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In practice, scheduling systems are subject to considerable uncertainty in highly dynamic operating environments. The ability to
cope with uncertainty in the scheduling process is becoming an increasingly important issue. This paper takes a proactive scheduling
approach to study scheduling problems with two sources of uncertainty: processing time variability and machine breakdowns. Two
robustness (expected total flow time and expected total tardiness) and three stability (the sum of the squared and absolute differences
of the job completion times and the sum of the variances of the realized completion times) measures are defined. Special cases
for which the measures can be easily optimized are identified. A dominance rule and two lower bounds for one of the robustness
measures are developed and subseqently used in a branch-and-bound algorithm to solve the problem exactly. A beam search heuristic
is also proposed to solve large problems for all five measures. The computational results show that the beam search heuristic is
capable of generating robust schedules with little average deviation from the optimal objective function value (obtained via the
branch-and-bound algorithm) and it performs significantly better than a number of heuristics available in the literature for all five
measures.

Keywords: Proactive scheduling, robustness, stability

1. Introduction

Scheduling is a decision-making process that is con-
cerned with the allocation of limited resources (machines,
material-handling equipment, operators, tools, fixtures,
etc.) to competing tasks (operations of jobs) over time,
with the goal of optimizing one or more objectives. The
output of this decision process is time/machine/operation
assignments. In the scheduling literature, the objective is
generally to minimize functions such as makespan, tardi-
ness, flow time, etc.

In practice, scheduling systems operate in dynamic and
uncertain environments in which random interruptions
prevent the execution of a schedule exactly as it is devel-
oped. Examples of such disruptions are machine break-
downs, rush orders, order cancellations, due date changes,
etc. Variation in processing times and other stochastic
events further increase the variability in the system, which
in turn deteriorate the scheduling performance.

Even though actual scheduling problems in real life are
dynamic and stochastic, most of the existing literature ad-
dresses static and deterministic versions. However, even
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these simplified problems (with deterministic and static as-
sumptions) are NP-hard or analytically intractable.

The uncertainties and dynamic nature of the real-world
scheduling process can be seen as the major source of the
gap between scheduling theory and practice. In the litera-
ture, several studies have been conducted to close this gap.
In the early works, researchers employ a rolling-horizon
scheme to cope with the dynamic nature of scheduling en-
vironments, where the problem is successively solved using
static algorithms for different time windows (Nelson et al.,
1977). The stochastic nature of scheduling has also been
investigated in the literature. In these studies, uncertainty
in job processing times, release times, or due dates is mod-
eled by probability distribution functions and formal prob-
ability theory is used to make inferences (Pinedo, 2002,
Chapters 9–13). In the last two decades researchers have
also proposed approaches including online scheduling, dy-
namic scheduling, and real-time scheduling. Recently, two
approaches to coping with uncertainty in the scheduling
process have gained significant research interest: reactive
and proactive scheduling. The objective in reactive schedul-
ing is to revise schedules as unexpected events (disruptions)
occur. On the other hand, proactive scheduling takes future
disruptions into account while generating schedules.

The challenge of addressing the dynamic and stochas-
tic nature of the scheduling process also affects the
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Fig. 1. An initial schedule and its realization for J3||Cmax.

performance measure of choice. Although performance
measures such as makespan, flow time, or tardiness have
often been preferred in practice, in the recent literature two
new measures are brought to the attention of practitioners:
robustness and stability. These measures are particularly
used in environments where uncertainty is a major issue.

Uncertainty has two kinds of major negative impacts on
initial schedules. First, it degrades schedule performance.
This effect is the topic of robustness. A schedule whose per-
formance does not deteriorate in the face of disruptions
is called robust. In other words, the performance of a ro-
bust schedule is expected to be insensitive to disruptions.
In general, the performance of the realized schedule is the
main concern of practitioners rather than the planned or
estimated performance of the initial schedule. Hence, op-
timizing the former may be more appropriate than opti-
mizing the latter and robustness is a practical performance
measure. Second, unforeseen disruptions cause variability.
This effect is the topic of stability. A schedule whose real-
ization does not deviate from the original schedule in the
face of disruptions is called stable. A schedule serves as
a master plan for other shop floor activities in addition
to production, such as determining delivery dates, release
times, and planning requirements for secondary resources
such as tools, fixtures, etc. Any deviation from the produc-
tion schedule can disrupt these secondary activities and
increase system nervousness. Thus, stability is also an im-
portant measure in practice.

Robustness and stability can be illustrated with the help
of Fig. 1. The top Gantt chart in the figure depicts a pos-
sible initial schedule for a job shop environment with three
jobs and three machines subject to random breakdowns.
The bottom Gantt chart shows a possible realization of the
initial schedule. The shaded area on the realized schedule
of machine 2 between times 7 and 9 represents a break-
down. Assume that the performance measure of interest is
the maximum completion time (Cmax). From the robust-
ness viewpoint, the scheduler should be concerned with
the performance of the realized schedule (Cmax = 13 in
the example) rather than the performance of the initial

schedule (Cmax = 10 in the example). Hence, he/she opti-
mizes a measure (robustness measure) that is defined on the
realized schedule. Another way to look at this is to min-
imize the performance deviation between the initial and
the realized schedules (�Cmax = 13 − 10 = 3 in the exam-
ple). Observe that the operation of job 1 on machine 2
completes later than planned. Similarly, while the opera-
tion of job 2 on that machine is planned to be processed
between times 8 and 10, it is actually processed between
times 11 and 13 because of the breakdown. From the sta-
bility viewpoint, such deviations from the initial schedule
(i.e., the master plan) should be minimized. Hence, the
scheduler optimizes a measure (stability measure) defined in
terms of the deviations between the initial and the realized
schedules.

The reactive and proactive scheduling approaches and
these two new performance measures (robustness and sta-
bility) are discussed in more detail in Sabuncuoglu and
Goren (2009).

In this study, we consider the single-machine scheduling
problem with random processing times and machine break-
downs. When a breakdown occurs, the machine is unavail-
able until it is repaired. The times for repair are also random
and independent of each other and of the breakdown pro-
cess. A job preempted due to a breakdown is processed for
its remaining processing time (i.e., preempt-resume policy
is assumed). No other preemptions are allowed. As stated
before, we take a proactive point of view and define several
robustness and stability measures.

Although there are some studies which measure robust-
ness as a minimax regret (e.g., Daniels and Kouvelis (1995),
the majority of recent studies on robustness involve ex-
pected realized performance. The expected realized perfor-
mance can be the robustness measure by itself (e.g., Wu
et al. (1999) or can be a part of it (e.g., Leon et al. (1994)).
In this study, we use the expected realized performance
measure as the robustness measure. We consider two per-
formance measures: expected total flow time (RM1) and
expected total tardiness (RM2).

The most frequent way to measure the deviation between
the initial and the realized schedules (stability) is to com-
pare their job completion times (Wu et al., 1993; Mehta
and Uzsoy, 1998). We use two stability measures based on
this comparison: the sum of the squared differences (SM1)
and the sum of the absolute differences (SM3). We also use
the sum of the variances of the realized completion times as
another stability measure (SM2). The rationale behind this
and how it corresponds to the difference between the ini-
tial and the realized schedules is explained in Section 3.4.1.
Note that all these stability measures can be trivially min-
imized by inserting large blocks of idle times between jobs
in the initial schedule. In this study, however, we confine
ourselves to the class of non-delay schedules.

We also derive optimality conditions and propose
a proactive branch-and-bound algorithm, which uses a
stochastic dominance rule, for minimizing the expected
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total tardiness (RM2). We consider a single-machine en-
vironment because of its simplicity and the possible ex-
tendibility of its results to more realistic multi-machine
environments.

The rest of this paper is organized as follows. In Section
2, we review the existing proactive studies in the literature.
In Section 3, we approach the proactive scheduling problem
in a single-machine environment using probability theory.
In Section 4, we present a branch-and-bound algorithm
that utilizes insights gained in Section 3 to minimize the
expected total tardiness in a single-machine environment
with variable processing times. We present a beam search
algorithm that can handle other performance measures and
machine breakdowns in Section 5. In Section 6, we assess
the performance of the proposed algorithms with compu-
tational experiments. Finally, we make concluding remarks
and discuss future research directions in Section 7.

2. Literature review

Although this study is on schedule robustness and stability,
the literature on scheduling with unreliable machines is
relevant. We first review a few studies in this area.

Adiri et al. (1989) consider the problem of minimizing
total flow time in a single-machine environment subject to
random breakdowns. In contrast with our study, only one
machine breakdown occurs and a preempt-repeat policy is
assumed. The authors show that if the distribution function
of the time to breakdown is concave, then the Shortest
Processing Time (SPT) first rule stochastically minimizes
the flow time. For the case of multiple breakdowns, it is
proven that SPT minimizes the expected flow time when
the times to breakdown are exponentially distributed. The
authors show that the problem is NP-hard even when the
time for the single breakdown is known in advance and
the processing times of the jobs are deterministic.

In a later study, Adiri et al. (1991) consider the single-
machine scheduling problem with deterministic processing
times and due dates subject to a single random break-
down. The authors develop policies to minimize the number
of tardy jobs stochastically, working under certain as-
sumptions for both preempt-resume and preempt-repeat
policies.

Similar to our study, Li and Glazebrook (1998) con-
sider the single-machine scheduling problem with random
processing times and multiple machine breakdowns with
a preempt-resume policy. The objective is to minimize a
weighted sum of an increasing function of the completion
times in expectation. The authors develop a dominance
rule based on pairwise interchanges of adjacent jobs. The
rule is also relaxed to allow uptimes to be distributed as
a mixture of exponentials and according to a gamma dis-
tribution. The dominance rule, however, cannot be applied
to due-date-related measures, which are not functions of
completion times only. We develop a similar dominance

rule based on pairwise interchanges of jobs (not necessar-
ily adjacent) for the total tardiness measure for the case of
no machine breakdowns.

Li et al. (1998) consider the same problem under Erlang
uptime distribution. All jobs are assumed to have a com-
mon exponentially distributed due date (compared with
deterministic but different due dates in our study). The
authors develop dominance rules based on pairwise inter-
changes of adjacent jobs in order to minimize the weighted
number of tardy jobs, weighted flow times and weighted
sum of job delays.

Leung and Pinedo (2004) study the preemptive parallel-
machine scheduling problem with random breakdowns and
deterministic processing times and due dates. The authors
develop conditions on the number of available machines
m(t) that minimize total completion time, makespan or
maximum lateness. The authors also analyze cases with
deadlines and precedence constraints.

We refer interested readers to Pinedo (2002) to see a
concise summary of stochastic scheduling results. Next, we
review the studies in the literature that explicitly address
robustness or stability of schedules. These studies can be
divided into two parts—those that model uncertainty by
probability density functions and those that hedge against
the worst contingency that may arise without considering
any specific probability distribution. The latter is known
as the robustness approach in the literature. In both ap-
proaches, the source of uncertainty is either the variability
of task processing times or machine availability (the ma-
chines are subject to a breakdown/repair process).

Leon et al. (1994) is an example of the first approach.
They consider the job shop scheduling problem with
machine breakdowns. The objective is to construct a ro-
bust initial schedule. The robustness measure for a sched-
ule is calculated as a convex combination of the expected
makespan of the realized schedule and the expected de-
viation from the initial deterministic makespan. In a job
shop environment with multiple machine failures, however,
calculating this measure analytically is intractable. They
develop a surrogate measure and minimize that measure
instead. The results indicate that the proposed algorithm
outperforms the classical algorithms that focus on mini-
mizing makespan only.

Wu et al. (1999) propose a graph-theoretic decompo-
sition for the job shop scheduling problem to achieve
schedule robustness. Expected average weighted tardiness
is used as the robustness measure. The authors use a
graph representation of this problem, in which conjunc-
tive arcs represent precedence constraints and disjunctive
arcs join operations competing for the same resource. They
propose a branch-and-bound algorithm that processes dis-
junctive arcs and changes some of them into conjunc-
tive arcs. This effectively fixes some of the scheduling
decisions. The remaining scheduling decisions are made
dynamically by applying the Apparent Tardiness Cost
(ATC) heuristic (Vepsalainen and Morton, 1987). Their
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computational experiments indicate that this scheme dis-
plays better robustness performance under a wide range
of disturbance levels (various levels of processing time
variability) compared to traditional offline and online
methods.

There are also studies that model uncertainty with prob-
ability density functions with the aim of generating stable
schedules. For example, Wu et al. (1993) study the single-
machine rescheduling problem under machine disruptions.
They reschedule the jobs in response to each machine fail-
ure so that a minimum makespan is obtained with high
schedule stability (the measure they use is similar to SM3).
Since the problem is NP-hard even without stability con-
siderations, they use a pairwise swapping heuristic and
a genetic algorithm to generate a list of non-dominated
schedules. Their computational results show that the sta-
bility of the schedules could be improved significantly with
little sacrifice in makespan.

Mehta and Uzsoy (1998, 1999) generate initial stable
schedules under random machine breakdowns. Their ob-
jective is to generate an initial schedule with minimal de-
viation (i.e., SM3) while keeping shop floor performance
degradation at an acceptable level. The specific problem
they study in the first paper is the single-machine schedul-
ing problem where jobs have unequal ready times and ran-
dom machine breakdowns are present. In the second paper,
they study the job shop scheduling problem with random
machine breakdowns. In both studies, they use maximum
lateness as the shop floor performance measure. Unlike
Wu et al. (1993), they consider the minimization of the de-
viation between the initial and the realized schedule while
generating an initial schedule, not when rescheduling af-
ter a breakdown. The authors offer a two-stage approach.
In the first stage, a job sequence that will minimize the
maximum lateness is determined. In the second stage, they
insert idle times into the sequence. Their computational
results indicate that stability can be easily improved while
slightly increasing maximum lateness.

O’Donovan et al. (1999) combine the reactive and
the proactive approaches and examine the schedul-
ing/rescheduling policy using stability and efficiency mea-
sures in a single-machine environment. Schedule efficiency
is measured by total tardiness (RM2). Stability is measured
by absolute completion time deviations from the initial
schedule (SM3). The system under study has non-zero job
ready times and random machine breakdowns. This study
is similar to the one by Mehta and Uzsoy (1999) except
that total tardiness is used instead of maximum lateness.
They consider pure ATC and ATC with inserted idle times
for initial schedule generation. Rescheduling alternatives
are ATC, a modified ATC (which calculates the slack of a
job based on its predicted completion time, taking inserted
idle times into account), and right-shift scheduling. Their
results indicate that ATC with inserted idle times for an
initial schedule and the modified ATC for rescheduling are
the best for stability.

For the robustness approach, we refer the reader to
Kouvelis and Yu (1996), who apply this method to various
problems such as linear programming, assignment prob-
lem, shortest path problem, etc., as well as scheduling. An
example of such an approach in the machine scheduling
context is the study of Daniels and Kouvelis (1995). They
generate initial robust schedules to hedge against process-
ing time variability in a single-machine environment. The
authors propose a scenario-based representation and anal-
ysis of uncertainty rather than using stochastic models.
They use a policy that finds the schedule whose perfor-
mance degradation in its worst-case scenario is the least
among all feasible schedules (i.e., minimax regret strategy in
decision theory). The authors study a single-machine prob-
lem where the performance measure is total flow time, and
the source of uncertainty is processing time variability. The
authors prove that a properly selected finite set of scenarios
is enough to determine the worst-case absolute deviation
of a given sequence and construct a procedure that cal-
culates the worst-case evaluation in polynomial time. They
develop a branch-and-bound algorithm and two O(n log n)
surrogate relaxation heuristics that utilize this procedure to
generate robust schedules. The authors compare their so-
lutions to the SEPT (Shortest Expected Processing Time)
solution, which is used in practice to generate an optimal
sequence of jobs. They observe that SEPT performs poorly
in terms of robustness.

Such a minimax regret approach to robustness may
be more appropriate than the more frequently used ex-
pected performance measure approach if the distributions
that capture the uncertainty are unknown or imprecise.
Additionally, in many cases a stochastic approach that
models the uncertainty with probability density functions
assumes distributional independence to improve analytical
tractability. If such an assumption is invalid (i.e., strong
correlations exist among the probability distributions), a
minimax regret approach may be more suitable to employ.
Finally, if the scheduling decisions are evaluated ex post
(as if all the relevant information had been known in ad-
vance of scheduling), a decision maker may be inclined
to reduce the difference between the realized performance
and the optimal performance that could have been achieved
(i.e., minimize regret), rather than the average performance
(Daniels and Kouvelis, 1995).

Sotskov et al. (1997) introduce another viewpoint for
stability. They handle the uncertainty in a job shop envi-
ronment by an a posteriori analysis, in which an optimal
schedule has already been constructed and the challenge
is to determine the maximum variation in the processing
time of the operations such that the optimal schedule at
hand still remains optimal. Such a maximum variation is
called the stability radius of the schedule. This notion of
stability, obtained by sensitivity analysis, can be considered
as a measure of solution robustness as per Herroelen and
Leus (2005). Although this type of post-optimality analysis
may provide some valuable insights about the impacts of
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uncertainty, it is also associated with some problems. If the
stability radius of the optimal schedule is large enough to
accommodate all possible changes in the processing times,
the optimal schedule at hand can safely be used, but if
it is not that large, the question of what course of action
to take remains to be answered. Hence, in this paper, we
take a proactive stance and incorporate uncertainty into
the scheduling processes. We concentrate on optimizing the
quality robustness rather than the solution robustness.

In this paper, we consider the single-machine schedul-
ing problem with random processing times and machine
breakdowns. We define two robustness (RM1 and RM2)
and three stability measures (SM1, SM2, and SM3). In
general, calculating actual robustness and stability mea-
sures analytically is very difficult. For that reason, in the
previous studies researchers employ surrogate measures to
indirectly calculate the robustness or stability of a schedule.
The surrogate measures used in the existing studies, how-
ever, are simple in the sense that they do not adequately
incorporate the known information about the uncertainty,
as also stated in Mehta and Uzsoy (1998). In this paper,
we use the formal probability theory to derive inferences
about minimizing robustness or stability measures. Specif-
ically, we solve the problem for a number of special cases.
For intractable cases, instead of employing surrogate mea-
sures, we use a beam search (BS) algorithm developed in
this study that employs simulation to calculate robustness
or stability measures. Thus, we use the available informa-
tion about the uncertainty better than does the indirect
approach of employing surrogate measures. Moreover, in
the previous studies, makespan or maximum lateness is
used as the performance measure for the sake of simplicity.
In our study, however, we consider flow time and tardiness
criteria, as they are used more often in practice.

3. Proposed probabilistic approach

3.1. Notation

We consider the single-machine scheduling problem with
random processing times and machine breakdowns. The
uptimes have independent and identical general distribu-
tion G1(t). Similarly, the downtimes (i.e., the times that the
machine is not in operation due to breakdown) are inde-
pendent and identically distributed (i.i.d.) according to a
general distribution G2(t). The processing times of the jobs
are all random variables with known general distribution
functions that may differ from job to job. Let Hj (t) be the
processing time distribution of job j . Let Cj denote the
completion time of job j in the initial schedule and Cr

j de-
note the completion time of job j in the realized schedule.
Let Xj denote the processing time of job j . We assume
that all n jobs are released at time t = 0. Let U1, U2 . . . be
the sequence of uptimes and D1, D2 . . . be the sequence of
downtimes. That is, the machine is operational from time

0 until U1, when the first breakdown occurs. The machine
then takes time D1 to be repaired and is again available for
processing from time U1 + D1 until time U1 + D1 + U2, and
so on. We denote this stochastic single-machine scheduling
problem as 1 |Xj ∼ Hj (t); brkdwn: U ∼ G1(t), D ∼ G2(t);
β | γ where 1 |β|γ denotes the deterministic version. Here,
β is the set of scheduling attributes, such as release dates,
presence of sequence-dependent setup times, preemptions,
precedence constraints, etc., and γ is the objective function.
If breakdowns were not present, the notation would be 1
|X j ∼ Hj (t); β|γ .

Define N(t) = sup{k ≥ 0|∑k
i=0 Ui ≤ t}, where U0 := 0.

That is, N(t) is the number of machine breakdowns that
occur up to total busy time t. Note that N(t) is increasing
in t. Here, we consider the case where the machine can
be down more than once during the processing of a job
and the job is processed for its remaining processing time
after each breakdown (i.e., the work done on a job is not
lost).

Yj denotes the time that job j occupies the machine,
including the processing time of the job and all the repair
times during which the job stays on the machine. Let Rjk
denote the kth repair time during the processing of job j .
Since Rjk’s are i.i.d., let r = E[Rjk] = ∫ ∞

0 tdG2(t) and v =
Var[Rjk] = ∫ ∞

0 (t − r )2dG2(t). Let Bj denote the number
of machine failures during the processing of job j . Then,
we haveYj = Xj + ∑Bj

k=1 Rjk.
We first begin by a definition and several propositions,

which will be used in the treatment of the robustness and
stability measures in Sections 3.3 and 3.4, respectively.

3.2. Preliminaries

Definition 1 (Ross, 1983). A random variable V is said to
be stochastically larger than a random variable W, written V
≥st W, if P {V > a} {≥ P} {W > a} for all a.

Proposition 1. Let V1, . . . , Vn be independent and W1, . . . ,
Wn be independent. If Vi ≥ stWi for all i, then for any in-
creasing f, f(V1, . . . , Vn) ≥ st f (W1, . . . , Wn).

Proposition 2. If V ≥ st W then max{V, 0} ≥ st max{W, 0}.

We refer the reader to Example 8.2(a) and Question 8.1 in
Ross (1983) for the proofs of these two propositions. Both
proofs involve the coupling method, which is explained in
Ross’s Chapter 8.

Proposition 3. If uptimes are exponentially distributed with
the rate λ, then:

E[Bj ] = λE[Xj ],

E
[
B2

j

] = λE[Xj ] + λ2 E
[
X2

j

]
,

Var[Bj ] = λE[Xj ] + λ2Var[Xj ].
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Proposition 4. If uptimes are exponentially distributed with
the rate λ, then:

E[Yj ] = (1 + λr )E[Xj ],

Var[Yj ] = λ(v + r2)E[Xj ] + (1 + λ2r2)Var[Xj ].

3.3. Robustness

Although there are some studies which measure robustness
as a minimax regret (e.g., Daniels and Kouvelis (1995)),
the majority of the recent studies on robustness involve
expected realized performance. This expected realized per-
formance can be the robustness measure by itself (e.g., Wu
et al. (1999)) or can be a part of it (e.g., Leon et al. (1994)).
In this study, we use the expected realized performance
measure as the robustness measure. We begin with the flow
time case.

3.3.1. Total flow time
Recall that RM1 is the expected realized total flow time.
That is, RM1 = E[

∑n
j=1 Cr

j ]. Minimizing expected total
weighted flow time in a single-machine environment subject
to random machine breakdowns is known to be NP-hard
(Adiri et al., 1989). Even though the status of the un-
weighted case is unknown, it can be said that the problem
is analytically intractable, for it is difficult even to calculate
the objective function value of a given solution. We present
an optimality condition that holds in a special case here.

Theorem 1. If X j ≤ st Xj+1 for j = 1, . . . , n − 1, the job
sequence 1, . . . , n, i.e., SSPT (Stochastically Smallest Pro-
cessing Time) order, is an optimal solution to 1 |X j∼ H j (t);
brkdwn: U ∼ G1(t), D ∼ G2(t) | RM1 problem.

Proof. Consider an optimal sequence S. Assume that there
exists a pair of adjacent jobs i and j such that Xj ≤ st Xi
and job j succeeds job i in S. Because if such a pair does
not exist, either S is already the sequence {1, . . . , n} or it
can be put into that form by simply swapping the labels of
the jobs whose processing times have the same distribution.
Therefore, without loss of generality we assume that there
exists such a pair. Now consider a sequence S′, obtained
from S by swapping the positions of jobs i and j . We com-
pare RM1(S) and RM1(S′). We may ignore the jobs other
than i and j in this comparison, since nothing changes for
them. Let their contribution to the objective function be c.
Let T denote the sum of the processing times of the jobs
that precede i in S. We have:

RM1(S) = E

[
T + Xi +

N(T+Xi )∑
k=1

Dk + T + Xi + Xj

+
N(T+Xi +Xj )∑

k=1

Dk

]
+ c,

and

RM1(S ′) = E

[
T + Xj +

N(T+Xj )∑
k=1

Dk + T + Xi + Xj

+
N(T+Xi +Xj )∑

k=1

Dk

]
+ c.

Hence,

RM1(S) − RM1(S ′) = E[Xi − Xj ] + E

[ N(T+Xi )∑
k=1

Dk

−
N(T+Xj )∑

k=1

Dk

]
.

Since Xj ≤ st Xi and N(t) is increasing, N(T + Xj ) ≤
st N(T + Xi ) by Proposition 1. By coupling we also have∑N(T+Xj )

k=1 Dk ≤ st
∑N(T+Xi )

k=1 Dk, and therefore RM1(S) –
RM1(S′) ≥ 0. This means that S′ is also an optimal so-
lution. If we continue interchanging positions of adjacent
jobs in this manner until no pair of adjacent jobs i and
j such that Xj ≤ st Xi and job j succeeds job i exists, we
obtain a series of optimal solutions. The last solution we
obtain is either already the sequence {1, . . . , n} or it can
be put into that form by simply swapping the labels of the
jobs whose processing times have the same distribution. �

Corollary 1. SEPT order gives an optimal solution for 1 | X j
∼ exponential(λ j ); brkdwn: U ∼ G1(t), D ∼ G2(t) | RM1.

Corollary 2. SEPT order gives an optimal solution for 1 | X j
∼ H j (t) | RM1.

Corollaries 1 and 2 are known results in the literature. See
Pinedo (2002, Chapter 10). Theorem 1 can also be deducted
from the dominance rule developed by Li and Glazebrook
(1998).

3.3.2. Total tardiness
RM2 is the expected realized total tardiness. That is,
RM2 = E[

∑n
j=1 max(0, Cr

j − d j )], where d j is the due date
of job j .

Theorem 2. 1 | X j ∼ H j (t); brkdwn: U ∼ G1(t), D ∼ G2(t) |
RM2 is NP-hard.

Proof. We reduce 1| | ∑ j Tj to 1 | X j ∼ H j (t); brkdwn:
U ∼ G1(t), D ∼ G2(t) | RM2. Begin with a 1| | ∑ j Tj

instance. Take all repair times as zero. Do not change pro-
cessing times, i.e, Hj (t) and G2(t) are degenerate distribu-
tions. Take G1(t) as any arbitrary distribution. Due dates
also do not change. An optimal solution to this newly con-
structed 1|Xj ∼ H j (t); brkdwn: U ∼ G1(t), D ∼ G2(t) |
RM2 instance is also an optimal solution to the original
1| | ∑ j Tj instance. 1| | ∑ j Tj is known to be NP-hard (Du
and Leung, 1990) and the result follows. �
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Theorem 3 (Dominance rule). Consider the 1|Xj ∼ Hj (t)
| RM2 problem. For any two jobs i and j if Xi ≤ st Xj and
di ≤ d j , then there exists an optimal sequence in which job i
precedes job j .

Proof. Can be proven with an interchange argument simi-
lar to the proof of Theorem 1. Detailed proof makes use of
Propositions 1 and 2 for the jobs in between and compares
the expected tardiness values of jobs i and j (Goren and
Sabuncuoglu, 2009). �

Corollary 3. Consider the 1|X j ∼ exponential(λ j ) | RM2
problem. If due dates are agreeable, i.e., if the Earliest Due
Date (EDD) first and SEPT sequences are the same, the
EDD sequence is optimal.

Corollary 4. SEPT order gives an optimal solution for
1 |Xj ∼ exponential (λ j ); d j = d | RM2.

Note that if the processing times are exponentially dis-
tributed, Theorem 3 can be extended to include arbitrary
machine breakdowns. As a result, Corollaries 3 and 4 are
also still valid in the presence of machine breakdowns. For
the proofs of the last two corollaries and the inclusion of the
breakdown process, we refer the reader to Pinedo (2002),
Section 10.4.

3.4. Stability

Recall that a stable schedule is one that should not deviate
much from the initial schedule. The deviation is generally
measured in terms of the differences between the job com-
pletion times in the initial and realized schedules. Hence,
a typical stability measure is a non-decreasing function of
the deviation of job completion times. We use three stability
measures called SM1, SM2, and SM3. SM3 was already
available in the literature. SM1 and SM2 are proposed for
the first time in our study.

3.4.1. Stability measure 1 (SM1) and stability measure 2
(SM2)

Recall that SM1 is the expected sum of squares of job com-
pletion time differences between the initial and realized
schedules. That is, SM1 = E[

∑n
i=1 (Ci − Cr

i )2]. A sched-
uler who is aware of the fact that initial schedules will in-
evitably deviate due to random disruptions can prepare
his/her secondary plans according to expected completion
times rather than deterministic completion times. In this
case, a reasonable stability measure can be

SM2 = E

[
n∑

i=1

(
E

[
Cr

i

] − Cr
i

)2

]
=

n∑
i=1

Var
[
Cr

i

]
.

Theorem 4 (SVPT (Smallest Variance of Processing Time
first) Optimality). If Var[Xj ] ≤ Var[Xj+1] for j = 1, . . . ,
n−1, the job sequence {1, . . . , n} is an optimal solution to

the 1 | X j ∼ H j (t) | SM1(SM2) problem. In other words, the
SVPT rule gives an optimal solution.

Proof. The proof is by contradiction. Let S be an optimal
sequence but assume that there exists a pair of adjacent
jobs i and j such that Var[Xi ] > Var[Xj ] and job j succeeds
job i in S. Now consider a sequence S′, obtained from S
by swapping the positions of jobs i and j . We compare
SM1(S) and SM1(S′). We may ignore the jobs other than i
and j in this comparison, since nothing changes for them.
Let their contribution to the objective function be c. Let
T denote the sum of the processing times of the jobs that
precede i in S. We have:

SM1(S) = E
[
(T + Xi − E[T + Xi ])2] + E[(T + Xi + Xj

− E
[
T + Xi + Xj ])2] + c

= Var[T + Xi ] + Var[T + Xi + Xj ] + c

and

SM1(S ′) = E
[
(T + Xj − E[T + Xj ])2] + E[(T + Xi + Xj

− E[T + Xi + Xj ])2] + c
= Var[T + Xj ] + Var[T + Xi + Xj ] + c.

Hence,

SM1(S) − SM1(S ′) = Var[Xi ] − Var[Xj ].

Since Var[Xi ] > Var[Xj ], SM1(S) > SM1(S′). That is, there
is a strict improvement in the objective function after the
interchange. This contradicts the fact that S is an optimal
solution. The proof for the SM2 performance measure can
be done similarly. �

Corollary 5. SEPT solves 1 | X j ∼ exponential (λ j ) |
SM1(SM2) optimally.

Theorem 5 (SEPT Optimality). If E[Xi ] > E[Xj ] implies
Var[Xi ] ≥ Var[Xj ], ∀(i, j ) then 1 | X j ∼ H j (t); brkdwn: U ∼
exponential(λ), D ∼ G2(t) | SM1(SM2) is solved optimally
by the SEPT rule.

Proof. See Appendix. �

Corollary 6. SEPT solves:
1 | X j ∼ exponential(λ j ); brkdwn: U ∼ exponential(λ), D ∼
G2(t) | SM1(SM2) optimally.

1 | X j ∼ H j (t); brkdwn: U ∼ G1(t), D ∼ G2(t) | SM1(SM2)
is analytically intractable in the general case.

3.4.2. Stability measure 3 (SM3)
SM3 is the expected absolute job completion time differ-
ences between the initial and realized schedules:

SM3 = E

[
n∑

i=1

∣∣Ci − Cr
i

∣∣] .

This kind of measuring of the deviation between two sched-
ules was first proposed by Wu et al. (1993).

Theorem 6 (SPT Optimality). SPT solves:
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Table 1. Analytically tractable cases; robustness

Problem Algorithm
Theorem/
corollary

1 | X j ∼ H j (t); brkdwn: U ∼
G1(t), D ∼ G2(t) | RM1

SSPT Theorem 1

1 | X j ∼ exponential(λ j );
brkdwn: U ∼ G1(t), D ∼
G2(t) | RM1

SEPT Corollary 1

1 | X j ∼ H j (t) | RM1 SEPT Corollary 2
1 | X j ∼ H j (t) | RM2 Dominance rule Theorem 3
1 | X j ∼ exponential(λ j ) |

RM2
EDD if EDD and

SEPT sequences
are the same

Corollary 3

1 | X j ∼ exponential(λ j );
d j = d | RM2

SEPT Corollary 4

1 | p j , brkdwn: U ∼ exponential(λ), D ∼ G2(t) | SM3
optimally where p j denotes the deterministic processing time
of job j.

Proof. Can easily be proven with an interchange argument.
1 |Xj ∼ Hj (t); brkdwn: U ∼ G1(t), D ∼ G2(t) | SM3 is

analytically intractable in the general case. �

The results are summarized in Tables 1 and 2.

4. A branch-and-bound algorithm for 1 | X j ∼ H j (t) |
RM2

In this section, we first focus on the 1| X j ∼ H j (t) | RM2
problem because of two reasons: first, the total tardiness
performance measure is popular and frequently used in
practice. Second, we have a dominance rule (Theorem 3)
that can be effectively used in a branch-and-bound (B&B)
algorithm to keep the size of the search tree manageable.

Table 2. Analytically tractable cases; stability

Problem Algorithm
Theorem/
corollary

1 | X j ∼ H j (t) | SM1(SM2) SVPT Theorem 4
1 | X j ∼ exponential(λ j ) |

SM1(SM2)
SEPT Corollary 5

1 | X j ∼ H j (t); brkdwn: U ∼
exponential(λ), D ∼ G2(t) |
SM1(SM2)

SVPT if E[Xi ] >

E[Xj ] implies
Var[Xi ] ≥
Var[Xj ],∀(i, j )

Theorem 5

1 | X j ∼ exponential(λ j );
brkdwn: U ∼
exponential(λ), D ∼ G2(t) |
SM1(SM2)

SEPT Corollary 6

1 | p j , brkdwn: U ∼
exponential(λ), D ∼ G2(t) |
SM3

SPT Theorem 6

The algorithm developed in this section is for the problems
where the processing time distributions of any two jobs
are stochastically comparable. Typical examples are normal
distribution with a common coefficient of variation (cv),
gamma distribution with the same scale parameter, and
Poisson distribution. For all these distributions, ordering in
the expected value corresponds to ordering in the stochastic
sense. Moreover, the job completion times in any sequence
also have the same type of distributions as the processing
time distributions; i.e., they belong to the same family.

We should be very careful when processing time distri-
butions are normal with a common coefficient of variation
because stochastic comparability is only valid for the non-
negative part of the distributions. Thus, the probability of
having negative processing times should be negligibly small
(cv < 1/3) for a satisfactory performance of the algorithm.

In the proposed B&B algorithm, we develop the sched-
ules progressively in the forward direction. At level k of
the B&B tree, jobs in the first k positions are specified. We
use the dominance rule in Theorem 3 during the branching
process. The initial upper bound is taken as the minimum
expected total tardiness value of the SPT, EDD, and ATC
solutions. The upper bound of each node is taken as the
expected total tardiness of the EDD completion of that
node. If the global upper bound is greater than the upper
bound of a node, it is updated. There are two lower bounds
considered: a loose one and a tight one. These are explained
in the next two theorems. If the lower bound of a node is
greater than the global upper bound, it is pruned. We use a
most-promising-node-first exploration strategy; that is, the
node with the lowest upper bound value is branched first.

Theorem 7 (Lower Bound 1). Consider the problem 1 |
X j ∼ H j (t) | RM2. Arrange the due dates in non-decreasing
order and assign them to the jobs arranged in a stochastic
non-decreasing order of processing times (assuming all jobs
can be ordered stochastically). The optimal expected total
tardiness value of this new problem P1 is a lower bound on
the optimal objective value of the original problem 1 | X j ∼
H j (t) | RM2.

Proof. The proof is by an interchange argument. The op-
timal solution to P1 is an EDD sequence by Theorem 3.
We now show that its objective function value is a lower
bound on the optimal objective function value of the orig-
inal problem. We begin by an optimal solution S∗ of the
original problem and convert it to an optimal solution of
P1. The procedure is as follows:

Step 1. Consider every adjacent job pair. If a job with a
greater due date precedes a job with a smaller due
date, swap their due dates but not their positions;
just assign the due date of the former job to the
latter job and vice versa. Continue in this fashion
until all due dates are in non-decreasing order. Each
swap of the due dates results in a possible decrease
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in the expected total tardiness of the schedule but
never an increase.

Step 2. Take the resultant schedule of Step 1 as the input
and process it in the same way as in Step 1. The
only difference is, instead of due dates, compare
and exchange the processing times of the adjacent
job pairs if necessary. �

The resulting schedule is optimal for P1 and its objective
function value is a lower bound on that of the original
problem. The deterministic version of this lower bound is
developed by Chu (1992).

Della Croce et al. (1998) propose another lower bound
for the deterministic problem. In this study, we extend this
lower bound to the stochastic problem as follows:

Theorem 8 (Lower Bound 2). Consider the 1 | X j ∼
H j (t) | RM2 problem. Relabel the jobs according to the
non-decreasing stochastic order of their processing times
(assuming all jobs can be ordered stochastically). That is,
the job with the SSPT is job 1, and with the stochastically
largest processing time is job n. Split the job set J into two sub-
sets J1 = 1, . . . , l and J2 = l + 1, . . . , n, where l = 	n/2
.
For each subset, separately arrange the due dates in non-
decreasing order and assign them to the jobs arranged in a
stochastic non-decreasing order of processing times. The op-
timal expected total tardiness value of this new problem P2 is
a lower bound on that of the original problem 1 | X j ∼ H j (t)
| RM2.

The proof of the theorem basically involves the same in-
terchange argument as in the proof of Theorem 7. The only
difference is that we apply Steps 1 and 2 separately to the
jobs in subsets J1 and J2. That is, at each pass of Step 1 or
Step 2, we examine successive jobs (not necessarily adja-
cent) that belong to the same subset. At the end, we obtain
a feasible schedule to P2, whose expected total tardiness is
no greater than the optimal objective value of the original
problem. The expected total tardiness value of an optimal
solution to P2 is possibly even less, so it is a lower bound
for the original problem. The optimal solution to P2 can
be found in polynomial time. For two solution procedures,
each with O(n2) time complexity, the reader can refer to
Della Croce et al. (1998).

5. A BS algorithm for other intractable problems

The proposed B&B algorithm relies on Theorem 3 as a
dominance rule and Theorems 9 and 10 as lower bounds.
These theorems are valid under the assumption that for any
two jobs, their processing times are stochastically compara-
ble. Also, machine breakdowns are not considered. In this
section, we develop a BS algorithm that can be used with
any processing time distribution and any objective function

(RM1, RM2, SM1, SM2, or SM3) and that can also handle
a general machine breakdown/repair process.

BS is an approximate B&B method which operates on a
search tree. BS has been used to solve combinatorial op-
timization problems for the last two decades. There are
several successful applications to job shop scheduling and
flexible manufacturing systems scheduling problems with
static and deterministic assumptions (Sabuncuoglu and
Karabuk, 1998; Sabuncuoglu and Bayiz, 1999). Generally
speaking, BS is similar to a breadth-first search as since
it progresses level by level without backtracking. However,
unlike breadth first, only the best β (beam width) promis-
ing nodes are kept for further branching at any level. The
potential promise of each node is determined by a global
evaluation function, which typically estimates the minimum
total cost of the best solution obtained from the partial
schedule represented by the node.

In a BS implementation, the beams may progress inde-
pendently (i.e., at all levels other than level 1, each of β

promising nodes has a different ancestor), but in our im-
plementation, we use dependent beams (i.e., at each level,
all the descendants are evaluated and the best β of them are
chosen without paying attention to their ancestors). Specif-
ically, we first complete the partial schedule that the node
represents according to the objective function in use. If the
objective function is RM1, the schedule is completed ac-
cording to the SEPT rule. Similarly, ATC is used for RM2,
and SVPT is used for SM1, SM2, or SM3. We then simu-
late the resulting schedule ten times. The average of these
objective function values is taken as the global evaluation
function value. The simulations are done with the help of a
simple discrete-event simulation model coded in C++ lan-
guage. First, the processing times of the jobs are generated
according to their respective probability distributions. Af-
ter that, the machine uptimes and downtimes are generated
and inserted into their proper positions in the schedule. Fi-
nally, the realized job completion times are obtained and
used for the performance measure calculations.

6. Computational experiments

The performance of the proposed algorithms was measured
on a non-dedicated Linux box with dual AMD Opteron 2.6
GHz CPUs and 2 GBs of physical memory. The codes were
written in C++ language. The data generation scheme,
initially proposed by Fisher (1976), is explained in the next
section.

6.1. Test problems and BS parameters

The problem instances of varying degrees of difficulty are
generated by means of two factors: tardiness factor (TF)
and range of due dates (DR). For each problem, first the
processing time means are generated from a uniform dis-
tribution with parameters (1, 100). Then the due dates are
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Table 3. Experimental environment

Processing time
mean (E[Xj ])

U[1, 100]

Number of jobs (n) 10, 20, 30, 40, 50, 75, 100
Due dates (d j ) U[P(1 − TF − DR/2), P(1 − TF +

DR/2], where P is the sum of
processing time means

TF in {0.2, 0.4, 0.6, 0.8}
DR in {0.2, 0.4, 0.6, 0.8, 1.0}

generated from a uniform distribution, which depends on
the sum of the processing time mean (P) and on R and
T. The due date distribution is uniform over [P(1 – TF
– DR/2), P(1 – TF + DR/2)]. The values of TF and DR
are selected from {0.2, 0.4, 0.6, 0.8} and {0.2, 0.4, 0.6, 0.8,
1.0}, respectively. This yields 20 combinations of TF, DR
for each problem size. The number of jobs n is selected from
the set {10, 20, 30, 40, 50, 75, 100}. Ten different instances
were solved for each setting of n, TF, DR, which gives 200
instances for each choice of n. For the B&B algorithm,
problems up to the size of ten (n = 10) were solved. For the
BS algorithm, all problem sizes were solved for each objec-
tive function (RM1, RM2, SM1, SM2, and SM3). Table 3
summarizes the experimental settings.

We call each combination of n, TF, and DR a prob-
lem class. We also assign each problem class a code name:
probxyz. Here x, y, z are the levels of the n, TF, and DR
factors, respectively. For example, prob231 is the problem
class in which n = 20, TF = 0.6, and DR = 0.2.

The beam width was taken as four. Recall that the pro-
posed BS algorithm employs simulation as the global eval-
uation function. During simulation runs, we used a gamma
distribution as a busy-time distribution with a shape pa-
rameter of 0.7 and a scale parameter to be specified. We
used a gamma distribution with a shape parameter of 1.4
for the downtime distribution, as recommended by Law
and Kelton (2000). The scale parameter of the busy-time
distribution was arranged so that the mean was 300. Simi-

Table 4. Results obtained using the B&B algorithm

CPU time CPU time

Problem Loose Tight Objective Problem Loose Tight Objective

prob111 1962.23 1833.26∗ 75.64 prob131 292.81∗ 432.88 487.65
prob112 778.20∗ 1255.01 36.72 prob132 205.67∗ 276.43 593.44
prob113 318.40∗ 507.28 27.16 prob133 133.51∗ 171.97 596.93
prob114 557.84∗ 671.69 34.41 prob134 346.47∗ 417.92 487.82
prob115 479.59∗ 670.11 23.18 prob135 646.03 575.50∗ 707.64
prob121 849.89 816.65∗ 305.25 prob141 65.91∗ 144.03 1129.50
prob122 800.41∗ 1055.06 210.04 prob142 68.32∗ 148.94 1351.72
prob123 956.70 695.33∗ 199.16 prob143 91.42∗ 192.63 1410.66
prob124 323.33∗ 472.76 124.38 prob144 141.06∗ 196.17 1140.40
prob125 645.20 593.21∗ 124.64 prob145 78.82∗ 93.82 1297.68

larly, the scale parameter of the downtime distribution was
arranged so that the mean was 50.

6.2. Evaluation of the algorithms for 1 | X j ∼ H j (t) | RM2

Recall that the B&B algorithm was developed for the 1 | X j
∼ H j (t) | RM2 problem (i.e., there are no machine break-
downs) and the processing time distributions of any two
jobs can be stochastically compared. We took the process-
ing time distribution of each job as a gamma distribution,
with a scale parameter of two. The shape parameters were
arranged such that the mean processing times equaled the
previously generated values (see Section 6.1). Only 200 ten-
job problems were solved because of the computational
time limitations. Each problem instance was solved two
times, once using Lower Bound 1 (loose) and once us-
ing Lower Bound 2 (tight). Table 4 presents the results. In
Table 4, a better CPU time is marked with an asterix (*) for
each problem class.

We observe two things: (i) Generally, as TF and DR
increase, the problems get easier and require less computa-
tional time to solve (i.e., the problems with loose due dates
are harder to solve); and (ii) the extra computational time
required for calculating a tight lower bound pays off for
hard problem classes, but this is not worth the effort for
easy problem classes.

Tables 5 and 6 present the average number of pruned
nodes due to the dominance rule for loose and tight lower
bounds, respectively. We can observe that the dominance
rule works quite effectively.

For example, on average, 7.1 nodes are pruned due to
the dominance rule among the ten nodes in level 1. Among
(10 − 7.1) × 9 = 26.1 nodes in level 2, the dominance rule
prunes 15.1 and 13.7 for the algorithms with loose and tight
lower bounds, respectively.

We also observe that the dominance rule prunes fewer
nodes in each level for the algorithm with the tight lower
bound, but this is expected because for this case, more
nodes are pruned due to their upper and lower bound
comparisons.
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Table 5. Performance of dominance rule, loose lower bound

Nodes pruned—loose

Problem Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9

prob111 7.5 11.3 29.9 78.8 196.5 462.2 800.4 758.9 0.1
prob112 7.1 8.7 25.1 67.0 160.2 296.5 317.4 195.6 0.0
prob113 7.6 12.1 21.7 44.9 89.2 135.8 141.9 70.2 0.2
prob114 7.0 12.5 29.0 69.8 157.8 200.1 183.6 65.9 0.0
prob115 6.3 13.9 38.0 93.0 183.4 242.0 147.9 38.3 0.0
prob121 7.2 17.3 38.9 95.4 202.5 330.3 386.7 167.7 0.1
prob122 6.9 18.2 47.0 109.5 226.1 414.9 380.5 196.8 0.1
prob123 7.1 17.3 43.7 103.8 231.4 420.0 447.8 154.8 0.1
prob124 7.3 16.3 36.2 66.3 115.9 150.0 103.0 51.0 0.0
prob125 6.8 16.7 40.8 95.4 201.6 309.0 233.8 59.4 0.0
prob131 7.0 16.7 40.8 95.5 176.8 199.6 59.7 4.2 0.0
prob132 7.6 15.8 29.6 59.8 93.6 100.0 50.9 11.4 0.0
prob133 8.0 13.7 21.5 40.9 61.1 45.8 15.9 2.5 0.0
prob134 7.0 16.9 38.4 92.1 182.5 222.3 115.5 30.7 0.0
prob135 6.6 19.4 46.7 98.6 156.2 161.4 137.3 27.3 0.3
prob141 6.6 18.7 37.6 50.3 46.5 19.4 8.1 5.4 0.7
prob142 7.1 14.5 26.0 28.4 21.6 10.5 5.9 3.5 0.0
prob143 7.5 11.5 17.4 26.7 29.1 19.0 6.5 3.9 0.0
prob144 6.7 17.9 35.1 59.2 61.2 41.1 21.7 5.5 0.5
prob145 7.5 13.3 20.6 32.4 41.5 43.5 22.8 3.3 0.0
Average 7.1 15.1 33.2 70.8 131.7 191.2 179.4 92.8 0.1

The same 200 problems were also solved by the proposed
BS algorithm for comparison. The solutions obtained from
the BS were evaluated by the exact objective function,
which is also used in the B&B algorithm (i.e., the re-
ported results are not simulation values). Table 7 sum-

marizes the results. Optimal objective function values
and minimum CPU times obtained from the B&B al-
gorithm are also included in Table 7. The results indi-
cate that the BS algorithm finds the optimal solution
for 51 of the 200 problem instances. The deviation from

Table 6. Performance of dominance rule, tight lower bound

Nodes pruned—tight

Problem Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9

prob111 7.5 10.0 17.9 49.3 131.9 310.0 340.6 192.6 0.0
prob112 7.1 8.7 20.6 52.1 126.6 234.5 277.9 126.2 0.0
prob113 7.6 10.9 20.5 38.9 63.2 110.3 87.4 12.8 0.2
prob114 7.0 12.5 20.4 43.0 87.3 126.4 125.4 19.8 0.0
prob115 6.3 12.0 32.5 64.8 106.6 73.4 43.1 0.0 0.0
prob121 7.2 16.0 33.6 74.0 133.2 135.9 76.9 16.0 0.1
prob122 6.9 17.2 41.4 84.9 159.0 179.2 140.5 47.9 0.1
prob123 7.1 13.9 32.4 63.5 102.6 79.0 57.8 3.0 0.1
prob124 7.3 13.0 24.3 41.1 56.3 75.9 32.5 19.8 0.0
prob125 6.8 13.2 30.9 61.6 91.3 92.7 41.6 11.6 0.0
prob131 7.0 15.5 36.6 78.6 120.5 62.9 20.0 3.3 0.0
prob132 7.6 15.8 28.4 44.5 61.5 38.7 14.7 5.2 0.0
prob133 8.0 13.0 17.2 24.8 26.5 16.4 8.7 2.4 0.0
prob134 7.0 16.9 30.0 55.8 80.8 54.9 34.5 7.9 0.0
prob135 6.6 17.2 32.0 48.5 61.0 54.9 21.1 3.4 0.3
prob141 6.6 18.0 34.7 42.0 36.7 17.7 8.1 5.4 0.7
prob142 7.1 13.1 21.3 19.4 15.9 7.9 5.9 3.5 0.0
prob143 7.5 10.0 15.8 21.3 22.9 14.4 5.1 3.9 0.0
prob144 6.7 16.6 27.6 38.3 27.4 13.6 12.4 5.3 0.5
prob145 7.5 11.2 15.9 18.2 20.3 12.9 10.3 1.6 0.0
Average 7.1 13.7 26.7 48.2 76.6 85.6 68.2 24.6 0.1
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Table 7. A comparison of the B&B and BS algorithm

Problem

BS
CPU
time

B&B
CPU
time

BS
objective

Optimal
objective

Deviation
from the

optimal (%)

prob111 2.74 1833.26 77.50 75.64 2.46
prob112 2.93 778.20 37.18 36.72 1.26
prob113 2.55 318.40 30.42 27.16 12.01
prob114 2.65 557.84 34.88 34.42 1.34
prob115 2.71 479.59 23.47 23.18 1.26
prob121 2.86 816.65 307.22 305.25 0.65
prob122 2.68 800.41 212.92 210.04 1.37
prob123 2.80 695.33 207.62 199.16 4.25
prob124 2.80 323.33 128.84 124.38 3.58
prob125 2.61 593.21 125.41 124.64 0.62
prob131 2.22 292.81 489.71 487.65 0.42
prob132 2.93 205.67 599.64 593.44 1.04
prob133 3.20 133.51 601.64 596.93 0.79
prob134 2.63 346.47 492.31 487.82 0.92
prob135 2.71 575.50 709.03 707.64 0.20
prob141 2.57 65.91 1130.89 1129.50 0.12
prob142 2.99 68.32 1355.79 1351.72 0.30
prob143 3.01 91.42 1415.11 1410.66 0.32
prob144 2.78 141.06 1142.29 1140.40 0.17
prob145 2.94 78.82 1297.71 1297.68 0.00

the optimal values is under 2% for most of the problem
classes. A paired t-test with α = 0.05 indicated that the
differences in objective function are statistically significant
for only the problem classes prob122 and prob132.

We can conclude that the proposed BS algorithm per-
forms quite satisfactorily for the 1 | X j ∼ H j (t) | RM2
problem and, if computational time is an issue, it can be
safely used to generate schedules instead of the exact algo-
rithm.

We also compared the performances of the BS algorithm
and the ATC dispatching rule. Table 8 presents a summary
of the results. The objective function values reported in
this table are the averages of the simulated total tardiness
values of the schedules generated by the algorithms. We
observe that the BS algorithm performs better and all the
differences are found to be significant by a paired t-test
with α = 0.05.

Table 8. Beam search vs. ATC for RM2 no breakdown; summary

BS

Number
of jobs CPU time Objective

ATC
objective

Deviation
(%)

10 1.22 527.01 547.48 3.88
20 10.31 1760.17 1804.69 2.53
30 34.47 3579.49 3652.44 2.04
40 83.63 6145.22 6253.40 1.76
50 164.13 9393.70 9562.67 1.80
75 556.58 20 723.12 21 088.92 1.77

100 1323.28 35 926.39 36 466.31 1.50

6.3. Evaluation of proposed BS algorithm for other
intractable problems with machine breakdowns

The performance of the proposed BS algorithm was eval-
uated by solving numerous problem instances for each ob-
jective function. Since RM1, SM1, SM2, and SM3 are
not due-date-related performance measures, ten instances
from probx11 (x = 1, . . . , 7) classes were used during the
experiments, giving rise to 70 problem instances for each
objective function. In other words, tardiness factor (TF)
and range of due dates (DR) do not vary among test prob-
lems because they are irrelevant. For RM2, ten instances
from probxyz (x = 1, . . . , 7, y = 1, . . . , 4, z = 1, . . . ,
5) classes were used, yielding a total of 1400 problem in-
stances. All problems include machine breakdown/repair.
Since these problems are analytically intractable we do
not know their optimal solutions. Thus, we compared the
performance of the proposed BS algorithm to a priority
dispatching rule for each objective function. The dispatch-
ing rule that was used depended on the objective function.
For example, if the objective function is RM1, SEPT is
used. Similarly, SVPT is used for the stability measures
(SM1, SM2, or SM3). Note that SEPT is optimal for
RM1 and SVPT is optimal for SM1, SM2, or SM3 un-
der special conditions (see Theorem 1 and Theorems 4 to
8). However, we expect these dispatching rules to also per-
form well under more general conditions (even if the stated
optimality conditions in Theorems 1 and 4 to 8 do not
hold).

For RM2, three dispatching rules and three versions of
the BS algorithm were considered. The first dispatching rule
was ATC: at every time point t the machine becomes free, a
priority index is calculated for each unscheduled job j , and
the job with the highest priority is scheduled next. Note that
the priority indices were calculated only at the deterministic
completion times of the jobs. Additionally, two proactive
versions of ATC, namely ProATC1 and ProATC2, were de-
veloped to incorporate the machine breakdown and repair
information. In ProATC1, a job’s processing time is inflated
by the expected repair duration during the processing of
that job. Specifically, the processing time for job j was taken
as

p j = E[Xj ] + E[Xj ]
E[U]

E[D] = E[Xj ]
(

1 + E[D]
E[U]

)
.

The priorities of the jobs were calculated using these new
processing time values. In ProATC2, the time points where
the priority indices were calculated were adjusted to include
machine breakdowns. We anticipate a constant downtime
period (E[D]) after every constant busy-time period (E[U]).
That is, time (t) is advanced by E[D] every time the machine
stays up for E[U]. The BS algorithms under consideration
were the classical BS, simulation-based BS, and proactive
BS. In classical BS, the global evaluation function is the
regular total tardiness measure. At each level of the search
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Table 9. Comparison of algorithms, non-due-date-related, gamma repair times

BS Surrogate (BS-M1) Dispatching rule (SEPT/SVPT)
Objective
function

Number
of jobs CPU time Objective CPU time Objective CPU time Objective

RM1 10 0.09 2092.52 0.00 2091.84∗ 0.00 2103.06+
20 0.77 9116.38∗ 0.02 9123.58 0.00 9154.53+
30 2.52 18 244.30 0.08 18 237.20∗ 0.00 18 430.70+
40 6.11 32 474.30∗ 0.20 32 487.80 0.00 33 240.40+
50 11.65 48 973.80∗ 0.36 48 992.00 0.00 50 259.40+
75 39.23 110 345.00∗ 1.36 110 373.00 0.00 114 193.00+

100 93.35 191 219.00 3.13 190 989.00∗ 0.00 199 043.00+
SM1 10 0.07 126 503.00∗ 0.00 276 603.00+ 0.00 134 952.00

20 0.57 643 599.00∗ 0.02 966 289.00+ 0.00 697 516.00
30 1.83 1 265 710.00∗ 0.07 1 411 240.00+ 0.00 1 360 740.00
40 4.41 2 505 680.00∗ 0.19 2 961 280.00 0.00 3 158 530.00+
50 8.45 3 413 200.00∗ 0.34 4 090 790.00 0.00 4 684 200.00+
75 28.43 8 049 690.00∗ 1.24 8 890 310.00 0.00 10 053 000.00+

100 67.30 15 844 300.00∗ 2.80 16 313 500.00 0.00 22 206 400.00+
SM2 10 0.07 122 703.00∗ 0.00 270 075.00+ 0.00 131 267.00

20 0.58 608 366.00∗ 0.02 915 720.00+ 0.00 648 840.00
30 1.84 1 099 120.00∗ 0.08 1 224 390.00 0.00 1 249 160.00+
40 4.43 2 180 560.00∗ 0.18 2 545 270.00 0.00 2 668 970.00+
50 8.50 2 860 190.00∗ 0.34 3 382 500.00 0.00 3 692 810.00+
75 28.60 6 112 700.00∗ 1.26 6 776 440.00 0.00 7 311 420.00+

100 67.71 11 019 900.00∗ 2.81 11 458 700.00 0.00 15 095 700.00+
SM3 10 0.07 678.40∗ 0.00 1101.34+ 0.00 716.07

20 0.58 2280.15∗ 0.02 3049.16+ 0.00 2400.81
30 1.83 3904.92∗ 0.08 4372.56+ 0.00 4216.34
40 4.42 6150.28∗ 0.19 7224.14+ 0.00 7043.67
50 8.49 8226.24∗ 0.34 9 508.64+ 0.00 9757.92
75 28.43 15 374.30∗ 1.25 16 827.40 0.00 17 881.30+

100 67.29 25 692.50∗ 2.88 26 264.00 0.00 31 096.80+

tree, partial schedules in the nodes are completed by the
ATC rule, and β nodes with the smallest total tardiness
values are retained while the others are pruned perma-
nently. Note that classical BS does not consider break-
downs or processing time variability. Simulation-based BS
is like classical BS, except that it employs simulation as the
global evaluation function; therefore, processing time vari-
ability and machine breakdowns are considered. In proac-
tive BS, similar to simulation-based BS, the global eval-
uation function is based on simulation. The only differ-
ence is that in simulation-based BS, the partial schedules
in the nodes are completed by the ATC rule before global
evaluation, whereas in proactive BS they are completed by
ProATC2.

To observe the effect of using simulation instead of surro-
gate measures, the same problem instances were also solved
with a variant of the proposed BS algorithm (BS-M1) for
each objective function. The most frequently used surrogate
measure in the literature is the average slack method devel-
oped by Leon et al. (1994). This measure was developed
for a job shop environment with the makespan measure.
The measure depends on job slacks, which is defined as

the amount of time that a job’s processing can be delayed
without increasing the makespan of the schedule. Since in
this study we operate in a single-machine environment with
all jobs present at time t = 0, slacks for all jobs are zero
and a slack-based measure cannot be applied. There are
other surrogate measures that require inserting idle times,
as in Mehta and Uzsoy (1998). Since our solution space
is the class of non-delay schedules, these types of surro-
gate measures are not quite applicable. BS-M1 uses the
Method 1 surrogate measure in Goren and Sabuncuoglu
(2008) to globally evaluate the nodes instead of simulation.
Method 1 assumes that the machine fails after every con-
stant busy-time period of length λL + (1 − λ)U, where λ

is a real number between zero and one, and L and U are
the 25th and 975th 1000-tiles of the busy-time distribution
G1(t). It was also assumed that all repair activities last for
a time period of length r, the expectation of the repair time
distribution G2(t). Method 1 was developed for an envi-
ronment where the job processing times are deterministic.
To use it as a global evaluator, we further assumed that
the job processing times are deterministic and their values
are equal to the expectations of the respective processing
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Table 10. Comparison of algorithms, non-due-date-related, exponential repair times

BS Surrogate (BS-M1) Dispatching rule (SEPT/SVPT)
Objective
function

Numbers
of jobs CPU time Objective CPU time Objective CPU time Objective

RM1 10 0.08 2137.29 0.00 2135.48∗ 0.00 2154.75+
20 0.63 9336.27 0.02 9327.52∗ 0.00 9483.38+
30 2.07 18 852.60 0.08 18 839.60∗ 0.00 19 219.10+
40 4.99 33 646.20 0.20 33 644.30∗ 0.00 34 648.70+
50 9.50 50 851.00 0.36 50 780.70∗ 0.00 52 419.30+
75 31.98 114 672.00 1.36 114 605.00∗ 0.00 120 134.00+

100 75.94 198 884.00 3.11 198 684.00∗ 0.00 209 671.00+
SM1 10 0.06 150 470.00∗ 0.00 305 607.00+ 0.00 154 277.00

20 0.45 732 659.00∗ 0.02 1 073 150.00+ 0.00 906 319.00
30 1.44 1 512 100.00∗ 0.07 1 768 840.00+ 0.00 1 765 760.00
40 3.45 3 249 080.00∗ 0.19 3 832 140.00 0.00 4 009 570.00+
50 6.62 4 509 910.00∗ 0.35 5 313 940.00 0.00 5 975 470.00+
75 22.16 11 135 500.00∗ 1.24 12 238 900.00 0.00 13 105 900.00+

100 52.29 23 435 700.00∗ 2.81 24 137 100.00 0.00 32 252 900.00+
SM2 10 0.06 142 760.00∗ 0.00 293 771.00+ 0.00 146 447.00

20 0.45 664 283.00∗ 0.02 981 248.00+ 0.00 778 273.00
30 1.45 1 208 060.00∗ 0.08 1 407 020.00 0.00 1 448 110.00+
40 3.48 2 570 080.00∗ 0.20 3 008 500.00+ 0.00 2 902 690.00
50 6.68 3 349 290.00∗ 0.36 3 961 910.00 0.00 4 487 440.00+
75 22.42 7 109 220.00∗ 1.26 7 870 520.00 0.00 8 597 210.00+

100 52.95 13 175 600.00∗ 2.80 13 673 700.00 0.00 18 327 800.00+
SM3 10 0.05 733.99∗ 0.00 1151.43+ 0.00 749.51

20 0.45 2397.88∗ 0.02 3188.48+ 0.00 2689.12
30 1.45 4163.81∗ 0.07 4825.66+ 0.00 4718.05
40 3.47 6914.60∗ 0.19 8127.66+ 0.00 7617.44
50 6.63 9464.42∗ 0.35 10 693.70 0.00 11 161.50+
75 22.22 17 830.90∗ 1.23 19 591.90 0.00 21 767.20+

100 52.40 30 896.10∗ 2.75 31 797.70 0.00 37 760.50+

time distributions. To globally evaluate a node, the partial
schedule at that node was first completed according to the
SPT rule. Next, constant uptimes and downtimes were in-
serted and a new schedule that represents an approximate
realization was obtained. Job completion times in this new
schedule were used to calculate the performance measure
of the node instead of simulation. The computational tests
in Goren and Sabuncuoglu’s correlation study (2008) in-
dicate that λ = 0.6 performs well. Since the same up- and
downtime distributions are used in this study, the same λ

value is also used.
To observe the impact of different repair time distribu-

tions on the performance of the proposed BS algorithm,
the experiments were also conducted with an exponential
repair time distribution (with the same mean) instead of
gamma.

During our tests, we took the processing time distribu-
tions as exponential except for RM1. We used a normal
distribution for RM1 because the SEPT schedule would be
already optimal if the processing times were exponentially
distributed (see Theorem 1). For RM1, variances of the
processing times were generated as uniformly distributed

over [1, 100]. If a negative processing time value was gen-
erated during the simulations, it was simply ignored and
generated again.

The simulations (both as a global evaluator in the BS
algorithms and as an estimator of the resulting objective
function value for all algorithms) during the experiments
performed in this section were replicated 100 times instead
of ten.

A summary of the results is given in Tables 9 and 10; the
best objective function values are marked with an asterix
(*) whereas the worst ones are marked with a “+” sign.

As can be seen in Tables 9 and 10, for the RM1 per-
formance measure the proposed BS and BS-M1 are com-
petitive. For the case with gamma repair time distribution,
the proposed BS generally performs better, whereas BS-M1
performs the best for the case with an exponential repair
time distribution.

For all three stability measures, the proposed BS algo-
rithm is significantly better than the corresponding dis-
patching rule or BS-M1. We observe that BS-M1 gets better
with increasing problem sizes. Regardless of the repair time
distribution, dispatching rules perform better than BS-M1
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Table 11. Dispatching rules, RM2, gamma repair times

Dispatching rule

Number
of jobs

ATC
objective

ProATC1
objective

ProATC2
objective

10 857.31 1140.26 856.35
20 2872.70 3672.90 2846.45
30 5875.01 7833.76 5819.89
40 10 354.70 12 943.80 10 252.10
50 15 776.20 20 532.40 15 617.40
75 34 562.20 43 043.50 33 684.00

100 62 468.50 75 501.60 61 303.20

for small problems while BS-M1 performs better for larger
problems.

We also observe that the differences between the
performances of the alternative algorithms for RM1 are
relatively small compared to the other measures. The rea-
son for such a good performance of SEPT for RM1 is
that the optimality conditions stated in Theorem 1 are
mostly satisfied for RM1 (except for stochastic compara-
bility), whereas these conditions are not satisfied due to
machine breakdown/repair for other measures and their re-
spective theorems. This indicates that relaxing the stochas-
tic comparability constraint is not as serious as relaxing
the constraints on the machine breakdown/repair process.
The summary of the results for RM2 is given in Tables 11
to 14.

We make three main observations. First, the proactive
approach does not always improve the performance of
dispatching rules (in particular, ATC in our case) if it is not
appropriately used. This is attested to by the better perfor-
mance of traditional ATC over ProATC1. Our further in-
vestigation of this result indicates that how total repair time
is distributed is important for the proactive use of dispatch-
ing rules. Recall that ProATC1 inserts the repair times for
all jobs in proportion to their processing times. ProATC2,
however, inserts the repair times by estimating the locations
of the machine breakdowns in the sequence. Our results

Table 13. Dispatching rules, RM2, exponential repair times

Dispatching rule

ATC
objective

ProATC1
objective

ProATC2
objective

904.49 1204.02 902.99
3115.63 3906.07 3129.30
6382.19 8546.33 6389.85

11 301.30 14 081.70 11 248.30
17 412.10 22 562.80 17 160.90
37 634.10 47 567.30 37 413.10
69 155.10 84 180.40 67 956.20

indicate that the latter method (ProATC2) performs sig-
nificantly better than the former approach (ProATC1) and
classical ATC.

Our second main observation is that classical ATC is
better than the classical BS for ten-, 20-, 30- and 40-job
problems. BS yields better performance than ATC only for
large problems. On the other hand, however, simulation-
based BS is better than all ATC versions for all problem
sizes. This indicates that using simulation as a global eval-
uation function improves the proposed BS significantly.
Nevertheless, we should also note that using simulation
as a global evaluation function increases the CPU times
exponentially with increasing problem sizes.

In the final observation, we note that the advantage
of using the proactive approach becomes more significant
for large problem sizes. For example, simulation-based BS
yields better results for ten-job problems whereas proactive
BS is better for 20 or more job problems. Also, ProATC2
displays a progressively better performance than ATC when
the problem size increases. Similarly, we observe that BS-
M1 gets better with increasing problem sizes.

In summary, we can conclude that the proposed BS al-
gorithm is quite promising for generating robust or stable
schedules. It can also handle computationally intractable
cases such as problems with a general machine break-
down/repair process.

Table 12. Comparison of algorithms, RM2, gamma repair times

BS

Classical BS Simulation-based BS Proactive BS Surrogate BS-M1
Number
of jobs CPU time Objective CPU time Objective CPU time Objective CPU time Objective

10 0.00 975.64 0.07 787.01 0.07 788.55 0.00 965.75
20 0.04 2960.23 0.57 2682.17 0.56 2671.04 0.04 2866.22
30 0.15 6327.45 1.89 5668.54 1.89 5615.59 0.16 6034.95
40 0.44 10 063.00 4.59 9143.85 4.58 9031.98 0.45 9593.11
50 0.96 15 991.60 9.05 14 482.00 9.05 14 196.40 0.98 15 037.50
75 4.42 32 418.20 31.57 29 676.70 31.54 29 182.60 4.49 30 441.40

100 13.12 56 672.20 77.23 52 260.20 77.14 50 702.90 13.29 52 790.50
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Table 14. Comparison of algorithms, RM2, exponential repair times

BS

Classical BS Simulation-based BS Proactive BS Surrogate BS-M1

CPU time Objective CPU time Objective CPU time Objective CPU time Objective

0.00 1033.22 0.05 848.80 0.05 852.23 0.00 1021.84
0.04 3163.42 0.46 2858.13 0.45 2843.37 0.04 3056.68
0.15 6933.54 1.52 6192.29 1.52 6126.35 0.15 6597.78
0.44 11 152.00 3.68 10 092.00 3.68 9 917.35 0.44 10 572.50
0.97 17 693.20 7.27 15 994.40 7.26 15 589.20 0.99 16 530.50
4.43 36 327.90 25.49 33 075.00 25.48 32 261.40 4.55 33 712.50

13.13 63 984.20 62.77 58 651.80 62.76 56 361.90 13.52 58 573.90

7. Concluding remarks and future research directions

In this paper, we study proactive scheduling in a single-
machine environment with random processing times and
random machine breakdowns. We use an expected perfor-
mance measure as the robustness criterion. We also con-
sider three stability measures. Formal probability theory
is used to analyze these measures and some optimality
conditions are developed. In this study, we develop an ex-
act algorithm for single-machine scheduling problems with
processing time uncertainties. We also develop a BS algo-
rithm as a heuristic to handle cases with machine break-
down/repair.

Minimizing expected total weighted flow time in a single-
machine environment subject to random machine break-
downs is known to be NP-hard. Even though the status
of the unweighted case (minimizing RM1) is unknown, it
can be said that the problem is analytically intractable, for
it is difficult even to calculate the objective function value
of a given solution. For the special case where job process-
ing times are stochastically orderable, Theorem 1 gives the
optimal solution.

As for RM2, Theorem 3 gives a dominance rule for the
case where no breakdowns are present and job processing
times are stochastically orderable. Consideration of break-
downs or relaxing the stochastically orderable assump-
tion quickly renders the problem analytically intractable,
for it is known that the problem is NP-hard, as stated in
Theorem 2.

SM1 and SM2 are closely related, thus we summarize
them together. Sequencing the jobs according to a non-
decreasing order of job processing time variances (SVPT)
is optimal if no machine breakdowns are present (Theo-
rem 4). If machine breakdowns are included, the SVPT
rule is still optimal when the uptimes are exponential and
the SVPT sequence coincides with the SEPT sequence
(Theorem 5). Relaxing either of these assumptions, i.e.,
exponential uptimes or coincidence of SEPT and SVPT,
the problem becomes analytically intractable. Just as in
the case of minimizing RM1, even the objective func-

tion of a given feasible solution cannot be calculated
analytically.

If the processing times are not random variables and
the machine uptimes are exponentially distributed, SPT
is optimal for minimizing SM3 (Theorem 6). Relaxation
of either of these assumptions again renders the problem
analytically intractable.

To sum up, in this study, we model uncertainty regarding
job processing times and machine reliability with known
probability distributions. We define several robustness and
stability measures. This study contributes to the existing
proactive scheduling literature in two ways: first, we iden-
tify the analytically tractable cases and we develop an exact
algorithm to solve the common problem of minimizing
the expected total tardiness using the insights gained while
studying these cases. Second, for intractable cases, rather
than taking an indirect approach by employing surrogate
measures, we estimate the actual measures directly using
simulation. The use of simulation in the existing studies
may have been avoided because of its anticipated high com-
putational burden. Our computational results, however, in-
dicate that a BS algorithm that employs simulation as a
global evaluation function is quite promising and requires
reasonable computational times.

We can identify several further research directions. First,
the proposed BS algorithm can be extended to more general
multi-machine environments. Additionally, the job popu-
lation in this study is fixed and all jobs are available at time
0. Inclusion of non-zero ready times and dynamic job ar-
rivals will make the approach more applicable to real-life
problems.

Second, both robustness and stability are important
performance measures for the practitioners. A bicriteria
algorithm that can handle both measures is of practical
importance. The relationship and the trade-off between ro-
bustness and stability can also be analyzed.

Finally, robustness can be measured from a different
point of view. For example, the notion of a β-robust sched-
ule is used for the total flow time measure in the literature. A
β-robust schedule maximizes the probability of achieving
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a system performance less than or equal to a given level T
(Daniels and Carillo, 1997). The same concept can be used
when the performance measure is total tardiness. Along
the same lines, new, easy-to-calculate robustness or stabil-
ity measures can be developed. The insight gained from
this study suggests that it is hard to find an exact method
even when we slightly relax the optimality conditions in
the theorems developed in Section 3 of this paper. In fact,
there are other approaches in the literature that are used
when dealing with uncertainty, including scenario planning
and modeling with fuzzy numbers. We believe that such ap-
proaches could help alleviate the problems encountered in
an analytical approach, such as the one taken in this study.
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Appendix

Proof of Theorem 5 for SM1. The proof is by contradic-
tion. Let S be an optimal sequence but assume that there
exists a pair of adjacent jobs i and j such that E[Xi ] >E[Xj ]
and job j succeeds job i in S. Now consider a sequence S′,
obtained from S by swapping the positions of jobs i and
j . We compare SM1(S) and SM1(S′). We may ignore the
jobs other than i and j in this comparison, since nothing
changes for them. Let their contribution to the objective
function be c. Let BSi denote the index set of jobs that
precedes job i in S. Let Ak = Yk − E[Xk] for each job index
k. We have:

SM1(S) = E

[( ∑
m∈BSi

Ym+Yi − E

[ ∑
m∈BSi

Xm

]
− E[Xi ]

)2]

+ E

[( ∑
m∈BSi

Ym+Yi + Yj − E

[ ∑
m∈BSi

Xm

]
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− E[Xi ] − E[Xj ]

)2]
+ c

= E

[(
Ai +

∑
m∈BSi

Am

)2]
+ E

[(
Ai + Aj

+
∑

m∈BSi

Am

)2]
+ c.

Similarly,

SM1(S ′) = E

[(
Aj +

∑
m∈BSi

Am

)2]
+ E

[(
Ai + Aj

+
∑

m∈BSi

Am

)2]
+ c.

Then,

SM1(S) − SM1(S ′)

= E

[(
Ai +

∑
m∈BSi

Am

)2]
− E

[(
Aj +

∑
m∈BSi

Am

)2]

= E

[
A2

i +
( ∑

m∈BSi

Am

)2

+ 2Ai

∑
m∈BSi

Am

]

− E

[
A2

j +
( ∑

m∈BSi

Am

)2

+ 2Aj

∑
m∈BSi

Am

]

= E
[
A2

i

] − E
[
A2

j

] + 2E[Ai − Aj ]E

[ ∑
m∈BSi

Am

]
.

The last line is obtained by using the fact that the Aks are
independent, since the Xks and Yks are independent. Note
that E[Ai ] = E[Yi ] − E[Xi ] = λr E[Xi ] and

E
[
A2

i

] = E
[
(Yi − E[Xi ])2]

= E
[
Y2

i + (E[Xi ])2 + 2Yi E[Xi ]
]

= E
[
Y2

i

] + (E[Xi ])2 + 2E[Yi ]E[Xi ]

= Var[Yi ] + (E[Yi ])2 + (E[Xi ])2 + 2E[Yi ]E[Xi ]

= λ(v + r2)E[Xi ] + (1 + λ2r2)Var[Xi ]
+ (1 + λr )2(E[Xi ])2 + (E[Xi ])2 + 2(1 + λr )(E[Xi ])2

= λ(v + r2)E[Xi ] + (1 + λ2r2)Var[Xi ]
+ (λ2r2 + 4λr + 4)(E[Xi ])2.

Then we have:

SM1(S) − SM1(S ′)
= λ(v + r2)(E[Xi ] − E[Xj ]) + (1 + λ2r2)(Var[Xi ]

−Var[Xi ]) + (λ2r2 + 4λr + 4)((E[Xi ])2 − (E[Xj ])2)

+ 2λr (E[Xi ] − E[Xj ])E
[ ∑

m∈BSi

Am

]

Since E[Xi ] > E[Xj ] and Var[Xi ] ≥ Var[Xj ] this difference
is strictly positive, which contradicts with the optimality
of S.

The proof can be done with the same interchange argu-
ment for SM2. �
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