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Abstract—Accurate localization of mobile devices based on
camera-acquired visual media information usually requires a
search over a very large GPS-referenced image database collected
from social sharing websites like Flickr or services such as Google
Street View. This paper proposes a new method for reliable
estimation of the actual query camera location by optimally
utilizing structure from motion (SFM) for three-dimensional (3-D)
camera position reconstruction, and introducing a new approach
for applying a linear transformation between two different 3-D
Cartesian coordinate systems. Since the success of SFM hinges
on effectively selecting among the multiple retrieved images, we
propose an optimization framework to do this using the criterion
of the highest intraclass similarity among images returned from
retrieval pipeline to increase SFM convergence rate. The selected
images along with the query are then used to reconstruct a
3-D scene and find the relative camera positions by employing
SFM. In the last processing step, an effective camera coordinate
transformation algorithm is introduced to estimate the query’s geo-
tag. The influence of the number of images involved in SFM on the
ultimate position error is investigated by examining the use of three
and four dataset images with different solution for calculating the
query world coordinates. We have evaluated our proposed method
on query images with known accurate ground truth. Experimental
results are presented to demonstrate that our method outperforms
other reported methods in terms of average error.

Index Terms—Image-based localization, BOF, retrieval, GPS
uncertainty.

I. INTRODUCTION

F INDING the accurate location of an image generated by a
mobile device is crucial in a variety of different applications

such as navigation, location-based services, and augmented re-
ality. It also improves the quality of travel experience for online
users who are searching for landmarks.

Even though traditional approaches that utilize the GPS data
or distance from cellular towers are useful for performing
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Fig. 1. Sample image with the pure GPS track extracted from a smart phone
in downtown Chicago is shown in red and the actual track shown in blue.

this task, the adequacy of this approach depends mostly on
satisfactory access to the satellite signal. In practice, GPS infor-
mation is usually reliable when the device has a clear view of
the sky to get the signal from at least four satellites. However, it
is difficult to obtain accurate localization using a GPS-equipped
device carried by a pedestrian who is moving on a street side-
walk in a dense urban area such as downtown Chicago. For
instance, consider the raw GPS track extracted from a smart
phone in the downtown area of Chicago shown in red and the
actual track shown in blue in Fig. 1. It is evident that the level
of localization error may place the pedestrian on a completely
different street. It has been observed that, the GPS errors of a
mobile phone are usually no greater than 100 meters [1]. Such
a large error may not be acceptable in many applications. As a
result, significant research effort has been directed at finding so-
lutions to the problem of improved localization. This effort has
sought to exploit other information from the sensors available
in mobile devices [2], [3]. A large part of this effort has focused
on using the camera-acquired visual media information that is
available in any smart phone or mobile device. It relies on the
notion of getting an accurate position of a query image generated
by the camera by searching over a very large GPS-referenced
image dataset collected from social sharing websites like Flickr
[4] or services such as Google Street View (GSV) using image
retrieval methods. The search space can also be limited by ex-
tracting and leveraging additional media information from other
sensors available in a device to improve the results.
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Existing image retrieval approaches have turned out to be suc-
cessful in finding correct matches especially when images have
adequate textures. The key tools employed in these methods are
features such as SIFT [5], SURF [6], BRISK [7] and FAST [8].
Although such features are powerful, the performance degrades
with increasing size of the database, reducing the chances of
finding a correct match. This can be improved by having prior
information about the approximate coordinates which can be
used to narrow the search space down. For example, the database
is split into overlapping regions for the search in [9] or available
sensor data such as GPS, Compass, and Estimated Positional
Error (EPE), are utilized to narrow down the search space
[10], [11].

Finding the best match is not the last step since it often returns
multiple images along with their GPS positions. In fact, we
can use those positions as our rough estimated position for
the query that gives us a middle-of-the-street level accuracy.
The resulting position error can be large if the query camera
position is actually on the sidewalk. To achieve higher accuracy
alternate methods such as those utilizing similarity matrix from
two query-matching images (trifocals tensor) can be applied as
done in [12]–[14]. Those methods utilize Structure From Motion
(SFM) to estimate three camera positions: two matching-images
camera positions and the query camera position.

Our contribution in this work is as follows: We propose a
method to optimally select a subset of images from retrieved
candidates with the highest intra-class similarity and distinct
GPS tags to increase the convergence rate of SFM. In order
to consider query features, we introduced a special similarity
measure that takes into account those features common to all
pairs of selected images which are shared with the query as
well. Upon attaining convergence of SFM, the coordinate infor-
mation obtained is fed to a new method introduced to find the
transformation between camera-relative coordinate system and
GPS coordinate system by adapting a cost function between two
coordinate systems to control the transformation error below an
acceptable level. In this context we use SFM to estimate rela-
tive camera positions for preferably four dataset and the query
images. Since four relevant images may not be available for
all samples, we have also examined using three retrieved im-
ages for implementing SFM. Since coordinate transformation is
not possible for recovering three unknown parameters for three
corresponding coordinates of images, we have reduced position
vector to 2D using PCA as is used in [15]. Later a heuristic
is used to estimate the query’s z value of the position vector.
All scenarios are experimentally compared in terms of accuracy
showing significant improvement over reference reported meth-
ods. We have shown our proposed method can be employed to
compensate localization error in available mobile devices.

The rest of the paper is organized as follows. In the next
section related work on localization based on image retrieval
techniques is described. Then, in Section III the algorithm used
for the image retrieval pipeline is covered and the procedure
for both pure retrieval and in combination with considering
maximum GPS position error are presented. Section IV demon-
strates our proposed method for query tag estimation based on
SFM and followed by a specific 3D coordinate transformation.
Sections V and VI show how our proposed method improves

the performance in terms of accuracy when compared with other
available methods.

II. REVIEW OF RELATED WORK

Recent computer vision advances have made it possible to
search for similar image in social sharing websites like Flickr or
user generated datasets with sufficient reliability and for many
applications [3], [16], [17]. A noteworthy application of this
capability is searching a massive number of Geo-tagged images
on the internet to find the location of a query image [3], [18]–
[20]. A variety of methods have been proposed to do this. For
instance, Reitmayr and Drummond [21] utilized an edge-based
method to get street facades based on a 3-dimensional method.

The most efficient and accurate approach uses Content-Based
Image Retrieval (CBIR) techniques relying on features such as
SIFT and its variants. Some effective approaches frequently
used in CBIR systems are Bag of Features (BOF) [22]–[24],
Fisher Vector (FV) [25], [26] and vector of locally aggregated
descriptors(VLAD) [27]. In these methods all feature descrip-
tors are quantized to visual words with a clustering algorithm
like K-Means. An image is represented by a histogram of a
number of visual words and each image in a database has its
own histogram. For finding the best match, the histogram of a
query image is compared with all histograms in database.

There are different measures for finding similarity such as
the inner product of two BOF vectors or specific distance func-
tions [28], but a widely used procedure is the inverted file [29].
Some researchers have focused on clustering to find an efficient
quantization technique for assigning each feature descriptor to
a visual word. For example, Soft Assignment (SA) instead of
Hard Assignment (HA) has been proposed to compensate for
incorrect assignment of a sample feature [30]. Others have tried
to select more distinctive features [31]–[34] while others have
evaluated how repetitive structures influence the ultimate result
[35], [36]. This is not necessarily the last step in the retrieval.
Most of the methods select more than one candidate for a match
in this step. An additional step, called homography verification
performed by applying algorithm such as RANSAC [37] and its
variants, [38], [39] are used to re-rank candidates. In fact, this
step compensates for the weakness of image retrieval schemes
based on BOF where the geometric information of images is
ignored. Some other studies such as [2], [3] have proposed a
method of using inertial sensor information and BOF to get
more accurate results. Specifically in [3] prior knowledge of the
approximate location from the cell towers is used to limit the
search to the cellular area. In [10] and [11], uncertainty in the
GPS location estimate is extracted and used to limit the search
space. These approaches seek to exploit the available informa-
tion to narrow down the search space. As a result, the accuracy
and success rate of the retrieval is higher. This means more rel-
evant candidate images are going to be returned in the retrieval
step.

After a small set of best-matching images has been collected
for a given query image, the next task is to estimate the query’s
location. Multi-view Structure From Motion (SFM) for the re-
construction of 3D camera poses from 2D-2D correspondences,
or from 3D-2D correspondences can be used in this case [40].
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Recent state-of-the-art approaches in this field such as [12],
[13], and [15], find a similarity matrix from two query-matching
images. These approaches utilize SFM to estimate three cam-
era positions: two positions of two cameras corresponding to
the two best-matching images and the query camera position,
yielding a triplet of reconstructed 3D camera positions. Numer-
ous triplets are typically generated (multiple matches with the
query) and are subsequently processed by a least-squares fitting
routine in order to compute the similarity matrix and generate
a unique estimate of the query’s location. They also reduce the
3D position vectors to 2D position vectors by dimensionality
reduction techniques such as PCA. Based on their results the
ultimate error range is still high which makes its use difficult
in navigation. For example, we noticed that for some queries
in different intersections, the estimated positions are found to
be on the opposite side of the street from the actual position
which makes navigation hard. A key limitation of currently used
methods is using multiple SFM processing on pair of images
returned by the retrieval pipeline along with the query which
is computationally expensive. Our focus is using a single SFM
on a subset of images from the retrieval with the highest simi-
larity. So we formulate the image selection as an optimization
problem. Then we proposed a method to directly find camera
coordinate transformation parameters between camera relative
centers from SFM to real world coordinates as described in the
following sections.

III. PROBLEM FORMULATION FOR OPTIMAL SELECTION OF

IMAGES FOR SFM

We now consider the framework for formulating the prob-
lem of optimally selecting a subset of retrieved images as input
to SFM process. We first briefly describe the method we use
for image retrieval to obtain N matching images from which a
trimmed subset of k images is optimally selected for SFM im-
plementation. TypicallyN may range between 10 to 50 whereas
the choice of k is either three or four.

A. Retrieval of N Images

We first obtain N images that best match a query image.
For this purpose several image retrieval methods may be em-
ployed. The main component of most image retrieval methods
is the Bag Of Features (BOF) technique. In this approach, each
image is represented with a vector containing the occurrence
frequency of features (visual words). There are a variety of fea-
tures such as SIFT, SURF or a normalized version of the SIFT
called RootSIFT that have shown better performance. The query
vector should be compared with all dataset vectors to find the
most similar image. It is important to mention that the goal of
our research is primarily on finding a better estimate of query
position extracted from multiple matches from the dataset, and,
not on improving the image retrieval engine itself. Any suitable
method with good retrieval performance can be used for this
stage.

As mentioned earlier, images can be represented by vi-
sual words, but the importance of the words varies. This im-
portance is captured in the assigned weights using the Term

Frequency-Inverse Document Frequency (TF-IDF). The weight
of the visual word α in image i is

tα,i = fαi × log
(
Ndb

Nα

)
(1)

where fαi is the frequency of term α in image i, Ndb is the
number of images in the dataset and Nα is number of images
containing visual word α. For each visual word α, note that the
Inverse Document Frequency (IDF ) is defined as

IDF (α) = log(Ndb/Nα ) (2)

The value of IDF depends on multiple parameters such as
the number of images in the dataset, the number of visual words,
and the average number of features in images. As can be inferred
more distinctive visual words receive higher weights. Let η be
the number of visual words and Fq = [fq1 f

q
2 . . . f

q
η ] and Fdb =

[fdb1 fdb2 . . . fdbη ] be the frequency of visual words α1 , α2 , ..., αη
for query and a dataset image, respectively. The jth, element Fq
or Fdb are the number of times feature descriptors of the query
and a dataset image have been assigned to visual word αj . The
similarity between query and a given dataset image (vectors)
can be computed by (3).

SIM(Iq , Idb) =
∑η

α=1 IDF (α) min(fqα , f
db
α )

(
∑η

α=1 IDF (α)fqα )(
∑η

α=1 IDF (α)fdbα )
(3)

The above similarity measure is different from the commonly
used Cosine similarity measure. It is experimentally observed
that it produces more robust results than the Cosine similarity
measure. Our procedure for implementation of the basic image
retrieval engine consists of the following steps:

1) Find the RootSIFT features for all images in a database.
2) Cluster features using the Approximate Nearest Neighbor

algorithm (ANN) into η clusters (visual words).
3) Find the closest visual word (cluster center) for each fea-

ture in database images and represent each image by a
vector showing the frequency of each visual word.

4) Apply TF-IDF using (1) and normalize the vectors.
5) Find the best N matches based on the score obtained for

the dataset image using distance criteria.
6) Re-rankN closest images based on homography verifica-

tion by applying RANSAC.
In order to achieve higher recall we used the Adaptive As-

signment algorithm [36]. This algorithm, which assigns different
number of visual words to different features improves recall. It
is worth mentioning that any method could be used for the image
retrieval pipeline. We can further improve the result by consid-
ering prior knowledge of the location from GPS as described in
Section III-B.

B. Considering Prior Knowledge of Location From GPS

As mentioned in previous sections, the result of retrieval
should be fed to our proposed method for query geo-tag es-
timation. One option to achieve a better result is taking prior
knowledge from the query position into account. Some reported
studies have used noisy location data. For example in [9] coarse
location data from cellular tower and triangulation are used to
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Algorithm 1: Image Candidate Selection Algorithm

1: Input: Set of Ndb images S = {Idb1 , Idb2 , . . . , IdbNd b
},

Rmax, Iq
2: Output: S̃ which is the set of all images in the region

limited by Rmax

3: for Idbi ∈ S do
4: if DGeo(Idbi , Iq ) < Rmax then
5: add Idbi to S̃
6: end if
7: end for
8: Output: find S̃ as the set of image matching candidates

for the query image Iq

limit the search region. Another option for narrowing down the
search space is considering maximum error of the GPS which
is denoted here as Rmax. Suppose the GPS coordinates of two
images I1 and I2 are given by (θ1 , φ1) and (θ2 , φ2) where θi
and φi are the latitude and the longitude for image i. The Geo-
distance between locations of these two images is computed
by (4).

DGeo(I1 , I2) = cos−1(sin(θ1) sin(θ2) + cos(θ1)

cos(θ2) cos(φ2 − φ1)) ×Re (4)

where Re is the radius of the earth that is approximately 6371
kilometers. The search space can be limited to those images
located in a circle with the radius of Rmax. The procedure to
limit the search space for the query image Iq is described in
Algorithm 1.

For the San Francisco dataset the maximum reported error is
300 meters. Based on our experience in Chicago, the error in the
position estimated by a smart phone such as iPhone 5, iPhone
6, Nexus 6, or Galaxy S6, is typically less than 100 meters. This
is because those phones benefit from other sources of data such
as cellular towers and inertial measurement unit (IMU). The
search space therefore turns out to be smaller for real-world
applications.

The final common step in most of image retrieval algorithms
is the application of geometry verification based on RANSAC
to re-rank the limited number of candidate based on the number
of inlier features. This step mitigates the weakness of systems
based on BOF which ignore the geometric information of fea-
tures. To go forward and estimate the actual position of the
query, more than one image is needed. This is because esti-
mating the camera position by using just a single image and
considering fundamental matrix between the query and the best
match, even when models for both cameras are available, would
not be accurate enough for our purpose. For our proposed 3D
coordinate transformation method at least three candidates with
distinct GPS tags are required. To acquire candidates that are
most similar to a query, criteria such as the number of inliers
between the query features and the candidate features can be
considered for the re-ranking and removing irrelevant candi-
dates. Along with this criterion, another suitably devised step
should be applied to ensure return of the best candidate images
with distinct GPS tags and highest intra-class similarity. The

procedure for optimally selecting candidates is discussed in the
next sub-section.

C. Optimum Selection Among the Retrieved Images

Suppose N images with location coordinates gi, i = 1, ..., N
are selected after re-ranking. We wish to select k images out
of N , where k is preferably four. If that is infeasible, then k
equal to three images may be selected if possible. A simple way
to select k images is to find images with distinct GPS tag and
select k images with the highest number of inliers. Such a set
of images is not necessarily the best choice for SFM processing
since the selection relies only on the number of pairwise matches
(inliers) between the query and all candidates while the number
of matched features between each pair of candidate images is
not taken into account.

It is important to note that a set of candidate images is the best
choice when each member of this set shares the highest num-
ber of common features with the other members. In our case,
while multiple images per location exist, we seek a method that
optimally selects the set so that each member of the set has
the highest consensus on common features with other mem-
bers as well as with the query image. The solution is facilitated
by defining a pairwise dissimilarity measure, wij , between dis-
tinct image i and j. An undirected graph G = (V,E,w) with
vertices V = 1, 2, ..., N corresponding to image I1 , I2 , ..., IN
with location g1 , g2 , ..., gN , the set E of edges, and the set w of
weights can then be created. By this definition, the more similar
images will have the lower wij . Now the problem is to find a
subset G� = (V �,E� , w�), V � ⊂ V , E� ⊂ E, with k vertices,
k < N , that minimize the total weights:

V k� = argmin
V k ⊂V

∑
i,j∈V k

gi �=gj
i �=j

wij (5)

HereV can be partitioned into clusters with distinct GPS-tags.
We now devise a solution to the problem of optimal selection of
k images using the framework just described.

IV. IMPLEMENTING SOLUTION TO OPTIMAL IMAGE SELECTION

FOR SFM

The problem of finding an optimal subset from a set has been
studied extensively during last years [41], [42]. Since there likely
to be a chance of multiple images per location, the algorithm
should only select one image per location. We therefore employ
the General Minimum Clique Problem (GMCP) to select one
image in each cluster containing images with identical GPS-
tags. In the following subsection we describe how our problem
is formulated and solved by GMCP.

A. Candidates Selection by GMCP

In order to formulate and solve our optimal selection prob-
lem using GMCP, we start with N best retrieved images with
world coordinates (GPS-tag) gj , j ∈ {1, ..., N}, not necessarily
distinct. Let h be the total number of distinct or unique location
coordinates. The N candidates are then grouped into clusters
{V1 , . . . Vh}, h ≤ N with an identical GPS tag. So an arbitrary
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Fig. 2. Candidate selection by GMCP. Images with similar GPS-tags are placed to the same cluster. For cluster V1 , the number of inliers between each member
and the query is shown in red. For each cluster only one image is returned by GMCP and is shown with a green check mark (edge weights are not shown in this
figure). Note that for the cluster V1 , in our approach the two images with higher number of inliers (54 and 51) were not selected unlike the scenario in which the
maximum number of inliers is the only criteria for image selection in each location.

cluster Vr , 1 ≤ r ≤ h contains different number of images as-
sociated with world coordinate gr . With this partition of images,
some clusters may contain only a single image meaning that the
retrieval returned only one image for that location. Also h is
usually larger than k (k is preferably 4) which exceeds our need
of images for the next step. One possible solution is to keep first
k = 4 clusters and find all images with the highest similarity. We
choose to keep more clusters and then select only k images with
the highest score from the result of GMCP. In order to solve our
problem, for each member of all clusters, a similarity measure
between image i ∈ Vx and j ∈ Vy where x �= y should be cal-
culated. The number of inliers between a pair of images derived
from geometry verification is a strong indicator of similarity.
In the last steps, we only found the number of inliers between
the query and limited number of candidate images. Applying
geometry verification between each pair of candidates would
be practically infeasible since it would require an unacceptable
amount of time. In order to avoid this time complexity we pro-
pose the use of vectors containing frequency of visual words of
images as defined in Section III. It is also important to incorpo-
rate the query visual words in computing the similarity between
two images. This is because images selected in this stage along
with the query should be fed to the SFM pipeline. So a desirable
similarity measure should take into account those visual words
that are common to two images as well as to the query image.
We therefore introduce a query-contextualized image similar-
ity measure. Suppose the vector of visual words for image I
is represented by FI = {fI1 , f I2 , ..., f Iη }. In order to incorporate
query visual words in computing similarity, the indices of non-
zero visual words of the query are extracted and represented by
Iqnz = {u1 , ..., ud} where d is the number of non-zero visual
words. We define the similarity between any pair of images i
and j by (6):

ψij =
d∑

k=1

Δ(fiuk )Δ(fjuk )/

(
d∑

k=1

Δ2(fiuk )

)1/2

×
(

d∑
k=1

Δ2(fjuk )

)1/2

(6)

where, for x ∈ R,

Δ(x) =

{
1 if x �= 0
0 otherwise

(7)

Since Δ2(x) = Δ(x) the denominator in (6) can be reduced to

(
d∑

k=1

Δ(fiuk )
d∑

k=1

Δ(fjuk )

)1/2

(8)

This measure calculates the similarity between two images while
taking into account the non-zero features of the query. In the next
step, all selected images along with the query image should
be fed to SFM step. The complexity of computing (6) is low
since vectors are already available and summation is applied
for the non-zero features of the query. A convenient measure of
dissimilarity between image i and j can be defined by (9).

wij = 1 − ψij (9)

The next step is to find the subgraphG� = (V �,E� , w�) with
nodes V � = {v�1 , ..., v�h} ⊂ V where only one node is selected
from each cluster, for instance v�1 from V1 and v�h from Vh , and
subset of edges E� ⊂ E that minimizes the total dissimilarity
that for a feasible solution is:

TDissimilarity (V �) =
h∑

m=1

h∑
l=m+1

wV � (m )V � (l) (10)

Fig. 2 shows the process of clustering images with only four
clusters where the costs of edges are not shown. For the mem-
bers of cluster one, V1 , the number of inliers between the query
and each member is shown in red. In this case, clusters contain
different numbers of images. The result of GMCP is shown with
green check marks. As shown in cluster V1 , an image with 48
inliers with the query is selected as a best candidate. Note that
for the cluster V1 , the two images with a higher number of inliers
(54 and 51) were not selected by our proposed method based on
GMCP. This is different from the scenario in which the maxi-
mum number of inliers is the only criteria for image selection
in each location. Without use of GMCP, the candidate selected
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Fig. 3. Proposed pipeline for image-based localization (using four matching images from dataset).

from the cluster V1 is the image with 54 inliers. We compare the
SFM convergence rate in Section VI for both methods.

B. Generalized Minimum Clique Problem (GMCP)

Generalized Minimum Clique Problem (GMCP) can be used
when the costs of edges are non-negative and graph is |K|-
partite complete. Unlike a minimum clique problem, GMCP
substitutes nodes with cluster of nodes. In this problem nodes
of a given graph are partitioned into disjoint clusters. The goal
is to find a subgraph with minimum cost while selecting only
one node from each cluster. Each cluster furnishes only one of
its nodes to the subgraph. This algorithm has been used recently
in Computer Vision for multi-object tracking [43]. Suppose we
are given a graph G = (V,E,w) with nodes V = {v1 , ..., vN }
and these N nodes are grouped into h sets of nodes called
clusters V1 , V2 , ..., Vh . Note that V = V1 ∪ V2 ∪ ... ∪ Vh and
Vx ∩ Vy = ∅ for all x, y ∈ {1, ..., h}where h ∈ Z : 1 ≤ h ≤ N
and x �= y. As mentioned earlier, a cost wij is assigned to the
edge between nodes i ∈ Vx and j ∈ Vy , for x �= y. Now the
objective is to find a subgraph G� = (V �,E� , w�) with nodes
V � = {v�1 , ..., v�h} ⊂ V which is composed of only one node
from each cluster together with associated subset of edgesE� ⊂
E that is minimized the total edge cost. For such a problem
GMCP can find a feasible solution with minimum cost which
is in fact the total weights of all edges in E� . So based on the
formulation of our problem in Section IV-A, GMCP can return
the subset with highest intra-cluster similarity which leads to a
higher convergence rate in the SFM step. In the next section we
discus how the selected candidate images are used to estimate
the query camera position.

V. QUERY CAMERA POSITION ESTIMATION

A. Estimate Query Location by Four Dataset Images

The image retrieval process selects multiple matching im-
ages for a specific query. Each of the matching images has a

known GPS tag which is used in our novel procedure for es-
timating the query camera’s location. The proposed method is
illustrated in Fig. 3. A key concept in our approach for query
GPS tag estimation is the selection of a subset of images with
the highest inter-class similarity using GMCP as described in
IV-A and then obtaining a 3D − 3D coordinate transforma-
tion from one 3D coordinate system (eg. camera centers in
camera 3D space as reconstructed from multi-view SFM) to
another 3D coordinate system (eg. GPS tags in absolute world
3D Cartesian space for the same cameras). Fig. 4 illustrates the
concept with four cameras (images), with centers C1 , C2 , C3 ,
and C4 , using four images obtained in the previous step, with
the query camera as the fifth camera with center atC5 .C1 toC5
represent camera 3D center coordinates which have been recon-
structed by multi-view SFM. We use the VisualSFM package
[44] for this task and extract the coordinates C1 to C5 based
on four matching images (dataset images) for the given query
image. The details of camera center localization with SFM are
as follows. Assume that for a given query image Iq a set of
h images, T =

{
Iv�1 , Iv�2 , . . . , Iv�h

}
h >= 4 is returned by the

GMCP. Here Iv�1 is image corresponding to node v�1 . The corre-
sponding GPS tags for those h images are denoted with the set
of locations L =

{
Pv�1 , Pv�2 , . . . , Pv�h

}
.

The set {Iv�1 , Iv�2 , Iv�3 , Iv�4 , Iq} should then be processed with
VisualSFM. Upon convergence to five camera center locations,
C1 , ..., C5 , the quintuplet C = {C1 , .., C5} is used to obtain
absolute world coordinate locations. If fewer than five relative
camera centers are returned, SFM does not converge. It is worth
mentioning that there would be a possibility to re-run the process
using three best candidates as described in Section V-B.

In the following, without loss of generality, we have adopted
the convention that C5 in C corresponds to the camera center
location for query image Iq . Locations C1 , ..., C4 correspond to
the cameras for the matching dataset images. Each camera center
location in C is specified with 3D Cartesian coordinates in
camera referenced space. Before computing the transformation
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Fig. 4. Transformation from camera-referenced 3D coordinate system based
on SFM to real world-referenced 3D Cartesian location using four dataset
images.

the GPS tag of dataset images should be converted to Cartesian
coordinates. The conversion equations are as follows. Assuming
the GPS tag contains latitude and longitude pair (θ, φ), the
coordinates x, y, z are computed by:

x = Re cos(θ) cos(φ)

y = Re cos(θ) sin(φ)

z = Re sin(θ) (11)

where Re is the radius of Earth. Suppose the GPS tags for the
four dataset images used in SFM are represented as P1 , . . . , P4
in Cartesian coordinates. Algorithm 2 is used for deriving the
transformation from camera-referenced to absolute reference
coordinates. It uses the values for the matching dataset images,
P1 to P4 , and their relative locations C1 to C4 derived from
SFM.

Two final steps are applied after Algorithm 2:
1) compute query’s location P5 (GPS tag in Cartesian coor-

dinates) as P5 = t0 + sRC5 .
and
2) convert P5 back to GPS latitude/longitude gIq .
In step 2 of algorithm 2, pointsC1 toC4 can be considered as

points in the left coordinate system. This is a 3D Cartesian
coordinate system for all reconstructed camera centers with
origin atC1 . We label these as yl,i with i = 1 to 4. Locations P1
to P4 can be considered as points in the right coordinate system.

Algorithm 2: Camera Referenced Coordinate System to
World Coordinate System Transformation

1: Input: Camera center coordinates C1 , ..., C4 from
quintuplet C and their corresponding GPS tags in 3D
spherical coordinates

2: Convert GPS tags Pv�1 to Pv�4 for dataset images Iv�1 to
Iv�4 to 3D Cartesian coordinates P1 to P4 by (11)

3: Use C1 to C4 and P1 to P4 as inputs in computing the
rotation matrix R, translation vector t0 , and scaler s.

4: Compute the residual error evaluated for the current
values of R, t0 , and s. If the error is less than a desired
threshold, the localization error is acceptable.

5: Output: Matrix R, column vectors t0 and s, defining
the linear transformation from the camera referenced
coordinate system to the world coordinate system.

This is a 3D Cartesian coordinate system representing the GPS
tags for the same cameras. We label these as yr,i with i = 1 to
4. The transformation we seek, from the left to right coordinate
systems, is given by:

yr = sRyl + t0 (12)

where s ∈ R is a scale factor, t0 ∈ R3 is the translational offset,
and R ∈ R3×3 is a rotation matrix applied to 3 × 1 column
vector yl .

Because of measurement errors, we are unlikely to find a scale
factor, a translation vector, and a rotation matrix such that the
transformation equation above is satisfied for each point exactly.
Instead there will be a residual error given by:

ei = yr,i − sRyl,i − t0 (13)

For general coordinate transformation problem and two sets
of k points in left and right, the problem can be formulated as a
Least Squares problem. The objective is to find a match matrix or
correspondences m which represents the corresponding points
in the left and right coordinates and transformation parameters
R, s, t0 which minimize mapping error from one set of points
yl onto another set of points yr .

(t�0 , s
� , R� ,m�) = argmin

t0 ,s,R,m

n∑
i=1

n∑
j=1

mij‖yr,i − sRyl,j − t0‖2

(14)

In our application we know the GPS-tags of all images (for
example four images) in dataset which are fed to SFM. Upon
convergence of SFM, the camera centers corresponding to those
four images but in camera referenced coordinate system can be
extracted. Therefore correspondences are known from left to
right systems which obviates the need to keep match matrix in
(14). So we have:

(t�0 , s
� , R�) = argmin

t0 ,s,R

n∑
i=1

‖yr,i − sRyl,i − t0‖2 (15)

In our method we ideally use four (or three if four is infeasible)
corresponding points. Each point has three variables. Therefore
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more than eight equations are available which makes it feasible
to find the transformation parameters with a closed form method
described in [45] inO(n) time. So we directly calculateR, s, t0
as shown below. The first step according to [45] is computing
the centriod of yl and yr .

ȳl =
1
n

n∑
i=1

yl,i ȳr =
1
n

n∑
i=1

yr,i (16)

Then points should be shifted with respect to the centroids:

ýl,i = yl,i − ȳl ´yr,i = yr,i − ȳr (17)

Now by using ýl,i and ´yr,i in the error ei we have:

ei = ´yr,i − sRýl,i − t́0 (18)

t́0 = t0 − ȳr + sRȳl (19)

The square of error in (15) can be minimized when t́0 is equal
to zero. This yields

t0 = ȳr − sRȳl (20)

Now for finding the translation, t0 , s and R should be com-
puted. From [45] s can be computed as follows:

s =

√√√√ n∑
i=1

‖ ´yr,i‖2/
n∑
i=1

‖ýl,i‖2 (21)

Now R can be calculated using the steps below. First compute
M :

M =
n∑
i=1

´yr,i(ýl,i)ᵀ (22)

which is a 3 × 3 matrix. Then compute B = (MᵀM) and find
the eigenvalues λ1 , λ2 , λ3 and eigenvectors v̂1 , v̂2 , v̂3 and ex-
press B using eigen-decomposition as follows:

B = λ1 v̂1 v̂1
ᵀ + λ2 v̂2 v̂2

ᵀ + λ3 v̂3 v̂3
ᵀ (23)

R = M

(
1√
λ1
v̂1 v̂1

ᵀ +
1√
λ2
v̂2 v̂2

ᵀ +
1√
λ3
v̂3 v̂3

ᵀ
)

(24)

By substituting s and R from (21) and (24) into (20), the trans-
lation vector, t0 can be computed. Now each point from left
coordinate including the query point can be transformed to right
side by:

yr = sRyl + t0 (25)

The total residual error (ET otal) resulting from the transfor-
mation is equal to

ET otal =
n∑
i=1

‖ei‖2 (26)

We describe the result and the related error range for some
samples in Section VI. Notice that [15] and [13] utilized multiple
estimates of the query position derived from multiple running
of SFM. Then an optimization approach (Random Walk) is
employed to estimate query location. In order to avoid time
complexity of multiple SFM, our proposed method runs SFM
only once to compute the coordinate transformation parameters

as mentioned above. Since four relevant images with distinct
GPS-tags may not always be available for all queries, we have
also examined the use of only three matching images. In order
to adapt algorithm 2 to three dataset images, two methods have
been proposed as described below.

B. Estimate Query Location Using Three Dataset Images

Four relevant images may not be found in every case. We
therefore seek to recover the query GPS-tag using a smaller
number of images. Until now we considered the use of four
images since three unknown coordinate variables should be de-
termined. In general for computing transformation parameters
between m-dimensional vectors using the method described
above,m+ 1 corresponding points are required. So if three im-
ages are used, only two unknown coordinates such as x and y
can be recovered. The advantage of this approach is that it can
be applied to more query images since some of them do not
have four relevant candidates with distinct GPS-tags. Although
finding the transformation between the camera coordinate sys-
tem and the real-world system in Cartesian coordinate is almost
the same for four or three images, transfer from Cartesian co-
ordinates to GPS tag (Lat, Long) is not possible without having
corresponding 3D position vectors. To address that, we propose
two different methods described below.

1) Finding Third Component by Averaging z: Since z values
would be close for the query and dataset images, we seek to only
recoverx and y by computing coordinate transformation. We use
x and y in left and right coordinates (camera-referenced coordi-
nates and real-world coordinates) for three images to compute
the transformation parameters,R, s, t0 . Then the transformation
should be applied to the query location in left system to obtain
the query location in real-world coordinate (only x and y). By
having x and y , only calculating longitude is possible since z is
required for calculating latitude. In order to have a reasonable
estimate, an average of z, as shown in (27) below

Zq ≈
∑3

i=1 Zdbi
3

(27)

for those three candidates is computed. This is because we as-
sume that there would not be an abrupt change in the z coordi-
nate values among the selected images and the query. All three
components of the location vector of the query, [x, y, z], can be
used for computing query’s latitude and longitude.

2) Position Vector Reduction: Another method employed is
dimension reduction. We applied Principal Component Analysis
(PCA) to the 3D position vectors for transfer to 2D space. A
coordinate transformation is then applied between those 2D
vectors and their associated GPS tags. The query GPS tag can
then be calculated directly. To examine how the whole process
affects the ultimate accuracy, the same query images as used
with the four images approach in Section V have been used
for evaluation. Also, the experimental results for those queries
which were not evaluated due to the lack of four relevant images
are covered in the Section VI.
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Fig. 5. Recall versus the number of top candidates for San Francisco dataset
for different scenarios. Limiting the search area using Algorithm 1 improves
recall.

VI. PERFORMANCE EVALUATION

In this research, we evaluated the performance of our method
using the publicly available San Francisco dataset from [46]
containing more than one million images.

The reason for using this dataset is that the location error
for its queries is high since the images are captured mostly in
downtown San Francisco. Also, it contains more images per area
which is necessary in our research which is based on atleast three
images with distinct GPS-tag in SFM process. We have used
only perspective central images, PCIs, from the dataset since
they are less likely to cause distortions during the VisualSFM
3D reconstruction. The San Francisco dataset provides a set of
803 query images, usually taken from a pedestrian’s perspective
at street level. Each query image is also annotated with a ground
truth GPS tag which is noisy. Since accurate ground truth is
required for evaluating the final results, we have used ground
truth from [12] and compared our result with the results provided
in this article. We also used Adaptive Assignment [36] while η =
200k for the image retrieval engine. To assess the performance,
recall as used in [46], [47], and described in (28) has been used.
To further improve recall rate, rough position and maximum
GPS error are used for narrowing down the search space. For the
San Francisco dataset Rmax = 300 is reported. By considering
Rmax in Algorithm 1, recall has improved as shown in Fig. 5.
This figure also covers the recall curves after re-ranking. Note
that we have used San Francisco 2011 ground truth which does
not cover all the query images. As a result perfect recall is not
attainable, where

recall =
#of relevant retreived images

#of retreived images
(28)

We found that relevant images typically have more than 20
inliers. So candidate images with fewer than 20 inliers have
been filtered out directly. From 803 original queries, our re-
trieval pipeline finds candidates which have at least 20 inliers
for 453 queries . For 398 queries, more than four images are
found. Although retrieval curves for N = 50 are shown, we

have selected 15 images for the GMCP (N = 15). The reason
is that the recall is almost flat for the N > 15. Subset of four
images is then selected with two different approaches discussed
in Section III-C. For queries for which the number of retrieved
candidates is less than 15, all retrieved images proceed in the
next step. Fig. 6 shows a query with multiple candidates re-
turned from the retrieval pipeline and four images opted by two
approaches. Although images appear to be similar in both sets,
the set returned by GMCP converged in SFM processing while
the other did not. Fig. 7 represents a sample which did not con-
verge for both methods while they contain different images. In
Fig. 7, G represents images selected by GMCP and U by distinct
GPS tag. Images which are not selected are shown by NS.

For the 277 queries from 398, both approaches, returned iden-
tical subsets. Among those sets, 141 of them converge and pro-
duce 3D coordinates. For the reminding 121 queries we got
different subsets with 42 convergences for the method based on
finding distinct GPS tag and 61 convergences for the GMCP
based approach. It is worth mentioning that GMCP based se-
lection converged for all samples which distinct based method
converged. We also found that localization error is low and ac-
ceptable for our application when the SFM converges with five
images including the query. This is because the amount of er-
ror introduced by the approach we have used for coordinate
transformation is low. Therefore the total location error is ac-
ceptable upon convergence of the SFM. Although some queries
could find more than three candidates, the number of candidates
with distinct tag is less than four. We have evaluated our method
based on three candidates as discussed in V-B and found success
in 47 more cases.

Table I illustrates several query images from the San Fran-
cisco dataset, the corresponding four matching images for 3D
camera pose reconstruction, and the residual error

∑n
i=1 ‖ei‖2

in squre kilometers. The reconstructed best-matching camera
center positions from SFM are listed for each query. Note that
we rely on VisualSFM [44] for convergence i.e. estimate camera
locations for cameras including the query camera. When con-
vergence is not achieved with four images, the same approaches
with three images can be applied. For each query, the amount of
residual error obtained from closed-form formula for the trans-
formation is listed in the rightmost column. Those values of
errors which are introduced by coordinate transformation are
acceptable for all quintuplets considered in testing. This error is
sum of errors for coordinate transformation of four images from
camera coordinates to real world coordinates system through
the computed R, s, and t0 and is acceptable for our application
specially when we know the precision of the ground truth is in
the range of a meter. The specific parameters of the correspond-
ing transformation, scale factor s, translational offset t0 , and
rotation matrix R are listed in the adjacent column. Details are
presented in the Section VI.

Table II depicts an illustrative random subset of query images
and the distance error in meters between the estimated GPS
tag and the ground truth tag for each query when four dataset
images are used. When VisualSFM does not converge using
four candidate images, we considered the result for that query



SALARIAN et al.: IMPROVED IMAGE-BASED LOCALIZATION USING SFM AND MODIFIED COORDINATE SYSTEM TRANSFER 3307

Fig. 6. (a) Sample set of images returned by retrieval pipeline for query image shown in (b). (c) Images selected by proposed method based on GMCP. (d)
Images selected by finding images with highest number of inliers with query and distinct GPS-tag. Although images in two sets (c) and (d) look similar, only the
set returned by GMCP let to convergence in the SFM pipeline.

Fig. 7. Sample set of images returned by retrieval pipeline in a case where neither GMCP nor distinct GPS-tag led to convergence. Images selected by GMCP
and/or distinct (unique) GPS-tag are denoted as G and U, respectively, while images that were not selected are denoted as NS.

TABLE I
QUERY IMAGES AND CORRESPONDING FOUR MATCHES FOR SPARSE 3D CAMERA POSE RECONSTRUCTION

TABLE II
GEO DISTANCE ERROR BETWEEN GROUND TRUTH AND

ESTIMATED GPS TAGS FROM FIVE IMAGES

to be unsuccessful. It is however possible to consider using three
candidates for that query.

The coordinate transformation pipeline was found to converge
with acceptable error for all successful cases of convergence in
SFM. According to the Table I, the maximum residual error for
transferring four points from left to right coordinate system was
about three meters in the worst case.

It is worth mentioning that for all of the samples we got less
than this level of error for residual error and it was an order of

magnitude times smaller for most of the cases. The resulting
estimation error of each query camera’s GPS tag is shown in the
Fig. 8.

As can be seen, the best result is obtained using the method
with four dataset images. Moreover, the plot shows that 59.4% of
the query estimated locations have an error of less than 5 meters
and 32.6% have an error between 5 and 10 meters. For that
scenario and for some samples shown in Table II, the ultimate
localization error for most of the samples is less than three
meters. This level of accuracy is not achievable for other two
methods based on three dataset images. In fact for three images,
PCA-based method is slightly better while it is inferior in a
scenario with four images. Also, these results represent a marked
improvement over the errors reported in [12], [2]. In [12] only
errors less than 20 meters are reported while no statistics for
errors less than five meters or between five and 10 meters is
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Fig. 8. Distribution of estimation error in meters of query camera’s GPS
tag using our proposed method for the cases of four original images (blue),
three images without PCA (dark gray), three images with PCA (light gray).
Localization error for about 59% of query images is less than 5 m using four
images (blue).

Fig. 9. Overall average of estimation error (in meters) of query camera’s GPS
tag using our proposed method for the cases of 4 original images (blue), 3
images with PCA (dark gray), 3 images without PCA (light gray).

presented. In [2] only 15% of the errors are less than five meters
compared to 59.4% achieved with our approach. Achieving an
error in the range of 20 meters was not our goal since this level
of error can be obtained by just considering the location of the
best match from retrieval for most of the queries. The average
of estimation error of the query camera’s GPS tag using our
proposed method is shown in Fig. 9 for the cases of four original
images (blue), three images with PCA (light gray) and three
images without PCA (dark gray). It is important to note that we
do not incur any increase in computational burden in our method
with four or three images. This is because the time required
for retrieving and re-ranking images for an arbitrary query is
almost the same for all approaches. Also, image selection based
on GMCP with only N = 15 nodes does not require a large
amount of computation and adds up less than 10% to the time
required for a single SFM. Moreover, the computational cost for
coordinate transformation based on the proposed closed-form
approach is even less than 1% of required time for a single SFM.
So, the total running time is dependent mainly on the number of
times SFM is executing. Unlike other mentioned research, we

Fig. 10. Sample image set 1 of query and 4 best matching images considered
in the position estimation shown in Fig. 11.

Fig. 11. Sample localization result for query image in set 1 in Fig. 10: Noisy
query position from GPS (blue), position of best matches (red), actual (green)
and estimated positions by proposed method (yellow).

run SFM only once that leads to significantly reduced running
time. It is worth mentioning that considering four images instead
of three images for the visualSFM process has a negligible effect
on the processing time as discussed in [44] but reduces the
mean squared reprojection error of the estimated five camera
coordinates.

In order to show how our proposed method improved the
localization, two samples are provided with more details. The
two sample image sets considered here are shown in Figs. 10
and 12, and the positions of the retrieved images (more than
four), are shown, respectively, in Figs. 11 and 13 with red icons.
Also Figs. 10 and 12 show four images that are used in SFM
for each query. To evaluate the performance of our proposed
method, the noisy query position is shown in blue while the
actual and estimated positions are shown in green and yellow,
respectively. As can be seen, the actual and estimated positions
are close, especially in Fig. 13 where the distance between the
two is less than two meters.

Although we have considered prior knowledge of the position
along with maximum GPS error for the San Francisco dataset,
the localization errors for new cellphones are usually within
100 meters even in the worst case in cities such as San Francisco
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Fig. 12. Sample image set 2 of query and 4 best matching images considered
in the position estimation shown in Fig. 13. (a) Query. (b) Match 1. (c) Match
2. (d) Match 3. (e) Match 4.

Fig. 13. Sample localization result for query image in set 2 in Fig. 12: Noisy
query position from GPS (blue), position of best matches (red), actual (green)
and estimated positions by proposed method (yellow).

or Chicago. So the retrieval engine can search in an even smaller
region specified by the range of GPS error. By applying our
proposed method this level of error would be reduced to a range
of a couple of meters.

VII. CONCLUSION

In this paper, we first proposed a method to optimally select
the best subset of images selected with the highest similarity to
be used in reconstructing a 3D scene by using SFM. In order to
compute the query location, we introduced a coordinate trans-
formation between dataset images location in camera referenced
coordinate system and their corresponding real-world locations.
The advantage of this method is that the transformation param-
eters and consequently query location can be computed directly
from the results obtained with only a single execution of SFM.
Although four images from retrieval are employed, for most
of the samples we showed that transformation parameters can
also be computed with three images. Experimental results show
that our approach is able to reduce the error in the estimates of
query’s GPS tag from more than 20 meters (distance between
actual query position and best match) to less than five meters in a
high percentage of the considered test cases which is suitable for

localization application of interest to us. Also we observed that
our proposed method will produce an improved performance
(SFM convergence for a larger set of query images) if the orig-
inal database has more images per location and a higher degree
of overlap between images from similar locations. In future we
will explore how a Convolutional Neural Network (CNN) can
be employed as a core of image retrieval pipeline to improve the
retrieval results.
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