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Abstract

Acoustic sensors are very popular in time-of-flight (TOF) ranging systems since they are
inexpensive and convenient to use. One of the major limitations of these sensors is their low
angular resolution which makes object localization difficult. In this paper, an adaptive multi-
sensor configuration consisting of three transmitter/receiver ultrasonic transducers is intro-
duced to compensate for the low angular resolution of sonar sensors and improve the locali-
zation accuracy. With this configuration, the radius of curvature and location of cylindrical
objects are estimated. Two methods of TOF estimation are considered: thresholding and
curve-fitting. The bias-variance combinations of these estimators are compared. Theory and
simulations are verified by experimental data from a real sonar system. Extended Kalman
filtering is used to smooth the data. It is shown that curve-fitting method, compared to
thresholding method, provides about 30% improvement in the absence of noise and 50%
improvement in the presence of noise. Moreover, the adaptive configuration improves the
estimation accuracy by 35-40%. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Ultrasonic transducer; Time-of-flight; Extended Kalman filter; Target discrimination

1. Introduction

Ultrasonic transducers have been widely used in TOF ranging systems. However,
these sensors are limited by their large beamwidth which makes accurate localization
of objects difficult. Multiple reflections may also be difficult to interpret. Many
researchers have developed different approaches for improved ultrasonic sensing.
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For target discrimination and accurate object recognition, Barshan and Kuc differ-
entiated sonar reflections from corners and planes by using a multi-transducer sen-
sing system [1]. In [2], Kleeman and Kuc classified the target primitives as plane,
corner, edge and unknown, and showed that in order to distinguish these, two
receivers and two transmitters are necessary and sufficient in a non-adaptive config-
uration. In[3], Kleeman and Akbarally used a sonar sensor for classifying and dis-
criminating target primitives commonly occurring in 3-D space. Kuc fused sonar
information using a system that adaptively changes its position and configuration in
response to the echoes it detects [4-6].

Sonar data have also been combined with other types of sensory information to
improve robot localization and map building systems. Flynn combined infrared and
sonar sensors to compensate for the low angular resolution of sonar sensors [7].
Curran and Kyriakopoulos also combined sonar and infrared sensor data with
dead-reckoning by using an extended Kalman filter to estimate current location of a
mobile robot [8]. Peremans et al. [9] and Sabatini [10] investigated curved reflectors
using a linear sonar array configuration. Ohya and Yuta showed how the informa-
tion obtained by an ultrasonic transducer is affected by the characteristics of the
sensing systems such as its sensitivity and directivity [11]. In [12], Sabatini illustrated
that advanced filtering methods are required for making data more accurate and
reliable. He also proposed a digital-signal-processing technique for building a
transducer array capable of automatically compensating for variations in the speed
of sound due to temperature or any other atmospheric conditions [13]. Webb et al.
used ultrasonic arrays to measure the range and bearing of a target and guide a
mobile robot [14]. Ko et al. developed a system using acoustic transducers to extract
multiple landmarks for the indoor navigation of a mobile robot [15]. In addition,
other researchers have used adaptive sonar arrays to add flexibility to their systems
[16]. An alternative to using multiple transducers is to use a single transducer and
keep changing its position as in synthetic aperture radar systems [17].

In this paper, an adaptive system consisting of three transducers is used to
improve the location and radius of curvature estimation accuracy in 2-D. The main
contributions of this paper are the presentation of a new technique for the estima-
tion of radius of curvature and the further improvement of this estimate through the
use of an adaptive configuration. For TOF estimation, simple thresholding and
curve-fitting methods are employed. In [18], simple thresholding, double threshold-
ing, curve-fitting, sliding window, and matched filter TOF estimation techniques are
compared and it is concluded that although the matched filter method is optimal,
simpler, faster yet suboptimal techniques provide a variety of attractive compro-
mises between measurement accuracy and system complexity.

When the reflection point of the object is not along the line-of-sight (LOS) of the
ultrasonic transducer, there is a decline (as e=%2, where @ is the deviation angle and
k is a constant depending on the beamwidth of the transducer) in the amplitude of
the reflected sonar signal, which decreases the signal-to-noise ratio (SNR) [see Eq.
(4)]. In order to avoid this problem and increase the localization accuracy, an
adaptive multi-sensor configuration composed of three transmitting/receiving
transducers is used as shown in Fig. 2. Depending on the location of the object, the
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Fig. 1. The beam patterns of the transducers (within dashed lines) and the sensitivity region (within solid
lines).
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Fig. 2. The object and sensor configuration.

sensor can rotate its transducers around their centers towards the target to obtain a
higher SNR. This way, the radius of curvature and location estimates of the reflect-
ing objects — compared to the nonadaptive system — are improved. With the esti-
mation of radius of curvature, different types of reflectors such as walls, cylinders
and edges can be discriminated. For large values of radius, the object is classified as
a planar wall, and for values close to zero, the object is classified as an edge. The
extended treatment of 3-D target differentiation can be found in [19].

In Section 2, basic concepts of sonar sensing are reviewed and the main reason for
using an adaptive configuration is discussed. In Section 3.1, the algorithm for the
radius of curvature and location estimation is given. In order to estimate TOF, two
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simple, fast, but suboptimal methods are used: conventional thresholding method
and curve-fitting method. These methods are described in Section 3.2. Also, a 100-
realization Monte Carlo simulation study is performed to obtain more reliable
results in noisy environments. The simulation results are presented in Section 3.3. In
Section 3.4, in order to evaluate the performance of the estimators, a comparison of
their bias-variance combinations is presented. Extended Kalman filter method, used
for smoothing the sonar data, is explained in Section 4 and the experimental results
are presented in Section 5. Finally, conclusions are drawn and directions for future
work are motivated in Section 6.

2. Sonar sensing
2.1. Acoustic reflection

In most commonly employed sonar ranging systems, an echo is produced when a
transmitted pulse encounters an object and a range value /# = < is produced when
the echo is detected by the receiver. Here, 1, is the time-of-flight (TOF) of the echo
signal and c is the speed of sound in air.!

The characteristics of the radiation pattern of an acoustic transducer are different
in the neighborhood of the transducer (the near-field region or the Fresnel diffrac-
tion zone) and beyond the near-field (the far-field region or the Fraunhofer zone
[20]). The expression for the sound pressure within the near-field is relatively com-
plex, and not within the scope of this paper. The far-field characteristics at range &
and angular deviation 6 from the line-of-sight for a single frequency of excitation is
described by [21,22]

Pmax/imin J1(kasing)
= = Nmin
ACO =" asing " 2 (M

where J|() is the Bessel function of first order, and P,,.x is the propagation pressure
amplitude on the beam axis at range /,,;, along the line-of-sight.

The half beamwidth 6, in the far-field region corresponds to the first zero of the
Bessel function in Eq. (1) which occurs at kasinf = 1.227 and the following equa-
tion is obtained for the half beamwidth angle [23]:

)

o _ i1 [0:617
0 a

where A = ¢/fy is the wavelength (fy is the resonance frequency) and « is the trans-
ducer aperture radius.

| T . . .
1 ¢=3314 ﬁm/s, where T'is the absolute temperature in Kelvin. At room temperature, ¢ =343.3 m/s.
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Since a range of frequencies around f, are transmitted, the corresponding beam
patterns are superposed and the resulting beam pattern can be approximated by a
Gaussian beam profile centered around zero with standard deviation oy = %0 [22,
24]:

- Praxhimin 2=
Ao =BT for h> hniy (3)

For a cylindrical target at range 7 and making an angle 6 with the LOS of an
ultrasonic transducer, the received time signal reflected by the target is a sinusoidal
enveloped by a Gaussian which is given by [22,25,26]:

1\2
Am'xh3/'2 N (t ty —) ' .
spo(t) = pcﬁe oo Tﬁ)slnpﬂfo(l — 1)) h=hmin “)

where /4 is the distance between the transducer and the surface of the object, p. is the
reflection coefficient that increases with radius of curvature, 4p., 1S the maximum
amplitude, min = a*//. (a is the radius of the transducer aperture), 6 is the deviation
angle from the LOS, oy = 6y/2 (is the half beamwidth angle), ¢, is the time-of-flight,
fo 1s the resonance frequency, . = ¢/fy, and o, = 1/f,.

2.2. Adaptive sensor configuration

In this study, a sensor configuration composed of three transducers is employed.
Each one of the transducers is sensitive to echo signals reflected within its beam
pattern. All members of the configuration can detect targets located within the
overlap of the three beam patterns, which is called the sensitivity region, as illu-
strated in Fig. 1. The minimum distance at which a target is detectable by all three
transducers is approximately ti;éi) ”—; This corresponds to the distance between the
central transducer and the start of the joint sensitivity pattern.

Eq. (4) shows that when the object and the transducer LOS are not perpendicular
to each other (6 # 0°) , there is a decline in the amplitude which decreases the SNR.
Hence, information provided by ultrasonic transducers is most reliable when the
object lies along the LOS of the transducer, and at nearby ranges due to the 1/4%/>
term in Eq. (4). Because of this, the transducers are rotated adaptively around their
centers to align the LOS with the target direction (Fig. 2).

3. Location and radius of curvature estimation

A cylindrical object with radius R and orientation 6 is considered as shown in Fig. 2.
In this figure, Ay is the distance between the central transducer and the surface of the
object. Likewise, #; and £, are the distances between the surface of the object and the
left and right transducers, respectively. 6, 6; and 6, are the deviation angles of the
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central, left, and right transducers, respectively and d is the transducer separation. In
this section, the following unknowns are estimated:

e The distance between the center of the object and the central transducer: r =
hy + R.

e The deviation angle of the central transducer: 6.

e The radius of curvature: R.

3.1. Algorithm

The following relations hold true between the distances to the surface of the object
and the quantities of interest listed above:

ct

ho = ?0 = r — R

By = ‘7 = V7 +d —2drsind — R Q)
ch

hlz 7: \/}"2+d2+2drsin9—R

where hy, h;, hy are the true distances to the surface of the object and ¢, #;, f; are the
true TOF values. The following measurements are taken by the three transducers:

ho=ho+wo
}lr == hr + Wr (6)
h= h+wm

Here, hy, h, hj are the measured distances and wy, w, and wj are spatially uncorre-
lated zero-mean white Gaussian noise for the central, right and left transducers,
respectively. In [9], it is shown that for acoustic transducers, the noise correlation
coefficient is small since most of the noise on the transducers is dominated by the
thermal noise in the electronics. Because of this, wy, w, and w; can be modeled as
spatially uncorrelated Gaussian noise. Hence, the error correlation matrix, its inverse,
and the probability density function of the measurement vector k are given as follows:

aﬁ,o 0 0
C=|0 o5 O (7)
0 0 Uﬁ,l
1
> 0 0
o
wo 1
c'=]10 —= 0 )
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p(ﬁ|r, 0, R) - exp{—l [ﬁ —h(r, 6, R)]T(f1 [ﬁ —h(r, 6, R)] } )

27|C| 2

where the vectors h, h(r, 6, R) and n are defined as follows:

~ r—R

- | ho 3 odaind Wo

h é /Zr h(i", 9’ R)é \/}" + dz 2drsind — R Wé W, (10)
hy V¥ & ¥ 2drsind — R m

and are related by h = h(r, 6, R) + w. The r, 6 and R values maximizing Eq. (9) are

the maximum likelihood estimates which can be found by solving the equation set

h = h(f, 0, R) for 7,0, and R:

24 + z(iz1 + fzr)ﬁo — 22— — i
2[1,4 +2h; — 4f~l0

F=

)

it = 02+ 2 — )R
4d[ﬁo + fz]

(12)

o (ﬁg +~ﬁ$) - ~2(i~13~+ d2> "
4o — 2(he + )

The deviation angles of the left and right transducers are estimated by the fol-
lowing equations:

SRy 2
A=+ d
6, = sin (2 = ) (14)
s (PPt
01‘ = SIn 1<r2T> (15)

where 7| = l?l +A1AQAand ;7I = izr +R. Finally, the left, central, and right transducers
are rotated by 6, 6 and 6,, respectively, and r, 6, and R are estimated again.

In this paper, the adaptation process is completed in two steps: after the initial
estimate is obtained with the flat configuration of the sensor, the transducers are
rotated, and an improved estimate is made. The number of steps can be easily
increased to further improve the accuracy of the final estimate. It is also possible to
make the adaptation process continuous. This would particularly be suitable when
the target position is not stationary and the target is in motion. In this case, we
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envision that at every update, the transducers adapt their orientation according to
the current target position and its estimated radius of curvature.

3.2. TOF estimation

In this study, two different TOF estimation methods are used: the thresholding and
curve-fitting methods.

In thresholding TOF systems, an appropriate threshold 7 is chosen and the first
time instance at which the reflected signal exceeds this threshold is considered as the
TOF. In order to reduce the error in the TOF estimations obtained from the
thresholding method and improve the estimates, a curve-fitting approach is used. In
this method, a parabolic curve of the form a,(z — 1,)* is fitted to the onset of the
sonar echo. First, initial estimates of the two parameters ay and ¢, are obtained by
using samples of the signal around the thresholding point. Initial estimate for 7 is
found by simple thresholding, arid @, is estimated from the second derivative
approximation around the threshold point [27]. The iterative Levenberg-Marquardt
nonlinear least-squares algorithm is initialized by these values. In the simulations
and the experiments, 50 samples of the echo signal, centered around the threshold
point have been used to estimate the parameters aq and ¢, of the best-fitting curve.
The value of ¢, finally obtained, which corresponds to the vertex of the parabola, is
taken as an estimate of the TOF (Fig. 3). The curve-fitting estimate is expected to be
more accurate than simple thresholding since it should reduce/eliminate the bias
inherent to thresholding and also because it uses a larger portion of the signal (i.e. its
onset rather than a single point at which threshold is exceeded).

3.3. Simulation results

In the simulations, Eq. (4) is used to model the signals and Ay, =1,
hmin = 5.8 cm, p. = 0.45 R —0.022,, fo = 49.4 kHz, and ¢ = 343.5 m/s are used as
the model parameters. Once the range r, the deviation angle 6, and the radius of
curvature R are estimated from Egs. (11)—(13), the transducers are rotated by the
angles calculated using Eqgs. (12), (14), and (15), respectively. Then the second esti-
mates are calculated. In the simulations, 100-realization Monte-Carlo simulation
study is employed. The mean values and the standard deviations from the mean
values of r, 6, and R for the linear and rotated configurations are illustrated. In all
the simulation results, dash-dot or dot lines correspond to the first (linear config-
uration) estimates, whereas solid lines correspond to the second (rotated configura-
tion) estimates. Moreover, the mean of the estimates and mean+standard deviation
(a) are shown in the simulation results.

Fig. 4 illustrates the radius of curvature estimates corresponding to the linear and
rotated configurations versus the transducer separation d. Fig. 4(a) shows the esti-
mates using the thresholding method in the absence of noise. As d increases, the
error in both estimates decreases. The percentage error for the rotated position is
9.2%. Fig. 4(c) displays the same results in the presence of noise. Second estimate is
approximately 40% better than the first estimate. The first estimate gets worse after
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Fig. 3. Thresholding and curve-fitting methods to estimate the TOF.

d=28 cm since the target is now located either at very low signal-to-noise ratio
(SNR) regions of the sensitivity pattern or outside it. Fig. 4(b) illustrates the esti-
mates using curve-fitting method in the absence of noise. Both estimates improve
as d increases. The error for the rotated position is 0.4%. Fig. 4(d) shows the
results using curve-fitting in the presence of noise. The second estimate is better
than the first estimate. When Fig. 4(c) and (d) are compared it is observed that the
curve-fitting method provides better estimates in the presence of noise. The
improvement for the first estimate is approximately 60% and it is approximately
20% for the second estimate.

Fig. 5(a) and (b) illustrates how the range r depends on d and 0, respectively. Figs.
6(a) and (b) display 6 estimates versus /iy and R, respectively. The curve-fitting
method is used to measure the TOF. R=5 cm, /hy=100 cm, d=10 cm, and 6= 5° are
considered and one variable is changed in each figure. Fig. 5(a) shows that the first
estimation improves up to d=12 cm and after that it worsens for the same reason
given in the previous paragraph. In Fig. 5(b), when 6= 6°, the left transducer starts
measuring incorrectly and when 6=11°, the central transducer starts measuring
incorrectly as well. As /g increases, the deviation angles of the left and right trans-
ducers decrease and estimates improve [Fig. 6(a)]. Fig. 6(b) displays that as the true
radius R increases, the estimates and their standard deviations improve.
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3.4. Comparison of TOF estimators

In this section, the bias, variance, and bias-variance combinations of the two TOF
estimators are compared. In [28], in order to evaluate the performances of the esti-
mators, the results are compared to the Cramér-Rao lower bound (CRLB) which
sets a lower bound on the variance of unbiased estimators. The matched filter, which
is the optimal method to estimate the time-of-flight, satisfies this lower bound
asymptotically [29].

Fig. 7 illustrates variance o2, bias bg, and /o2 + b%, which is the combination of
bias and variance terms, for R estimate with respect to the transducer separation d.
Fig. 7(a) shows the results when the TOF is measured with the thresholding method
and Fig. 7(b) displays the same results for the curve-fitting method. The difference
between the bias-variance combinations is about 3-fold. The bias term for the
thresholding method is about 10 times higher than that of the curve-fitting method,
that is, the curve-fitting method decreases the bias on the estimates obtained by the
thresholding method. Moreover, the variance term is dominant for the curve-fitting
and the bias term is dominant for the thresholding.

4. Extended Kalman filtering

In this section, an extended Kalman filter (EKF) is used to estimate the location
and radius of curvature of the target. The case in which the transducers are aligned
is investigated. A detailed treatment of EKF can be found in [30].

4.1. Filter model

The following procedure is used to estimate the location and the radius of curva-
ture of the cylindrical object.

e The state vector is defined as follows:

r(k)
x(k) 2| 6(k)
R(k)

e The observation model is

N ho(k)
h(k) = | (k) | =h[x(k)] + w(k)
(k)

where w(k) is zero-mean, additive, white Gaussian measurement noise and
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r(k) — R(k)
Vr2(k) + & — 2dr(k)sinf(k) — R(k)

h[x(k)] =

Vr2(k) + d* + 2dr(k)sind(k) — R(k)

e Since the target is assumed to be stationary, the state-transition model is

r(k) v,(k)
x(k + 1) = Fx(k) +v(k) = | 6(k) | + | vo(k)
R(k) vr(k)

where v,, vy and vg are the additive process noise for range, azimuth and radius,
respectively. Note that, in this case, F matrix is an identity matrix. The state model
in this case is linear, but the observation model is nonlinear.

e The Jacobian matrix H is found as follows:

| i 0 .
. r(k) — dsind(k) _ dr(k)coso(k)
H(k) = Vh(k) = JHP 4P = 2dr)sing) 0P+ — 2dr(R)sin()
B K() + dsin6(k) dr(k)cosb(k)
I (kY +d* 4 2dr(k)sin6(k) \/r(k)z e+ 2dr(R)sind() |

where (k) and 6(k) are the predicted values of range and normal angle.
4.2. Simulation results

Fig. 8 illustrates the estimated states for the range, azimuth, and radius of curva-
ture as the iteration number increases. For these figures, d=10 cm, R=15 cm, hy= 100
cm, #=0°, measurement noise standard deviation equals 10~° V, the standard deviation
of the radius noise equals 3.2 x 1072 cm and standard deviation of the azimuth noise is
10~* rad. As the iteration number increases, the estimated states converge to the actual
values.

Fig. 9 displays the range, azimuth, and radius estimates by using raw data over a
single data sequence (dash-dot lines) and extended Kalman filtering (solid lines).
That is, in the first case, estimates are directly derived from the raw data, in the
second, estimates are smoothed by the EKF. It is concluded that extended Kalman
filtering smoothes the estimates considerably.

5. Experimental results

An experimental set-up using Polaroid transducers is employed to verify the
simulation results by real sonar data from cylindrical targets.
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5.1. Experimental set-up

The set-up is constructed for 3-D applications. The unit illustrated in Fig. 10(a)
comprises five Polaroid 6500 series acoustic transducers, each operating at a reso-
nance frequency of fo=49.4 kHz. A central transducer is flanked by four transducers
symmetrically. The transducer separation d can be manually adjusted between 7.5
and 12.0 cm. The aperture radius, a, of each transducer is 2 cm. In the experiments,
three of the transducers (left, right, and central) were used since the estimation was

(@)

Signal Son:
} fulse Transmitter Signal Object
Generator
Echo signal
o Metrabyte
Computer D.1g1ta1 DAS 50 1 MHz A.nalog Receiver
Signal A/D Converter] Signal

()

Fig. 10. The experimental set-up: (a) the sensing unit, (b) the block diagram of the sensing system.
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done in 2-D for accurate calibration of the system. In some of the experiments, the
transducers were detached from the mounting and were placed on polyamid stands
so that larger transducer separations than allowed by the prototype system could be
tested. The targets employed in this study are: cylinders with radii 25, 48, 75 mm and
a planar target. All targets used in the experiments were wooden, with smooth sur-
faces, each with a height of 120 cm.

Ultrasonic transducers (acoustic transducers having a frequency higher than 20
kHz) are very suitable for target discrimination since they provide accurate range
information. Although infrared-based systems have very high angular resolution,
they do not provide very accurate range information [7]. As the resonance frequency
of an ultrasonic transducer increases, the attenuation in air increases, the width of
the main lobe decreases, and the number of the side lobes increases. In contrast, as
the frequency decreases, the attenuation decreases, the number of side lobes
decreases, but the width of the main lobe increases. The width of the main lobe is an
indication of the angular resolution of the ultrasonic transducer. In this research,
Polaroid transducers having a resonance frequency of 49.4 kHz are used although
other ultrasonic transducers (e.g. Panasonic) having a resonance frequency around
40-60 kHz could also have been used. Polaroid transducers were chosen for the
experiments since they are among the most widely available and commonly used
transducers [31].

A four-channel DAS-50 A/D card with 12-bit resolution and 1 MHz sampling
frequency is used to sample the analog signals reflected by the target. Echo signals
were processed on an IBM-PC 486 using the C programming language. The block
diagram for the hardware is shown in Fig. 10(b). Real distances were ascertained
accurately by carrying out the whole set of experiments on large sheets of millimetric

paper.
5.2. Results

For the same target position, 1000 sets of measurements, each having 10,000
samples of echo signals starting at the transmit time, were taken. Each set of mea-
surements provides a single estimate of target radius of curvature, range and azi-
muth. It takes less than 0.5 s to gather a set of measurements and estimate the
curvature, range, and azimuth. The pulse rate was set to around 17 pulses per s so
that the maximum distance that could be measured is around 10 m. The pulse shape
can be modeled as a sinusoidal enveloped by a Gaussian as described previously in
Eq. (4).

In some of the experiments, the target was outside the joint sensitivity region for
the chosen parameters. Therefore, in these experiments, the transducers’ line-of-
sights were maintained approximately perpendicular to the target surface during the
process of data acquisition. The expected values [E(r), E(6), and E(R)] and stan-
dard deviations (a,, ay, and ag) of r, 6, and R estimates of each type of target con-
sidered are computed and tabulated in Tables 1-5. Table 6 illustrates the radius of
curvature estimates for the flat and adapted positions of the transducers. The results
before and after adaptation are denoted by the subscripts 1 and 2, respectively.
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Table 1

Experimental results with thresholding when 6=0°, R=75 mm, and (a) /o= 500 mm 6 (b) /1p=600 mm
d (mm) E(r) (mm) 6, (mm) E©) () 05 (°) E(R) (mm) oR (mm)
(@)

250 571.90 16.96 0.23 0.19 76.76 15.88
300 569.74 10.88 0.07 0.13 74.18 9.81
350 569.78 7.38 —0.06 0.15 73.66 6.82
400 569.73 5.27 0.11 0.19 73.89 8.09
450 570.07 4.93 —0.19 0.19 74.74 7.23
(b)

250 661.73 15.93 0.36 0.16 73.26 15.17
300 663.84 15.15 0.21 0.10 74.87 13.90
350 661.98 13.02 —0.14 0.17 73.15 13.08
400 664.07 12.77 0.10 0.15 74.32 11.21
450 664.86 11.42 —0.43 0.15 74.45 9.91
Table 2

Experimental results with curve-fitting when 6=0°, R="75 mm, and (a) /o= 500 mm, (b) /,=600 mm 40
d (mm) E(r) (mm) 6, (mm) E©) (°) 0 () E(R) (mm) oR (mm)
(@)

250 569.47 15.64 0.24 0.18 74.71 14.60
300 571.40 12.94 0.05 0.15 76.71 11.64
350 570.58 8.04 —0.09 0.15 74.59 7.25
400 569.45 8.75 0.12 0.18 73.57 8.02
450 569.51 8.36 —0.21 0.18 74.30 7.17
(b)

250 664.49 17.71 0.13 0.24 75.80 20.85
300 664.04 16.43 0.05 0.13 75.14 15.23
350 667.68 17.49 —0.16 0.15 77.44 15.78
400 665.78 14.47 0.08 0.19 75.70 12.87
450 666.00 12.06 —0.40 0.20 75.40 10.53

Table 1(a) and (b) show, the estimates when the thresholding method is used for
ho =500 mm and /y=600 mm, respectively. The true radius is R=75 mm and the
true azimuth angle is 6=0° for the two cases. As the transducer separation d
increases, the standard deviations of the estimated range and radius decrease, but
there is no observable trend in the standard deviation of 6. The error for /,= 500
mm is about 1.3% in the estimated radius and 0.9% in the estimated range. The
error for hy=600 mm is also about 1.3% in the radius estimation but 1.8% in the
range estimation. Also, the standard deviations are in general larger for hy=600
mm than for so=500 mm. Table 2 (a) and (b) illustrates the same results when the
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Table 3

Experimental results when /=600 mm, 6=0°, and R=48 mm with (a) thresholding, (b) curve-fitting
dmm)  E)(mm)  6@mm)  EOC) o) ER(mm) g (mm)
(@)

250 637.96 24.18 —0.56 0.33 41.79 23.01
300 645.36 16.90 —0.11 0.12 49.16 15.38
350 643.29 13.03 —0.25 0.16 47.22 11.72
400 648.86 14.04 —0.18 0.19 52.30 12.68
450 643.10 10.26 —0.20 0.22 46.99 9.34
(b)

250 645.27 29.32 —0.52 0.31 49.20 20.85
300 644.99 17.84 —0.12 0.13 48.92 15.23
350 648.39 14.86 -0.27 0.16 51.74 15.78
400 649.20 12.85 —0.16 0.24 52.76 12.87
450 643.41 12.84 —0.24 0.22 47.16 10.53
Table 4

Experimental results when /=500 mm, ¢=400 mm, and R=25 mm with (a) thresholding, (b) curve-fit-
ting

o) E(r) (mm) 6, (mm) E6) () o () E(R) (mm) or (mm)
(a)

0 522.92 7.03 0.35 0.23 24.85 6.89

3 522.96 3.19 2.53 0.10 24.65 3.35

5 522.66 4.79 4.11 0.19 24.43 4.76

8 524.12 6.02 6.76 0.18 22.98 5.89

0 522.92 7.03 0.35 0.23 24.85 6.89

(b)

0 522.81 6.76 0.39 0.26 24.76 6.66

3 522.73 445 2.52 0.14 24.50 4.10

5 524.19 5.54 4.20 0.21 26.01 5.30

8 52591 6.41 6.81 0.20 24.71 6.19

curve-fitting method is used. The average error for the range is about 0.9% and it is
1.0% for the radius when /sy= 500 mm and they are 1.3 and 2.2%, respectively, when
ho=600 mm.

Table 3 (a) and (b) displays the results for the thresholding and curve-fitting
respectively when /- 600 mm, true radius R =48 mm, and true azimuth 6=0°. The
standard deviations of the range and radius decrease as the separation d increases.
The range estimation error is 0.8% for thresholding amid it is 0.7% for curve-fitting.

Table 4(a) and (b) illustrates the effect of the azimuth angle. As the azimuth angle
increases, the standard deviations of the estimates tend to increase. Also, the esti-
mates degrade as the true azimuth angle 6 increases. The average error in the angle

estimation is about 16% for thresholding and it is 11.4% for curve-fitting.
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Table 5

Experimental results when /o= 600 mm, 0=0° for a planar wall with (a) thresholding (b) curve-fitting
d (mm) E(r) (mm) 6, (mm) E©) () 05 (°) E(R) (mm) oR (mm)
(@)

200 3122.65 860.69 —0.01 4.12 2545.12 648.52
250 2561.10 693.35 —0.98 1.78 1981.51 688.54
300 1354.48 480.81 —1.20 3.14 775.72 476.15
(b)

200 3503.52 830.69 —0.31 0.79 2924.89 929.26
250 2644.16 685.01 —0.54 1.76 2065.07 678.08
300 1467.02 103.38 —-1.22 0.21 886.53 101.96
Table 6

Estimated radius at the flat and rotated positions with curve-fitting with respect to (a) d when /= 1000
mm, 6=0°, and R=75 mm (b) 0 when /= 1000 mm, d=75 mm, R=25 mm

E(R,) (mm) og, (mm) E (R,) (mm) o R, (mm)

d (mm)

(a)

150 73.61 20.49 76.29 12.50
200 72.65 18.87 73.46 10.96
250 - 77.61 9.75
300 - - 72.28 8.31
350 - - 75.73 6.24
400 - - 74.05 5.49
0°

(b)

0 22.65 56.81 24.64 30.60
3 24.57 58.50 26.77 31.92
5 25.64 61.16 23.43 29.75

Table 5(a) and (b) tabulates the estimated results when the target is a plane. The
radius of curvature estimations and the standard deviations are large. By looking at
the radius of curvature estimates, it can be concluded that the object is a plane and
the curve-fitting method gives better results.

Finally, Table 6(a) and (b) shows the radius of curvature estimates at the flat and
rotated positions with respect to d and 6, respectively. Table 6(a) illustrates that the
target at hy=1000 mm remains outside of the joint sensitivity region at the fiat
position when d > 21 cm. Therefore, for these cases, the transducers are maintained
approximately perpendicular to the object surface while experimental data are being
collected. It is observed that the standard deviation is less for the rotated position
and estimates are closer to the true value. Table 6(b) tabulates the estimates for
varying 6. The standard deviations at the flat position are almost twice those at the
rotated positions. For larger values of 6 than considered in Table 6(b), it is not
possible to estimate the curvature since the target will be outside the sensitivity
region of either the right or the left transducer.



864 A. S. Sekmen, B. Barshan | Applied Acoustics 62 (2001) 841-865
6. Conclusion

In this study, an adaptive sensor configuration comprising three transmitting/receiv-
ing transducers has been introduced to estimate the position and radius of curvature of
cylindrical objects. It has been shown that the estimates can be improved by approxi-
mately 40% with this sensor configuration when compared to the non-adaptive config-
uration. The simulation results and the comparison of the bias-variance terms indicate
that the TOF measurements are improved by the curve-fitting method. Moreover, it has
been shown that the extended Kalman filtering smoothes the estimates considerably.

The radius of curvature estimation provides valuable information for differ-
entiating different types of reflectors such as edges, cylinders and walls. For large values
of the R estimate, the target can be classified as a plane and for values close to zero, it can
be classified as an edge. Current and future work will focus on improving the robustness
of the radius of curvature estimation by using recursive digital filtering techniques. This
will reduce the variance of the estimates and thus improve their reliability. More efficient
firing techniques involving cross firing patterns will be considered to reduce the data
acquisition time. In addition to TOF information, incorporation of amplitude infor-
mation or the shape of the complete echo waveform in the current system will provide
additional information about the location and curvature of the sonified target.

Since this paper was submitted, an alternative approach based on morphological
processing, that can handle surfaces with spatially varying curvature which may
become both concave and convex, has also been developed [32,33].
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