average of the current population, 
since its parents are likely to be over the average because of roulette wheel 
selection and it cannot be worse fit than its parents because of elitism. But 
it has to wait until all crossover operations are completed to be able to get 
selected. On the other hand, a superior offspring that results from a crossover 

operation is eligible to be selected for the next crossover operation in modern 
GA. Since every crossover operation considers the offspring that resulted fi'om
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the previous crossover operation a more efficient selection policy is applied in 
modern GA. This is an advantage of the modern GA compared to the classical 
approach. The advantage of the classical GA is that it allows more diversity 
and sharing of the good qualities of chromosomes at each iteration.

Elitism is a very important factor which may affect the diversity and hence 
the rate of convergence of the algorithm. We expected that this factor would 
be even more effective on classical GA since a greater number of crossover op­
erations takes place in classical GA than in the modern GA. We have presented 
explicitly how the elitism rule is integrated to the structure of modern GA in 
Algorithm 3.4, and now we present the structure of the classical GA with DPA 
and with SA controlled elitism as follows:

A lgorithm  6.1 ; Classical GA with DPA and SA controlled elitism

Generate initial population 

Set Pe equals to 1 

repeat

Tran.sfer the best (1 — Rx) x Np x 100 chromosomes to the next population 

repeat

Choose two parents from the current population for crossover 

Apply the follovnng to each offspring 

if the offspring is better than its parent then 

Include the offspring in the next population 

else Include the parent in the next population with 1 — Pg probability 

or Include the offspring in the next population with Pg probability 

until Next population is full 

if the DPA criteria are satisfied then 

Freeze a set o f tasks (genes)

Deduce the frozen rasks from all the chromosom.es in the population 

Apply mutation to one of the chromosomes with Rm probability 

Decrease the value of Pg
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until Stopping-condition is reached

Take the best-fit chromosorne of the final population as the solution

6.2 Experimentation

We choose the same set of 30 problems that was used in Chapter 4 to compare 
the performance of the algorithms. We first optimize the parameters of each 
algorithm. The key parameters of the modern GA are the cooling rate, DPC, 
mutation rate, and population size. Each of these parameters are explained in 
Chapter 4 but we remind them as follows: The cooling rate parameter belongs 
to the simulated annealing terminology and it is used for controlling the level 
of elitism. DPC is the dynamic partitioning constant which adjusts the level 
of accuracy of freezing stations due to dynamic partitioning criteria. Mutation 
rate determines the level of probability of activating the mutation operator. 
Finally, population size is the number of chromosomes in the population. The 
warm-up period factor which was introduced in Chapter 4 is not taken into 
consideration because it was observed in Chapter 4 that it is not significant at 
the 0.05 level. Hence, the level of warm-up period factor is taken as 0, i.e., no 
warm-up period is used in any experiments in this chapter.

All the parameters that are used for the modern GA apply to the classical 
GA as well, additionally another factor is used for classical GA: crossover 
rate. In the modern GA, the mutation rate parameter subtracted from 1 
gives the crossover rate, hence we did not need to define another parameter 
to set the crossover rate. Since the mutation and crossover operations occur 
independently in classical GA, we use the crossover rate parameter as well as 
the mutation rate parameter.

The levels experimented for the cooling rate parameter are 0, 0.95, 0.97, 
0.99, and 1. The initial temperature associated with 500 iterations is 1000. 
The levels of DPC are 0, 0.01, 0.02, 0.03. The levels used for the mutation 
rate parameter are 0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2. We
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Cooling rate
DPC
Population size
Mutation rate
Crossover rate 0.9

Classical GA Modern GA

50
0.175

0.03
50
0.05
N/A

Table 6.1: Optimum parameters for Classical GA and Modem GA

used 0.1, 0.25, 0.5, 0.75, 0.9 levels for the crossover rate parameter of classical 
GA, and 20, 30, 40, and 50 levels for the population size factor. The optimum 
parameters for both algorithms are as in Table 6.1.

The sign in Table 6.1 indicates that there is no significant difference 
between the levels of the corresponding parameter. Cooling rate is one such 
parameter and it is not significant in both the classical GA and modern GA. An 
interesting observation is that DPC is not effective with classical GA. We took 
0 levels of the marked factors when comparing the two algorithms. We use 
the same 10 seeds that was used in Chapter 4. Hence, our experimental design 
is consisted of 30 problems, 10 seeds, and 2 different solution approaches.

The Anova results of the comparison experiment is given in Table 6.2, and 
the Bonferroni and Duncan groupings in Table 6.3. Results show that the 
classic GA is clearly superior to the modern GA, if we disregard the CPU 
times spent by each algorithm. However, there’s a large difference between 
the CPU time of the algorithms. The classical GA takes approximately 22 
times as much time as the modern GA. This difference in time is because of 
the large number of crossovers at each iteration in classical GA. On the other 
hand, as we said at the beginning of this chapter, we are concerned about 
improving the performance of the algorithm although we may have to spend 
more time because of two reasons: i) while the average CPU time for classical 

GA is about 44 seconds which is still not a very long time, and ii) ALB is 

a problem to be solved only once before the assembly line is being designed, 
hence time is not a measure which is as important as the performance of the 
solution to this problem. We improve the average solution of 30 problems 
solved with 10 different seeds from 6.372 to 5.444, as presented in Table 6.2,
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Fitness Scores
Source DF Sum of F Value 

Squares
Pr > F Significant 

at 0.05?
Number o f Iterations =  500
Model 1 129.99 9.46 0.0022 yes
Error 598 8213.20
ALGORITHM 1 129.99 9.46 0.0022 yes

Table 6.2; ANOVA results for the comparison of two algorithms

Table 6.3: Bonferroni and Duncan grouping of fitness scores due to algorithm.

Bonferroni Duncan Mean N Algorithm
Grouping Grouping
A A 6.372 300 MODERN
B B 5.441 300 CLASSIC

which is a significant improvement. Hence, we recommend the classical GA 
for the solution of ALB problems unless it will not be used in a very flexible 
manufacturing system that needs to be balanced frequently.



Chapter 7

COM PARISON W IT H  
TRADITIONAL HEURISTICS

First, we compare genetic algorithms with traditional heuristics in general. 
Then we compare the proposed GAs’ performance with Leu et al.’s (1994) GA 
on the Kilbridge-Wester’s (1961, [27]) 45-task ALB problem and with Baybars’ 
(1986) heuristic and other heuristics on Tonge’s (1961, [42]) 70-task problem 
in this chapter.

7.1 Genetic Algorithms versus Traditional Heuris­

tics

The central theme of research on genetic algorithms has been robustness, the 
balance between efficiency and efficacy necessary for survival in many different 
environments [15]. The implications of robustness for search schemes are man­
ifold. If search schemes can be more robust, costly redesigns can be reduced 
or eliminated. Genetic algorithms are theoretically and empirically proven to 
provide robust search in complex spaces. The primary monograph on the topic 

is Holland’s (1975) Adaptation in Natural and Artificial Systems [21]. We will
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discuss the robustness of traditional optimization and search methods, then list 
the properties of genetic algorithms that enable them to surpass the traditional 
heuristics in the quest for robustness in the rest of this section.

The current literature identifies three main types of search methods: calcu­
lus based, enumerative, and random. We will examine each type to see what 
conclusions may be drawn without formal testing.

Calculus-based methods have been studied heavily. These subdivide into 
two main classes: indirect and direct. Indirect methods seek local optima 
by solving the usually nonlinear set of equations resulting from setting the 
gradient of the objective function equal to zero. Given a smooth, unconstrained 
function, finding a possible peak starts by restricting search to those points with 
slopes of zero in all directions. On the other hand, direct (search) methods seek 
local optima by hopping on the function and moving in a direction related to 
the local gradient. While both of these calculus-based methods have been 
improved and extended, some simple reasoning shows their lack of robustness. 
First, both methods are local in scope; the optima they seek are the best in a 
neighborhood of the current point. Clearly, starting the search in the neighbor 
of a low peak will cause us to miss the highest peak. Furthermore, once the 
lower peak is reached, further improvement must be sought through random 
restart or other trickery. Second, calculus-based methods depend upon the 
existence of derivatives (well-defined slope values). Hence, these methods that 
depend upon the restrictive requirements of continuity and derivative existence 
are unsuitable for all but a very limited problem domain. For this reason and 
because their inherently local scope of search, we must reject calculus-based 

methods.

Enumerated schemes have been considered in many shapes and sizes. The 
idea is fairly straightforward. Within a finite search space, or a discretized 

infinite search space, the algorithm starts looking at objective function values 
at every point in the space, one at a time. Although the simplicity of this type 

of algorithm is attractive, and enumeration is a very human kind of search 
(when the number of possibilities is small), such schemes must ultimately be
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discounted in the robustness race for one simple reason: lack of efficiency. 
Many practical spaces are simply too large to search one at a time and still 
have a chance of using the information to some practical end. Even the highly 
praised enumerative scheme dynamic programming breaks down on problems 
of moderate size and complexity, suffering from a malady labeled as ’’ the curse 
of dimensionality” by its creator (Bellman, 1961, [5]).

Random search algorithms have achieved increasing popularity as researchers 
have recognized the shortcomings of calculus-based and enumerative schemes. 
Yet, random walks and random schemes that search and save the best must 
also be discounted because of the efficiency requirement. Random searches, in 
the long run, can be expected to do no better than enumerative schemes. Hav­
ing said that we should discount strictly random search methods, we must be 
careful to separate them from randomized techniques. The genetic algorithm 
is an example of a search procedure that uses random choice as a tool to guide 
a highly exploitative search through a coding of a parameter space. Another 
popular search technique, simulated annealing, uses random processes to help 
guide its form of search for minimal energy states. The important thing to 
recognize at this juncture is that randomized search does not necessarily imply 
directionless search.

While we conclude that conventional search methods are not robust, this 
does not imply that they are not useful. The schemes mentioned and countless 
hybrid combinations and permutations have been used successfully in many 
applications, however, as more complex problems are attacked, other methods 
will be necessary. And it would be worthwhile sacrificing peak performance on 
a particular problem. proNided by a conventional search method, to achieve a 
relatively high level of performance across a spectrum of problems, that can be 
provided by a robust scheme like genetic algorithms.

In order for genetic algorithms to surpass the traditional optimization and 
search methods in the quest for robustness, GAs must differ in some very 
fundamental ways. Genetic algorithms are different from normal optimization 
and search procedures in four ways;



1. GAs work with a coding of the parameter set, not the parameters them­
selves. Hence, they are largely unconstrained by the limitations of other 
methods (continuity, derivative existence, unimodality, and so on).

2. GAs search from a population of points, not a single point. Since they 
work from a rich database of points simultaneously, climbing many peaks 
in parallel, the probability of finding a false peak is reduced over methods 
that move from a single point in the decision space to the next by using 
some transition rule to determine the next point.

3. GAs use payoff (objective function) information, not derivatives or other 
auxiliary knowledge. Many search techniques require much auxiliary in­
formation in order to work properly. For example, gradient techniques 
need derivatives and other search procedures like the greedy techniques 
of combinatorial optimization require access to most if not all tabular 
parameters. By contrast, GAs have no need for all this auxiliary in­
formation, i.e., GAs are blind. To perform an effective search for better 
structures, they only require payoff (objective function) values associated 
with individual strings. This characteristic makes a GA a more canonical 
method than many search schemes.

4. GAs use probabilistic transition rules, not deterministic rules. The use 
of probability does not suggest that the method is some simple random 
search like decision making at the toss of a coin. Genetic algorithms use 
random choice as a tool to guide a search towards regions of the search 
space with likely improvement.

Taken together, these four differences contribute to a GA’s robustness and 
resulting advantage over other techniques.
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7.2 Comparison with Leu et al.’s G A  (1994)

Leu at al. solved Kilbridge-Wester’s (1961) problem by their GA and compared 
it with five other heuristics that are also available in the QS software package
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Heuristic No
1

Primary Heuristic
Maximum task time

Maximum total number 
o f  follower tasks
Minimum number o f 
immediate-follower tasks
Maximum number o f 
immediate-follower tasks
Maximum task time

Heuristic Used to Break Ties
Maximum total number 
o f  follower tasks
Maximum task time

Minimum total number 
o f  follower tasks
Random  task assignment

Minimum total number 
o f  follower tasks

Table 7.1: The heuristic methods to solve the Kilbridge-Westerproblem

[8]. These five non.-GA heuristics use a single pass heuristic that is accompanied 
by another heuristic to break ties, as shown in Table 7.1. The heuristics that 
are used as primary or as tie-breaking are selected eis the best performing 
heuristics due to Leu et al.’s (1994) literature survey [29]. Figure 7.1 presents 
the Kilbridge-Wester (1961) problem and also shows the solution of Leu et al. 
(1994), which is superior to the solutions of the other five heuristics.

The cycle time of the original problem is 55, but Leu et al. (1994) slightly 
changes this value to 56 to observe the sensitivity of non-GA heuristics to 
changes in problem’s constraints. Leu et al. (1994) compare the heuristics 
with their GA by means of four different measures: i) mean-squared idle time, 
ii) square root of mean squared idle time, iii) efficiency (utilization), and iv) 
maximum station time. If the maximum station time is less than the given cycle 
time then it becomes the new cycle time, i.e., the cycle time is reduced. Hence, 
it is desirable to minimize the maximum task time in a type-1 ALB problem 
if the number of stations is already minimized (i.e., utilization is maximized). 
The other three measures are already explained in Chapter 2. We evaluated 
the performance of our GAs in terms of these measures as well. We present 
our results in comparison with Leu et al.’s (1994) and other heuristics’ in Table 

7.2.

We solved the Kilbridge-Wester problem by both the modern GA and the 
classical GA. We solved the problem using 1200 different factor level combi­
nations. The factors used and their levels are: DPC (0, 0.01, 0.03, 0.05),
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Figure 7.1: The Max-Teisk Time Heuristic Solution to the Kilbridge-Wester 
45-Task Problem

population size (20, 50). cooling rate (0, 0.95, 0.97, 0.99, 1), mutation rate 
(0.02, 0.05, 0.1), and 10 random seeds. The same experimental design is ap­
plied for both the classical GA and the modern GA. The other factors that 
we used only at one level are as follows: number of iterations =  500, warm-up 
period =  0, crossover rate =  0.90.

As shown in Table 7.2, our modern GA found the optimum number of sta­
tions, leaving Leu et al.’s GA (1994) and other heuristics behind. The solution 
that provides the optimum number of stations was found at 13 different factor 
level combinations. These factor levels are presented in Table 7.3 to demon­
strate the significantly positive effect of dynamic partitioning and our modifi­
cation of the elitism rule by applying SA methodology to the performance of 

GAs. It can also be observed in Table 7.3 that the optimum number of stations 
(i.e., 10) could be found by modern GA only when dynamic partitioning was
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S o lu t io n
M e t h o d

M ea n -S q u a re d  
Id le  T im e

S q r. R o o t  (M e a n - 
S q rd  Id le  T im e ) E ffic ie n cy

M a x im u m
W o rk lo a d

Heuristic 1 239.64 15.48 0.8961 56
Heuristic 2 239.27 15.47 0.8961 56
Heuristic 3 67.45 8.21 0.8961 56
Heuristic 4 124.91 11.17 0.8961 56
Heuristic 5 239.64 15.48 0.8961 56

Leu et a l.’s G A 51.81 7.20 0.8961 55
M odern G A 1.20 1.10 0.9855 56
Classical GA 38.73 6.22 0.8961 55

Table 7.2: Comparison of non-GA heuristics, Leu et al. ’s GA and the proposed 
GA

N o D P C
P o p u la t io n

S ize
R a n d o m

S eed
C o o lin g

R a te
M u ta t io n

R a te
C P U
T im e

M e a n  S q rd  
Id le  T im e

1 0.03 20 14567 0.97 0.05 0.76 1.40
2 0.03 20 97665 0.99 0.02 0.76 1.40
3 0.03 20 97665 0.99 0.05 0.82 1.20
4 0.03 20 77943 0.99 0.10 1.04 1.40
5 0.03 20 47729 0.99 0.10 0.93 1.40
6 0.03 20 77943 1.00 0.10 1.04 1.40
7 0.03 50 84521 0.97 0.10 1.37 1.20
8 0.03 50 76421 0.97 0.10 1.59 1.20
9 0.03 50 60013 0.99 0.10 1.70 1.40
10 0.03 50 14567 1.00 0.02 1.53 1.40
11 0.05 20 14567 0.97 0.05 0.76 1.40
12 0.05 20 77943 0.99 0.10 1.04 1.40
13 0.05 20 47729 0.99 0.10 0.93 1.40

Table 7.3: Factor levels at which the optimum solution is found

activated (i.e., DPCf^O) together with SA in elitism (i.e., cooling rate^O). The 
two different mean squared idle time measures in Table 7.3 indicate that there 
are two alternative solutions with 10 stations. The CPU times in seconds is 
also presented in Table 7.3. The difference in CPU times are because of the 
difference in the iteration number when the algorithm starts dynamic parti­
tioning. For example, if it starts partitioning early then the CPU time will be 
reduced due to the reduced chromosome size. We present the solution with 

the lowest mean squared idle time (i.e., 1.20) , which gives the best balanced 

assembly line, in Figure 7.2.

Although the classical GA does not find the optimum number of stations 
at the given factor levels, it performs better than Leu et al.’s GA (1994) and
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Figure 7.2: Modern GA Solution for the Kilbridge-Wester 45-Task Problem

the other five non-GA heuristics due to mean squared idle time measure, as 
can be seen in Table 7.2.

The classical GA performs worse than the modern GA in the Kilbridge- 
Wester problem. Contrarily, we observe that the classical GA performs better 
than the modem GA on the average in Chapter 6. This contradiction can 
be explained by the following facts: (i) the modern GA is better than the 
classical GA in 35 of the 300 problems solved hence, the classical GA is not 
always better than the modern GA, (ii) 26 of these 35 problems are generated 
between 10% and 50% F-Ratio levels, whereas the Kilbridge-Wester problem 
is also between these le\'els with its 39.70% F-Ratio, (iii) if we used only the 
optimum level of the cooling rate factor (i.e., zero) as in Chapter 6, we would 

not be able to find the optimum solution of this problem by the modern GA 

because all the optimum solutions are found at cooling rate levels that are not 

zero.



7.3 Comparison with Baybars’ LBHA-1 (1986)

Baybars solved Tonge’s (1961) 70-task problem with a heuristic called LBHA- 
1. We present Tonge's (1961) problem in Figure 7.3. This problem is a real 
life application that comes from the electronics industry. Since 1965, numerous 
attempts have been made to solve the Tonge (1961) problem for 13 different 
cycle times. The cycle time ranges from 83 to 364 in these versions, hence some 
versions contain tasks that have larger task times than the cycle time. For 
those versions, parallel stations are needed. For example, 15 parallel stations 
are needed for the first version where the cycle time is 83. In this version, task 
13, that has a task time of 134 units, needs one parallel station and its task 
time is revised as 134 — 83 =  51, after the parallel station has been used. The 
cycle times of the other versions are given in Table 7.4.
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Figure 7.3: The 70-Task Problem of Tonge (1961)

We solve the 13 ·̂ersions of Tonge’s (1961) problem with both the modern



GA and the classical GA. Our algorithms have five parameters, i.e., DPC, 
number of iterations, cooling rate, mutation rate, and population size, that 
need to be optimized for each problem. First, we experimented the effect 
of each parameter on the performance for the first version of Tonge’s (1961) 
problem. Because of the similarity of the versions (i.e., all precedence relations 
are the same but some of the task times change due to parallel stations), we 
eliminated some levels of some of the factors due to our experimental results 
on the first version. We fixed the number of iterations factor to the 500 level 
because we did not observ’̂ e any significant improvement in higher levels. We 
observed that the best performing level of DPC is 0.05, hence we eliminated 
all other levels except the 0 level, which we kept to observe without DPA 
performance. The mutation parameter’s levels are 0.01, 0.03, 0.05, 0.10, 0.20, 
and the cooling rate parameter takes 0, 0.95, 0.97, 0.99, 1 values for all versions. 
Additionally, we use the same 10 seeds that we used in the previous chapters. 
Hence, we solved each version of the problem 500 times, i.e. 5 (mutation) x 
5 (cooling rate) x 2 (DPC) x 2 (modern/classical) x 10 (seeds) =  500, with 
both the modern GA and the cleissical GA. We took the best solution, i.e., the 
minimum number of stations, among these 500 solutions as our solution to the 
problem in Table 7.4. The optimal solutions to these problems as well as the 
results of previous studies that have targeted this problem are also given in 
Table 7.4.
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It can be observed from Table 7.4 that the modern GA performs better than 
all heuristics except Nevins’ (1972) and Baybars’ (1986). However, there is no 
significant difference between the performance of Nevins’ (1972) or Baybars’ 
(1986) heuristics and the modern GA. The modern GA solutions match those of 
Baybars except for four cases in which we exceed the optimum solution by one 
and for one case in which we find the optimum solution while Baybars’ LBHA-1 
does not. Considering that the modern GA found five of the thirteen optimal 
solutions and found solutions to the other cases with only one more station than 

the optimiun, it performs quite well on the versions of Tonge’s (1961) problem. 

The classical GA also performs well, but the modern GA performs better than 

the classical GA in three cases. This result contradicts with the experiment
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Cycle Optim al M oodie and 
time solution Young (1965)

Tonge (1965) Nevins Baybars M odern Classical
M IF R C  B P C  (1972) (1986) G A  G A

83
86
89
92
95

170
173
176
179
182
346
349
364

47
46
43
?

40
22
22
22
21
21
11
11
11

48
47
44
43
42
24
24
22
22
22
11
11
11

50
47
45
43
43
24
24
24
23
23
11
11
11

50
48
46
44
43
24
24
23
23
22
12
11
11

49
47
44
43
41
23
23
22
21
21
11
11
11

47
46
43
42
40
23
22
22
21
21
11
11
11

47
46
43
42
40
23
23
23
22
22
11
11
11

48
46
44
43
41
23
23
22
22
22
11
11
11

48
47
44
43
42
23
23
23
22
22
11
11
11

Table 7.4: Comparison of eight methods on the 70-task problem o f Tonge (1961) 
in terms of number of stations

in Chapter 6, in which we observe that the classical GA performs better than 
the modern GA on the average. First of all, the performance measure is ’’ the 
number of stations” in Tonge’s (1965) problem. Therefore, even if the classical 
GA provides a better balanced solution with the same number of stations, 
this improvement is not noticeable since it is not reflected on the performance 
measure. Additionally, we observe that the modern GA performed better than 
the classical GA in 35 of the 300 problems in Chapter 6, hence it is not very 
unlikely that it exceptionally performs better than the classical GA in three 
versions of Tonge’s (1965) problem.

Although GAs are applicable to ainy kind of ALB problem regardless of 
the F-Ratio, we observe that they perform worse in problems with high F- 
Ratio, as in Tonge’s (1961) problem with 59.42% F-Ratio. If the number of 
precedence relations increases, the possibility of generating offsprings that are 
better than their parents decreases. In such a case, another crossover operator 
that provides more substantial changes on the parents’ genes may be used 
instead of a moderate crossover operator like the one we used. Our crossover 
operator is the two point crossover operator, as explained in Chapter 3. The 

purpose of the two point crossover is to conduct a neighborhood search that 

is done by keeping the head and the tail of each offspring the same as its 

parent. The offspring should be close in fitness to its parent because only its



middle genes have changed. Conversely, a one point crossover would change 
on the average the half of the entire chromosome of each offspring, and such 
a change could be too drastic and might move the offspring out of the local 
search neighborhood. Similarly, more-than-two-point crossover could result in 
changes in fitness functions that are either too small or too large depending on 
how the swapping is done. Hence, if we used a one point crossover we might 
have achieved better results compared to our two point crossover operator, for 
Tonge’s problem that has a high F-Ratio.

On the other hand, Baybars’ LBHA-1 consists of reduction phases that 
reduces the problem size by eliminating tasks, determining mutually exclusive 
task sets, and decomposing the network, while no reduction phases are applied 
to the problem before our GAs. Hence, if the same reduction phases were 
implemented before our GA, we might have achieved better results on Tonge’s 
(1961) problem. It has been shown by Leu et al. (1994) that starting the GA 
with a better initial population significantly improves the solution quality.
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Chapter 8

CONCLUSION

This chapter provides a brief summary of the contributions of this thesis and 
addresses some possible extensions of this study for future research. In this 
study, we have studied genetic algorithms (GAs) and their application to the 
assembly line balancing problem (ALB) for the deterministic and single model 
case (SALE). We proposed new solution methodologies to find near-optimal 
balances by making use of the authentic characteristics of the ALB problem in 
the GA structure. In the next section, we wiU make a short summary of our 
contributions.

8.1 Contributions

We showed that the chromosome structure of GAs can be changed dynamically 
to provide an effective search in the ALB problem domain. We have reduced 
the chromosome size during the search procedure, when certain conditions are 
satisfied, by freezing the stations at the beginning or the end of the assembly 
line and the tasks that are assigned to these stations. We improved both the 

solution quality and the computational time by this reduction technique, i.e., 

dynamic partitioning (DPA), compared to the GA without DPA. Over a set 

of 30 randomly generated problems, we tested our GA with DPA and have
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seen that the objective value is improved by 16.43% for the problems with 10% 
F-Ratio and 7.69% for the problems with 50% F-Ratio. However, we did not 
observe a significant improvement even in the extreme case of problems with 
90% F-Ratio, because these problems have a small number of possible solutions 
due to the large number of precedence relations that they consist of.

We also studied elitism, which is a rule that accepts the offspring only if it is 
better than its parent. We expanded the elitism rule to create levels of elitism 
by using the simulated annealing (SA) idea. Our contribution to revise the 
elitism rule extends to showing how any binary decision rule can be expanded 
to have a continuous range. We observed that elitism contributes significantly 
to the performance of the GA. This observation was not made in any other 
study, although elitism was used before in literature. We have seen that the 
levels of elitism does not significantly differ from each other on the average in 
our experiment with 30 randomly generated problems. We also observed that 
the optimum solution can be found in some problems at some of the other 
levels while it is not possible to find it at the strict elitism or no elitism levels. 
Thus, elitism with SA contributes to the search by providing multiple levels of 
elitism rather than restricting it with only strict elitism.

We compared the two kinds of GAs that can be classified according to 
their organizational structure as the classical GA and the modern GA. The 
difference between the two classes is basically the number of crossovers at each 
iteration, i.e., only two offsprings can replace their parents after one crossover 

operation at each iteration in the modern GA while a big proportion of the 
next population is regenerated by multiple crossover operations in the classical 
GA. We compared the two kinds of GAs and observed that the classical GA 
requires significantly more amount of computational time than the modern 

GA, but the classical GA performed significantly better on the average over 

a set of 30 randomly generated problems. Thus, we recommend the classical 

GA for solving ALB problems unless it will not be used in a very flexible 

manufacturing system that needs to be balanced frequently.
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8.2 Future Resecu*ch Directions

There are several future research directions originating from this research study 
as such:

• Prior to dynamic partitioning, a static partitioning procedure that divides 
the ALB problem into smaller subproblems can be applied to problems 
that consist of a very large number of tasks. If the problem is divided 
into sub-problems wnth this technique, then the chromosome size of the 
GA for each subproblem can be reduced to a reasonable size in order 
to prevent intolerable computational time requirements and to provide a 
more extensive search.

• Dynamic partitioning can be revised such as it freezes not only the sta­
tions at the beginning or at the end of the chromosome but also the other 
stations. We expect that such a revision would improve the performance 
of the GA with DPA especially in problems that consist of a large number 
of tasks.

• In this study, we considered only the single model and deterministic case 
of ALB problems (SALB), however the scope of the study can be extended 
to multi/mixed model and/or stochastic cases as well.

• Effects of DPA and elitism with SA may be observed in G As with different 

crossover and mutation operators and with different coding representa­
tions.
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