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December, 2010



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. M. Cemal Yalabık (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Bilal Tanatar

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Azer Kerimov

Approved for the Institute of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Institute

ii



ABSTRACT

EXTENDED PHASE DIAGRAM OF ASEP WITH TWO
TYPES OF PARTICLES

Ayşe Ferhan Yeşil

M.S. in PHYSICS

Supervisor: Prof. Dr. M. Cemal Yalabık

December, 2010

The ASEP (Asymmetric Simple Exclusion Process) model system with two types

of particles is studied. The system is interesting because it exhibits spontaneous

symmetry breaking when parameters controlling the dynamics of the two types

of particles of the same system. By using Mean Field approximation its extended

phase diagram was obtained for non-symmetric values of entering rates of the

two types of particles. The system is understood to be the combination of two

decoupled ASEP systems with one type of particle system for the values of equal

hopping and exchange rates. (Evans et al.,PR E, 74 208, (1995)) It is understood

that for the exchange rates different from the hopping rates the system can no

longer be analyzed as combination of two decoupled one particle ASEP. The “tiny

phase” first observed by Evans et al, is examined in more detail. It is found that

this phase still exists when entering rates are not symmetric. Also, Monte Carlo

simulations for certain values of parameters of the system were carried out to

determine the particle density profiles. The phase diagram of the system displays

unexpectedly rich structure for the relatively simple dynamics.

Keywords: ASEP, spontaneous symmetry breaking, phase diagram, non-

equilibrium, steady state.
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ÖZET

İKİ PARÇACIKLI ASEP MODELİNİN GENİŞLETİLMİŞ

FAZ DİYAGRAMI

Ayşe Ferhan Yeşil

FİZİK, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. M. Cemal Yalabık

Aralık, 2010

Bu çalışmada iki tür parçacık içeren ABDS (Asimetrik Basit Dışlama Süreci)

model sistemi incelendi. Sistem, iki tür parçacığın dinamiğini kontrol eden

parametrelerin aynı olduğu durumda kendiliğinden simetri kırılması gösterdiği

için ilgi çekmekte. Ortalama alan yakınlaştırması kullanılarak sistemdeki iki tür

parçacığın giriş olasılıksal hızlarının simetrik olmadığı durum icin genelleştirilmiş

faz diyagramı elde edildi. Eşit yer değişme ve zıplama olasılıksal hızları için sis-

temin iki ayrı tek parçacıklı ABDS’nin birleşimi olduğu bilinmektedir (Evans ve

ark., PR E, 74 208, (1995)). Yer değişme olasılıksal hızları ile zıplama hızlarının

aynı olmadığı durumlarda sistemin artık iki ayrı tek parçacıklı ABDS olarak ince-

lenemeyeceği anlaşıldı. Evans ve ark. tarafından ilk kez gözlenen “ince faz”ın giriş

olasılıksal hızların eşit olmadığı zamanlarda da var olduğu gözlemlendi. Parçacık

yoğunluk dağılımlarının bulunması için belli parametre değerleri için Monte Carlo

benzetimleri yapıldı. Sistemin faz diyagramı, görece basit olan dinamiklerine

kıyasla beklenmedik ölçüde zengin yapı gösterdi.

Anahtar sözcükler : ASEP, faz diyagramı, kendiliğinden simetri kırılması, dengede

olmayan, durağan durum.
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Chapter 1

Introduction

Equilibrium systems have been studied extensively since the work of Gibbs[1] and

Boltzmann[2]. However nonequilibirum systems are not that well-understood, al-

though they are very common in nature.

In this thesis, a non-equilibrium model is studied. The model is chosen since

although it is a relatively simple model it shows interesting characteristics of

non-equilibrium systems. In steady state, it has a symmetry broken phase

transition[3]. In some versions of the model avalanches and shock profiles are also

observed[4]. On the other hand the model can be applied to real life problems,

such as traffic flow[5], inter-cellular transportation[6] and bio-polymerization[7].

To study the model Mean Field and Monte Carlo methods are applied. Extended

phase diagram of the system has been found.

1.1 Equilibrium

Equilibrium in this context, is the probabilistic equilibrium. Nonequilibrium is

the lack of this probabilistic equilibrium and steady state is a special case of the

non-equilibrium state. To be more precise, in equilibrium probabilities are not

changing with time, and in addition the rate of probability flow for changing

from one state to another is equal to the flow for coming back to the previous

1



CHAPTER 1. INTRODUCTION 2

state. Probability flow is related to the change of the probability of a state. Since

total probability is conserved the quantity Piwi→j (where Pi is the probability

of i’th configuration and wi→j is the rate of change of i’th configuration to the

j’th configuration) gives the probability flow from state i to j. This property is

known as detailed balance. In this sense the non-equilibrium state is the state

where probabilities are changing with time or when there is no detailed balance

in the probability among states. A special case of the non-equilibrium state is

the steady state which is a state when probabilities are not changing with time as

in the equilibrium case but there are currents in the system. These currents can

be energy currents, particle density currents etc. Fig. 1.1 shows the schematic

explanation for detailed balance and steady state.

Figure 1.1: The detailed balance and the steady state are shown schematically,
choosing different line styles in the second figure indicates the probability flow
for going from one state to another state is not equal to the flow for the reverse
process.

1.2 Phase Transitions

Phase transition is a non-analytic behavior in some macroscopic average quantity

as a function of some controllable parameter. This macroscopic quantity can be a

thermodynamic quantity such as pressure, density or current. For example in Fig.

1.2 one can see that there are two kinds of possible changes from liquid to gas. One

type of change is by crossing the line, and the other one is by turning around that

line. Here the phase transition through the line is first order transition, because

the density changes discontinuously. However there is no phase transition when

turning around the line. Because the density changes continuously, one can see
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that the liquid and the gas have similar type of structure. The derivative of the

density changes discontinuously, when one goes through the critical point (Tc, Pc),

which is a second order transition.

Figure 1.2: Transition between liquid and gas phases as a function of pressure
and time. The point (Tc, Pc) is the critical point.



Chapter 2

The Model

2.1 ASEP

Asymmetric Simple Exclusion Process (ASEP) is a one dimensional, open-ended

chain model, where particles join into the system from one end, hop to empty

sites and jump out of the other end of the system by certain corresponding rates.

This kind of processes are also known as “boundary-driven open diffusive system”

or “open driven diffusive system” in literature. A special case of this model is

Totally Asymmetric Simple Exclusion Process (TASEP) where the particles are

allowed to hop only in a certain direction. However most of the papers and

also in this thesis TASEP are called ASEP. ASEP is a limit of Katz-Lebowitz-

Spohn (KLS) model[8]. KLS model is a two-dimensional lattice model, where

particles are allowed to hop forwards, backwards, up and down. The ASEP limit

is reached by taking the effective field as infinite which allows hops for only a

certain direction.

4
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2.2 ASEP with one type of particle

In ASEP with one type of particle, particles enter the system from one end in

time dt with probability αdt, go out from the system with probability βdt and

hop into empty sites with probability γdt.

Figure 2.1: Schematic display of ASEP with one type of particle.

This problem is exactly solvable. It can be solved by the matrix product

method[9]. Other methods such as exact[10] and approximate[11] renormalization

group analysis have also been used. The resulting phase diagram of the system

has a relatively simple form. In the region where α is bigger than β, with β less

than 0.5 the system is in high density state. In the region where β is bigger than

α, and α is at most 0.5 the system is in low density phase. Moreover, if both

the values of α and β are bigger then the critical value 0.5, the system is in the

maximal current phase. Here high rates cause particles to enter and leave the

system more frequently. The exact solution yields the following values for current

Figure 2.2: Exact phase diagram for one type of particle ASEP system. The
dotted line shows the first order transition.
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and density:

Phase Current Density

Low Density α(1− α) α
High Density β(1− β) 1− β
High Current 1

4

1

2

Table 2.1: The density and current expressions for each phases of ASEP with one
type of particle.

As can be seen from the table I the change in density when one goes from the

low density to high density is discontinuous, however all other changes are contin-

uous combined with the discontinuities in higher order derivatives. Discontinuity

means the transition is first order while continuity means it is second order.

The exact renormalization group study of Georgiev et al., implements renormal-

ization of the matrix product method[10]. The RG method is described in section

3.3 of this thesis. Their analysis produces the exact phase transition structure

which can be seen in Fig.2.3.

Figure 2.3: Exact renormalization phase diagram of ASEP system with one type
of particle, adapted from Georgiev et al.’s graph [10].

In Fig. 2.3 fixed points are shown at points (α, β) equal to (0,0), (0,1), (1,0),

(0.5,0.5), (2.929,2.929), (0.5, 2.929) and (2.929, 0.5). The trivial solution of the

matrix product method at the line α+ β = 1 is also emphasized by phase flow in
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the graph. In the approximate renormalization approach of Hanney et al. they

map six-sited ASEP chain to two-sited chain, for a scale factor b = 3 by using

matrix product method. Note that this approach would give the exact values if

the chain size was infinite but that would mean solving the problem exactly. Since

in this work chain size is finite the phase diagram in Fig. 2.4 is somewhat dif-

ferent from the exact diagram. Here in Fig.2.4, the capital letters A-G represent

Figure 2.4: Phase diagram of approximate renormalization group solution to
ASEP system with one type of particle, adapted from the work of Hanney et al.

[11].

the fixed points. These fixed points characterize either the phase separatrixes or

the phases. The points A through D correspond to exact values while points E

through G would approach exact values when chain size becomes very large. The

lines with arrows between these points show the RG flow and the arrows show the

direction of this flow. Here A is an unstable fixed point which is found to have

the values ρc=
1

2
and Jc=

1

4
. Points B, C and D are zero-current fixed points. And

line A-D is the first order transition line in conformity with the exact solution[11].
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2.3 ASEP with two types of particles

In this thesis we study ASEP with two types of particles. (Fig. 2.5) Here each

type of particle can go in one direction which is opposite to the other one. Par-

ticles can hop to a site in one direction if it is empty and whenever they meet

head to head with a different type of particle they can exchange their sites with

rate δ.

Figure 2.5: Schematic display of ASEP with two types of particles.

This system has no exact solution. Matrix product method has not been success-

ful in obtaining a solution to this problem[9]. Since then, Evans et al. has applied

the mean field approximation on the master equation of this system. They look

at the special case α1 = α2, β1 = β2 and γ1 = γ2 = δ and also scale the time

of the system by taking δ = 1. They found the unexpected result that below

β1 = β2 = 0.333 and α1 = α2 = 1 the system goes into spontaneous symmetry

breaking. In this state the system begins to favor one type of the particles al-

though the parameters for both types are the same. Also they found a special

phase existing in a very small region of the phase diagram. The phase diagram

of this model can be seen in Fig. 2.6.

In the phase diagram of Evans there are four phases, two of them are sym-

metric in values of density and currents of the two types of particles while the

other two have broken symmetries. Symmetric ones are msximal current (MC),

low density (LD) phases, while symmetry-broken phases are low density-low den-

sity (LD-LD) and high density-low density (HD-LD) phases. Here the origi-

nal notation used in the paper of Evans et al. has been used. They used the

phase1 − phase2 notation if the currents of the two types of particles are not

symmetric.
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Figure 2.6: This is the phase diagram of ASEP with two classes of particles,
adapted from the phase diagram found by Evans et al.[3]



Chapter 3

Methods of Analysis

For a large number of many-body problems, exact solutions do not exist. Mas-

ter equation is the equation which describes how the probabilities change with

respect to time. In mathematical representation d
dt
P = LP , where P is vector of

the probability values and L is the Liouville matrix whose elements are rates of

changes. As it is defined before, steady state is characterized with time invariant

probabilities. Then this implies d
dt
Pss = 0 which is the condition for steady state.

Now one has to solve this Lu = 0 equation. Here u is the steady state probabil-

ity distribution which corresponds to a zero-eigenvalue eigenvector. The system

ending in spontaneous symmetry breaking suggests that there may be degeneracy

in the Liouville matrix for the model. In other words there may be at least two

steady state probability distributions with eigenvalue 0. The ambiguity in this

problem is whether both steady states really exist or one of them is a metastable

state that mean field theory generally produces.

For some special cases such as the one particle ASEP, exact solution such as

Matrix Product Method exists. This method is described below. Otherwise ap-

proximate methods such as Mean Field Theory, Renormalization Group Theory

and Monte Carlo are used in the analysis of the system.

10
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The exact form of the master equation for the one particle ASEP is given by,

d

dt
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This equation is linear, however in a lattice with 200 sites there are 2200

such probabilities. Moreover, in ASEP with two type of particles there are 3

possibilities for each site either particles of first type, second type or non can

be there. That means one has 3200 possible configuration probabilities and a

3200 × 3200 Liouville matrix.

3.1 Matrix Product Method

Matrix product steady state is a subgroup of the factorized steady states of one-

dimensional models[8]. Factorized steady state is the state whose configuration

probabilities can be written as the multiplication of the functions of occupancies.

For a state to have factorized state its transition rates have to satisfy some re-

strictions. Some of these restrictions are that the systems total energy should

be the sum of one particle energies in the equilibrium. Or if the system is not

in equilibrium, the hopping rates should only depend on the occupancy of the

target site[8].

In the matrix product method, one substitutes the functions of occupancies with

non-commuting matrices of occupancies. Since those matrices are non-commuting

the correlations of the occupancy of different sites may be found. For more details

one can read Topical Review about the Matrix Product method[8].
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3.2 Mean Field Theory

Since the Liouville operator is an impossibly huge matrix to solve even for rel-

atively small systems, we recall the mean field approximation here. Mean Field

Theory assumes that the change in the steady state probability due to the the

change of one site in the configuration is independent of other lattice sites except

its neighboring sites. Probabilities of the configuration of these neighboring sites

are assumed to be independent of each other, so that one can multiply individual

probabilities to obtain joint probabilities. For example, in a system with six sites,

the exact rate of change of probability for P000001

d

dt
P000001 = −(α + β)P000001 + γP000010. (3.1)

However mean field approximation results in

dP1(N)

dt
= −P1(N)β + P0(N)P1(N − 1)γ,

where P1(k) means probability that k’th site is occupied by a particle of type i,

while P0(k) means it is unoccupied. Here one has to follow the time development

of O(N) variables, instead of O(3N) variables in eqn.3.1.

Evans et al. apply this theory to the model and obtain the following

equations[3]: In the bulk,

j1 = γp1(i)[1− p1(i+ 1)− (1− δ/γ)p2(i+ 1)]

j2 = γp2(i+ 1)[1− p2(i)− (1− δ/γ)p1(i)] (3.2)

here i = 1, ..., N−1 and j1 and j2 are currents of type one and type two particles.

The exchange rate δ and hopping rate γ are set to unit rate as γ = δ = 1. Also

here p1(i) and p2(i) are the densities of the type one and type two particles at

site i, respectively. Within the mean field approximation method it is assumed

that there are no density-density correlations.

At the boundaries one has the equations,

j1 = α[1− p1(1)− p2(1)] = βp1(N)

j2 = βp2(1) = α[1− p1(N)− p2(N)] (3.3)
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where α is the entering rate of the particles to the system from both ends and β

is the exit rate of the particles from the system.

The trick in their solution is taking δ = γ which makes these two system

equivalent to two independent systems with a single type of particle in the bulk,

and are only coupled to each other at endpoints. This can be understood by

seeing the system from the eyes of type one particle when the exchange rate and

hopping rate is equal, it sees the type two particles and empty sites as if they are

equal. Which is also true for type two particles. Simultaneous solution of Eqn.

9 combined with exact one particle ASEP solution yields the phase diagram in

Fig.2.6.

3.2.1 Present Work

We solve a MF approximation for a lattice of 200 long, without the restriction

δ = γ, and for α1 6= α2. For the mean field study, p1(i), p2(i) are the occupation

probabilities of the i’th lattice by type one and type two particles, respectively.

Then for the unoccupied i’th lattice site, probability is 1−p1(i)−p2(i). Probability

change in time can be expressed by the master equation as

d

dt
p1(i) = −γ1p1(i)p0(i+ 1)− δp1(i)p2(i+ 1)

+γ1p0(i)p1(i− 1) + δp2(i)p1(i− 1) (3.4)

d

dt
p2(i) = −γ2p2(i)p0(i− 1)− δp2(i)p1(i− 1)

+γ2p0(i)p2(i+ 1) + δp1(i)p1(i+ 1) (3.5)

at intermediate sites and

d

dt
p1(1) = −γ1p1(1)p0(2)− δp1(1)p2(2)

+α1p0(1) (3.6)

d

dt
p2(1) = −β2p2(1) + γ2p0(1)p2(2)

+δp1(1)p1(2) (3.7)
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d

dt
p1(N) = −β1p1(N) + γ1p0(N)p1(N − 1)

+δp2(N)p1(N − 1) (3.8)

d

dt
p2(N) = −γ2p2(N)p0(N − 1)− δp2(N)p1(N − 1)

+α2p0(N) (3.9)

at the endpoints. Here by using mean field approximation we assume that joint

probability for the appearance of two neighboring states is the product of their

single appearance probabilities.

As the initial condition, in the lattice with 200 sites, we assigned different

and uniform initial probabilities to each particle type. We numerically solve the

master equation in time until a steady state is reached. In the steady state,

densities and currents can be written as

ρ1 =
∑

i

p1(i)/N (3.10)

ρ2 =
∑

i

p2(i)/N (3.11)

j1 = α1p1(1) = β1p1(N) (3.12)

= γ1p1(i)p0(i+ 1) + δp1(i)p2(i+ 1) for 1 ≤ i < N

j2 = α2p0(N) = β2p2(1) (3.13)

= γ2p0(i)p2(i+ 1) + δp1(i)p2(i+ 1) for 1 ≤ i < N.

3.3 Renormalization Group Theory

Renormalization Group (RG) theory is a powerful theory developed by K. Wilson

[12, 13], M.E. Fisher [14], L. Kadanoff[15] and others. In this method correlation

lengths are used to characterize the phases. Correlation is in this context how far

in the chain is a particle’s type related to another particle’s type. The measure of

the correlation is the correlation function C(x), which behaves like A exp(−x/ξ)

for large x. Here ξ is the correlation length of the system. At perfectly ordered

state ξ is equal to 0, and at critical points ξ is ∞. In this sense correlation length

is a measure of the order of the system. In case of scaling a system, one changes
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the correlation length and other parameters of the system by the scaling factor.

For example if one scales a system by b, the correlation length changes from ξ to

ξ/b. As one can see, the correlation lengths of the perfectly ordered states and

critical points are not affected by the scaling operations since ∞/b → ∞ and

0/b → 0. Also the parameters of the systems which characterize these states are

not affected by the scaling. If the parameters are K(α, β, γ, ...) after the scaling

one has also the same K for these ordered state and critical points. In other

words, fixed points characterize the ordered state points or critical points.

In my study, the renormalization group method is applied to the Liouville

operator of the system. This application is different than the renormalization

applications of Georgiev et al. and Hanney et al. They renormalized the matrix

product steady states of the ASEP with one type of particle. By giving correct

parameters both Hanney’s and Evan’s results are obtained. However whenever

symmetry of α1 and α2 is broken, very complicated RG flows are generated in the

six-dimensional parameter space. Work is still in progress for obtaining results

using this method.

3.4 Monte Carlo Method

Monte Carlo (MC) method can be used to obtain a realistic simulation of a system

according the dynamics of the system. Monte Carlo algorithm is simply letting

something happen randomly in conformity with the dynamics of a system. To

explain it in more detailed way, in MC algorithm one considers the rates of all

possible events in the system. The rate for any process to take place is then the

total rate

Ω =
∑

i

wi.

Therefore the next event may be taken to happen after a time ∆t = − ln(r)/Ω.

Here r is a uniform random variable. This will result in a Poisson random process

with rate Ω. Which event happens at that time is chosen again at random, with

probability proportional to those wi’s. This is the “MC importance sampling”

algorithm, which was used in the analysis.



Chapter 4

Results

In the work leading to the material in this thesis,

· analytical methods were studied,

· Mean Field (MF) theory phase diagrams were obtained,

· Monte Carlo (MC) method was used at certain special points in the phase

diagram.

· Renormalization Group (RG) method was applied to the model; but it’s

application on the problem was not complete.

The use of MF to obtain the approximate phase diagram and MC results will be

discussed in this chapter.

4.1 Mean Field Approximation

As was mentioned before, in the case when γ = δ one can treat ASEP with two

types of particles system as two independent one particle ASEP systems, which

are coupled at the two ends. Since one type of particle ASEP has the 3 phases-

low density (L), high density (H) and maximal current (M), the phases in the

16
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Figure 4.1: Phase diagram of ASEP with two types of particles as function of α2,
for the case α1 = γ1 = γ2 = δ = 1.

extended phase diagram may be labeled by the phases of two decoupled system.

The phases are thus labeled as MM, LL, HH, LH, ML, HL, LM. In naming the

phases, the first letter stands for the phase of the decoupled ASEP with first type

of particles and the second letter stands for the phase of second type of particles.

Fig.4.1 shows the phase diagram when α1 = γ1 = γ2 = δ = 1. Note that the

phases along the α2 = 1 line correspond to the α1 = α2 = 1 line in the phase

diagram found by Evans et al. in Fig. 2.6. As the inset in Fig.4.1 shows the

symmetry breaking starts in the LL phase. There is a critical point , which is the

endpoint of a line of first order transitions.

In case of densities the order of transitions between phases are also character-

ized by the order of phase transitions of one particle ASEP model. Therefore the

transition between low density phase and high density phase preserves its first or-

der character. When only one of the decoupled systems goes under the transition

from L to H or vice versa, the transition is first order but shows no hysteresis.

This is the case when there occurs a transition between LL and HL phases or LL

and LH phases. If both of the systems undergo the transition from L to H or vice
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versa, the transition is first order and also shows hysteresis. The reason behind

this is the formation of a metastable state due to the initial conditions. To apply

MF to a system, it has to be given initial densities. If the initial densities are not

consistent with how system has to be due to the α and β values, there occurs a

state which is achievable for these initial conditions but not when the parameters

are uniformly changed from values for which there is no symmetry breaking. For

example HL state, if one chooses the initial conditions which favors higher density

for second type of particles, system stays in LH density for a while. When both

stable and metastable states exist for certain value of parameters, MF implies

infinite life-time. But MC gives finite life-times for transitions between these two

states[3]. The line which indicates the where metastability starts when going

from β = 0.327 to β = 0 is also added to Fig.4.1. one obtains the diagram in

Fig. 4.2. To emphasize the first order transitions, in Fig. 4.3 only the hysteresis

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3
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HL

Figure 4.2: The phase diagram obtained through MF for β = β1 = β2 and
γ1 = γ2 = δ = 1. The line where metastability can be observed is also added to
the Fig. 4.1

curves are drawn for the values β ≤ 0.327.

For α = 1 = α2 = 1 the density symmetric phase ends at about point β = 0.33.

The spontaneous symmetry broken phase in the LL phase can be seen starting
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Figure 4.3: First order hysteresis curves for density. Hysteresis indicates the
double-valuedness of density for small values of β.

at that point. However in between the density symmetric phases and density

asymmetric phases there exists a tiny phase. This phase was first observed by

Evans et al. For α = 1, β width of this phase is shown in Fig. 4.4 . The phase

still exists while α is changing sufficiently away from 1. Taking the logarithm of

the β width and corresponding α values one observes linear dependence of these

quantities, as can be seen in Fig. 4.5. Mathematically speaking,

log(∆β) ∝ log(α) → ∆β ∝ αA.

This implies that the change of ∆β with α obeys a power law. Average value of

A is found to be 1.17 for right branch, −1.28 for the left branch of the graph.

In case of currents, the characterization of order of phase transition is different.

It no more preserves the second order character of current transitions in one type

of particle ASEP model. Now it can also be first order. The reason behind

this may be the jump in α values itself. As its written before in section 2.2

current value for low density state is given by the formula α(α − 1) and for

the high density state it is given by β(β − 1). Therefore no discontinuity in

current is expected along the transition line α = β. However, when we solve

the simultaneous equation for the two decoupled ASEP system, the solution for
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Figure 4.4: The tiny phase, where the symmetry starts to be broken but the
difference of the values of states are close to each other. ∆β indicates the β
width of the phase.

affective values of α itself has a jump along the transition. The graph containing

the discontinuities in the current can be seen in Fig.4.6.

In case when δ 6= γ one reaches a system which may no more be characterized

by two decoupled ASEP with one type of particles. As can be seen in Fig.4.7 for

the values δ is bigger than 1, the current values exceed the maximum value of

0.25. Taking γ = 1 but δ > 1, a particle no more sees empty sites and counter

particle sites as indistinguishable. Moreover, it favors the counter particles to the

empty sites. This effectively increases the rate at which particles move along the

chain.

The tiny phase also exists in this picture for certain values of δ as can be seen

in Fig.4.8.
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4.2 Monte Carlo Simulation

In the Monte Carlo part of the work, computations were done in order to find

the density profiles of the system for selected α and β values. Density profiles of

the system can be seen in the Fig. 4.9.
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Figure 4.9: Some density profiles of the phases as density vs site of the chain. The
order of the density profiles from left to right MM, ML, HL, LL for the bottom
line HL, LM and LL.



Chapter 5

Conclusion and Future Work

In this thesis, what we did was trying to understand this system via its phase

diagram. Mean Field approximation is used to find the phase diagram. Different

cross-sections of the system are taken in the six-dimensional space. The idea that

if the hopping rates γ1, γ1 are equal to the exchange rate δ the system ASEP with

two types of particles can be modeled as two decoupled ASEP with one type of

particle systems[3] is generalized to the α1 6= α2 case. Moreover, the new phase

picture of the δ 6= γ is also found. Monte Carlo simulation is used to reach the

density profiles of the phases.

As can be seen from the phase diagram of this model; the results are rich in

contrast to the simplicity of the model’s dynamics. The model gives a vast oppor-

tunity to investigate basic phenomena of the non-equilibrium systems. However,

the complexity of the results are challenging to interpret. For a more unified un-

derstanding, we will continue on with the Renormalization Group studies which

is already in progress.

24
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Appendix A

Computer Code

For the calculation of the case δ 6= γ, the following FORTRAN code is used:

double precision prs(7)

loop=1000000

prs(1)=1.0

prs(2)=1.0

prs(5)=1.

prs(6)=1.

prs(7)=1.5

open(3,file="recorddet")

do beta=0.33d0 , 0.34d0 , 0.0005d0

prs(3)=beta

prs(4)=beta

call mean(loop,prs)

enddo

stop

end

27
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subroutine mean(loop,prs)

implicit double precision (a-h,o-z)

dimension p1(1000),p2(1000),p0(1000),buf1(1000),buf2(1000)

dimension prs(7)

c write(*,*)"enter a1,a2,b1,b2,g1,g2: "

c read(*,*)(prs(i),i=1,6)

c prs(7)=1.0

c

c write(*,*)"enter loop no: "

c read(*,*)loop

n = 200

dt = 0.1

do i=1,n

p1(i)=0.8

p2(i)=0.1

p0(i)=1.0-p1(i)-p2(i)

buf1(i)=p1(i)

buf2(i)=p2(i)

enddo

do loopn=1,loop

do inner=1,n

do i=1,n-1

w10=dt*p1(i)*p0(i+1)*prs(5)

w12=dt*p1(i)*p2(i+1)*prs(7)

w02=dt*p0(i)*p2(i+1)*prs(6)

buf1(i)=buf1(i) -w10-w12

buf1(i+1)=buf1(i+1)+w10+w12
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buf2(i)=buf2(i) +w02+w12

buf2(i+1)=buf2(i+1)-w02-w12

enddo

buf1(1)=buf1(1)+dt*p0(1)*prs(1)

buf1(n)=buf1(n)-dt*p1(n)*prs(3)

buf2(1)=buf2(1)-dt*p2(1)*prs(4)

buf2(n)=buf2(n)+dt*p0(n)*prs(2)

dif=0.

do i=1,n

if(abs(p1(i)-buf1(i)) .gt. dif)dif=abs(p1(i)-buf1(i))

if(abs(p2(i)-buf2(i)) .gt. dif)dif=abs(p2(i)-buf2(i))

p1(i)=buf1(i)

p2(i)=buf2(i)

p0(i)=1.0-buf1(i)-buf2(i)

enddo

enddo

c if(mod(loopn,1+loop/20) .eq. 0)write(*,*)loopn," diff=",dif

if(dif .lt. 1e-8)goto 25

enddo

25 ro1=0.

ro2=0.

do i=1,n

ro1=ro1+p1(i)

ro2=ro2+p2(i)

enddo

write(3,*)prs(3),ro1/n,ro2/n,p0(1)*prs(1),p2(1)*prs(4)

write(*,*)"final diff=",dif," record: ",prs(3),ro1/n,ro2/n,

1 p0(1)*prs(1),p2(1)*prs(4)
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c open(1,file="probs")

c do i=1,n

c write(1,*)i,p1(i),p2(i),p1(i)-p2(n+1-i)

c enddo

return

end
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This following FORTRAN program is used to calculate the extended phase

diagram:

open(1,file="record_1.5")

alpha1 = 1.0

alpha2 = 1.5

write(1,*)"#R L alpha1 beta1 alpha2 beta2",

1 " J1 J2 d1 d2"

do i=200,10,-1

beta1 = 0.01*i

beta2 = beta1

call bseps(alpha1,beta1,alpha2,beta2,

1 currp,currm,densp,densm,iphase1,iphase2)

write(1,100)iphase1,iphase2,alpha1,beta1,alpha2,beta2,

1 currp,currm,densp,densm

100 format(2i2,8f10.3)

enddo

stop

end

subroutine bseps(alpha1,beta1,alpha2,beta2,

1 currp,currm,densp,densm,iphase1,iphase2)

densp1= 0.8

denspn= 0.8

densm1= 0.1

densmn= 0.1

alpha1e=alpha1

alpha2e=alpha2
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do i=1,1000

alpha1e=0.9*alpha1e +

1 0.1*alpha1*(1. - densp1 - densmn)/(1. - densp1)

alpha2e=0.9*alpha2e +

1 0.1*alpha2*(1. - denspn - densm1)/(1. - densm1)

call aseps(alpha1e,beta1,currp,densp,densp1,denspn,iphase1)

call aseps(alpha2e,beta2,currm,densm,densm1,densmn,iphase2)

if(i .gt. 90 .and. .false.)then

write(1,*)" ae beta curr dens dens1 densn phase"

write(1,200)alpha1e,beta1,currp,densp,densp1,denspn,iphase1

write(1,200)alpha2e,beta2,currm,densm,densm1,densmn,iphase2

200 format(f10.7,5f6.3,i4)

endif

enddo

c stop

return

end

subroutine aseps(alpha,beta,curr,dens,dens1,densn,iphase)

if(alpha .lt. 0.5 .and. beta .gt. alpha)then

c LD

iphase=1

curr= alpha*(1. - alpha)

dens= alpha

dens1= alpha

densn= alpha*(1. - alpha)/beta

return

endif

if(beta .lt. 0.5 .and. alpha .gt. beta)then
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c HD

iphase= 2

curr= beta*(1. - beta)

dens= 1.-beta

dens1= 1. - beta*(1.-beta)/alpha

densn= 1. - beta

return

endif

c MC

iphase= 3

curr= 0.25

dens= 0.5

dens1= 0.25/alpha

densn= 0.25/beta

return

end
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For the Monte Carlo simulation of density profiles the following FORTRAN

code is used:

dimension lat(1000),rate(1002),n_pos(1002),i_type(1002),params(7)

dimension iones(1000),itwos(1000)

write(*,*)"enter a1,a2,b1,b2,g1,g2: "

read(*,*)(params(i),i=1,6)

params(7)=1.0

write(*,*)"enter mcs: "

read(*,*)mmcs

n=200

m=n+2

num_1=0

num_2=0

do i=1,n

iones(i)=0

itwos(i)=0

lat(i)=0

rr=rand()

if(rr .lt. 0.25 )then

lat(i)=1

num_1=num_1+1

endif

if(rr .gt. 0.75 )then

lat(i)=2

num_2=num_2+1

c lat(i)=1

c num_1=n

c num_2=0

endif
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enddo

call fill(n,m,m_max,r_max,lat,rate,n_pos,i_type,params)

t=0.

open(2,file="vary")

n_stat=0

s_c12=0.

ss_c12=0.

do mcs=1,mmcs

i12=0

c1=0.

c12=0.

do loop=1,n*n

choice=rand()*r_max

call select(n,m,m_max,choice,lat,rate,n_pos,i_type,

1 num_1,num_2,jl1,jl2,jr1,jr2)

i12=i12+num_1-num_2

c1=c1+jl1*r_max

c12=c12+(jl1-jl2)*r_max

call fill(n,m,m_max,r_max,lat,rate,n_pos,i_type,params)

enddo

c if(i12 .ge. 0)then

n_stat=n_stat+1

do i=1,n

if(lat(i) .eq. 1)then

iones(i)=iones(i)+1
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else if(lat(i) .eq. 2)then

itwos(i)=itwos(i)+1

endif

enddo

c endif

c if(i12 .le. 0)then

c n_stat=n_stat+1

c do i=1,n

c if(lat(i) .eq. 1)then

c itwos(n-i+1)=itwos(n-i+1)+1

c else if(lat(i) .eq. 2)then

c iones(n-i+1)=iones(n-i+1)+1

c endif

c enddo

c endif

c n*n samples, density = total/n

d12=float(i12)/(n*n*n)

c one time unit ~ n/r_max; current = count/time

c1=c1/(n*n)

c12=c12/(n*n)

s_c12 =s_c12+abs(c12)

ss_c12=ss_c12+c12*c12

write(2,500)mcs,d12,c1,c12

500 format(i5,1p3e10.2)

enddo

open(1,file="stats")

aa=1.0/n_stat

do i=1,n

write(1,300)i,iones(i)*aa,itwos(i)*aa,

1 (iones(i)-itwos(n-i+1))*aa

300 format(i4,1p3e9.2)
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enddo

write(*,*)"dj_av: ",s_c12/mcs,

1 " sd: ",sqrt(ss_c12/mcs-(s_c12/mcs)**2)

write(1,*)"# dj_av: ",s_c12/mcs,

1 " sd: ",sqrt(ss_c12/mcs-(s_c12/mcs)**2)

write(1,400)(lat(i),i=1,n)

400 format("# ",100i1)

stop

end

subroutine fill(n,m,m_max,r_max,lat,rate,n_pos,i_type,params)

dimension lat(n),rate(m),n_pos(m),i_type(m),params(7)

m_max=0

r_max=0.

if(lat(1) .eq. 0)then

call push(m,1,1,m_max,r_max,rate,n_pos,i_type,params)

else if(lat(1) .eq. 2)then

call push(m,1,4,m_max,r_max,rate,n_pos,i_type,params)

endif

if(lat(n) .eq. 0)then

call push(m,n,2,m_max,r_max,rate,n_pos,i_type,params)

else if(lat(n) .eq. 1)then

call push(m,n,3,m_max,r_max,rate,n_pos,i_type,params)

endif

do i=1,n-1

ii=i
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if(lat(i) .eq. 0 .and. lat(i+1) .eq. 2)then

call push(m,ii,6,m_max,r_max,rate,n_pos,i_type,params)

else if(lat(i) .eq. 1 .and. lat(i+1) .eq. 2)then

call push(m,ii,7,m_max,r_max,rate,n_pos,i_type,params)

else if(lat(i) .eq. 1 .and. lat(i+1) .eq. 0)then

call push(m,ii,5,m_max,r_max,rate,n_pos,i_type,params)

endif

enddo

return

end

subroutine push(m,i,k,m_max,r_max,rate,n_pos,i_type,params)

dimension rate(m),n_pos(m),i_type(m),params(7)

m_max=m_max+1

r_max=r_max+params(k)

rate(m_max)=r_max

n_pos(m_max)=i

i_type(m_max)=k

c write(*,200)m_max,r_max,i,k

200 format(i3,f5.1,2i3)

return

end

subroutine select(n,m,m_max,choice,lat,rate,n_pos,i_type,

1 num_1,num_2,jl1,jl2,jr1,jr2)

dimension lat(n),rate(m),n_pos(m),i_type(m)

jl1=0

jl2=0

jr1=0

jr2=0



APPENDIX A. COMPUTER CODE 39

do i=1,m_max

if(rate(i) .ge. choice) exit

enddo

k=n_pos(i)

if(i_type(i) .gt. 4)then

itemp=lat(k)

lat(k)=lat(k+1)

lat(k+1)=itemp

else if(i_type(i) .eq. 1)then

lat(1)=1

num_1=num_1+1

jl1=1

else if(i_type(i) .eq. 2)then

lat(n)=2

num_2=num_2+1

jr2=1

else if(i_type(i) .eq. 3)then

lat(n)=0

num_1=num_1-1

jr1=1

else if(i_type(i) .eq. 4)then

lat(1)=0

num_2=num_2-1

jl2=1

endif

c write(*,*)(" ",ii=1,14+k),"-"

c write(*,100)choice,i,k,i_type(i),(lat(ii),ii=1,n)

100 format(f5.2,2i4,i2," ",100i1)

return

end


